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Algebraic cycles on a very special EPW sextic

Robert Laterveer (�)

Abstract – Motivated by the Beauville–Voisin conjecture about Chow rings of powers
of K3 surfaces, we consider a similar conjecture for Chow rings of powers of EPW
sextics. We prove part of this conjecture for the very special EPW sextic studied by
Donten-Bury et al. We also prove some other results concerning the Chow groups of
this very special EPW sextic, and of certain related hyperkähler fourfolds.
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1. Introduction

For a smooth projective variety X overC, let Ai.X/ D CHi .X/Q denote the Chow
group of codimension i algebraic cycles modulo rational equivalence with Q-co-
efficients. Intersection product defines a ring structure on A�.X/ D

L

i Ai .X/.
In the case of K3 surfaces, this ring structure has an interesting property:

Theorem 1.1 (Beauville and Voisin [8]). Let S be a K3 surface. Let Di ; D0
i 2

A1.S/ be a finite number of divisors. Then

X

i

Di �D
0
i D 0 in A2.S/ ()

X

i

Di �D
0
i D 0 in H 4.S;Q/:

Conjecturally, a similar property holds for self-products of K3 surfaces:

Conjecture 1.2 (Beauville–Voisin). Let S be a K3 surface. For r � 1, let
D�.S r/ � A�.S r/ be the Q-subalgebra generated by (the pullbacks of ) divisors
and the diagonal of S . The restriction of the cycle class map induces an injection

Di.S r/ �! H 2i .S r ;Q/

for all i and all r .

For extensions and partial results concerning Conjecture 1.2, cf. [53], [54],
[56], and [58].

Beauville has asked which varieties have behaviour similar to Theorem 1.1
and Conjecture 1.2. This is the problem of determining which varieties verify the
“weak splitting property” of [7]. We briefly state this problem here as follows:

Problem 1.3 (Beauville [7]). Find a nice class C of varieties (containing K3

surfaces and abelian varieties), such that for any X 2 C, the Chow ring of X

admits a multiplicative bigrading A�
.�/

.X/, with

Ai .X/ D
M

j �0

Ai
.j /.X/ for all i:

This bigrading should split the conjectural Bloch–Beilinson filtration, in particu-
lar

Ai
hom.X/ D

M

j �1

Ai
.j /.X/:
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It has been conjectured that hyperkähler varieties are in C [7, introduction].
Also, not all Calabi–Yau varieties can be in C [7, Example 1.7(b)]. An interesting
novel approach of Problem 1.3 (as well as a reinterpretation of Theorem 1.1) is
provided by the concept of multiplicative Chow–Künneth decomposition (cf. [43],
[50], [44], and Section 2.3 below).

In this note, we ask whether EPW sextics might be in C. An EPW sextic is
a special sextic X � P5.C/ constructed in [18]. EPW sextics are not smooth;
however, a generic EPW sextic is a quotient X D X0=.�0/, where X0 is a
smooth hyperkähler variety (called a double EPW sextic) and �0 is an anti-
symplectic involution, see [35, Theorem 1.1] and [36]. Quotient varieties behave
like smooth varieties with respect to intersection theory with rational coefficients,
so the following conjecture makes sense:

Conjecture 1.4. Let X be an EPW sextic, and assume X is a quotient variety
X D X0=G with X0 smooth and G � Aut.X0/ a finite group. Then X 2 C.

There are two reasons why Conjecture 1.4 is likely to be true: first, because an
EPW sextic is a Calabi–Yau hypersurface (and these are probably in C); secondly,
because the hyperkähler variety X0 should be in C, and the involution �0 should
behave nicely with respect to the bigrading on A�

.�/
.X0/. Let us optimistically

suppose Conjecture 1.4 is true, and see what consequences this entails for the
Chow ring of EPW sextics. We recall that Chow groups are expected to satisfy
a weak Lefschetz property, according to a long-standing conjecture:

Conjecture 1.5 (Hartshorne [24]). Let X � PnC1.C/ be a smooth hypersur-
face of dimension n � 4. Then the cycle class map

A2.X/ �! H 4.X;Q/

is injective.

Conjecture 1.5 is notoriously open for all hypersurfaces of degree d � nC 2.
Since quotient varieties behave in many ways like smooth varieties, it seems
reasonable to expect that Conjecture 1.5 extends to hypersurfaces that are quo-
tient varieties. This would imply that an EPW sextic X as in Conjecture 1.4 has
A2

hom.X/ D 0. That is, conjecturally we have that

Ai .X/ D Ai
.0/.X/ for all i � 2:

For any r � 1, let us now define

E�.Xr/ � A�.Xr/
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as theQ-subalgebra generated by (pullbacks of) elements of A1.X/ and A2.X/ and
the class of the diagonal of X . The above remarks imply a conjectural inclusion

E�.Xr / � A�
.0/.X

r/ D A�.Xr /=A�
hom.Xr /:

We thus arrive at the following concrete, falsifiable conjecture:

Conjecture 1.6. Let X be an EPW sextic as in Conjecture 1.4. Then restriction
of the cycle class map

Ei .Xr / �! H 2i .Xr ;Q/

is injective for all i and all r .

Conjecture 1.6 is the analogon of Conjecture 1.2 for EPW sextics; the role of
divisors on the K3 surface is played by (the hyperplane section and) codimension
2 cycles on the sextic. The main result in this note provides some evidence for
Conjecture 1.6: we can prove it is true for 0-cycles and 1-cycles on one very special
EPW sextic:

Theorem (D Theorem 4.7). Let X be the very special EPW sextic of [16]. Let
r 2 N. The restriction of the cycle class map

Ei .Xr / �! H 2i .Xr ;Q/

is injective for i � 4r � 1.

The very special EPW sextic of [16] (cf. Section 2.7 below for a definition) is
not smooth, but it is a “Calabi–Yau variety with quotient singularities.” The very
special EPW sextic X is very symmetric; it is also remarkable for providing the
only example known so far of a complete family of 20 pairwise incident planes in
P5.C/, see [16]. As resumed in Theorem 2.28 below, the very special EPW sextic
X is related to hyperkähler varieties in two different ways: (a) X is rationally
dominated via a degree 2 map by the Hilbert scheme S Œ2� where S is a K3 surface
of Picard number 20; (b) X admits a double cover that is the quotient of an abelian
variety by a finite group of group automorphisms, and this quotient admits a
hyperkähler resolution X0.

To prove Theorem 4.7, we first prove (Proposition 3.3) that the very special
EPW sextic X has a multiplicative Chow–Künneth decomposition, in the sense of
Shen and Vial [43], and so the Chow ring of X has a bigrading. Next, we establish
(Proposition 3.8) that

(1) A2.X/ D A2
.0/.X/:

Both these facts are proven using description (b), via the theory of symmetrically
distinguished cycles [37].
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Note that equality (1) might be considered as evidence for Conjecture 1.5 for X .
In order to prove Conjecture 1.5 for the very special EPW sextic X , it remains to
prove that

A2
.0/.X/ \ A2

hom.X/
‹‹
D 0:

Likewise, in order to prove the full Conjecture 1.6 for the very special EPW sextic
X , it remains to prove that

Ai
.0/.X

r / \ Ai
hom.Xr /

‹‹
D 0 for all i; r:

We are not able to prove these equalities outside of the range i � 4r � 1; this
is related to some of the open cases of Beauville’s conjecture on Chow rings of
abelian varieties (remarks 4.4 and 4.8).

On the positive side, we establish a precise relation between the Chow ring of
the very special EPW sextic X and the Chow ring of the hyperkähler fourfold X0

mentioned in description (b) (Theorem 4.9). This relation provides an alternative
description of the splitting of the Chow ring of X0 coming from a multiplica-
tive Chow–Künneth decomposition (Corollary 4.10). In proving this relation, we
exploit description (a); a key ingredient in the proof is a strong version of the gen-
eralized Hodge conjecture for X and X0 (Proposition 3.1), which crucially relies
on the fact that the K3 surface S has maximal Picard number.

We also obtain some results concerning Bloch’s conjecture (Section 5.1), as
well as a conjecture of Voisin (Section 5.2), for the very special EPW sextic. The
application to Bloch’s conjecture relies on description (b) (via the theory of sym-
metrically distinguished cycles), but also on description (a) (via the surjectivity
result proposition 3.12).

We end this introduction with a challenge: can one prove Theorem 4.7 for other
(not very special) EPW sextics?

Conventions. In this note, the word variety will refer to a reduced irreducible
scheme of finite type over C. A subvariety is a (possibly reducible) reduced
subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we denote by Aj X the
Chow group of j -dimensional cycles on X with Q-coefficients; for X smooth
of dimension n the notations Aj X and An�j X will be used interchangeably.

The notations A
j
hom.X/, A

j
num.X/, A

j
AJ .X/ will be used to indicate the sub-

groups of homologically trivial, resp. numerically trivial, resp. Abel–Jacobi triv-
ial cycles. The contravariant category of Chow motives (i.e., pure motives with
respect to rational equivalence as in [42], [34]) will be denoted Mrat.

We will write H j .X/ and Hj .X/ to indicate singular cohomology H j .X;Q/,
resp. Borel–Moore homology Hj .X;Q/.
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2. Preliminary material

2.1 – Quotient varieties

Definition 2.1. A projective quotient variety is a variety

X D Y=G;

where Y is a smooth projective variety and G � Aut.Y / is a finite group.

Proposition 2.2 (Fulton [22]). Let X be a projective quotient variety of
dimension n. Let A�.X/ denote the operational Chow cohomology ring. The
natural map

Ai .X/ �! An�i.X/

is an isomorphism for all i .

Proof. This is [22, Example 17.4.10]. �

Remark 2.3. It follows from Proposition 2.2 that the formalism of correspon-
dences goes through unchanged for projective quotient varieties (this is also noted
in [22, Example 16.1.13]). We can thus consider motives .X; p; 0/ 2Mrat, where X

is a projective quotient variety and p 2 An.X �X/ is a projector. For a projective
quotient variety X D Y=G, one readily proves (using Manin’s identity principle)
that there is an isomorphism

h.X/ Š h.Y /G WD .Y; �G
Y ; 0/ in Mrat;

where �G
Y denotes the idempotent 1

jGj

P

g2G�g .

2.2 – Finite-dimensionality

We refer to [32], [4], [34], [26], and [30] for basics on the notion of finite-
dimensional motive. An essential property of varieties with finite-dimensional
motive is embodied by the nilpotence theorem:

Theorem 2.4 (Kimura [32]). Let X be a smooth projective variety of dimen-
sion n with finite-dimensional motive. Let � 2 An.X � X/ be a correspondence
which is numerically trivial. Then there is N 2 N such that

�ıN D 0 2 An.X �X/:



Algebraic cycles on a very special EPW sextic 87

Actually, the nilpotence property (for all powers of X) could serve as an
alternative definition of finite-dimensional motive, as shown by a result of Jannsen
[30, Corollary 3.9]. Conjecturally, all smooth projective varieties have finite-
dimensional motive [32]. We are still far from knowing this, but at least there
are quite a few non-trivial examples:

Remark 2.5. The following varieties have finite-dimensional motive: abelian
varieties, varieties dominated by products of curves [32], K3 surfaces with Pi-
card number 19 or 20 [38], surfaces not of general type with pg D 0, see [23,
Theorem 2.11], certain surfaces of general type with pg D 0 [23], [40], [55],
Hilbert schemes of surfaces known to have finite-dimensional motive [13], gen-
eralized Kummer varieties [57, Remark 2.9(ii)], [21], threefolds with nef tan-
gent bundle [27] and [47, Example 3.16], fourfolds with nef tangent bundle [28],
log-homogeneous varieties in the sense of [12] (this follows from [28, Theo-
rem 4.4]), certain threefolds of general type [49, Section 8], varieties of dimension
� 3 rationally dominated by products of curves [47, Example 3.15], varieties X

with Ai
AJ .X/ D 0 for all i [46, Theorem 4], products of varieties with finite-

dimensional motive [32].

Remark 2.6. It is an embarrassing fact that up till now, all examples of finite-
dimensional motives happen to lie in the tensor subcategory generated by Chow
motives of curves, i.e., they are “motives of abelian type” in the sense of [47].
On the other hand, there exist many motives that lie outside this subcategory, e.g.,
the motive of a very general quintic hypersurface in P3, see [14, 7.6].

The notion of finite-dimensionality is easily extended to quotient varieties:

Definition 2.7. Let X D Y=G be a projective quotient variety. We say that X

has finite-dimensional motive if the motive

h.Y /G WD .Y; �G
Y ; 0/ 2Mrat

is finite-dimensional. Here, �G
Y denotes the idempotent

1

jGj

X

g2G

�g 2 An.Y � Y /:
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Clearly, if Y has finite-dimensional motive then also X D Y=G has finite-
dimensional motive. The nilpotence theorem extends to this setup:

Proposition 2.8. Let X D Y=G be a projective quotient variety of dimension
n, and assume X has finite-dimensional motive. Let � 2 An

num.X �X/. Then there
is N 2 N such that

�ıN D 0 2 An.X �X/:

Proof. Let pWY ! X denote the quotient morphism. We associate to � a
correspondence �Y 2 An.Y � Y / defined as

�Y WD
t�p ı � ı �p 2 An.Y � Y /:

By Lieberman’s lemma [47, Lemma 3.3], there is equality

�Y D .p � p/�� in An.Y � Y /;

and so �Y is G �G-invariant:

�G
Y ı �Y ı�G

Y D �Y in An.Y � Y /:

This implies that

�Y 2 �G
Y ı An.Y � Y / ı�G

Y ;

and so

�Y 2 EndMrat.h.Y /G/:

Since clearly �Y is numerically trivial, and h.Y /G is finite-dimensional (by as-
sumption), there exists N 2 N such that

.�Y /ıN D t �p ı � ı �p ı
t�p ı � � � ı �p D 0 in An.Y � Y /:

Using the relation �p ı
t�p D d�X , this boils down to

d N �1 t �p ı �ıN ı �p D 0 in An.Y � Y /:

From this, we deduce that also

�ıN D
1

d N C1
�p ı .d N �1 t �p ı �ıN ı �p/ ı t �p D 0 in An.X � X/: �
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2.3 – MCK decomposition

Definition 2.9 (Murre [33]). Let X be a projective quotient variety of dimen-
sion n. We say that X has a CK decomposition if there exists a decomposition of
the diagonal

�X D …0 C…1 C � � � C…2n in An.X �X/;

such that the …i are mutually orthogonal idempotents and

.…i /�H �.X/ D H i .X/:

Remark 2.10. The existence of a CK decomposition for any smooth projective
variety is part of Murre’s conjectures [33], [29]. If a quotient variety X has finite-
dimensional motive, and the Künneth components are algebraic, then X has a CK
decomposition (this can be proven just as [29], where this is stated for smooth X).

Definition 2.11 (Shen and Vial [43]). Let X be a projective quotient variety
of dimension n. Let �X

sm 2 A2n.X �X �X/ be the class of the small diagonal

�X
sm WD

®

.x; x; x/ j x 2 X
¯

� X �X �X:

An MCK decomposition of X is a CK decomposition ¹…iº of X that is multi-
plicative, i.e., it satisfies

…k ı�X
sm ı .…i �…j / D 0 in A2n.X �X �X/ for all i C j 6D k:

(NB: the acronym “MCK” is shorthand for “multiplicative Chow–Künneth.”)

Remark 2.12. The small diagonal (seen as a correspondence from X � X

to X) induces the multiplication morphism

�X
smW h.X/˝ h.X/ �! h.X/ in Mrat:

Suppose X has a CK decomposition

h.X/ D

2n
M

iD0

hi.X/ in Mrat:

By definition, this decomposition is multiplicative if for any i; j the composition

hi .X/˝ hj .X/ �! h.X/˝ h.X/
�X

sm
��! h.X/ in Mrat

factors through hiCj .X/.
The property of having an MCK decomposition is severely restrictive, and

is closely related to Beauville’s “weak splitting property” [7]. For more ample
discussion, and examples of varieties with an MCK decomposition, we refer to
[43, Section 8] and also [50], [44], and [21].
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Lemma 2.13. Let X; X 0 be birational hyperkähler varieties. Then X has an
MCK decomposition if and only if X 0 has one.

Proof. This is noted in [50, Introduction]; the idea is that Rieß’s result [41]
implies that X and X 0 have isomorphic Chow motives and the isomorphism is
compatible with the multiplicative structure.

More precisely: let �WX Ü X 0 be a birational map between hyperkähler
varieties of dimension n. According to [41] there exists a correspondence  2

An.X �X 0/ inducing a ring isomorphism A�.X/ Š A�.X 0/.
Suppose that ¹…X

i º is an MCK decomposition for X . Let �X
sm; �X 0

sm denote the
small diagonal of X resp. X 0. As explained in [43, Section 6], the argument of [41]
gives the equality

 ı�X
sm ı

t . � / D �X 0

sm in A2n.X 0 �X 0 � X 0/:

The prescription
…X 0

i WD  ı �X
i ı

t 2 An.X 0 �X 0/

defines a CK decomposition for X 0. (The …X 0

i are orthogonal idempotents thanks
to Rieß’s result that  ı t D �X 0 and t ı  D �X [41].)

To see that this CK decomposition ¹…X 0

i º is multiplicative, let us consider
integers i; j; k such that i C j 6D k. It follows from the above equalities that

…X 0

k ı�X 0

sm ı .…X 0

i �…X 0

j /

D  ı…X
k ı

t  ı  ı�X
sm ı

t . � / ı . � / ı .…X
i �…X

j / ı t

D  ı…X
k ı�X

sm ı .…X
i �…X

j / ı t 

D 0 in A2n.X 0 � X 0/:

(Here we have again used Rieß’s result that  ı t D �X 0 and t ı  D �X .) �

2.4 – Niveau filtration

Definition 2.14 (coniveau filtration [10]). Let X be a quasi-projective variety.
The coniveau filtration on cohomology and on homology is defined as

N cH i .X;Q/ D
X

Im.H i
Y .X;Q/ �! H i .X;Q//I

N cHi .X;Q/ D
X

Im.Hi.Z;Q/ �! Hi.X;Q//;

where Y runs over codimension � c subvarieties of X , and Z over dimension
� i � c subvarieties.
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Vial introduced the following variant of the coniveau filtration:

Definition 2.15 (Niveau filtration [48]). Let X be a smooth projective variety.
The niveau filtration on homology is defined as

zN j Hi.X/ D
X

�2Ai�j .Z�X/

Im.Hi�2j .Z/! Hi .X//;

where the union runs over all smooth projective varieties Z of dimension i � 2j ,
and all correspondences � 2 Ai�j .Z �X/. The niveau filtration on cohomology
is defined as

zN cH iX WD zN c�iCnH2n�iX:

Remark 2.16. The niveau filtration is included in the coniveau filtration:

zN j H i .X/ � N j H i .X/:

These two filtrations are expected to coincide; indeed, Vial shows this is true if
and only if the Lefschetz standard conjecture is true for all varieties [48, Proposi-
tion 1.1].

Using the truth of the Lefschetz standard conjecture in degree � 1, it can
be checked [48, p. 415, “Properties”] that the two filtrations coincide in a certain
range:

zN j H i .X/ D N j H iX for all j �
i � 1

2
:

2.5 – Refined CK decomposition

Theorem 2.17 (Vial [48]). Let X be a smooth projective variety of dimension
n � 5. Assume the Lefschetz standard conjecture B.X/ holds (in particular, the
Künneth components �i 2 H 2n.X � X/ are algebraic). Then there is a splitting
into mutually orthogonal idempotents

�i D
X

j

�i;j 2 H 2n.X �X/;

such that
.�i;j /�H �.X/ D grj

zN
H i .X/ :

(Here, the graded grj

zN
H i .X/ can be identified with a Hodge substructure of

H i .X/ using the polarization.) In particular,

.�2;1/�H j .X/ D H 2.X/ \ F 1;

.�2;0/�H j .X/ D H 2
tr.X/:
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Here F � denotes the Hodge filtration, and H 2
tr.X/ is the orthogonal complement

to H 2.X/ \ F 1 under the pairing

H 2.X/ ˝ H 2.X/ �! Q;

a ˝ b 7�! a [ hn�2 [ b:

Proof. This is [48, Theorem 1]. �

Theorem 2.18 (Vial [48]). Let X be as in Theorem 2.17. Assume in addition
X has finite-dimensional motive. Then there exists a CK decomposition …i 2

An.X �X/, and a splitting into mutually orthogonal idempotents

…i D
X

j

…i;j 2 An.X �X/;

such that

…i;j D �i;j in H 2n.X �X/;

and

.…2i;i /�Ak.X/ D 0 for all k 6D i:

The motive hi;0.X/ D .X; …i;0; 0/ 2Mrat is well defined up to isomorphism.

Proof. This is [48, Theorem 2]. The last statement follows from [48, Propo-
sition 1.8] combined with [31, Theorem 7.7.3]. �

Remark 2.19. In case X is a surface with finite-dimensional motive, there is
equality

h2;0.X/ D t2.X/ in Mrat;

where t2.X/ is the “transcendental part of the motive” constructed for any surface
(not necessarily with finite-dimensional motive) in [31].

Lemma 2.20. Let X be a smooth projective variety as in Theorem 2.18, and
assume

dim H 2.X;OX/ D 1:

Then the motive

h2;0.X/ 2Mrat

is indecomposable, i.e., any non-zero submotive M � h2;0.X/ is equal to h2;0.X/.
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Proof. (This kind of argument is well known, cf. for instance [55, Corol-
lary 3.11] or [39, Corollary 2.10] where this is proven for K3 surfaces with finite-
dimensional motive.) The idea is that there are no non-zero Hodge substructures
strictly contained in H 2

tr.X/. Since the motive M � h2;0.X/ defines a Hodge
substructure

H �.M/ � H 2
tr.X/;

we must have H �.M/ D H 2
tr.X/ and thus an equality of homological motives

M D h2;0.X/ in Mhom:

Using finite-dimensionality of X , it follows there is an equality of Chow motives

M D h2;0.X/ in Mrat: �

Lemma 2.21. Let X1; X2 be two projective quotient varieties of dimension 4.
Assume X1; X2 have finite-dimensional motive, verify the Lefschetz standard con-
jecture and

N 1
H H 4.Xj / D zN 1H 4.Xj / for j D 1; 2;

where N �
H is the Hodge coniveau filtration. Let � 2 A4.X1 � X2/ and ‰ 2

A4.X2 � X1/. The following are equivalent:

(i) ��WH
0;4.X1/ �! H 0;4.X2/

is an isomorphism, with inverse ‰�;

(ii) ��WH
4
tr.X1/ �! H 4

tr .X2/

is an isomorphism, with inverse ‰�;

(iii) �W h4;0.X1/ �! h4;0.X2/ in Mrat

is an isomorphism, with inverse ‰.

Proof. Assume (i), i.e.,

‰��� D idWH 0;4.X1/ �! H 0;4.X1/:

Using the hypothesis N 1
H D

zN 1, this implies

‰��� D idWH 4.X1/= zN 1 �! H 4.X1/= zN 1;

and so

(2) .‰ ı � ı…
X1

4;0/� D .…
X1

4;0/�WH
�.X1/ �! H �.X1/:
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Considering the action on H 4
tr .X1/, this implies

‰��� D idWH 4
tr.X1/ �! H 4

tr.X1/:

Switching the roles of X1 and X2, one finds that likewise ��‰� D id on H 4
tr.X2/,

and so the isomorphism of (ii) is proven.
Next, we note that it formally follows from equality (2) that ‰ is left-inverse to

�W h4;0.X1/ �! h4;0.X2/ in Mhom:

Switching roles of X1 and X2, one finds ‰ is also right-inverse to � and so

�W h4;0.X1/ �! h4;0.X2/ in Mhom

is an isomorphism, with inverse ‰. By finite-dimensionality, the same holds in
Mrat, establishing (iii). �

Remark 2.22. The equality

N 1
H H 4.Xj / D zN 1H 4.Xj /

in the hypothesis of Lemma 2.21 is the conjunction of the generalized Hodge
conjecture N 1

H D N 1 and Vial’s conjecture N 1 D zN 1.

2.6 – Symmetrically distinguished cycles on abelian varieties

Definition 2.23 (O’Sullivan [37]). Let A be an abelian variety. Let a 2 A�.A/

be a cycle. For m � 0, let
Vm.a/ � A�.Am/

denote the Q-vector space generated by elements

p�..p1/�.ar1/ � .p2/�.ar2/ � � � � � .pn/�.arn// 2 A�.Am/:

Here n � m, and rj 2 N, and pi WA
n ! A denotes projection on the i-th factor,

and pWAn ! Am is a closed immersion with each component An ! A being
either a projection or the composite of a projection with Œ�1�WA! A.

The cycle a 2 A�.A/ is said to be symmetrically distinguished if for every
m 2 N the composition

Vm.a/ � A�.Am/ �! A�.Am/=A�
hom.Am/

is injective.
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Theorem 2.24 (O’Sullivan [37]). The symmetrically distinguished cycles form
a Q-subalgebra A�

sym.A/ � A�.A/, and the composition

A�
sym.A/ � A�.A/ �! A�.A/=A�

hom.A/

is an isomorphism. Symmetrically distinguished cycles are stable under pushfor-
ward and pullback of homomorphisms of abelian varieties.

Remark 2.25. For discussion and applications of the notion of symmetrically
distinguished cycles, in addition to [37] we refer to [43, Section 7], [50], [3],
and [20].

Lemma 2.26. Let A be an abelian variety of dimension g.

(i) There exists an MCK decomposition ¹…A
i º that is self-dual and consists of

symmetrically distinguished cycles.

(ii) Assume g � 5, and let ¹…A
i º be as in (i). There exists a further splitting

…A
2 D …A

2;0 C…A
2;1 in Ag.A � A/;

where the …A
2;i are symmetrically distinguished and

…A
2;i D �A

2;i in H 2g .A � A/.

Proof. (i) An explicit formula for ¹…A
i º is given in [43, Section 7, for-

mula (45)].

(ii) The point is that …A
2;1 is (by construction) a cycle of type
X

j

Cj �Dj in Ag.A � A/;

where Dj � A is a symmetric divisor and Cj � A is a curve obtained by inter-
secting a symmetric divisor with hyperplanes. This implies …A

2;1 is symmetrically
distinguished. By assumption, …A

2 is symmetrically distinguished and hence so
is …A

2;0. �

2.7 – The very special EPW sextic

This subsection introduces the main actor of this tale: the very symmetric EPW
sextic discovered in [16].

Definition 2.27 ([5]). A hyperkähler variety is a simply-connected smooth
projective variety X such that H 0.X; �2

X/ is spanned by a nowhere degenerate
holomorphic 2-form.
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Theorem 2.28 (Donten-Bury et al. [16]). Let X � P5.C/ be defined by the
equation

x6
0Cx6

1 C x6
2 C x6

3 C x6
4 C x6

5 C .x4
0x2

1 C x4
0x2

2 C � � � C x2
4x4

5/

C .x2
0x2

1x2
2 C x2

0x2
1x2

3 C � � � C x2
3x2

4x2
5/C x0x1x2x3x4x5 D 0:

(Note that the parentheses are symmetric functions in the variables x0; : : : ; x5.)

(i) The hypersurface X is an EPW sextic (in the sense of [18] and [35]).

(ii) Let S be the K3 surface obtained from a certain Del Pezzo surface in [51], and
let S Œ2� denote the Hilbert scheme of 2 points on S . Then there is a rational
map (of degree 2)

�WS Œ2�
Ü X:

We have the commutative diagram

S Œ2� S Œ2� X 0 WD E4=.G0/ X0

X

 

!�

 

!
flops  

!

 

! g

 

!

Here all horizontal arrows are birational maps. E is an elliptic curve and
X 0 WD E4=.G0/ is a quotient variety, and X0 is a hyperkähler variety with
b2.X0/ D 23 which is a symplectic resolution of X 0. The morphism g

is a double cover; X is a projective quotient variety X D E4=G where
G D .G0; i / with i2 2 G0. The groups G0 and G consist of automorphisms
that are group homomorphisms.

(iii) S Œ2� and X0 have finite-dimensional motive and a multiplicative CK decom-
position.

Proof. (i) See [16, Proposition 2.6].

(ii) This is a combination of [16, Proposition 1.1] and [16, Sections 5 and 6].

(Caveat: the group that we denote G0 is written G in [16].)

(iii) Vinberg’s K3 surface has Picard number 20; as such, it is a Kummer
surface and has finite-dimensional motive. This implies (using [13]) that S Œ2� has
finite-dimensional motive. As birational hyperkähler varieties have isomorphic
Chow motives [41], X0 has finite-dimensional motive. The Hilbert scheme S Œ2�

of any K3 surface S has an MCK decomposition [43, Theorem 13.4]. As the
isomorphism of [41] is an isomorphism of algebras in the category of Chow
motives, X0 also has an MCK decomposition (Lemma 2.13). �
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Remark 2.29. The singular locus of the very special EPW sextic X consists
of 60 planes. Among these 60 planes, there is a subset of 20 planes which form
a complete family of pairwise incident planes in P5.C/ [16]. This is the maximal
number of elements in a complete family of pairwise incident planes, and this
seems to be the only known example of a complete family of 20 pairwise incident
planes.

Remark 2.30. The variety X0 is not unique. In [17, Section 6], it is shown there
exist 8116 symplectic resolutions of E4=.G0/ (some of them non-projective). One
noteworthy consequence of Theorem 2.28 is that the varieties X0 are of K3Œ2� type
(this was not a priori clear from [17]).

Remark 2.31. For a generic EPW sextic X , there exists a hyperkähler fourfold
X0 (called a “double EPW sextic”) equipped with an anti-symplectic involution
�0 such that X D X0=.�0/ [35, Theorem 1.1 (2)]. For the very special EPW sextic
X , I don’t know whether such X0 exists. (For this, one would need to show that
the Lagrangian subspace A defining the very special EPW sextic is in the Zariski
open LG.^3V /0 � LG.^3V / defined in [35, page 3].)

3. Some intermediate steps

3.1 – A strong version of the generalized Hodge conjecture

For later use, we record here a proposition, stating that the very special EPW
sextic, as well as some related varieties, satisfy the hypothesis of Lemma 2.21:

Proposition 3.1. Let X0 be any hyperkähler variety as in Theorem 2.28 (i.e.,
X0 is a symplectic resolution of E4=.G0/). Then

N 1
H H 4.X0/ D zN 1H 4.X0/:

(Here N �
H denotes the Hodge coniveau filtration and zN � denotes the niveau

filtration (Definition 2.15).)
The same holds for X 0 WD E4=.G0/ and for the very special EPW sextic X :

N 1
H H 4.X 0/ D zN 1H 4.X 0/;

N 1
H H 4.X/ D zN 1H 4.X/:

Proof. The point is that Vinberg’s K3 surface S has Picard number 20, and
so the corresponding statement is easily proven for S Œ2�:
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Lemma 3.2. Let S be Vinberg’s K3 surface. Then

N 1
H H 4.S Œ2�/ D zN 1H 4.S Œ2�/:

Proof. Let AS � S ! S � S denote the blow-up of the diagonal. As it is well
known, there are isomorphisms of homological motives

h.S Œ2�/ Š h. AS � S/S2;

h. AS � S/ Š h.S � S/˚ h.S/.1/ in Mhom;

where S2 denotes the symmetric group on 2 elements acting by permutation. It
follows there is a correspondence–induced injection

H 4.S Œ2�/ ,�! H 4.S � S/˚H 2.S/:

It thus suffices to prove the statement for S � S . Let us write

H 2.S/ D N ˚ T WD NS.S/˚H 2
tr.S/:

We have

N 1
H H 4.S � S/ D H 4.S � S/ \ F 1

D H 0.S/˝H 4.S/˚H 4.S/˝H 0.S/˚N ˝N

˚N ˝ T ˚ T ˝N ˚ .T ˝ T / \ F 1:

All but the last summand are obviously in zN 1. As to the last summand, we have
that

.T ˝ T / \ F 1 D .T ˝ T / \ F 2:

Since the Hodge conjecture is true for S � S (indeed, S is a Kummer surface
and the Hodge conjecture is known for powers of abelian surfaces [1, 7.2.2], [2,
8.1(2)]), there is an inclusion

.T ˝ T / \ F 2 � N 2H 4.S � S/ D zN 2H 4.S � S/;

and so the lemma is proven. 4

Since birational hyperkähler varieties have isomorphic cohomology rings [25,
Corollary 2.7], and the isomorphism (being given by a correspondence) respects
Hodge structures, this proves the result for X0. Since X0 dominates X 0 and X , the
result for X 0 and X follows. Proposition 3.1 is now proven. �



Algebraic cycles on a very special EPW sextic 99

3.2 – MCK for quotients of abelian varieties

Proposition 3.3. Let A be an abelian variety of dimension n, and let G �

AutZ.A/ be a finite group of automorphisms of A that are group homomorphisms.
The quotient

X D A=G

has a self-dual MCK decomposition.

Proof. A first step is to show there exists a self-dual CK decomposition for X

induced by a CK decomposition on A:

Claim 3.4. Let A and X be as in Proposition 3.3, and let pWA! X denote the
quotient morphism. Let ¹…A

i º be a CK decomposition as in Lemma 2.26(i). Then

…X
i WD

1

d
�p ı…A

i ı
t�p 2 An.X �X/; i D 0; : : : ; 2n

defines a self-dual CK decomposition for X .

To prove the claim, we remark that clearly the given …X
i lift the Künneth

components of X , and their sum is the diagonal of X . We will make use of the
following property:

Lemma 3.5. Let A be an abelian variety of dimension n, and let ¹…A
i º be an

MCK decomposition as in Lemma 2.26(i). For any g 2 AutZ.A/, we have

…A
i ı �g D �g ı…A

i in An.A � A/:

Proof. Because g�H i .A/ � H i .A/, we have a homological equivalence

…A
i ı �g � �g ı…A

i D 0 in H 2n.A � A/:

But the left-hand side is a symmetrically distinguished cycle, and so it is rationally
trivial. 4

To see that …X
i is idempotent, we note that

…X
i ı…X

i D
1

d 2
�p ı…A

i ı
t�p ı �p ı…A

i ı
t�p

D
1

d
�p ı…A

i ı
�

X

g2G

�g

�

ı…A
i ı

t�p
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D
1

d
�p ı…A

i ı…A
i ı

�

X

g2G

�g

�

ı t�p

D
1

d
�p ı…A

i ı
�

X

g2G

�g

�

ı t �p

D
1

d
�p ı…A

i ı
t�p ı �p ı

t�p

D
1

d
�p ı…A

i ı
t�p ı d�X

D �p ı…A
i ı

t�p D …X
i in An.X �X/:

(Here, the third equality is an application of Lemma 3.5, and the fourth equality
is because …A

i is idempotent.) The fact that the …X
i are mutually orthogonal is

proven similarly; one needs to replace …X
i ı…

X
i by …X

i ı…
X
j in the above argument.

This proves Claim 3.4.
Now, it only remains to see that the CK decomposition ¹…X

i º of Claim 3.4 is
multiplicative.

Claim 3.6. The CK decomposition ¹…X
i º given by Claim 3.4 is an MCK

decomposition.

To prove Claim 3.6, let us consider the composition

…X
k ı�X

sm ı .…X
i �…X

j / 2 An.X �X/;

where we suppose i C j 6D k. There are equalities

…X
k ı�X

sm ı .…X
i �…X

j /

D
1

d 3
�p ı…A

k ı
t �p ı�X

sm ı �p�p ı .…A
i �…A

j / ı t �p�p

D
1

d
�p ı…A

k ı�G
A ı�A

sm ı .�G
A ��G

A / ı .…A
i �…A

j / ı t�p�p

D
1

d
�p ı�G

A ı…A
k ı�A

sm ı .…A
i �…A

j / ı .�G
A ��G

A / ı t�p�p

D 0 in A2n.X �X �X/:

Here, the first equality is by definition of the …X
i , the second equality is Lemma 3.7

below, the third equality follows from Lemma 3.5, and the fourth equality is the
fact that ¹…A

i º is an MCK decomposition for A (Lemma 2.26).
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Lemma 3.7. There is equality

t�p ı�X
sm ı �p�p D

1

d

�

X

g2G

�g

�

ı�A
sm ı

��

X

g2G

�g

�

�
�

X

g2G

�g

��

D d 2�G
A ı�A

sm ı .�G
A ��G

A / in A2n.A � A � A/:

Proof. The second equality is just the definition of �G
A . As to the first equality,

we first note that

�X
sm D

1

d
.p � p � p/�.�A

sm/ D
1

d
�p ı�A

sm ı
t�p�p in A2n.X �X �X/:

This implies that

t�p ı�X
sm ı �p�p D

1

d
t�p ı �p ı�A

sm ı
t �p�p ı �p�p :

But t�p ı �p D
P

g2G �g , and thus

t�p ı�X
sm ı �p�p

D
1

d

�

X

g2G

�g

�

ı�A
sm ı

��

X

g2G

�g

�

�
�

X

g2G

�g

��

in A2n.A � A � A/;

as claimed. 4

This ends the proof of Proposition 3.3. �

In the setup of Proposition 3.3, one can actually say more about certain pieces
Ai

.j /
.X/:

Proposition 3.8. Let X D A=G be as in Proposition 3.3. Assume n D

dim X � 5 and H 2.X;OX/ D 0. Assume also there exists X 0 D A=.G0/ where
G D .G0; i / with i2 2 G0, and the action of i on H 2.X 0;OX 0/ is minus the identity.
Then any CK decomposition ¹…iº of X verifies

.…2/�Aj .X/ D 0 for all j 6D 1;

.…6/�Aj .X/ D 0 for all j 6D 3:

Proof. It suffices to prove this for one particular CK decomposition, in view
of the following lemma:

Lemma 3.9. Let X D A=G be as in Proposition 3.3. Let …; …0 2 An.X �X/

be idempotents, and assume …�…0 D 0 in H 2n.X �X/. Then

.…/�Ai .X/ D 0 () .…0/�Ai.X/ D 0:
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Proof. This follows from [48, Lemma 1.14]. Alternatively, here is a direct
proof. Let pWA ! X denote the quotient morphism, and let d WD jGj. One
defines

…A WD
1

d
t�p ı… ı �p 2 An.A � A/;

…0
A WD

1

d
t �p ı…0 ı �p 2 An.A � A/:

It is readily checked …A; …0
A are idempotents, and they are homologically equiv-

alent.
Let us assume .…/�Ai.X/ D 0 for a certain i . Then also

.…A/�p�Ai .X/ D
� 1

d
t�p ı… ı �p ı

t �p

�

�
Ai .X/ D .t�p ı…/�Ai .X/ D 0:

By finite-dimensionality of A, the difference …A�…0
A 2 An

hom.A�A/ is nilpotent,
i.e., there exists N 2 N such that

�

…A �…0
A

�ıN
D 0 in An.A � A/:

Upon developing, this implies

…0
A D .…0

A/ıN D Q1 C � � � CQN in An.A � A/;

where each Qj is a composition

Qj D Q1
j ıQ2

j ı � � � ıQN
j ;

with Qk
j 2 ¹…A; …0

Aº, and at least one Qk
j is …A. Since by assumption

.…A/�p�Ai.X/ D 0;

it follows that

.Qj /� D .something/�.…A/�..…0
A/ır/� D 0Wp�Ai .X/ �! p�Ai .X/ for all j:

But then also

.…0
A/�p�Ai .X/ D .Q1 C � � � CQN /�p�Ai .X/ D 0: 4

Now, let us take a projector for A of the form

…A
2 D …A

2;0 C…A
2;1 2 An.A � A/;

where …A
2;0; …A

2;1 are as in Lemma 2.26.



Algebraic cycles on a very special EPW sextic 103

Lemma 3.10. Let A be an abelian variety of dimension n � 5, and let
G � AutZ.A/ be a finite subgroup. Let …A

2;0 be as in Lemma 2.26. Then

…A
2;0 ı�G

A D �G
A ı…A

2;0 2 An.A � A/

is idempotent. (Here, as before, we write �G
A WD

1
jGj

P

g2G�g 2 An.A � A/.)

Proof. For any g 2 G, we have the commutativity

…A
2;0 ı �g D �g ı…A

2;0 in An.A � A/; for all g 2 G;

established in Lemma 2.26(ii). (Indeed, these cycles are symmetrically distin-
guished by Lemma 2.26(ii), and their difference is homologically trivial because
an automorphism g 2 G respects the niveau filtration.)

This commutativity clearly implies the equality

…A
2;0 ı�G

A D �G
A ı…A

2;0 2 An.A � A/:

To check that …A
2;0 ı�G

A is idempotent, we note that

…A
2;0 ı�G

A ı…A
2;0 ı�G

A D …A
2;0 ı…A

2;0 ı�G
A ı�G

A D …A
2;0 ı�G

A in An.A �A/:

4

Let us write G D G0 � ¹1; iº. Since by assumption, i� D � id on H 2;0.X 0/,
we have equality

1

2
.…A

2;0 ı�G0

A C…A
2;0 ı�G0

A ı �i / D 0 in H 2n.A � A/:

On the other hand, the left-hand side is equal to the idempotent …A
2;0 ı �G

A .
By finite-dimensionality, it follows that

…A
2;0 ı�G

A D 0 in An.A � A/:

Using Poincaré duality, we also have i� D � id on H 2;4.X 0/, and so (defining
…A

6;2 as the transpose of …A
2;0) there is also an equality

…A
6;2 ı�G

A D
1

2
.…A

6;2 ı�G0

A C…A
6;2 ı�G0

A ı �i / D 0 in H 2n.A � A/;

and hence, by finite-dimensionality

…A
6;2 ı�G

A D 0 in An.A � A/:
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Since …A
2;1 does not act on Aj .A/ for j 6D 1 (Theorem 2.18), we find in particular

that
.…A

2 /� D 0WAj .A/G �! Aj .A/G for all j 6D 1:

Likewise, since …A
6;3 D

t…A
2;1 does not act on Aj .A/ for j 6D 3 (Theorem 2.18),

we also find that

.…A
6 /� D 0WAj .A/G �! Aj .A/G for all j 6D 3:

We now consider the CK decomposition for X defined as in Lemma 3.4:

…X
i WD

1

d
�p ı…A

i ı
t�p 2 An.X � X/:

This CK decomposition has the required behaviour:

.…X
2 /�Aj .X/ D

� 1

d
�p ı…A

2 ı
t�p

�

�
Aj .X/

D
� 1

d
�p

�

�
.…A

2 /�p�Aj .X/

D
� 1

d
�p

�

�
.…A

2 /�Aj .A/G D 0 for all j 6D 1;

and likewise
.…X

6 /�Aj .X/ D 0 for all j 6D 3:

This proves Proposition 3.8. �

For later use, we record here a corollary of the proof of Proposition 3.8:

Corollary 3.11. Let A be an abelian variety of dimension n � 5, and let
…A

2;0; …A
2;1 be as in Lemma 2.26(ii). Let pWA! X D A=G be a quotient variety

with G � AutZ.A/. The prescription

…X
2;i WD �p ı…A

2;i ı
t�p in An.X �X/

defines a decomposition in orthogonal idempotents

…X
2 D …X

2;0 C…X
2;1 in An.X � X/:

The …X
2;i verify the properties of the refined CK decomposition of Theorem 2.18.

Proof. One needs to check the …X
2;i are idempotent and orthogonal. This eas-

ily follows from the fact that the …A
2;i commute with �g for g 2 G (Lemma 3.10).

�
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3.3 – A surjectivity statement

Proposition 3.12. Let X0 be a hyperkähler fourfold as in Theorem 2.28.
Let A�

.�/
.X0/ be the bigrading defined by the MCK decomposition. Then the

intersection product map

A2
.2/.X0/˝ A2

.2/.X0/ �! A4
.4/.X0/

is surjective.
The same holds for X 0 WD E4=.G0/ as in Theorem 2.28: X 0 has an MCK

decomposition, and the intersection product map

A2
.2/.X

0/˝ A2
.2/.X

0/ �! A4
.4/.X

0/

is surjective.

Proof. The result of Rieß [41] implies there is an isomorphism of bigraded
rings

A�
.�/.S

Œ2�/
Š
�! A�

.�/.X0/:

For the Hilbert scheme of any K3 surface S , the intersection product map

A2
.2/.S

Œ2�/˝ A2
.2/.S

Œ2�/ �! A4
.4/.S

Œ2�/

is known to be surjective [43, Theorem 3]. This proves the first statement.
For the second statement, the existence of an MCK decomposition for X 0 is a

special case of Proposition 3.3. To prove the surjectivity statement for X 0, we note
that �WX0 ! X 0 is a symplectic resolution and so there are isomorphisms

��WH p;0.X 0/
Š
�! H p;0.X0/ .p D 2; 4/:

Using Lemma 2.21 (which is possible thanks to Proposition 3.1), this implies there
are isomorphisms

��WH
p
tr .X 0/

Š
�! H

p
tr .X0/ .p D 2; 4/:

This means there is an isomorphism of homological motives

t�� W hp;0.X 0/
Š
�! hp;0.X0/ in Mhom .p D 2; 4/:

By finite-dimensionality, there are isomorphisms of Chow motives

t�� W hp;0.X 0/
Š
�! hp;0.X0/ in Mrat .p D 2; 4/:
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Taking Chow groups, this implies there are isomorphisms

(3) .…X0
p ı

t�� ı…X 0

p /�W .…
X 0

p /�Ai .X 0/ �! .…X0
p /�Ai .X0/ .p D 2; 4/:

Let us now consider the diagram

A2
.2/

.X0/˝ A2
.2/

.X0/ �! A4
.4/

.X0/

�
!

�
!

A2.X0/˝ A2.X0/ �! A4.X0/
�
!

�
!

A2
.2/

.X 0/˝ A2
.2/

.X 0/ �! A4
.4/

.X 0/

Here, the vertical arrows in the upper square are given by projecting to direct
summand; the vertical arrows in the lower square are given by ��. Since pullback
and intersection product commute, the lower square commutes. Since A�

.�/
.X0/ is

a bigraded ring, the upper square commutes.
The composition of vertical arrows is an isomorphism by (3). The statement

for X 0 now follows from the statement for X0. �

4. Main results

4.1 – Splitting of A�.X/

Theorem 4.1. Let X be the very special EPW sextic of Theorem 2.28. The
Chow ring of X is a bigraded ring

A�.X/ D A�
.�/.X/;

where

A1.X/ D A1
.0/.X/ D Q;

A2.X/ D A2
.0/.X/;

A3.X/ D A3
.0/.X/˚ A3

.2/.X/ D Q˚ A3
hom.X/;

A4.X/ D A4
.0/.X/˚ A4

.4/.X/ D Q˚ A4
hom.X/:

Proof. It follows from Theorem 2.28 that X is a quotient variety X D E4=G

with G � AutZ.A/. Moreover, there is another quotient variety X 0 D E4=.G0/

where G D .G0; i / and i2 2 G0 and such that i acts on H 2.X 0;OX 0/ as � id.
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Applying Proposition 3.3, it follows that X has an MCK decomposition ¹…X
i º.

Applying Proposition 3.8, it follows that

.…X
2 /�Aj .X/ D 0 for all j 6D 1;

.…X
6 /�Aj .X/ D 0 for all j 6D 3:

The projectors …X
i are 0 for i odd. (Indeed, X has no odd cohomology so the …X

i

are homologically trivial. Using finite-dimensionality, they are rationally trivial.)
The projectors ¹…X

i º define a multiplicative bigrading

A�.X/ D A�
.�/.X/;

where A
j

.i/
.X/ WD .…X

2j �i /�Aj .X/. The fact that A
j

.i/
.X/ D 0 for i < 0 follows

from the corresponding property for abelian fourfolds [6]. Likewise, the fact that

A
j

.0/
.X/ \ A

j

hom.X/ D 0 for all j � 3

follows from the corresponding property for abelian fourfolds [6]. �

Corollary 4.2. Let X be the very special EPW sextic. The intersection
product maps

A2.X/˝ A2.X/ �! A4.X/;

A2.X/˝ A1.X/ �! A3.X/

have image of dimension 1.

Remark 4.3. It is instructive to note that for smooth Calabi–Yau hypersurfaces
X � PnC1.C/, Voisin has proven that the intersection product map

Aj .X/˝ An�j .X/ �! An.X/

has image of dimension 1, for any 0 < j < n, see [54, Theorem 3.4] and [56,
Theorem 5.25] (cf. also [19] for a generalization to generic complete intersections).

In particular, the first statement of Corollary 4.2 holds for any smooth sextic in
P5.C/. The second statement of Corollary 4.2, however, is not known (and maybe
not true) for a general sextic in P5.C/. It might be that the second statement is
specific to EPW sextics, and related to the presence of a hyperkähler fourfold X0

which is generically a double cover.
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Remark 4.4. Let F � be the filtration on A�.X/ defined as

F iAj .X/ D
M

`�i

A
j

.`/
.X/:

For this filtration to be of Bloch–Beilinson type, it remains to prove that

F 1A2.X/
‹‹
D A2

hom.X/:

This would imply the vanishing A2
hom.X/ D 0 (i.e., the truth of Conjecture 1.5

for X).
Unfortunately, we cannot prove this. At least, it follows from the above descrip-

tion that the conjectural vanishing A2
hom.X/ D 0 would follow from the truth of

Beauville’s conjecture

A2
hom.E4/

‹‹
D A2

.1/.E
4/˚ A2

.2/.E
4/;

where E is an elliptic curve.

4.2 – Splitting of A�.Xr /

Definition 4.5. Let X be a projective quotient variety. For any r 2 N, and
any 1 � i < j < k � r , let

pj WX
r �! X;

pij WX
r �! X �X;

pijkWX
r �! X �X �X

denote projection on the j -th factor, resp. projection on the i-th and j -th factor,
resp. projection on the i-th and j -th and k-th factor.

We define
E�.Xr/ � A�.Xr/

as the Q-subalgebra generated by .pj /�A1.X/ and .pj /�A2.X/ and .pij /�.�X / 2

A4.Xr / and .pijk/�.�X
sm/ 2 A8.Xr/.

As explained in the introduction, the hypothesis that EPW sextics that are
quotient varieties are in the class C leads to the following concrete conjecture:

Conjecture 4.6. Let X � P5.C/ be an EPW sextic which is a projective
quotient variety. Let r 2 N. The restriction of the cycle class map

Ei .Xr / �! H 2i .Xr/

is injective for all i .
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For the very special EPW sextic, we can prove Conjecture 4.6 for 0-cycles and
1-cycles:

Theorem 4.7. Let X be the very special EPW sextic of Definition 2.28. Let
r 2 N. The restriction of the cycle class map

Ei .Xr / �! H 2i .Xr/

is injective for i � 4r � 1.

Proof. The product Xr has an MCK decomposition (since X has one, and
the property of having an MCK decomposition is stable under taking products
[43, Theorem 8.6]). Therefore, there is a bigrading on the Chow ring of Xr . As
we have seen (Theorem 4.1), A1.X/ D A1

.0/
.X/ and A2.X/ D A2

.0/
.X/. Also, it is

readily checked that
�X 2 A4

.0/.X � X/:

(Indeed, this follows from the fact that

�X D

8
X

iD0

…X
i D

8
X

iD0

…X
i ı�X ı…X

i D

8
X

iD0

.…X
i �…X

8�i /��X in A4.X �X/;

where we have used the fact that the CK decomposition is self-dual.) The fact that
X has an MCK decomposition implies that

�X
sm 2 A8

.0/.X �X �X/;

see [43, Proposition 8.4].

Clearly, the pullbacks under the projections pi ; pij ; pijk respect the bigrading.
(Indeed, suppose a 2 A`

.0/
.X/, which means a D .…X

2`
/�.a/. Then the pullback

.pi /
�.a/ can be written as

X � � � � �X � .…X
2`/�.a/ �X � � � � �X 2 A`.Xr /;

which is the same as

.…X
0 � � � � �…X

0 �…X
2` �…X

0 � � � � �…X
0 /� .X � � � � �X � a �X � � � � �X/:

This implies that

.pi /
�.a/ 2 .…Xr

2` /� A`.Xr / D A`
.0/.X

r/;

where …Xr

� is the product CK decomposition. Another way to prove the fact
that the projections pi ; pij ; pijk respect the bigrading is by invoking [44, Corol-
lary 1.6].)
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It follows there is an inclusion

E�.Xr / � A�
.0/.X

r /:

The finite morphism p�r WAr ! Xr induces a split injection

.p�r/�WAi
.0/.X

r/ \ Ai
hom.Xr / �! Ai

.0/.A
r/ \ Ai

hom.Ar/ for all i:

But the right-hand side is known to be 0 for i � 4r � 1 [6], and so

Ei .Xr/ \ Ai
hom.Xr / � Ai

.0/.X
r/ \ Ai

hom.Xr/ D 0 for all i � 4r � 1: �

Remark 4.8. As is clear from the proof of Theorem 4.7, there is a link
with Beauville’s conjectures for abelian varieties: let E be an elliptic curve, and
suppose one knows that

Ai
.0/.E

4r / \ Ai
hom.E4r / D 0 for all i and all r:

Then Conjecture 4.6 is true for the very special EPW sextic.

4.3 – Relation with some hyperkähler fourfolds

Theorem 4.9. Let X be the very special EPW sextic of Definition 2.28. Let
X0 be one of the hyperkähler fourfolds of [17, Corollary 6.4], and let f WX0 ! X

be the generically 2 W 1 morphism constructed in [16]. Then X0 has an MCK
decomposition, and there is an isomorphism

f �WA4
hom.X/

Š
�! A4

.4/.X0/:

Proof. The MCK decomposition for X0 was established in Theorem 2.28.

The morphism f WX0 ! X of [16] is constructed as a composition

f WX0

�
�! X 0 WD E4=.G0/

g
�! X;

where � is a symplectic resolution and g is the double cover associated to an anti-
symplectic involution. This implies f induces an isomorphism

f �WH 4;0.X/
Š
�! H 4;0.X 0/

Š
�! H 4;0.X0/:

In view of the strong form of the generalized Hodge conjecture (Proposition 3.1),
X0 and X 0 and X verify the hypotheses of Lemma 2.21. Applying Lemma 2.21,
we find isomorphisms of Chow motives

t �f W h4;0.X/
Š
�! h4;0.X 0/

Š
�! h4;0.X0/ in Mrat:
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Since .…X
4;i /�A4.X/ D 0 for i � 1 for dimension reasons, we have

.…X
4 /�A4.X/ D .…X

4;0/�A4.X/;

and the same goes for X 0 and X0. It follows that

f �WA4
hom.X/ D A4.h4;0.X//

Š
�! A4.h4;0.X0// DW A4

.4/.X0/: �

As a corollary, we obtain an alternative description of the splitting A�
.�/

.X0/

for the hyperkähler fourfolds X0:

Corollary 4.10. Let f WX0 ! X be as in Theorem 4.9. The splitting A�
.�/

.X0/

(given by the MCK decomposition of X0) verifies

A4.X0/ D A4
.4/.X0/˚ A4

.2/.X0/˚ A4
.0/.X0/

D f �A4
hom.X/˚ ker

�

A4.X0/
f�

�! A4.X/
�

˚QI

A3.X0/ D A3
.2/.X0/˚ A3

.0/.X0/

D A3
hom.X0/˚H 3;3.X0/I

A2.X0/ D A2
.2/.X0/˚ A2

.0/.X0/

D ker
�

A2
hom.X0/

f�

�! A2.X/
�

˚ A2
.0/.X0/:

Remark 4.11. Just as we noted for the EPW sextic X (Remark 4.4), for this
filtration to be of Bloch–Beilinson type one would need to prove that

A2
.0/.X0/ \ A2

hom.X0/
‹‹
D 0;

which I cannot prove. This situation is similar to that of the Fano varieties F

of lines on a very general cubic fourfold: thanks to work of Shen and Vial [43]
there is a multiplicative bigrading A�

.�/
.F / which has many good properties and

interesting alternative descriptions. The main open problem is to prove that

A2
.0/.F / \ A2

hom.F /
‹‹
D 0;

which doesn’t seem to be known for any single F .

Remark 4.12. Conjecturally, the relations of Corollary 4.10 should hold for
any double EPW sextic X0 (with X being the quotient of X0 under the anti-
symplectic involution). However, short of knowing X0 has finite-dimensional
motive (as is the case here, thanks to the presence of the abelian variety E4),
this seems difficult to prove. Note that at least, for a general double EPW sextic
X0, the relations of Corollary 4.10 give a concrete description of a filtration on
A�.X0/ that should be the Bloch–Beilinson filtration.
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5. Further results

5.1 – Bloch conjecture

Conjecture 5.1 (Bloch [9]). Let X be a smooth projective variety of dimen-
sion n. Let � 2 An.X � X/ be a correspondence such that

�� D 0WH p;0.X/ �! H p;0.X/ for all p > 0:

Then
�� D 0WAn

hom.X/ �! An
hom.X/:

A weak version of Conjecture 5.1 is true for the very special EPW sextic:

Proposition 5.2. Let X be the very special EPW sextic. Let � 2 A4.X � X/

be a correspondence such that

�� D 0WH 4;0.X/ �! H 4;0.X/:

Then there exists N 2 N such that

.�ıN /� D 0WA4
hom.X/ �! A4

hom.X/:

Proof. As it is well known, this follows from the fact that X has finite-
dimensional motive; we include a proof for completeness’ sake.

By assumption, we have

�� D 0WH 4.X;C/=F 1 �! H 4.X;C/=F 1

(where F � is the Hodge filtration). Thanks to the “strong form of the generalized
Hodge conjecture” (Proposition 3.1), this implies that also

�� D 0WH 4.X;Q/= zN 1 �! H 4.X;Q/= zN 1:

Using Vial’s refined CK projectors (Theorem 2.18), this means

� ı…X
4;0 D 0 in H 8.X � X/;

or, equivalently,

� �
X

.k;`/6D.4;0/

� ı…X
k;` D 0 in H 8.X �X/:

By finite-dimensionality, this implies there exists N 2 N such that
�

� �
X

.k;`/6D.4;0/

� ı…X
k;`

�ıN

D 0 in A4.X � X/:
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Upon developing, this gives an equality

(4) �ıN D Q1 C � � � CQN in A4.X � X/;

where each Qj is a composition of correspondences

Qj D Q1
j ıQ2

j ı � � � ıQr
j 2 A4.X �X/;

and for each j , at least one Qi
j is equal to …X

k;`
with .k; `/ 6D .4; 0/. Since (for

dimension reasons)

.…X
k;`/�A4

hom.X/ D 0 for all .k; `/ 6D .4; 0/;

it follows that
.Qj /�A4

hom.X/ D 0 for all j:

In view of equality (4), we thus have

.�ıN /� D 0WA4
hom.X/ �! A4

hom.X/: �

For special correspondences, one can do better:

Proposition 5.3. Let X be the very special EPW sextic. Let � 2 A4.X � X/

be a correspondence such that

�� D 0WH 4;0.X/ �! H 4;0.X/:

Assume moreover that � can be written as

� D

r
X

iD1

ci ��i
in A4.X �X/;

with ci 2 Q and �i 2 Aut.X/ induced by a G-equivariant automorphism

�E
i WE

4 �! E4;

where X D E4=.G/ and �E
i is a group homomorphism. Then

�� D 0WA4
hom.X/ �! A4

hom.X/:

Proof. Let us write A D E4, and X 0 WD A=.G0/ for the double cover of X

with dim H 2;0.X 0/ D 1. The projection gWX 0 ! X induces an isomorphism

g�WH 4;0.X/
Š
�! H 4;0.X 0/;
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with inverse given by 1
d

g�. Let � 0
i WX

0 ! X 0 (i D 1; : : : ; r) be the automorphism
induced by �E

i . For each i D 1; : : : ; r , there is a commutative diagram

H 4;0.X 0/ H 4;0.X 0/

H 4;0.X/ H 4;0.X/

 

!
.� 0

i
/�

 ! g�

 

!
.�i /�

 !g�

Defining a correspondence

� 0 D

r
X

iD1

ci �� 0

i
in A4.X 0 �X 0/;

we thus get a commutative diagram

H 4;0.X 0/ H 4;0.X 0/

H 4;0.X/ H 4;0.X/

 

!
.�0/�

 ! g�

 

!
��

 !g�

The assumption on �� thus implies that

.� 0/� D 0WH 4;0.X 0/ �! H 4;0.X 0/:

Since (by construction of X 0) the cup-product map

H 2;0.X 0/˝H 2;0.X 0/ �! H 4;0.X 0/

is an isomorphism of 1-dimensional C-vector spaces, we must have that

.� 0/� D 0WH 2;0.X 0/ �! H 2;0.X 0/:

It is readily seen this implies

(5) t� 0 ı…X 0

2;0 D 0 in H 8.X 0 �X 0/:

Let �A denote the correspondence

�A WD

r
X

iD1

ci ��E
i

in A4.A � A/:

Let p0WA! X 0 D A=.G0/ denote the quotient morphism. There are relations

t�� 0 D
1

jG0j
�p0 ı t�A ı

t �p0 in A4.X 0 �X 0/;(6a)

…X 0

2;0 D
1

jG0j
�p0 ı…A

2;0 ı
t�p0 in A4.X 0 �X 0/(6b)
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(the first relation is by construction of the automorphisms � 0
i ; the second relation

can be taken as definition, cf. Corollary 3.11). Plugging in these relations in
equality (5), one obtains

�p0 ı t�A ı
t�p0 ı �p0 ı…A

2;0 ı
t�p0 D 0 in H 8.X 0 �X 0/:

Composing with t�p0 on the left and �p0 on the right, this implies in particular that

t�p0 ı �p0 ı t �A ı
t�p0 ı �p0 ı…A

2;0 ı
t�p0 ı �p0 D 0 in H 8.A � A/:

Using the standard relation t�p0 ı �p0 D 1
jG0j

P

g2G0 �g , this simplifies to

�

X

g2G0

�g

�

ı t�A ı
�

X

g2G0

�g

�

ı…A
2;0 D 0 in H 8.A � A/:

The left-hand side is a symmetrically distinguished cycle which is homologically
trivial, and so it is rationally trivial (Theorem 2.24). That is,

�

X

g2G0

�g

�

ı t �A ı
�

X

g2G0

�g

�

ı…A
2;0 D 0 in A4.A � A/;

in other words

t �p0 ı �p0 ı t�A ı
t�p0 ı �p0 ı…A

2;0 D 0 in A4.A � A/:

Now we descend again to X 0 by composing some more on both sides:

�p0 ı t�p0 ı �p0 ı t �A ı
t�p0 ı �p0 ı…A

2;0 ı
t �p0 D 0 in A4.X 0 �X 0/:

Using the relations (6), this shimmers down to

.t� 0/ ı…X 0

2;0 D 0 in A4.X 0 � X 0/:

This implies that

.� 0/� D 0WA2
hom.X 0/ �! A2

hom.X 0/:

Since A4
.4/

.X 0/ equals the image of the intersection product

A2
hom.X 0/˝ A2

hom.X 0/ �! A4.X 0/

(Proposition 3.12), we also have that

.� 0/� D 0WA4
.4/.X

0/ �! A4
.4/.X

0/:



116 R. Laterveer

The commutative diagram

A4
.4/

.X 0/ A4
.4/

.X 0/

A4
hom.X/ A4

hom.X/

 

!
.�0/�

 !g�

 

!
��

 !g�

in which vertical arrows are isomorphisms (proof of Theorem 4.9), now implies
that

�� D 0WA4
hom.X/ �! A4

hom.X/: �

5.2 – Voisin conjecture

Motivated by the Bloch–Beilinson conjectures, Voisin formulated the following
conjecture:

Conjecture 5.4 (Voisin [52]). Let X be a smooth Calabi–Yau variety of
dimension n. Let a; a0 2 An

hom.X/ be two 0-cycles of degree 0. Then

a � a0 D .�1/na0 � a in A2n.X �X/:

It seems reasonable to expect this conjecture to go through for Calabi–Yau’s
that are quotient varieties. In particular, Conjecture 5.4 should be true for all EPW
sextics that are quotient varieties. We can prove this for the very special EPW
sextic:

Proposition 5.5. Let X be the very special EPW sextic. Let a; a0 2 A4
hom.X/.

Then
a � a0 D a0 � a in A8.X �X/:

Proof. As we have seen, there is a finite morphism pWA! X , where A is an
abelian fourfold and

p�WA4
hom.X/ �! A4

.4/.A/ D .…A
4 /�A4.A/

is a split injection. (The inverse to p� is given by a multiple of p�.) Proposition 5.5
now follows from the following fact: any c; c0 2 A4

.4/
.A/ verify

c � c0 D c0 � c in A8.A � A/I

this is [56, Example 4.40]. �
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