A brief journey through extensions of rational groups

STEFAN FRIEDENBERG (*) - PAUL WOLF (**)

ABSTRACT – Let A and B be rational groups, i.e. torsion-free groups of rank-1 and thus subgroups of the rational numbers. This paper gives a short overview of the structure of Ext(A, B) especially considering some interesting classes of torsion-free pairs.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20K15, 20K35.

KEYWORDS. Abelian group, extension, rational group, torsion-free.

1. Introduction

Throughout this paper the phrase extension of rational groups means extension of a rational group by a rank-1 group.

For the convenience of the reader, we give a short summary of the concept of types: For any element $a \neq 0$ of a group *A* the height sequence $(h_p)_{p \in \mathbb{P}}$ is defined by $h_p = n$ if there is a non-negative integer *n* with $a \in p^n A \setminus p^{n+1}A$ and $h_p = \infty$ if no such *n* exists. The set of height sequences has a partial ordering given by $\alpha = (\alpha_p) \leq (\beta_p) = \beta$ if $\alpha_p \leq \beta_p$ for each $p \in \mathbb{P}$. It forms a lattice by defining $\sup\{\alpha, \beta\} = (\max\{\alpha_p, \beta_p\})$ and $\inf\{\alpha, \beta\} = (\min\{\alpha_p, \beta_p\})$.

Two height sequences (α_p) and (β_p) are said to be equivalent if they only differ in finitely many entries and if $\alpha_p \neq \beta_p$, both have to be finite. The arising equivalence classes are called types and build a lattice induced by the lattice structure of the height sequences, where $[(\alpha_p)] \leq [(\beta_p)]$ if and only if $\alpha_p \leq \beta_p$ for all but finitely many primes $p \in \mathbb{P}$ and if $\alpha_p \not\leq \beta_p$, then α_p is an integer.

(*) Indirizzo dell'A.: University of Stralsund, Zur Schwedenschanze 15, 18435 Stralsund, Germany

E-mail: stefan.friedenberg@hochschule-stralsund.de

(**) Indirizzo dell'A.: University of Stralsund, Zur Schwedenschanze 15, 18435 Stralsund, Germany

E-mail: paul.wolf@hochschule-stralsund.de

It is easy to see that in a rank-1 group A all elements have equivalent height sequences. Hence the lattice of isomorphism classes of rank-1 groups is isomorphic to the lattice of types, which was shown by Reinhold Baer in 1935. Due to this fact it is obvious to identify a rank-1 group A by its type tp(A). For simplicity, we write $tp(A) = (\alpha_p)$ without explicitly indicating that this is an equivalence class.

Furthermore we can define an addition of types: if $tp(A) = (\alpha_p)$ and $tp(B) = (\beta_p)$, then we put $tp(A) + tp(B) = (\alpha_p + \beta_p)$. In particular, this is the type of the group $A \otimes B$.

Recall the definition of the *nucleus* of a group *A*, which was originally given by Phil Schultz:

DEFINITION 1.1. For any group A we call

Nuc(A) :=
$$\left(\frac{1}{p^{\omega}} \mid p \in \mathbb{P} \text{ with } (\cdot p) \in \operatorname{Aut}(A)\right) \leq \mathbb{Q}$$

the nucleus of A denoted by A_0 .

In other words, A_0 is the largest subring of \mathbb{Q} such that A is still an A_0 -module. Thus for any group A we have $\operatorname{tp}(A_0) = (\alpha_p)$ with $\alpha_p = \infty$ if A is p-divisible and $\alpha_p = 0$ otherwise. Hence $\operatorname{tp}(A_0)$ is an idempotent type. In particular $\operatorname{tp}(A_0) \leq \operatorname{tp}(A)$ applies for any rational group A.

One of the very valuable properties of the functor Ext in the category of Abelian groups is the fact that given a torsion-free Abelian group A the group Ext(A, B) is divisible for any Abelian group B. Hence its structure is very much determined and Ext(A, B) must be of the form

$$\operatorname{Ext}(A,B) = \bigoplus_{r_0} \mathbb{Q} \oplus \bigoplus_p \left[\bigoplus_{r_p} \mathbb{Z}_{p^{\infty}} \right]$$

for some uniquely determined cardinals r_0 and r_p which are called the *torsion-free* rank and the *p*-rank of Ext(A, B), respectively. In [2] it was shown what values for these cardinals are possible in general. We will now apply these results on extensions of rank-1 groups.

2. The structure of Ext by comparing types

At first we consider the case $tp(A) \le tp(B)$. By [3, Theorem 2.1.4] we know that Ext(A, B) is torsion-free if and only if the following applies:

$$OT((A \otimes B_0)/D) \leq IT(B)$$

with *D* being the divisible subgroup of $A \otimes B_0$ for any torsion-free groups *A* and *B* of finite rank and $OT(B) \neq tp(\mathbb{Q})$.

THEOREM 2.1. For any rational groups A and B the following statements are equivalent:

(1) Ext(A, B) is torsion-free;

(2) $\operatorname{tp}(A) \leq \operatorname{tp}(B)$ or $A \otimes B_0 = \mathbb{Q}$.

PROOF. First let be $tp(A) \le tp(B)$. Since inner type, outer type and the type of any rational group are all equal, Ext(A, B) is torsion-free by a result of Pat Goeters, see [4, Proposition 1.7]. If otherwise $A \otimes B_0 = \mathbb{Q}$, then we conclude that $Ext(A, B) \cong Ext(A \otimes B_0, B) \cong Ext(\mathbb{Q}, B)$ is torsion-free since \mathbb{Q} is divisible. See [2, Lemma 2.6] for the first isomorphism.

Now let Ext(A, B) be torsion-free. If $\text{tp}(B) = \text{tp}(\mathbb{Q})$, then trivially $\text{tp}(A) \leq \text{tp}(B)$ because $\text{tp}(\mathbb{Q})$ is the maximal element in the lattice of types. So assume $\text{tp}(B) \neq \text{tp}(\mathbb{Q})$ and we have to consider $\text{tp}((A \otimes B_0)/D)$. Either $A \otimes B_0 = \mathbb{Q}$ or $A \otimes B_0$ has no divisible subgroup since it is a rank-1 group. Thus $\text{tp}(A) \leq \text{tp}(A \otimes B_0) = \text{OT}((A \otimes B_0)/D) \leq \text{tp}(B)$.

In particular, the group of self-extensions Ext(A, A) is torsion-free for any rational group A.

One of the main results of [2] says that $r_0(\text{Ext}(A, B)) = 0$ if and only if Ext(A, B) = 0, or $r_0 = 2^{\aleph_0}$. Thus a not-vanishing torsion-free extension of rational groups is of the form

$$\operatorname{Ext}(A, B) = \bigoplus_{2^{\aleph_0}} \mathbb{Q}.$$

Assuming the stricter condition $tp(A) \le tp(B_0)$ it is possible to point out when Ext vanishes for rational groups A and B. By [2] this happens if and only if $A \otimes B_0$ is a free B_0 -module. In this case we receive:

THEOREM 2.2. For any rational groups A and B the following are equivalent:

(1)
$$Ext(A, B) = 0;$$

(2)
$$\operatorname{tp}(A) \leq \operatorname{tp}(B_0)$$
.

PROOF. So let be Ext(A, B) = 0. Thus $A \otimes B_0 = B_0$ since it is a free B_0 -module of rank-1. Hence $tp(A \otimes B_0) = tp(A) + tp(B_0) = tp(B_0)$ which is equivalent to $tp(A) \le tp(B_0)$.

Following Pat Goeters we define the *support* of a group A as

$$\operatorname{supp}(A) = \{ p \in \mathbb{P} \mid pA \neq A \},\$$

that is the set of all primes not dividing *A*. Trivially, $supp(A) \subseteq supp(B)$ if tp(A) > tp(B) because for a rational group $A = (\alpha_p)$ the support of *A* is given by $supp(A) = \{p \in \mathbb{P} \mid \alpha_p \neq \infty\}$

THEOREM 2.3. For any rational groups A and B the following are equivalent: (1) $r_p(\text{Ext}(A, B)) = 1$ for any $p \in \text{supp}(A) \cap \text{supp}(B)$;

(2) tp(A) > tp(B) or the types are incomparable.

PROOF. Assume (2) holds. Due to Warfiled it is well-known that the *p*-rank of Ext(*A*, *B*) can be calculated by $r_p(\text{Ext}(A, B)) = r_p(A) \cdot r_p(B) - r_p(\text{Hom}(A, B))$ for finite rank Abelian groups *A* and *B*, where $r_p(A) = \dim_{\mathbb{Z}/p\mathbb{Z}}(A/pA)$ if *A* is torsion-free. But there are no homomorphisms $\varphi: A \to B$ except the trivial one and hence Hom(*A*, *B*) = 0 if and only if tp(A) > tp(B) or the types are incomparable. Therefore we conclude $r_p(\text{Ext}(A, B)) = r_p(A) \cdot r_p(B)$ and thus $r_p(\text{Ext}(A, B)) = 1$ if both *A* and *B* are not *p*-divisible.

If we assume the negation of (2), Ext(A, B) is torsion-free by 2.1 and thus $r_p(Ext(A, B)) = 0$. Hence the assertion holds.

So any not torsion-free extension of rational groups is of the form

$$\operatorname{Ext}(A,B) = \bigoplus_{2^{\aleph_0}} \mathbb{Q} \oplus \bigoplus_p \mathbb{Z}_{p^{\infty}},$$

with $p \in \operatorname{supp}(A) \cap \operatorname{supp}(B)$.

3. Torsion-free pairs

In analogy to Luigi Salces cotorsion pairs we call a pair $(\mathcal{A}, \mathcal{B})$ of classes of groups a *torsion-free pair* if $Ext(\mathcal{A}, \mathcal{B})$ is torsion-free for all $\mathcal{A} \in \mathcal{A}$ and $\mathcal{B} \in \mathcal{B}$, and the classes \mathcal{A} and \mathcal{B} are closed with respect to this property. This means X has to be an element of \mathcal{B} if $Ext(\mathcal{A}, X)$ is torsion-free for all $\mathcal{A} \in \mathcal{A}$ as well as $X \in \mathcal{A}$ if $Ext(X, \mathcal{B})$ is torsion-free for all $\mathcal{B} \in \mathcal{B}$. Like in [5] we can define a partial order on the class of torsion-free pairs by putting $(\mathcal{A}, \mathcal{B}) \leq (\mathcal{A}', \mathcal{B}')$ if $\mathcal{B} \subseteq \mathcal{B}'$ or, equivalently $\mathcal{A}' \subseteq \mathcal{A}$. Then the torsion-free pairs become a complete lattice by setting

$$\bigwedge_{i \in I} (\mathcal{A}_i, \mathcal{B}_i) = \left(\left(\bigcap_{i \in I} \mathcal{B}_i \right), \bigcap_{i \in I} \mathcal{B}_i \right) \text{ and } \bigvee_{i \in I} (\mathcal{A}_i, \mathcal{B}_i) = \left(\bigcap_{i \in I} \mathcal{A}_i, \left(\bigcap_{i \in I} \mathcal{A}_i \right)^* \right)$$

for a family $\{(A_i, B_i)\}_{i \in I}$ of torsion-free pairs. We define

(1) $\mathcal{A}^* := \{X \mid \text{Ext}(A, X) \text{ is torsion-free for all } A \in \mathcal{A}\},\$

(2) * $\mathcal{B} := \{X \mid \text{Ext}(X, B) \text{ is torsion-free for all } B \in \mathcal{B}\},\$

and call $(*(\mathcal{A}^*), \mathcal{A}^*)$ the *torsion-free pair co-generated by* \mathcal{A} and $(*\mathcal{B}, (*\mathcal{B})^*)$ the *torsion-free pair generated by* \mathcal{B} .

One of the main results of [3] is the following theorem.

THEOREM 3.1. The lattice of types is anti-isomorphic to the lattice of all rational generated ($\mathfrak{Tffr}, \mathfrak{Tffr}$)-torsion-free pairs, which mean torsion-free pairs restricted on torsion-free groups of finite rank.

For the proof and more general results we recommend to have a look at [3].

Since our main purpose in this section is to shed some light on the extensions of rational groups, we replace the restriction on torsion-free groups of finite rank by rational groups, the so-called $(\mathfrak{R}, \mathfrak{R})$ -torsion-free pairs. Unfortunately, 3.1 does not hold for these rational torsion-free pairs.

THEOREM 3.2. There exist rational groups A and B such that tp(A) < tp(B) but *A = *B.

PROOF. Take $B = \mathbb{Q}$. Then $\text{Ext}(A, \mathbb{Q}) = 0$ for any group A and thus $*\mathbb{Q} \cap \mathfrak{R} = \mathfrak{R}$. Now consider the group \mathbb{Q}_p of all rational numbers with denominator prime to p. There is only one group which has a type greater than $\text{tp}(\mathbb{Q}_p)$, namely \mathbb{Q} . Furthermore, any group of uncomparable type has to be p-divisible. So if X is an arbitrary rank-1 group, either $\text{tp}(X) \leq \text{tp}(\mathbb{Q}_p)$ or $X \otimes \mathbb{Q}_p = \mathbb{Q}$ which implies that also $*\mathbb{Q}_p \cap \mathfrak{R} = \mathfrak{R}$.

It turns out that 3.1 holds if we restrict on rational groups $\neq \mathbb{Q}$:

THEOREM 3.3. The lattice of types is anti-isomorphic to the lattice of all rational generated $(\mathfrak{R} \setminus {\mathbb{Q}}, \mathfrak{R} \setminus {\mathbb{Q}})$ -torsion-free pairs.

PROOF. Let be $tp(A) \le tp(B)$. If $X \in A$ we know by 2.1 that $tp(X) \le tp(A)$ or $X \otimes A_0 = \mathbb{Q}$. But then also $tp(X) \le tp(B)$ or $X \otimes B_0 = \mathbb{Q}$ which implies that Ext(X, B) is also torsion-free and thus $A \subseteq B$.

Now consider the strict inequality $\operatorname{tp}(A) < \operatorname{tp}(B)$ which implies that $A \otimes B_0 = \mathbb{Q}$ is only possible if $B = \mathbb{Q}$. Since this is excluded, $A \otimes B_0$ cannot be divisible, so $B \otimes A_0 \neq \mathbb{Q}$ as well. Hence there has to be a prime *p* such that *A* and *B* are not *p*-divisible and thus $\operatorname{Ext}(B, A)$ is not torsion-free. Indeed, $\operatorname{Ext}(B, B)$ is torsion-free. So we conclude $*A \subsetneq B$.

Putting 3.1 and 3.3 together we obtain:

THEOREM 3.4. The lattices of all rational generated ($\mathfrak{Tffr}, \mathfrak{Tffr}$)-torsion-free pairs and ($\mathfrak{R} \setminus \{\mathbb{Q}\}, \mathfrak{R} \setminus \{\mathbb{Q}\}$)-torsion-free pairs are isomorphic.

References

- [1] D. M. ARNOLD, *Finite rank torsion free abelian groups and rings*, Lecture Notes in Mathematics, 931. Springer-Verlag, Berlin etc., 1982.
- [2] S. FRIEDENBERG L. STÜNGMANN, Extensions in the class of countable torsion-free Abelian groups, Acta Math. Hungar. 140 (2013), no. 4, pp. 316–328.
- [3] S. FRIEDENBERG, *Torsion-free extensions of torsion-free abelian groups of finite rank*, Ph.D thesis, University of Duisburg-Essen, Duisburg, 2009.
- [4] H. P. GOETERS, When is Ext(A, B) torsion-free? and related problems, Comm. Algebra 16 (1988), no. 8, pp. 1605–1619.
- [5] L. Salce, *Cotorsion theories for abelian groups*, in *Symposia Mathematica*, Vol. XXIII (Roma, 1977), Academic Press, London and New York, 1979, pp. 11–32.

Manoscritto pervenuto in redazione il 6 marzo 2017.