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Complex manifolds as families of homotopy algebras

Joan Bellier-Millès (�)

Abstract – We prove an equivalence of categories from formal complex structures with
formal holomorphic maps to homotopy algebras over a simple operad with its associ-
ated homotopy morphisms. We extend this equivalence to complex manifolds. A com-
plex structure on a smooth manifold corresponds in this way to a family of algebras
indexed by the points of the manifold.
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1. Introduction

A complex manifold is a manifold M endowed with an atlas of charts to Cn for a
certain fixed n 2 N, such that the transition maps are holomorphic. By a theorem
of A. Newlander and L. Nirenberg [21], such a structure is described equivalently
as an almost complex structure J WTM ! TM satisfying an integrability condi-
tion. We use this equivalent formulation to propose a third description: a complex
structure is a family of algebras over a certain operad Cx1.

We make use of the notion of operad to encode algebras: the latter are repre-
sentations of a given operad. Examples of operads are associative algebras and, in
this case, representations are modules over the given associative algebra. For in-
stance, representations of the algebra of complex numbers C are C-vector spaces.
Another example, which is not an associative algebra, is the operad Lie whose
representations are Lie algebras.

This new description of complex structures makes possible the study of prob-
lems in complex geometry with the tools of homological algebra. For example,
we get directly notions of cohomology theory and of deformation theory for for-
mal complex structures. In this direction, we plan to use this language to describe
the moduli space of complex structures on a smooth manifold in a future work.
Furthermore, algebras fit into the more general context of differential graded (dg)
objects and we therefore obtain a notion of dg formal complex manifold. In a work
in progress, we interpret this new description as an extension of the integrability
theorem of A. Newlander and L. Nirenberg [21] to the dg setting.

In [12], [13], and [14], S. Merkulov began the description of several geome-
tries in the context of homological algebra (Hertling–Manin, Nijenhuis and Pois-
son structures). Later, H. Strohmayer dealt with the case of bi-Hamiltonian struc-
tures [24]. These notions consist of an underlying smooth manifold endowed with
a particular structure. It is sometimes possible to study similarly objects with a
geometric flavor such as quantum BV structures (see [22] and [9], and [16]). For
the aforementioned geometries, the extra structures are described by local rules.
In all these cases, we can restrict the local rules defining the extra data to the
formal neighborhood of a point (see [4] and [10]). Since they are described by
smooth applications satisfying differential equations, it corresponds to replacing
the applications by their infinite Taylor series and the differential equations by the
associated algebraic equations between the Taylor coefficients.

A powerful tool of homological algebra is the Homotopy Transfer Theorem
(see [8] and [11]). Remarkably, when applied to the algebras corresponding to the
quantum BV structures, we obtain precisely the Feynman diagrams appearing in
the Batalin–Vilkovisky quantization (see [18], [17], and [16]). A second illustration
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of the fruitfulness of the algebraic approach is the reformulation in [15] of the
universal quantization of Poisson structures in terms of a morphism of props. This
approach shows the importance of traces in that context.

In [13], S. Merkulov studies Nijenhuis structures, that is endomorphisms J on
the tangent bundle of a smooth manifold which satisfy an integrability condition.
S. Merkulov provides in his article an operad N1 whose algebras are formal Ni-
jenhuis structures. H. Strohmayer proves in [23] that the operad N, on which the
operad N1 is based, is a Koszul operad. This shows that N1-algebras are homo-
topy N-algebras and that the two notions of algebras encode the same homotopy
categories of algebras. The main example of a Nijenhuis structure is a complex
structure, which satisfies in addition the equality J 2 D � Id (J is an almost com-
plex structure). It is natural to wonder if formal complex structures can also be
modeled similarly. The first goal of this paper is to answer this question.

We built a Koszul operad Cx based on the algebra of complex numbers C and
on the operad Lie. We denote by Cx1 the operad encoding homotopy Cx-algebras.
The main result of this article is the following

Theorem 1.1 (Theorem 4.1). There is an equivalence of categories

´

Cx1-algebras

with1-morphisms

µ

Š
�!

´

complex structures on formal pointed manifolds

with holomorphic maps

µ

:

This theorem provides the algebraic essence of the geometric notion of com-
plex manifolds, and it is given by a surprisingly simple operad. The notion of
1-morphism for Cx1-algebras is analog to the notion of L1-morphisms (resp.
A1-morphisms) for L1-algebras (resp. A1-algebras).

We are finally interested in a global version of Theorem 4.1. Formal geom-
etry [3] gives a convenient language to provide a global description of objects
defined locally in terms of coordinates. Let M be a smooth manifold. The idea is
to work with the space of all local coordinates systems M coor. Let x be a point
in M and ' be a local coordinates system around x. Theorem 4.1 describes as a
Cx1-algebra the Taylor series of a complex structure J at the point x in the chart
given by '. Therefore, the description of the map J on M is given by a collec-
tion of Cx1-algebras indexed by the points in M coor. However, a collection of
Cx1-algebras indexed by M coor does not necessarily correspond to a smooth en-
domorphism J . Based on the operad Cx1, we define two fiber bundles Ecx.M/

and Fcx.M;N/ over M , both of them endowed with a connection, such that the
following theorem holds:
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Theorem 1.2 (Theorem 5.12). Let M and N be two smooth manifolds. There

is an equivalence of categories

´

flat sections of Ecx.M/ with

flat sections of Fcx.M;N/

µ

Š
�!

´

complex structures on M with

holomorphic maps from M to N

µ

:

Layout

Since this article brings together differential geometry and operad theory, we
recall quickly definitions and results from the two domains in Sections 2 and 3.
More precisely, we recall definitions and notations related to complex geometry in
Section 2 and we fix notations for operads in Section 3. In this second section, we
also introduce the operad Cx and we prove that it is a Koszul operad. Moreover,
we describe the algebras over the operad Cx1 and the associated1-morphisms.
In Section 4, we prove Theorem 4.1 relating Cx1-algebras and formal complex
structures. The smooth version of this theorem is Theorem 5.12 and it is detailed
and proved in Section 5. There are two appendices: the first one provides an explicit
decomposition map for the Koszul dual cooperad associated to Lie algebras in
degree 1, and the second one explains the theory of distributive laws for cooperads.
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and from Henrik Strohmayer several explanations related to operad profiles. I am
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his comments on the first version of this preprint. I also thank several anonymous
referees for relevant comments.

The author is grateful to the Max-Planck Institut (Bonn), to the Institut des
Hautes Études Scientifiques (Bures-sur-Yvette) and the Isaac Newton Institute
(Cambridge) for excellent working conditions during the stays that he has spent
there.

Notations

In this paper, we work over the field of real numbers K D R, except in the
appendices where K can be any field of characteristic 0. We use the symbol ˝
for the tensor product (over K), the symbol ˇ for the symmetric tensor product
and the symbol ^ for the anti-symmetric product. Let V WD ¹V nºn2Z be a
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cohomologically graded vector space. We denote by S.V / WD
L

n�1 V
ˇn the free

commutative algebra, or symmetric algebra, on V and by S c.V / WD
L

n�1 V
ˇn

the cofree conilpotent cocommutative coalgebra.
We consider a one-dimensional vector space sK spanned by an element “s”

of cohomological degree �1 (or equivalently, of homological degree 1 but we
will only speak about cohomological degrees in this article). By definition, the
cohomological suspension of V is s�1V WD s�1K˝ V . It corresponds also to the
shifted cochain complex V Œ�1�, so that .s�1V /n D .V Œ�1�/n D V n�1. Similarly,
we get the cohomological desuspension sV D V Œ1�. The composition of elements
of a composable pair of morphisms .f; g/ is denoted by g �f . The maps appearing
in this article depend on several variables, say f depends on x and t . We denote
by dxf , resp. dtf , the partial differential of f with respect to the variables x,
resp. t .

Conventions

In all the paper, the manifolds and the formal manifolds are assumed to be finite
dimensional. Throughout the paper, we use the Einstein summation convention,
i.e. we always sum over repeated upper and lower indices. For instance, P a@a
means

P

a P
a@a. In the paper, we consider differential graded (dg for short) vector

space that are cohomologically graded. Therefore, we assume that the differential
is of degree C1. Moreover, we use the Koszul sign convention saying that in a
commutative algebra a1a2 D .�1/ja1jja2ja2a1.

2. Complex structures

We remind notations and general facts concerning complex structures and formal
complex structures. We also describe the holomorphic maps associated to each
context.

2.1 – Complex structures

Let M be a paracompact smooth manifold. We denote by T �M its cotangent

bundle and by TM its tangent bundle. The Lie bracket on vector fields induces
a symmetric product of degree 1 on the shifted tangent bundle

Œ�;��WTMŒ1�ˇ TMŒ1� �! TMŒ1�:

Definition 2.1. An almost complex structure on M is an endomorphism
J WTMŒ1�! TMŒ1� satisfying J 2 D � Id.
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To such an endomorphism, we associate its Nijenhuis torsion

NJ WTMŒ1�ˇ2 �! TMŒ1�

given by

NJ .X; Y / WD J
2ŒX; Y �C ŒJX; J Y � � J ŒX; J Y � � J ŒJX; Y �:

Theorem 2.2 (Newlander and Nirenberg [21]). Let J be an almost complex

structure on M . The endomorphism J is a complexe structure if, and only if, its

Nijenhuis torsion vanishes.

We denote by OM D C1
M the sheaf of smooth functions on M . The sheaf of

OM -modules of differential 1-forms�1M WD �T
�MŒ�1� is the sheaf of sections of

the shifted cotangent bundle and the graded symmetric algebra ��
M WD S�.�1M /

(over the sheaf C1
M ) has its (graded-)symmetric product given by the wedge

product and is called the de Rham algebra. The de Rham algebra is usually seen
as an antisymmetric algebra since �1M is in degree 1. The de Rham differential
dDRWC1

M D �0M ! �1M defined by dDRf .X/ D X.f / extends to the de Rham
algebra in order to get a differential graded algebra.

To any vector form F in �rM ˝OM
TM Œ1�, where TM is the OM -module of

sections of the tangent bundle TM , we associate two derivations: the interior

product iF W��
M ! ��Cr�1

M defined by

iF .!/.Y1 ^ � � � ^ YrCs�1/

WD
1

rŠ.s � 1/Š

X

�2SrCs�1

sgn � � !.F.Y�.1/ ^ � � � ^ Y�.r//

^ Y�.rC1/ ^ � � � ^ Y�.rCs�1//;

for ! 2 �sM and Y1 ^ � � � ^ YrCs�1 2 S rCs�1.TM Œ1�/ and SrCs�1 is the group of
permutations on r C s � 1 elements, and the Nijenhuis–Lie derivative

dF W�
�
M �! ��Cr

M

defined by
dF WD iF � d � .�1/

r�1d � iF :

The Frölicher–Nijenhuis bracket is a Lie bracket

Œ�;��F-NW .�
r
M ˝OM

TM Œ1�/˝ .�
s
M ˝OM

TM Œ1�/ �! �rCs
M ˝OM

TM Œ1�

given, for F D ' ˝ X 2 �rM ˝OM
TM Œ1� and G D  ˝ Y 2 �sM ˝OM

TM Œ1�,
explicitly by

ŒF; G�F-N WD ' ^  ˝ ŒX; Y �C ' ^ dX . /˝ Y � dY .'/ ^  ˝X

C .�1/r.d' ^ iX . /˝ Y C iY .'/ ^ d ˝ Y /:
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An endomorphism J WTM Œ1� ! TM Œ1� can be seen as an element J in the
tensor product �1M ˝OM

TM Œ1�. Similarly, we get ŒJ; J �F-N 2 �2M ˝OM
TM Œ1�.

Theorem 2.3 (Nijenhuis [20]). Under the identification between elements and

applications,

NJ D ŒJ; J �F-N:

For an element J 2 �1M ˝OM
TM Œ1�, we call it integrable if ŒJ; J �F-N D 0.

This means that a complex structure is an almost complex structure J satisfying
the integrability condition.

Definition 2.4. Let .M; J / and .N; J 0/ be two complex manifolds. A smooth
mapF W .M; J /! .N; J 0/ is called J -J 0-holomorphic, or holomorphic when there
is no ambiguity, if it satisfies

dF � J D J 0.F / � dF:

2.2 – Complex formal manifolds

In order to work with formal power series instead of smooth functions, we will now
consider formal pointed manifolds, that is, a coalgebra C which is isomorphic to
S c.V / for some vector space V (as for manifold, the specific isomorphism is not
part of the data). It can equivalently be interpreted as a locally ringed spaces of the
form Vfor Š .¹pointº;OVfor/, where the sheaf of functions OVfor WD C

� Š S c.V /�

is given by power series on V �. Its cotangent sheaf �1
Vfor

is the OVfor-module
generated by .V Œ1�/� and its tangent sheaf TVfor is the OVfor-module generated
by V .

Let ¹eaº be a basis of V , or ¹eVa º when there is an ambiguity, and ¹taº be its
associated dual basis, so that OVfor Š RJtaK. The shifted tangent sheaf TVfor Œ1�

is generated as an OVfor-module by a basis ¹@aº, where we write @a for s @
@ta

(we remind that “s” stands for the cohomological desuspension, that is to say,
@a is of degree �1). Finally, we denote by ¹aº the dual basis of ¹@aº, that
is a D s�1dta, where dta is dual to @

@ta
. The element a is therefore of

(cohomological) degree 1. We obtain that the OVfor-module of differential forms
is ��

Vfor
Š RJta; bK.

A vector valued differential form, or vector form for short, is an element
F 2 ��

Vfor
˝OVfor

TVfor . It has the following form

F D
X

p�0

F ba1 ���ap.t /
a1 � � � ap@b;
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where F ba1 ���ap .t / is an element in OVfor , that is a power series in the ta’s. For exam-

ple, an endomorphism J WTVfor ! TVfor , given by J.P a.t /@a/ D P a.t /J ba .t /@b,
where P a.t /, J ba .t / 2 OVfor , is seen as a vector form J D J ba .t /

a@b 2
�1

Vfor
˝OVfor

TVfor Œ1�. For two general vector formsF D
P

p F
b
a1���ap.t /

a1 � � � ap@b
and G D

P

q G
d
c1���cq .t /

c1 � � � cq@d , a formula for the Frölicher–Nijenhuis
bracket is given by

ŒF; G�F-N D .F
b
a1 ���ap .t /@bG

d
apC1���apCq

.t /

� GbapC1���apCq
.t /@bF

d
a1 ���ap.t /

� pF dba2 ���ap
.t /@a1G

b
apC1���apCq

.t /

C qGdbapC2���apCq
.t /@apC1

F ba1 ���ap .t //
a1 � � � apCq@d :

For instance, for J D J ba .t /
a@b, we get the formula

(1) ŒJ; J �F-N D .J
b
a1
@bJ

d
a2
� J ba2@bJ

d
a1
� J db @a1J

b
a2
C J db @a2J

b
a1
/a1a2@d ;

where we have removed the variable t .

Definition 2.5. A complex formal manifold is a formal pointed manifold
endowed with a vector form J D J ba .t /

a@b satisfying

J ba1.t /@bJ
d
a2
.t / � J ba2.t /@bJ

d
a1
.t / � J db .t /@a1J

b
a2
.t /C J db .t /@a2J

b
a1
.t / D 0

for all a1, a2 and d .

A map of formal pointed manifolds

F WVfor D .¹ptº;OVfor/ �!Wfor D .¹ptº;OWfor/

is of the form

F D F b.t /eWb ;

where ¹eWa º is a basis of W . Therefore, its differential

dF WTVfor �! F �TWfor

is given by

dF D @aF
b.t /a@b:

We obtain the following definition.
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Definition 2.6. A holomorphic map between two complex formal manifolds
is a map F W .Vfor; J /! .Wfor; J

0/ satisfying

.@cF
d .t /c@d / � .J

b
a .t /

a@b/ D .J
0d
c .F.t//

c@d / � .@aF
b.t /a@b/;

that is to say,

(2) @bF
d .t /J ba .t /

a@d D J
0d
b .F.t//@aF

b.t /a@d :

3. Operadic interpretation

In this section, we define the operad Cx and we show that it is a Koszul operad.
In order to prove this fact, we apply the distributive laws theory recalled in
Appendix B and we make the curved Koszul dual cooperad Cx¡ explicit. We
finally described the homotopy algebras associated to the operad Cx and the
corresponding homotopy morphisms.

3.1 – Definitions and notations

We refer to the book written by Loday and Vallette [11] for definitions about oper-
ads. However, we consider cohomological grading and therefore differentials have
degree C1 and the homological suspension will be the cohomological desuspen-
sion. Let P D T.E/=.R/ be a quadratic operad, where T.E/ is the free operad
generated by the S-module E and .R/ is the ideal generated by the S-module R.
Its Koszul dual cooperad P¡ is a subcooperad of the cofree cooperad Tc.sE/ on
sE, and is defined by the universal property dual to the universal property defining
the quotient, for the cogenerators sE and the coideal cogenerated by s2R. We use
the notation P¡ D C.sEI s2R/. We denote by I the S-module .0;R; 0; : : :/ and by
M ı.1/ N the infinitesimal composite of two S-modules M and N . For a coaug-

mented cooperad .C; �C/, we denote by�.1/
C

the infinitesimal decomposition map

C! Cı.1/C (see Section 6.1 in [11] for precise definitions) and by x�.1/
C

the reduced

infinitesimal decomposition map

C
�
.1/
C

���! C ı.1/ C �� xC ı.1/ xC:

For instance, we denote by Lie1 the operad encoding Lie algebras with a
bracket of cohomological degree 1, that is to say,

Lie1 WD T.s�1EL/=.s
�2RL/;
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where EL is the S-module generated in arity 2 by a symmetric element
1 2
❈❈④④ and

RL is the S-module generated in arity 3 by the Jacobi relation:

1 2 3
❈❈
❈❈
④④ ④④④④ C

2 3 1
❈❈
❈❈
④④ ④④④④ C

3 1 2
❈❈
❈❈
④④ ④④④④ :

In this case, we get Lie¡
1 D C.ELIRL/ D Com�. Here, we denote by Com the

operad encoding commutative algebra (with a product of degree 0) and therefore,
the cooperad obtained by dualizing arity-wise, Com�, is the cooperad encoding
cocommutative coalgebras. The Koszul dual cooperad Lie¡

1 is 1-dimensional in
each arity, Lie¡

1.n/ Š R � Nlcn , where Nlcn is an element of degree 0 on which Sn acts
trivially, and the infinitesimal decomposition map on Lie¡

1 is given by

�
.1/

Lie¡
1

. Nlcn/ D
X

pCqDnC1
p;q�1

X

�2Sh�1
q;p�1

. Nlcp ı1 Nl
c
q /
� ;

where Sh�1
q;p�1 is the set of .q; p�1/-unshuffles, that is, inverses of .q; p � 1/-shuf-

fles. We refer to Appendix A for more details.

3.2 – Toward the operad profile of complex structures

In Section 2, we have seen that an element J 2 �1
V
˝OV

TcVŒ1� is a complex
structure on a formal pointed manifold Vfor D .¹ptº;OVfor/ if and only if the
following two equations are satisfied:

(3)

´

J 2 C Id D 0;

ŒJ; J �F-N D 0:

The element J has the form

J D J ba .t /
a@b; where J ba .t / D

X

J bc1;:::;cnIat
c1 � � � tcn .

The two previous equations give the relations that the coefficients J bc1;:::;cnIa have
to satisfied. Our aim is now to describe such a structure as an algebraic data.

We remark that every map f WV ˝nC1 ! V is given by its values on a basis

f .ec1 ˝ � � � ˝ ecn ˝ ea/ D f
b
c1;:::;cn;a

eb

and we can therefore think about J as a sum of applications V ˝nC1 ! V satis-
fying relations. In order to make the problem simpler, we begin with a complex
structure J equal to its constant part J ba .0/ D J

b
a , that is to say, since a basis of V
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is fixed, J is an endomorphism V ! V . In that case, the Nijenhuis torsion is triv-
ially equal to 0 since J is constant. Therefore we can see such a simple complex
structure as a representation of the unital associative algebra of complex numbers
C in V , that is, an algebra morphism

C �! End.V / WD Hom.V; V /:

In operadic terms, we say that the vector space V is an algebra over the (nonsym-
metric) operad

x
C WD .0;C; 0; : : :/ Š T. � /

ı�
�
� C

�

:

To pass from algebra to geometry, we have to handle the question of a change of
the coordinates system. Such a data for a formal pointed manifold Vfor is given by a
formal diffeomorphism � of Vfor, that is, a power series with values in V fixing the
base point and which linear part is invertible. In other words, it is an application
of vector spaces �WS c.V / Š Lie¡

1.V / ! V , such that the linear part �1WV ! V

is an isomorphism. It can be seen equivalently as an1-isomorphism of the trivial
Lie1-algebra V to itself. (Here V is considered concentrated in cohomological

degree 0.) We therefore add to our algebraic data
x
C a generator

1 2
❋❋❋ ①①①s�1 and the

suspended Jacobi relation which encode Lie brackets in cohomological degree
1. In this way, formal diffeomorphisms will appear in the homotopy theory of
our algebraic data. The condition for a change of coordinates can be written
d� �J D J 0.�/ �d�. We focus here our attention on the generators of the algebraic

data � and
1 2
❋❋❋ ①①①s�1. We consider two representations J ba 

a@b and J 0b
a
a@b of �

and a representation of
1 2
❋❋❋ ①①①s�1 corresponding to the quadratic part qc

ab
tatbec of �.

The condition d� � J D J 0.�/ � d� implies the algebraic equations

qcbdJ
d
a D J

0c
dq

d
ba:

As we will see in Proposition 3.15 and Corollary 3.16, these relations correspond
to the representation for morphisms of the operadic relation

1 2

�❋❋❋ ①①①s�1

D
1 2

❋❋
❋
①①
①
s�1

�

;

and it will therefore appear in the algebraic data.

Remark 3.1. This reasoning is based on the fact that the category of formal
pointed manifolds with formal smooth maps is equivalent to the category of
.Lie1/1-algebras with1-morphisms.
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Definition 3.2. We define the operad

Cx WD T

� 1

�
;
1 2
❋❋❋ ①①①s�1

�.� 1

�

�

C
1

;

1 2

�❋❋❋ ①①①s�1

�
1 2

❋❋
❋

①①
①
s�1

�

; s�2

�1 2 3
❈❈
❈❈
④④ ④④④④

C
2 3 1
❈❈
❈❈
④④ ④④④④

C
3 1 2
❈❈
❈❈
④④ ④④④④

��

:

Remark 3.3. (1) In this notation, we assume that the element

2 1

�❋❋❋ ①①①s�1

�
2 1

❋❋
❋

①①
①
s�1

�

is a relation in Cx.

(2) In the description of
x
C and in the sequel, since there is no ambiguity, we

sometimes omit the 1 on elements in arity 1 as
1

�
and write for instance � .

We prove that Cx is the operad profile of complex structures in the rest of
Section 3 and in Section 4.

3.3 – Distributive laws and the Koszul dual cooperad

The operad Cx is not a homogeneous quadratic operad because of the fact that the
relation �

�C involves quadratic and constant terms. We use the theory developed
by Hirsh and the author in [7] to find an explicit cofibrant replacement of Cx. The
quadratic operad qCx associated to Cx has the following presentation

qCx WD T

� 1

�
;
1 2
❋❋❋ ①①①s�1

�.� 1

�

�

;

1 2

�❋❋❋ ①①①s�1

�
1 2

❋❋
❋
①①
①
s�1

�

; s�2

�1 2 3
❈❈
❈❈
④④ ④④④④

C
2 3 1
❈❈
❈❈
④④ ④④④④

C
3 1 2
❈❈
❈❈
④④ ④④④④

��

:

By means of distributive laws, we make the Koszul dual cooperad qCx¡ explicit
and we prove that the operad qCx is Koszul. We obtain finally that Cx is Koszul.
We refer to Loday-Vallette [11], Section 8.6 for definitions and notations on dis-
tributive laws.

The quadratic operad (algebra) associated to
x
C is

q
x
C WD T. � /=

�
�
�

�

D R
�

�
�

:

The Koszul dual cooperad is given by

q
x
C

¡ D R
�

ı
�

D
M

n�0

R N{cn;
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where we denote s � by ı and where N{cn is an element of degree �n and has the
following (infinitesimal) decomposition map

�q
x
C¡.N{cn/ D

n
X

kD0

.N{ckI N{
c
n�k/ 2 q

x
C

¡ ı q
x
C

¡ Š q
x
C

¡ ˝ q
x
C

¡:

Between the operads Lie1 and q
x
C, we define the rewriting rule

�W .s�1EL/ ı.1/ .R � /! .R � / ı.1/ .s
�1EL/

by the S2-equivariant map sending

1 2

�❋❋❋ ①①①s�1

to
1 2

❋❋
❋

①①
①
s�1

�

. We refer to Appendix B for

general facts on distributive laws on cooperads. We use the notations

q
x
C _� Lie1 D qCx

and

q
x
C

¡ _� Lie¡
1 D qCx¡

D C

�

s
� 1

�
;
1 2
❋❋❋ ①①①s�1

�

I

s2
� 1

�

�

;

1 2

�❋❋❋ ①①①s�1

�
1 2

❋❋
❋

①①
①
s�1

�

; s�2

�1 2 3
❈❈
❈❈
④④ ④④④④

C
2 3 1
❈❈
❈❈
④④ ④④④④

C
3 1 2
❈❈
❈❈
④④ ④④④④

���

D C

� 1

ı
;
1 2
❈❈④④ I

1

ı

ı

;

1 2

ı❈❈④④
C

1 2
❏❏ tt

ı
;
1 2 3
❈❈
❈❈
④④ ④④④④ C

2 3 1
❈❈
❈❈
④④ ④④④④ C

3 1 2
❈❈
❈❈
④④ ④④④④

�

:

There is the change of sign

s2
� 1 2

�❋❋❋ ①①①s�1

�
1 2

❋❋
❋
①①
①
s�1

�

�

D �

1 2

ı❈❈④④
�
1 2
❏❏ tt

ı

because of the Koszul sign rule.

Lemma 3.4. The injection i1W q
x
C¡ _� Lie¡

1 D qCx¡ ,! Lie¡
1 ı q

x
C¡ (defined

in Appendix B.2) is an isomorphism. Therefore, the morphism of S-modules �

induces a distributive law of operadsƒWLie1 ı q
x
C! q

x
C ıLie1 and a distributive

law of cooperadsƒc WLie¡
1 ı q
x
C¡ ! q

x
C¡ ı Lie¡

1. The distributive law of cooperads

ƒc is given explicitly by

ƒc.. NlcnI N{
c
k1
; : : : ; N{ckn// D

� X

�2Shk1;:::;kn

sgn �
�

.N{ck1C���Ckn
I Nlcn/;

where Shk1;:::;kn is the set of .k1; : : : ; kn/-shuffles.
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Remark 3.5. Pictorially, we get the following formula:

ƒc

 

ık2 � � � ıkn�1 ı kn

❳❳❳❳
❳❳❳❳

❳
❯❯❯

❯❯❯❯ ■■
■■

①①
①①

❦❦❦
❦❦❦

!

D ˛k1;:::;kn
❱❱❱

❱❱❱
❱

◗◗◗
◗◗

❋❋
❋❋
①①
①①

♠♠♠
♠♠

ı k1C���Ckn

;

where ˛k1;:::;kn is a coefficient in Z and where k ı stands for N{c
k
.

Proof. Theorem B.5 says that it is enough to prove that p is injective in weight
�3, where the weight is given by the opposite of the number of generators. The
last remark of Section B.3 ensures that we can equivalently prove the surjectivity
of i1 in weight �3. In order to make the reader more familiar with qCx¡, we will
make the elements of weight �3 in qCx¡ explicit. The map i1 is trivially surjective
onto Lie¡

1 ı I and onto Iıq
x
C¡. The other terms of weight�3 in qCx¡ D q

x
C¡_�Lie¡

1

are

1 2 3

ı❈❈
❈❈
④④ ④④④④

C

2 3 1

ı❈❈
❈❈
④④ ④④④④

C

3 1 2

ı❈❈
❈❈
④④ ④④④④

C

1 2 3
❏❏ tt

ı
❏❏ tt

C

3 1 2
❏❏ tt

ı
❏❏ tt

C

1 2 3
❈❈
❈❈
④④ ④④④④
ı
C

2 3 1
❈❈
❈❈
④④ ④④④④
ı
C

3 1 2
❈❈
❈❈
④④ ④④④④
ı

and the S3-module generated by it,

1 2

ı
ı❈❈④④

C

1 2

ı❏❏ tt
ı

C

1 2
❏❏ tt

ı
ı

and the S2-module generated by it, and finally the element

1 2

ı ı❈❈④④
C

1 2

ı❏❏ tt
ı

�

1 2

ı❏❏ tt
ı

on which S2 acts by signature. This proves that i1 is surjective in weight �3.

To describe ƒc , we first remark that the formula is true for n D 1, for
k1 C � � � C kn D 0 and, for n D 2 and k1 C k2 D 1. Then, we make use of
diagrams (I) and (II) in Appendix B.1 to prove the general formula. Let k 2 N�.
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We assume that the formula is true for any m � n and k1 C � � � C km � k � 1 and
we use diagram (II) to prove it for n and k1 C � � � C kn D k. We have

.Id ıƒc/ � .ƒc ı Id/ � .Id ı�q
x
C¡/. NlcnI N{

c
k1
; : : : ; N{ckn/

D .Id ıƒc/ � .ƒc ı Id/
� X

k0
j

Ck00
j

Dkj
k0
j
;k00
j

�0

"k0
j
;k00
j
. Nlcn I N{

c
k0
1
; : : : ; N{c

k0
n
I N{c
k00
1
; : : : ; N{c

k00
n
/
�

D .Id ıƒc/
�

.T I Id; : : : ; Id/C .IdI NlcnI N{
c
k1
; : : : ; N{ckn/

C
X

k0
j

Ck00
j

Dkj
1�k0

1
C���Ck0

n�n�1

"k0
j
;k00
j

� X

� 02Sh
k0
1
;��� ;k0

n

sgn � 0
�

.N{c
k0
1

C���Ck0
n
I NlcnI N{

c
k00
1
; : : : ; N{c

k00
n
/
�

D .T 0I Id; : : : ; IdI T 00/C .IdI T 0I T 00/

C
X

k0
j

Ck00
j

Dkj
1�k0

1
C���Ck0

n�n�1

"k0
j
;k00
j

X

� 02Sh
k0
1
;��� ;k0

n

� 002Sh
k00
1
;��� ;k00

n

sgn � 0 sgn � 00 � .N{c
k0
1

C���Ck0
n
I N{c
k00
1

C���Ck00
n
I Nlcn/

where "k0
j
;k00
j
D .�1/

Pn�1
iD1 k

00
i
.k0
iC1

C���Ck0
n/ and

T D .T 0I T 00/ D ƒc. NlcnI N{
c
k1
; : : : ; N{ckn/ DW ˛k1;:::;kn.N{

c
k1C���Ckn

I Nlcn/:

On the other side

.�q
x
C¡ ı Id/ �ƒc. Nlcn I N{

c
k1
; : : : ; N{ckn/ D .�q

x
C¡ ı Id/.T / D ˛k1;:::;kn

X

k0Ck00Dk

.N{ck0 I N{ck00 I Nlcn/:

To prove that ˛k1;:::;kn D
P

�2Shk1;:::;kn
sgn� , it is then enough to check that for

1 � k � n � 1, we have
X

k0
j

Ck00
j

Dkj
k0
1

C���Ck0
nDk

"k0
j
;k00
j

� X

� 02Sh
k0
1
;��� ;k0

n

sgn � 0
�� X

� 002Sh
k00
1
;��� ;k00

n

sgn � 00
�

D
X

�2Shk1;:::;kn

sgn �:

This follows from the fact that, when k is fixed, there is a unique decomposition
of a .k1; : : : ; kn/-shuffle � in the following manner: some positive k0

j � kj such
that k0

1 C � � � C k
0
n D k, a .k0

1; : : : ; k
0
n/-shuffle � 0, a .k00

1 ; : : : ; k
00
n/-shuffle � 00 and a

permutation � 2 Sk1C���Ckn that sends

.1; : : : ; k0
1; : : : ; k1; : : : ; k1 C � � � C kn�1; : : : ;

k1 C � � � C kn�1 C k
0
n; : : : ; k1 C � � � C kn/
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to

.1; : : : ; k0
1; k1 C 1; : : : ; k1C k

0
2; : : : ; k1C � � � C kn�1 C k

0
n;

k0
1 C 1; : : : ; k1; : : : ; k1 C � � � C kn/:

The signature of � is precisely "k0
j
;k00
j
.

Similarly, diagram (I) proves that the formula is true for n and k1C� � �Ckn D k
whenever it is true for m � n � 1 and k1 C � � � C km � k. This concludes the
proof. �

3.4 – Koszulity

In this section, following the theory developed in [7] ,we compute the Koszul dual
curved cooperad associated to the operad Cx and we prove that Cx is Koszul.

Proposition 3.6. The operad qCx is Koszul and its Koszul dual cooperad qCx¡

is given by

qCx¡ Š Lie¡
1 ı q
x
C

¡ D Lie¡
1 ıR

�
ı
�

:

We denote the generators by N| c
k1;:::;kn

WD . NlcnI N{
c
k1
; : : : ; N{c

kn
/. The infinitesimal de-

composition map given by

�
.1/
ƒc . N|

c
k1;:::;kn

/

D
X

pCqDnC1
p;q�1

X

�2Shq;p�1

X

k0
�.j/

Ck00
�.j/

Dk�.j/
k0
�.j/

Dk�.j/ for j>q

k0Dk0
�.1/

C���Ck0
�.q/

˛�
k0
j
;k00
j

� . N| ck0;k�.qC1/;:::;k�.n/
ı1 N|

c
k00
�.1/

;:::;k00
�.q/

/�
�1

;

where

˛�
k0
j
;k00
j

WD sgnk1;:::;kn � � "
�
k0
j
;k00
j

� ˛k0
�.1/

;:::;k0
�.q/

;

with

"�
k0
j
;k00
j

WD .�1/
Pn
iD1 k

00
�.i/

.k0
�.iC1/

C���Ck0
�.n/

/
;

˛k0
1
;:::;k0

q
WD

X

� 02Sh
k0
1
;��� ;k0

q

sgn � 0; with convention ˛0;:::;0 WD 1;
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and sgnk1;:::;kn � is the signature of the restriction of � to the indices j such that

kj is odd (after relabeling the remaining �.j / in a way that the order of the �.j /

does not change). Moreover, the full decomposition map is given by

�ƒc. N|
c
k1;:::;kn

/

D
X

¹q1;:::;qpº
q1C���CqpDn

X

�2Shq1;:::;qp

X

k0
j

Ck00
j

Dkj

ˇ�
k0
j
;k00
j

� . N| c
l 0
1
;:::;l 0p
I N| c
k00
�.1/

;:::;k00
�.q1/

;

N| c
k00
�.q1C1/

;:::;k00
�.q1Cq2/

; : : :/�
�1

;

where l 0i WD k
0
�.q1C���Cqi�1C1/ C � � � C k

0
�.q1C���Cqi /

and

ˇ�
k0
j
;k00
j

WD sgnk1;:::;kn � � "
�
k0
j
;k00
j

�
p
Y

iD1

˛k0
�.q1C���Cqi�1C1/

;:::;k0
�.q1C���Cqi /

:

Remark 3.7. The second sum really runs on shuffles and not on unshuffles
since the unshuffle permutation � acts as a left-action given by

� � .N{ck1 ; : : : ; N{
c
kn
/ D .N{ck

��1.1/
; : : : ; N{ck

��1.n/
/� :

Proof. We have seen in the proof of Lemma 3.4 that we can apply Theo-
rem B.5, this gives that the operad qCx¡ is Koszul. It is then enough to prove the
formula for the infinitesimal decomposition map by means of Proposition B.3. The
decomposition map on qCx¡ Š Lie¡

1 ıq
x
C¡ is given by�ƒc D .IdLie¡

1
ıƒc ı Idq

x
C¡/ �

.�Lie¡
1
ı �q

x
C¡/. In order to get the infinitesimal decomposition map, we have to

project the result onto qCx¡ ı.1/ qCx¡. In the sequel, for three S-modules M , N1
and N2, we use the notationM ı .N1IN2/ for the sub-S-module ofM ı .N1˚N2/
linear in N2. The infinitesimal decomposition map is given by the composite

Lie¡
1 ı q
x
C

¡

�
.1/

Lie
¡
1

ıId

�����! .Lie¡
1 ı.1/ Lie¡

1/ ı q
x
C

¡ Š Lie¡
1 ı .qx

C
¡ILie¡

1 ı q
x
C

¡/

Id ı.IdIId ı�q
x
C¡ /

����������! Lie¡
1 ı .qx

C
¡ILie¡

1 ı q
x
C

¡ ı q
x
C

¡/

Id ı.IdIƒcıId/
���������! Lie¡

1 ı .qx
C

¡I q
x
C

¡ ı Lie¡
1 ı q
x
C

¡/ Š .Lie¡
1 ı q
x
C

¡/ ı.1/ .Lie¡
1 ı q
x
C

¡/:

A careful computation of this composite gives the infinitesimal decomposition
map. Similarly, a careful computation of the composite

Lie¡
1ıqx

C
¡
�

Lie
¡
1

ı�q
x
C¡

�������! .Lie¡
1ıLie¡

1/ı.qx
C

¡ıq
x
C

¡/
Id ıƒcıId
������! .Lie¡

1ıqx
C

¡/ı.Lie¡
1ıqx

C
¡/

give the full decomposition map. �
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Finally, we obtain an explicit description of the Kosul dual curved coop-
erad Cx¡.

Theorem 3.8. The operad Cx is Koszul and its Koszul dual cooperad Cx¡

is isomorphic to the curved cooperad with zero differential .Lie¡
1 ı q
x
C¡; �ƒc ; �/,

where the curvature � WLie¡
1 ı q
x
C¡ ! I is defined by

�. Nlcn I N{
c
k1
; : : : ; N{ckn/ D

8

<̂

ˆ
:

if . Nlcn I N{
c
k1
; : : : ; N{c

kn
/ D

ı

ı
;

0 otherwise.

We get a cofibrant resolution of Cx

Cx1 WD �Cx¡ �
�! Cx;

where �Cx¡ is the cobar construction on the curved cooperad Cx¡, as defined

in [7].

Remark 3.9. The cobar construction�Cx¡ is a semi-augmented operad which
underlying S-module is T.s�1Cx¡/ and which differential is the sum of a term
built using the infinitesimal decomposition map of Cx¡ and a term built using the
curvature on Cx¡.

Proof. The word “cofibrant” refers to the model category structure defined
by Hinich in [5] and [6]. A second reference is the Appendix A of [19]. We
refer to Section 4, and more specifically 4.2, of [7] for the general theory on
curved Koszul duality and for the definition of the Koszul dual curved cooperad.
An explicit formula for the decomposition map can be obtained by successive
composition of the infinitesimal decomposition map. In Section 4.3 of [7], an
operad is said to be Koszul when it has an inhomogeneous presentation satisfying
two conditions, called (I) and (II), and when the associated quadratic operad is
Koszul. The presentation of Cx that we give trivially satisfies the two conditions
(I) and (II) and the associated quadratic operad qCx is Koszul by Proposition 3.6.
It follows that Cx is Koszul and, from Theorem 4.3.1 in [7], that Cx1 is a cofibrant
resolution of Cx. �

3.5 – Description of the homotopy algebras

For each application f W .A; dA/ ! .B; dB/, we define the differential @.f / WD
dB � f � .�1/jf jf � dA. We obtain the following explicit description of homotopy
Cx-algebra structure.
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Proposition 3.10. A Cx1-algebra structure on a dg module .A; dA/ is given

by a collection of maps, ¹jk1;:::;knº for n � 1 and k1; � � � ; kn � 0, with j0 D dA

and where each jk1;:::;kn is a map A˝n ! A of degree 1 � .k1 C � � � C kn/ such

that

(i) jk1;:::;kn.a1 � � �an/ D " � jk�.1/;:::;k�.n/.a�.1/ � � �a�.n//;

where " is given by the Koszul sign rule. (The maps jk1;:::;kn come from the

elements . Nlcn I N{
c
k1
; : : : ; N{c

kn
/ where the N{c

ki
is of degree ki ; therefore the sign "

depends on the ki ’s and on the jai j’s.) The family of maps ¹jk1;:::;knº satisfies the

following identities:

(ii) @.j2/.a/ D .j0 � j2 � j2 � j0/.a/ D j
2
1 .a/C a;

and, when .n; k1; : : : ; kn/ ¤ .1; 2/,

(iii)
X

pCqDnC1
p;q�1

X

�2Shq;p�1

X

K

ˇ�
k0
j
;k00
j

� jK1.jK2.a�.1/ � � �a�.q//a�.qC1/ � � �a�.n//D0;

where

K D ¹k0
�.j / C k

00
�.j / D k�.j /I k

0
�.j / D k�.j / for j > qI

k0 D k0
�.1/ C � � � C k

0
�.q/º;

K1 D ¹k
0; k�.qC1/; : : : ; k�.n/º;

K2 D ¹k
00
�.1/; : : : ; k

00
�.q/º

and

ˇ�
k0
j
;k00
j

WD ˛�
k0
j
;k00
j

� "0;

where ˛�
k0
j
;k00
j

D sgnk1;:::;kn � � "
�
k0
j
;k00
j

� ˛k0
�.1/

;:::;k0
�.q/

is defined in Proposition 3.6

and "0 is given by the Koszul rule sign a1 � � �an D "0a�.1/ � � �a�.n/.

Proof. Since Cx1 D �Cx¡ is a quasi-free operad, we have that a map
j WCx1.A/ ! A of degree 0 is determined by an application Cx¡.A/ ! A of
degree 1. This is equivalent to a collection of applications jk1;:::;kn WA

˝n ! A of
degree 1 � .k1 C � � � C kn/, defined by

jk1;:::;kn.a1 � � �an/ WD j..
NlcnI N{

c
k1
; : : : ; N{ckn/˝ a1 � � �an/;

and therefore satisfying equations (i). Moreover, the operad Cx1 has a differential
d WD d0 C d2, where d0 depends on the curvature � and d2 depends on the
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infinitesimal decomposition map �.1/
Cx¡ . We refer to Section 3.3.5 in [7] for more

details. Therefore, the fact that g is a dg map gives the additional relations (ii)
and (iii) among the applications jk1;:::;kn . �

Remark 3.11. The maps jk1;:::;kn can equivalently be seen as maps

AŒk1�ˇ � � � ˇ AŒkn� �! AŒ1�:

Corollary 3.12. Let V be a vector space (concentrated in degree 0).

A Cx1-algebra structure on V is given by a collection of degree 0 maps

¹ V|nC1 WD j0;:::;0;1WV
ˇn ˝ V �! V ºn�0;

together satisfying the following identities:

(4) V|21 D � Id;

and for n > 1,

(5)
X

pCqDnC1
p;q�1

X

�2Shp�1;q

�.n/Dn

V|p.a�.1/ � � �a�.p�1/ V|q.a�.p/ � � �a�.n/// D 0;

X

pCqDnC1
p�2;q�1

X

�2Shp�1;q

�.¹p�1;nº/D¹n�1;nº

sgn.�j¹p�1;nº/� V|p.a�.1/ � � �a�.p�2/ V|q.a�.p/ � � �a�.n//a�.p�1//

C
X

pCqDnC1
p�1;q�2

X

�2Shp�1;q

�.¹n�1;nº/D¹n�1;nº

sgn.�j¹n�1;nº/ V|p.a�.1/ � � �a�.p�1/ V|q.a�.p/ � � �a�.n///D0:

(6)

Proof. Be aware of the fact that V is concentrated in degree 0 and that, for
instance, j.. Nlc3 I N{

c
1; N{

c
0 ; N{

c
0/˝a1a2a3/ D j..

Nlc3 I N{
c
0; N{

c
0 ; N{

c
1/˝a3a2a1/. Then, the result

is a particular case of Proposition 3.10. �

Remark 3.13.

� Pictorially, the map V|n corresponds to the n-ary tree:

1 � � � n� 1 n

ı
❱❱❱❱

❱ ▲▲▲ ❧❧❧❡❡❡❡❡
❡ .

� The maps V|nC1 can equivalently be seen as degree 0 maps

V ˇn ˝ V Œ1� �! V Œ1�:

The shift of degree on the source space comes from the ı in the tree
presentation of V|n and the one on the target space comes from the suspension
of the generators Cx¡ in the cobar construction�Cx¡.
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3.6 – Infinity-morphism of Cx1-algebras

We follow the general theory and we use some notations of Section 6.2 in [7].
Let A and B be two Cx1-algebras, with structure maps jA and jB . For C D A

and B , we denote by DjC is the curved codifferential on Cx¡.C / induced by the
differential dC and by the Cx1-algebra structure jC . We remind that a curved
codifferential DjC on Cx¡.C / does not necessarily square to 0 and satisfies

D2
jC
D .� ı idCx¡.C// ��Cx¡.C/;

where � is the curvature of Cx¡.

Definition 3.14. An1-morphism A B of Cx1-algebras is a Cx¡-coalge-
bra map

f W .Cx¡.A/;DjA/ �! .Cx¡.B/;DjB /;

commuting with the curved codifferentials.

Proposition 3.15. Let .A; jA/, .B; jB/ be two Cx1-algebras. An 1-mor-

phism between A and B is a collection of maps,

¹fk1;:::;kn WA
˝n �! Bºk1;:::;kn�0;n�1

of degree �.k1 C � � � C kn/, satisfying

@.fk1;:::;kn/ D
X

pCqDnC1
p;q�1

X

�2Shq;p�1

X

k0
�.j/

Ck00
�.j/

Dk�.j/
k0
�.j/

Dk�.j/ for j>q

k0Dk0
�.1/

C���Ck0
�.q/

˛
�;�

k0
j
;k00
j

� fk0;k�.qC1/;:::;k�.n/

� .jA
k00
�.1/

;:::;k00
�.q/

; IdA; : : :/�
�1

�
X

¹q1;:::;qpº
q1C���CqpDn

X

�2Shq1;:::;qp

1

N
N
q

X

k0
j

Ck00
j

Dkj

ˇ
�;

k0
j
;k00
j

� jB
l 0
1
;:::;l 0p

� .fk00
�.1/

;:::;k00
�.q1/

; fk00
�.q1C1/

;:::;k00
�.q1Cq2/

; : : :/�
�1

;

where

˛
�;�

k0
j
;k00
j

WD .�1/k
0Ck�.qC1/C���Ck�.n/�˛�

k0
j
;k00
j

; ˇ
�;

k0
j
;k00
j

WD .�1/.�
P

k00
j
/.
P

k0
j
/�ˇ�

k0
j
;k00
j

and

N
N
q WD

m
Y

iD1

max.ni ; 1/

for

N
q D ¹q1; : : : ; qnº D ¹1; : : : ; 1

„ ƒ‚ …

n1 times

; 2; : : : ; m; : : : ; m
„ ƒ‚ …

nm times

º:
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Proof. A Cx¡-coalgebra map f WCx¡.A/ ! Cx¡.B/ (of degree 0) is charac-
terized by its corestriction to B , that is f is determined by a collection of maps
fk1;:::;kn WA

˝n ! B of degree �.k1 C � � � C kn/.The fact that f commutes with
the curved codifferentials is equivalent to the following commutative diagram

Cx¡.A/
�ıIdA //

d1Cd2
��

Cx¡ ı Cx¡.A/
IdCx¡ ıf

// Cx¡.B/

dBC Nd2
��

Cx¡.A/
f

// B;

where d1, induced by the differential dA or dB , and d2, induced by the algebra
structure jA or jB , are defined in Section 5.2.3 of [7] for example, and Nd2 is the
projection of d2 on B . Making this diagram explicit gives exactly the conditions
concerning the maps fk1;:::;kn . �

Corollary 3.16. Let V and W be two vector spaces (concentrated in de-

gree 0) endowed with Cx1-algebra structures V|V and V|W . An1-morphism be-

tween V and W is given by a collection of degree 0 maps

¹ Vfn WD f0;:::;0WV
˝n �! W ºn�1;

satisfying, on elements v1, : : :, vn in V ,
X

pCqDnC1
p;q�1

X

�2Shq;p�1

�.q/Dn

Vfp � . V|
V
q .v�.1/ � � �v�.q//v�.qC1/ � � �v�.n//

D
X

¹q1;:::;qp�1º;qp
q1C���CqpDn

N
qp

N
q

N
N
q

X

�2Shq1;:::;qp
�.n/Dn

V|Wp � . Vfq1.v�.1/ � � �v�.q1//
Vfq2.v�.q1C1/ � � � / : : :/;

(7)

where N
qp

N
q WD Card¹q 2

N
q D ¹q1; : : : ; qpº s.t. q D qpº and where N

N
q is defined

in Proposition 3.15.

Proof. The result is a particular case of Proposition 3.15. The factors N qp

N
q

comes from the fact that we fix �.n/ D n. �

Remark 3.17. Pictorially, we get

X

ı

V|V2

❈❈ ✉✉✉

❍❍
❍

⑧⑧rrr
r

❧❧❧
❧❧

Vf5

D
X

❄❄ ⑧⑧ ■■
■

⑧⑧
Vf3 Vf2

ı

◗◗◗
◗◗

tt
t

V|W3

:
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4. Formal complex structures are homotopy algebras

In this section, we give a geometric interpretation of the Cx1-algebras. We prove
that a Cx1-algebra structure on a vector space V D Rm is precisely a complex
structure on the formal pointed manifold Vfor D .¹0º; S c.Rm/�/. We also show
that1-morphisms of Cx1-algebras correspond to holomorphic maps of formal
complex structures.

In order to prove this result, we fix the following notations. Let
®

eVa
¯

a
, resp.

®

eWa
¯

a
, be a basis of V , resp. W . We denote by j b˛1;:::;˛n;a the coefficients of

V|nC1WV ˇn ˝ V ! V on the basis

V|nC1.e
V
˛1
; : : : ; eV˛nI e

V
a / D j

b
˛1;:::;˛n;a

eVb ;

and by f b˛1;:::;˛n the coefficients of VfnWV ˇn ! W on the bases

Vfn.e
V
˛1
; : : : ; eV˛n/ D f

b
˛1;:::;˛n

eWb :

Then, to any family of maps ¹ V|nC1WV ˇn ˝ V ! V ºn�0, we associate the endo-
morphism J of the tangent sheaf TVŒ1� defined by

J WD
X

n�0

j b˛1;:::;˛n;a
1

N
˛Š
t˛1 � � � t˛na@b D J

b
a .t /

a@b;

where

N
˛ D ¹˛1; : : : ; ˛nº D ¹1; : : : ; 1

„ ƒ‚ …

n1 times

; 2; : : : ; p; : : : ; p
„ ƒ‚ …

np times

º and
N
˛Š WD

p
Y

iD1

ni Š:

We denote moreover N
N
˛ WD

Qp
iD1 ni . Let fix a subscript c in

N
˛. Since J ba is

symmetric in the t˛i ’s, we can assume that the product t˛1 � � � t˛n satisfies ˛1 D c.
We have the following computation:

@cJ
b
a .t / D

X

N
˛ s.t. c2

N
˛

j bc;˛2;:::;˛n;a
1

¹˛2; : : : ; ˛nºŠ
t˛2 � � � t˛n :

Similarly, to any family of maps ¹ VfnWV ˇn ! W ºn�0, we associate the map of
formal manifolds F WVfor D

�

¹pointº;OVfor

�

! Wfor D
�

¹pointº;OWfor

�

defined
by

F WD
X

n�1

f b˛1;:::;˛n
1

N
˛Š
t˛1 � � � t˛neWb D F

b
a .t /e

W
b :

We denote by Vect the category of finite-dimensional vector spaces (concen-
trated in degree 0).
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Theorem 4.1. There is an equivalence of categories

´

Cx1-algebra structures on Vect

with1-morphisms

µ

Š
�!

8

<̂

:̂

Complex structures on formal pointed manifolds

Vfor Š
�

¹pointº; S c.V /�
�

with V 2 Vect

with holomorphic maps

9

>=

>;

;

¹ V|nC1WV
ˇn ˝ V ! V ºn�0 7�! J D

X

n�0

j b˛1;:::;˛n;a
1

N
˛Š
t˛1 � � � t˛na@b;

¹ VfnWV
˝n ! W ºn�0 7�! F WD

X

n�1

f b˛1;:::;˛n
1

N
˛Š
t˛1 � � � t˛neWb :

Proof. The composition of J with itself gives the following computation

J 2 D .J ba .t /
a@b/ � .J

b0

a0 .t /
a0

@b0/

D J ba .t /J
a
a0.t /

a0

@b

D
� X

KtLD¹˛1;:::;˛nº

j aK;a0

1

KŠ
j bL;a

1

LŠ
t˛1 � � � t˛n

�

a
0

@b

D
X

KtLD¹˛1;:::;˛nº

�

j aK;a0 j
b
L;a

K t L Š

KŠ � LŠ

�

�
1

K t L Š
t˛1 � � � t˛na

0

@b:

The coefficient in the parentheses is the coefficient of eb in the left-hand side of
equations (4) and (5) in Corollary 3.12, with n C 1 instead of n, anC1 WD ea0

and ai WD e˛i for i � n, since the number of shuffles is given by the binomial
coefficient. The equation J 2 D � Id is therefore equivalent to equations (4)
and (5).

Similarly, we have

.J ba .t /@bJ
d
a0.t / � J ba0.t /@bJ

d
a .t //

aa
0

@d

D
� X

KtLD¹˛1;:::;˛nº

�

j db;K;a0

1

KŠ
j bL;a

1

LŠ

� j db;K;a
1

KŠ
j bL;a0

1

LŠ

�

t˛1 � � � t˛n
�

aa
0

@d

D
X

KtLD¹˛1;:::;˛nº

�

.j db;K;a0 j
b
L;a � j

d
b;K;a j

b
L;a0/

K t L Š

KŠ � LŠ

�

�
1

K t L Š
t˛1 � � � t˛naa

0

@d :
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The coefficient in the parentheses is the opposite of the coefficient of eb in the first
term of the left-hand side of equation (6) in Corollary 3.12, with nC 2 instead of
n, ; anC1 WD ea0 , anC2 WD ea and ai WD e˛i for i � n. Moreover, we have

.J db .t /@aJ
b
a0.t /� J db .t /@a0J ba .t //

aa
0

@d

D
� X

KtLD¹˛1;:::;˛nº

.j ba;K;a0j
d
L;b � j

b
a0;K;aj

d
L;b/

1

KŠ

1

LŠ
t˛1 � � � t˛n

�

aa
0

@d

D
X

KtLD¹˛1;:::;˛nº

�

.j ba;K;a0 j
d
L;b � j

b
a0;K;a j

d
L;b/

K t L Š

KŠ � LŠ

�

�
1

K t L Š
t˛1 � � � t˛naa

0

@d :

The coefficient in the parentheses is the opposite of the coefficient of eb in the
second term of the left-hand side of equation (6) in Corollary 3.12, with n C 2
instead of n, anC1 WD ea, anC2 WD ea0 and ai WD e˛i for i � n. By means of
equality (1), we obtain that equation (6) is equivalent to the integrability condition
and therefore, equations (3) are equivalent to equations (4), (5), and (6).

It remains to check the equivalence on morphisms. We have

@bF
d .t /J ba .t /

a@d D
� X

KtLD¹˛1;:::;˛nº

f db;K
1

KŠ
j bL;a

1

LŠ
t˛1 � � � t˛n

�

a@d

D
X

KtLD¹˛1;:::;˛nº

�

f db;K j
b
L;a

K t L Š

KŠ � LŠ

�

�
1

K t L Š
t˛1 � � � t˛na@d :

The coefficient in the parentheses is equal to the coefficient of eW
d

in the left-hand
side of equation (7) in Corollary 3.16 with nC 1 instead of n, vi WD eV˛i for i < q,
vq WD eVa and vi WD eV˛i�1 for i > q. And finally, we compute

J 0d
b .F.t//@aF

b.t /a@d

D
� X

KtLD¹˛1;:::;˛nº
KDK1t���tKp
BD¹b1;:::;bpº

j 0d
b1;:::;bp;b

1

BŠ
f
b1
K1

1

K1Š
� � �f

bp
Kp

1

KpŠ
f ba;L

1

LŠ
t˛1 � � � t˛n

�

a@d

D
X

KtLD¹˛1;:::;˛nº
KDK1t���tKp
BD¹b1;:::;bpº

�

j 0d
b1;:::;bp;b

f
b1
K1
� � �f

bp
Kp

1

BŠ
� f ba;L

K t L Š

K1Š � � �KpŠ � LŠ

�

�
1

K t L Š
t˛1 � � � t˛na@d :

The coefficient in the parentheses is equal to the coefficient of eW
d

in the right-
hand side of equation (7) in Corollary 3.16 with nC 1 instead of n, vi WD eV˛i for

i � n and vnC1 WD eVa . The coefficient
N
qp

N
q

N
N
q

does not appear here since each term
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appears already only once, in comparison to the formula for the full decomposition
map of Lie¡

1 for instance. Therefore, equation (2) is equivalent to equation (7) in
Corollary 3.16 and this concludes the proof. �

5. Globalisation

We devote this last section to the globalisation of the results of the previous
section. A complex manifold can be described locally in terms of coordinates
and this is the reason why we introduce the space of all coordinates systems
on a manifold. We build a fiber bundle endowed with a connection in order to
characterize the smooth complex structures on a manifold as certain families of
Cx1-algebras. We propose a similar result for morphisms.

5.1 – Coordinate space and connexion

We use here the work of [1] and follow the ideas of [2]. Let M be a paracompact
smoothm-manifold. We denote by M the locally ringed space .M;C1

M /, for exam-
ple Rm D .Rm;C1

Rm
/, and by Rmfor the formal pointed manifold associated to the

vector spaceRm. We consider the infinite-dimensional manifoldM coor considered
in [3] (section 3) and given by

M coor WD

´

.x; '/ such that x 2M and 'WRmfor! .M; x/

is a pointed immersion of locally ringed spaces

µ

:

It is the projective limit of finite-dimensional manifolds (spaces of finite jets of
coordinate systems). It can be thought as the space of all formal coordinate system
onM . In this section, we construct a connexion on the trivial vector bundle zE over
M coor,

zE WDM coor �Mm.RJt1; : : : ; tmK/
pr1
��!M coor;

whose fibers over each point are m � m-matrices with coefficients in the formal
power series ring RJt1; : : : ; tmK.

LetG0m WD Aut.Rmfor/ be the (pro-Lie) group of pointed formal diffeomorphism
of Rm. The fiber bundleM coor overM is a principalG0m-bundle, whose left-action
is given by

�WG0m �M
coor �!M coor; .g; .x; '// 7�! .x; ' � g�1/:

The derivative of �.x;'/WG0m ! M coor provides a Lie algebra morphism

TIdG
0
m �! �.M coor/;
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where �.M coor/ is the space of vector fields on M coor. We denote by J1.M; x/

the space of infinite jet of vector fields on M at x. For example, we have

Wm WD J
1.Rm; 0/ D ¹vb.t /@b j v

b.t / 2 RJt1; : : : ; tmKº:

It is the space of vector fields �.Rmfor/ on Rmfor. We call them formal vector fields

(on Rm at 0). We denote by W 0
m the subspace of formal vector fields vanishing

at the point 0. It corresponds via the following isomorphism s.0;Id/ to the tangent
space of G0m at Id.

Theorem 5.1 (Theorem 4.1 of [1]). We have the sequence of linear isomor-

phisms

T.0;Id/.R
m/coor s.0;Id/

 ���� Wm
˛.x;'/
 ���� J1.M; x/

s.x;'/
����! T.x;'/M

coor;

where the maps s.x;'/ (denoted �x in [1]) can be seen as lifting homomorphisms

and the map ˛.x;'/ is characterized by the map '. (It sends the infinite jet of a

vector field to its pushforward by '�1.)

The composition ˇ.x;'/ WD �s.x;'/ � ˛�1
.x;'/

defines a morphism of Lie algebras

Wm ! �.M coor/ which extends the previous morphism W 0
m ! �.M coor/. Taking

its inverse at each point, we get aWm-valued differential form! 2 �1.M coor; Wm/

which is invariant under the action of diffeomorphisms of M coor induced by

diffeomorphisms of M .

Let .x; '/ 2M coor and Q'WRm !M be a local diffeomorphism which gives '
when restricted to Rmfor. We define the map

Q'coorW .Rm/coor �!M coor; .t; �t/ 7�! . Q'.t/; Q' � �t /:

The derivative of this map at the point .0; Id/ does not depend on the cho-
sen Q'. We therefore denote it by d'coor.0; Id/WT.0;Id/.Rm/coor ! T.x;'/M

coor.
By construction, we have the commutative diagram

(8)

Wm

s.0;Id/
��

J1.M; x/
˛.x;'/oo

s.x;'/
��

T.0;Id/.R
m/coor

d'coor.0;Id/
// T.x;'/M

coor:

The differential dtg of a diffeomorphism g in G0m is an OR
m
for

-linear map
TRmfor

! TRmfor
. A matrix A.t/ 2 Mm.RJt1; : : : ; tmK/ can also be seen as an

OR
m
for

-linear map TRmfor
! TRmfor

.
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Definition 5.2. For g 2 G0m and A.t/ 2 Mm.RJt1; : : : ; tmK/, we define the
left-action of G0m on Mm.RJt1; : : : ; tmK/ by

g � A.t/ WD dtg.t � g
�1/ � A.t � g�1/ � .dtg.t � g

�1//�1;

where t � g�1 D .t1; : : : ; tm/ � g�1 WD .t1 � g�1; : : : ; tm � g�1/ is the composite of
the tk’s seen as an application Rmfor ! Rfor and g�1 2 Aut.Rmfor/. The derivative
of the Lie action provides a linear map �0 and therefore, we get a linear map Q�0

W 0
m

s.0;Id/
����! TIdG

0
m

�0

�! �.Mm.RJt1; : : : ; tmK//:

Remark 5.3. Explicitly, for any element A.t/ in Mm.RJt1; : : : ; tmK/, the de-
rivative of the map g 7! A.t � g�1/ associates to any � 2 W 0

m the matrix
.dtA/.t � g�1/ � dg.g�1/.�/ and the derivative of the map g 7! dtg � A � .dtg/�1

associates the matrix dg.dtg/.�/ � A � .dtg/�1 C dtg � A � dg ..dtg/�1/.�/.

A matrix in Mm.RJt1; : : : ; tmK/ is an endomorphism Rmfor ! .M; x/.
A constant formal vector field vb.0/@b acts naturally on Mm.RJt1; : : : ; tmK/ by
differentiation of all the coefficients by vb.0/@b. We can therefore extend the map
Q�0 to

Wm
Q�0

�! �.Mm.RJt1; : : : ; tmK//:

Let U be a contractible open subset ofM . There exist sectionsU ! U coor and
we fix  such a section. To a tangent vector �u 2 TuU , we associate the vector
field O�u. / WD . �!/.�u/ 2 Wm, where  �!WT U ! Wm is the pullback of the
form ! by  .

Proposition 5.4. We define a connection on the trivial bundle

EU WD U �Mm.RJt1; : : : ; tmK/
pr1
��! U

as follows:

rU . /W�.EU / �!�1U ˝C1.U / �.EU /;

� 7�! ddR� C !U .�/;

where ddR is the de Rham differential and where the application !U is defined,

for any vector field � 2 �U , by !U .�/.�/.u/ WD Q�0. O�u. //.�.u//.

Proof. The map !U .�/.�/W�U ! �.EU / is defined point-wise by linear
maps, hence it is C1.U coor/-linear andrU . / is well defined. The map !U .�/.�/
is C1.U coor/-linear since the left-action � is linear in the second variable. It
follows that rU . / is a connection. �
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Lemma 5.5. Let  ; 0WU ! U coor be two sections of U coor such that

 0.u/.t/ D  .u/.t � g.u/�1/

for some smooth map gWU ! G0m, and let rU D rU . / and r 0
U D rU . 

0/

the corresponding connections. Then, for any section � 2 �.EU /, we have

r 0
U .g � �/ D g � rU �;

whereG0m acts on�1U ˝C1.U /�.EU / by means of its action on the second factor.

Proof. Let � 2 �U be a vector field. First, we have

ddR.g � �/.�/

D ddR
�

dtg.t � g
�1/ � �.t � g�1/ � .dtg.t � g

�1//�1
�

.�/

D ..dxdtg/.t � g
�1/.�/C .dtdtg/.t � g

�1/ � dx.g
�1/.�// � �.t � g�1/

� .dtg.t � g
�1//�1

C dtg.t � g
�1/ � .dx�.t � g

�1/.�/C dt�.t � g
�1/

� dx.g
�1/.�// � .dtg.t � g

�1//�1

C dtg.t � g
�1/ � �.t � g�1/

� ..dxdtg/.t � g
�1/.�/C .dtdtg/.t � g

�1/ � dx.g
�1/.�//:

The term dtg.t � g�1/ � dx�.t � g�1/ � .dtg.t � g�1//�1 is equal to g � .ddR�/.
Secondly, we compute

!0
U .�/.�/.u/ D Q�

0. O�u. 
0// D Q�0.. 0�!/.�u//

D Q�0.!.d. .t � g.u/�1//.�u///

D Q�0.!.dx .t � g.u/
�1/C dt . .t � g.u/

�1//.�u///

D Q�0.g.u/�. 
�!.�u///

„ ƒ‚ …

.a/

C Q�0.!.dt . .t � g.u/
�1//.�u///

„ ƒ‚ …

.b/

;

where the term .a/ is obtained by means of the definition of ! since

!.dx .t � g.u/
�1//.�u/

D �˛.u; .t �g.u/�1// � s
�1
.u; .t �g.u/�1// � dx .t � g.u/

�1/.�u/

D �˛.u; .t �g.u/�1// � s
�1
.u; .t// � dx .t/.�u/

D g.u/�.�˛.u; .t// � s
�1
.u; .t// � dx .t/.�u//

D g.u/�. 
�!.�u//:
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We compute this term .a/ and the second term .b/ separately. The map g��
acts nontrivially only on the W 0

m part of Wm. Therefore, we have the following
computation: let  s be a path in .Rm/coor with tangent vector s.0;Id/ �  �!.�u/ at
s D 0, we get that g.u/ � s �g.u/�1 has s.0;Id/ �g.u/�. �!.�u// as a tangent vector
at s D 0. The fact that .g � s �g�1/� .g��/D .g � s �g�1 �g/�� D .g � s/�� D
g � . s � �/ shows that

Q�0.g�. 
�!.�///.g � �/ D g � . Q�0. �!.�//.�//:

On the other hand, to calculate the term .b/, we remark that

!.dt . .t � g
�1//.�//

D �s.0;Id/ � dt .t � g
�1/coor.0; Id/�1 � dt .t � g�1/ � dx.g

�1/.�/

D �s.0;Id/ � dg.g
�1/�1 � dx.g

�1/.�/:

Therefore

Q�0.!.dt . .t � g
�1//.�///.g � �.t// D � �0 .dg.g

�1/�1 � dx.g
�1/.�//.g � �.t//:

Moreover, the vector field dg .g�1/�1 � dx.g�1/.�/ has no constant constant part
with respect to the variable t so we can compute

.dtA/.t � g
�1/ � dg .g

�1/.dg .g
�1/�1 � dx.g

�1/.�// D .dtA/.t � g
�1/ � dx.g

�1/.�/;

and

dg.dtg/.dg .g
�1/�1 � dx.g

�1/.�// D dt .dxg.�// D dxdtg.�/:

It follows from the remark coming after Definition 5.2 that

Q�0.!.dt . .t � g
�1//.�///.g � �.t//

D �..dxdtg/.t � g
�1/.�/C .dtdtg/.t � g

�1/ � dx.g
�1/.�//

� �.t � g�1/ � .dtg.t � g
�1//�1

� dtg.t � g
�1/ � dt�.t � g

�1/ � dx.g
�1/.�/ � .dtg.t � g

�1//�1

� dtg.t � g
�1/ � �.t � g�1/

� ..dxdtg/.t � g
�1/.�/C .dtdtg/.t � g

�1/ � dx.g
�1/.�//;

and the Lemma is proved. �
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Definition 5.6. We consider now on zE the left-action of GLm.R/ � G0m given
by

.g; .x; '; A.t/// 7�! .�.g; .x; '//; g � A.t// D .x; ' � g�1; g � A.t//;

where g is seen as a linear automorphism of Rmfor. We define by xE the quotient
space

xE WDM coor �GLm.R/ Mm.Jt
1; : : : ; tmK/:

It is a fiber bundle overM aff WDM coor=GLm.R/.

The fibers of the fiber bundle M aff over M are contractible. Indeed, a fiber
of M coor over M is homoeomorphic to G0m Š GLm.RJt1; : : : ; tmK/ so a fiber of
M aff over M is homeomorphic to Im C .t1; : : : ; tm/Mm.Jt1; : : : ; tmK/ which is
contractible onto Im. Because of this, there exists at least one sectionM !M aff.
We fix such a section  aff and we denote the pullback bundle on M by

E WD . aff/� xE �!M:

The restriction of  aff on a contractible open set U of M is an equivalence class
of sections  WU ! U coor and two sections  and  0 are equivalent if there
exists a smooth map gWU ! GLm.R/ such that  0.u/.t/ D  .u/.t � g.u/�1/.
Restricted to U , a section � of E is an equivalence class of sections �U WU !
EU D U �Mm

�

RJt1; : : : ; tmK
�

, each being associated to a section U ! U coor.
Two such sections �U and � 0

U , associated to and 0 respectively, are equivalent if
there exists a smooth map gWU ! GLm.R/ such that 0.u/.t/ D  .u/.t �g.u/�1/
and � 0

U D g � �U . Let � associated to  . We define .r�/jU WD rU . /.�U /.

Theorem 5.7. The map rW�.E/ ! �1M ˝C1.M/ �.E/ is a well-defined

connection on E.

Proof. Lemma 5.5 shows that the connectionr is well defined on equivalence
classes of sections of EU for any contractible open set U . It therefore induces a
globally defined connection on E. �

5.2 – Complex manifold and flat section

We assume in this section that a section aff WM !M aff is fixed and we denote by
r the associated connection on E D . aff/� xE. A complex structure on a formal
manifold of dimensionm is given by an element in Mm.RJt1; : : : ; tmK/ and we can
therefore see the set of Cx1-algebras on Rm as a subset of Mm.RJt1; : : : ; tmK/.
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Let J be a smooth complex structure on the manifold M . Associated to any local
coordinates system Q' around a point x D Q'.0/, the Taylor series of Q'�.J / WD
.d Q'/�1 �J. Q'/�d Q' at 0 provides a matrixA.J; Q'/ 2 ¹Cx1-algebrasº, which depends
only on the restriction ' of Q' to R

m
for. We therefore denote it by A.J; '/. We have

the relation A.J; ' � g�1/ D g � A.J; '/ for any automorphism g of Rmfor, so it
follows that a complex structure on M provides a section of the fiber bundle Ecx
over M

Ecx WD . 
aff/�.M coor �GLm.R/ ¹Cx1-algebrasº/ � E:

In the sequel, we characterize sections of Ecx which come from smooth complex
structures on M .

Let Q� WTM ! TM be a smooth function. As just seen, we can associate to any
such Q� a smooth section � WM ! E of E. We call geometric smooth functions

the sections of E defined in this manner. We are interested in the connection r
because of the following result.

Proposition 5.8. Flat sections for the connection r, that is, sections � such

that r� D 0, are geometric smooth functions M ! E.

Proof. Restricted to some contractible open subset U of M , the section  aff

is an equivalence class of section U ! U coor. We fix a section  in this class.
A section � of E is a class of sections of EU . We denote by �U WU ! EU D
U �Mm.RJt1; : : : ; tmK/ the representative section associated to  . Because of the
definition of r, the section � is flat for the connection r if and only if the section
�U is flat for the connection rU .

Let u0 be a point in U and Q u0 WR
m ! U a diffeomorphism whose restriction

to Rmfor is  u0 (the target space might be smaller than U and we replace U by this
smaller contractible open set in this case). We have a sequence of maps

R
m
for

 u
��! .U;C1

U /
Q �1
u0
���! R

m

�
Q �1
u0
.u/

 ����� R
m
for;

where the last map, which sends 0 to Q �1
u0
.u/ and a function on Rm to its Tay-

lor series at the point Q �1
u0
.u/, is an immersion of locally ringed spaces. It is

therefore invertible on its image and we obtain for all u 2 U an automorphism
g.u/WRmfor ! Rmfor. The map gWU ! G0m is smooth and by Lemma 5.5, we have
that rU . /.�U / D 0 if and only if rU . 0/.g � �/ D 0 for  0.u/ D Q u0 �� Q �1

u0
.u/.
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We now compute rU . 0/.g � �/.�/ using the chart given by Q u0 . We get

ddR.g � �/.�/ D ddR..g � �/ � Q u0/..d Q u0/
�1.�//

and

!0
U .�/.�/ D Q�

0. O�. 0//

D Q�0.!.dt Q u0 � du� Q �1
u0
.u/.�///

D Q�0.�s�1
.0;Id/ � dt . Q u0 � � Q �1

u0
.u//

�1 � .dt Q u0 � du� Q �1
u0
.u/.�///

D �Q�0.s�1
.0;Id/ � du� Q �1

u0
.u/.�//

D �Q�0.dt Q 
�1
u0
.�//:

The vector dt Q �1
u0
.�u0/ is a constant vector field on Rmfor, hence it acts through Q�0

by differentiation on g � � . When � varies, the vectors dt Q �1
u0
.�u0/ cover Rm and

we obtain that the equality rU . 0/.g � �/ D 0 is equivalent to

(9)
1

N
˛Š

@

@u˛
.�b˛1;:::;˛n;a.u// D

1

N
˛0Š
�b˛1;:::;˛n;˛;a.u/; for all ˛; ˛1; : : : ; ˛n; a; b;

where .g��/.u/D
P

n�0 �
b
˛1;:::;˛n;a

.u/ 1

N
˛Š
t˛1 � � � t˛na@b and

N
˛0 WD¹˛1; : : : ; ˛k; ˛º.

This is equivalent to the fact that the matrix .g ��/.u/.t/ 2 Mm.RJt1; : : : ; tmK/ is
the infinite jet of the smooth function .g � �/.�/.0/ D .�ba .�//a;bWU !Mm.R/.
We finally obtain that the section � is a geometric smooth function if and only if
it is a flat section for the connection r. �

As a corollary, we get the following theorem

Theorem 5.9. Complex structures on a smooth manifoldM correspond to flat

sections of the fiber bundle Ecx D . aff/�.M coor �GLm.R/ ¹Cx1-algebrasº/.

Proof. We have already seen at the beginning of this section that a complex
structure on M provides a section of Ecx . By Proposition 5.8, the associated
section is flat. Conversely, by Proposition 5.8, a flat section of Ecx is a geometric
smooth function hence corresponds to a smooth endomorphism J of TM . The
property to be a complex structure (almost complex structure and integrability
condition) can be read pointwise by means of the Taylor coefficient of J of order
0 and 1. Because of the fact that we have considered a section of Ecx and by
Theorem 4.1, we get that J is a smooth complex structure. �
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5.3 – Holomorphic map and flat section

Sections 5.1 and 5.2 extend to the case of holomorphic maps between complex
manifolds in the following manner. Let .M; JM / and .N; JN / be two complex
manifolds of dimension m and n respectively. We denote by .M � N/coor the
manifold

.M � N/coor WD

8

<

:

.x; y; ';  / such that x 2M;y 2 N and
'WRmfor! .M; x/ and  WRnfor! .N; y/

are pointed immersions of loc. ringed spaces

9

=

;
;

where M D .M;C1
M / and N D .N;C1

N /. It is a fiber bundle over M �N .

Definition 5.10. We define the trivial vector bundle (over .M �N/coor)

zF WD .M � N/coor �Map.Rmfor;R
n
for/;

where Map.Rmfor;R
n
for/ Š .RJt1; : : : ; tmK�1/n. The group G0m � G

0
n acts on zF on

the left by

..g; h/; .x; y; ';  ; v.t///
.ı;˘/
7���! .ı..g; h/; .x; y; ';  //; .g; h/˘ v.t//

WD .x; y; ' � g�1;  � h�1; h � v.t � g�1//:

We can derive the action ˘ and extend it to get a map

Q̆ 0WWm �Wn ! �.N � .RJt1; : : : ; tmK�1/n/;

The differentiation of the action ˘ gives a mapW 0
m�W

0
n to �..RJt1; : : : ; tmK�1/n/,

the constant vector fields �m inWm act by differentiation of the vector in the space
.RJt1; : : : ; tmK�1/n with respect to the variables tk, that is, .y; v.t// is sent to
.0; dtv.�m//, and the constant vector fields �n inWn send .y; v.t// to .v.0/.�n/; 0/.

Let U be an open subset of M and V be an open subset of N . Associated
to a section ‰WU ! .U � V /coor, we define a connection on the fiber bundle
FU WD U �V � .RJt1; : : : ; tmK�1/n over U in the same way as in Proposition 5.4.
Lemma 5.5 extends to this setting. The subgroup GLm.R/�GLn.R/ of G0m �G

0
n

acts on zF and we define the quotient space

xF WD .M �N/coor �GLm.R/�GLn.R/ .RJt1; : : : ; tmK�1/n:

It is a fiber bundle over .M � N/aff WD .M � N/coor=.GLm.R/ � GLn.R//.
Moreover, .M �N/aff is a fiber bundle overM �N whose fibers are contractible.
We fix a section‰affWM �N ! .M �N/aff and we denote by F WD .‰aff/� xF the
pullback bundle onM �N , that we see as a fiber bundle on M . Theorem 5.7 and
Proposition 5.8 extend to this setting.
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Definition 5.11. An 1-morphism between Cx1-algebras Rm and Rn is an
element in

.RJt1; : : : ; tmK�1/n;

thus we can define the fiber bundle

Fcx WD .‰
aff/�..M �N/coor �GLm.R/�GLn.R/ ¹1-morphismsº/

over M .

The analog of Theorem 5.9 holds and we obtain eventually the following
theorem.

Theorem 5.12. Let M and N be two smooth manifolds. We write Ecx.M/

and Fcx.M;N/ to emphasize the fact that these fiber bundles, previously defined,

depend on M and N . There is an equivalence of categories

´

Flat sections of Ecx.M/ with

flat sections of Fcx.M;N/

µ

Š
�!

´

Complex structures on M with

holomorphic maps from M to N

µ

:

Appendices

A. Operadic decomposition maps

The decomposition maps for the operads As¡ and Lie¡ are described in Sec-
tions 9.1.5 and 10.1.6 in [11]. The formulas for As¡

1 and Lie¡
1 are similar, the only

differences are degrees and signs.

A.1 – Associative case

The operad encoding associative algebras endowed with a product of cohomolog-
ical degree 1 is given by

As1 WD T.s�1EA/=.s
�2RA/;

where EA is the free S-module generated in arity 2 by an element N�, or N�
❉❉ ③③

,

and RA is the free S-module generated in arity 3 by the associativity relation

. N� I N�; Id/C . N� I Id; N�/ or
N�

❃❃

❂❂

③③

N�

✄✄✄✄✄✄ C
N�

❉❉

✁✁

��

N�

❀❀❀❀❀❀ .
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Remark A.1. The “C” sign in the associativity relation gives that A is a
As1-algebra if, and only if, sA is an associative algebra (in the classical sense).

Similarly to the case of the operad As encoding associative algebras, we can
compute the Koszul dual cooperad to the operad As1.

Proposition A.2. The Koszul dual cooperad As¡
1 is generated (as an S-

module) in arity n by the element

N�cn WD
X

t2PBTn

t;

where PBTn is the set of planar binary trees on N� with n leaves. It follows that the

infinitesimal decomposition map on As¡
1 is given by

�
.1/

As¡
1

. N�cn/ D
X

lCqCrDnC1
pDlCrC1�1;q�1

. N�cpI Id; : : : ; Id
„ ƒ‚ …

l

; N�cq; Id; : : : ; Id
„ ƒ‚ …

r

/;

and that the full decomposition map is given by

�As
¡
1
. N�cn/ D

X

q1C���CqpDn

. N�cpI N�
c
q1
; : : : ; N�cqp/:

A.2 – Lie case

The operad encoding Lie algebras endowed with a bracket of cohomological
degree 1 is given by

Lie1 WD T.s�1EL/=.s
�2RL/;

where EL is the S-module generated in arity 2 by a symmetric element
1 2
❈❈④④ and

RL is the S-module generated by the Jacobi relation:
1 2 3
❈❈
❈❈
④④ ④④④④ C

2 3 1
❈❈
❈❈
④④ ④④④④ C

3 1 2
❈❈
❈❈
④④ ④④④④ .

There is a morphism of operads Lie1 ! As1 defined by

1 2
❋❋❋ ①①①s�1 7�! s�1 N�C s�1 N�.12/:

It is well defined since it sends the Jacobi relation to a linear combination of
associativity relations. For the same reason, there is a morphism of cooperads
Lie¡

1 ! As¡
1 defined by

1 2
❈❈④④ 7�! N�C N�.12/:

We make use of the associative case to compute the Koszul dual cooperad
associated to Lie1.
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Proposition A.3. The Koszul dual cooperad Lie¡
1 is 1-dimensional in each

arity, Lie¡
1.n/ Š K � Nlcn , where Nlcn is an element of degree 0 such that

Nlcn WD
X

�2Sn

. N�cn/
� :

(It follows that Sn acts trivially on Nlcn .) The infinitesimal decomposition map on

Lie¡
1 is given by

�
.1/

Lie¡
1

. Nlcn/ D
X

pCqDnC1
p;q�1

X

�2Sh�1
q;p�1

. Nlcp ı1 Nl
c
q /
� ;

where Sh�1
q;p�1 is the set of .q; p � 1/-unshuffles, that is, inverses of .q; p � 1/-

shuffles. The formula for the full decomposition map is given by

�Lie¡
1
. Nlcn/ D

X

¹q1;:::;qpº
q1C���CqpDn

X

�2Sh�1
q1;:::;qp

1

N
N
q

. Nlcp I Nl
c
q1
; : : : ; Nlcqp/

� ;

where N
N
q WD

Qm
iD1 max.ni ; 1/ with

N
q D ¹q1; : : : ; qnº D ¹1; : : : ; 1

„ ƒ‚ …

n1 times

; 2; : : : ; m; : : : ; m
„ ƒ‚ …

nm times

º:

B. Distributive laws and decomposition map

In this appendix, we define distributive laws for cooperads in order to compute
the decomposition map of the Koszul dual cooperad of an operad endowed with
a distributive law. We dualize the presentation given by Loday and Vallette [11],
Section 8.6. We emphasize however that we work here with cohomological degree
and not with homological degree. We will always consider the opposite of the
signs appearing in [11] and the chain complexes will be bounded above.

B.1 – Distributive law for cooperads

Let .C; �C; �C/ and .D; �D; �D/ be two cooperads. A morphism of S-modules
ƒc WD ı C ! C ı D is called a distributive law for cooperads if the following
diagrams are commutative:

.I/ D ı C ƒc //

�DıIdC
��

C ıD

IdC ı�D

��
D ıD ı C

IdD ıƒc// D ı C ıD
ƒcıIdD// C ıD ıD;
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.II/ D ı C ƒc //

IdD ı�C

��

C ıD

�CıIdD
��

D ı C ı C
ƒcıIdC// C ıD ı C

IdC ıƒc// C ı C ıD;

.i/ C

D ı C

�DıIdC
<<③③③③③③③③
ƒc // C ıD;

IdC ı�D

bb❊❊❊❊❊❊❊❊❊

.ii/ D

D ı C

IdD ı�C
<<②②②②②②②②
ƒc // C ıD:

�CıIdD
cc❋❋❋❋❋❋❋❋

Proposition B.1. Ifƒc WDıC! CıD is a distributive law for the cooperads

C and D, then D ı C is a cooperad for the decomposition map

�ƒc WD .IdD ıƒ
c ı IdC/.�D ı�D/WD ı C �! .D ı C/ ı .D ı C/;

and for the counit

�ƒc WD �D ı �CWD ı C �! I:

Proof. It is enough to dualize the proof of Proposition 8.6.2 in [11]. To sim-
plify the notations, we write CD instead ofCıD. The following diagram commutes

DC //

��

DDCC

��

// DCDC

��
coassoc. of �D; �C DDDCC

��

// DDCDC

��

DDCC //

��

DDCCC // DDDCCC

��

.II/

.I/ DDCDCC //

��

DDCCDC

��
DCDC // DCDCC // DCDDCC // DCDCDCDC:

The arrows in this diagram are composite product of identities, ƒc , �D and �C,
for example,�Dı�CWDC! DDCC, and are uniquely determined by their source
and their target. (Remember that �C and �D are coassociative.) The two empty
squares commute because the composite product ı is a bifunctor. The counit
property is proved in a similar way by means of (i) and (ii). �

B.2 – Decomposition map by means of distributive law

Let .A; A; �A/ and .B; B; �B/ be two operads. We assume that A and B are
quadratic with quadratic presentations A D P.V; R/ WD T.V /=.R/ and B D
P.W; S/ WD T.W /=.S/ and that we have a rewriting rule �WW ı.1/ V ! V ı.1/W .
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We denote the graph of � by

D� WD hT � �.T /; T 2 W ı.1/ V i � T.V ˚W /.2/:

Let A¡ D C.sV; s2R/, resp. B¡ D C.sW; s2S/, be the Koszul dual cooperad of A,
resp. B. The categorical coproduct of the two operads, denoted A _ B, is equal
to T.V ˚ W /=.R ˚ S/. On the other side, the categorical coproduct of the two
Koszul dual cooperads, denoted A¡ _B¡, is equal to C.sV ˚ sW; s2R˚ s2S/. We
remark therefore that .A _ B/¡ D A¡ _B¡.

We now consider the cooperad A¡ _� B¡ given by the following presentation

A
¡ _� B¡ WD C.sV ˚ sW; s2R˚ s2D� ˚ s

2S/:

The categorical coproduct of A¡ and B¡ injects itself in this cooperad. Moreover,
we can build the following map

C.sV ˚ sW; s2R ˚ s2D� ˚ s
2S/ ,�! T

c.sV ˚ sW / �� T
c.sW / ı Tc.sV /;

where the second arrow is the projection p1 which sends any tree in sV and
sW containing a subtree in sV ı.1/ sW to 0 and is identity on other trees. This
composition factors through the inclusion C.sV; s2R/ ı C.sW; s2S/ ,! Tc.sV / ı
Tc.sW / to give a morphism of S-modules

i1WA
¡ _� B¡ �! B

¡ ıA¡:

The map i1 is an inclusion since the compositionD� ,! .W ı.1/V /˚.V ı.1/W /�
W ı.1/ V is an inclusion. Indeed, given an element in B¡ ı A¡, there is at most
one possibility to build an element in A¡_�B¡ from it. (The composition is also a
surjection however i1 is not necessarily a surjection.) Similarly, we get a morphism
of S-modules i2WA¡ _� B¡ ! A¡ ı B¡, which is neither necessarily an inclusion,
nor necessarily a surjection.

To make this morphism i1 easier to understand, we describe it partially. We
recall that

A
¡ _� B¡ D C.sV ˚ sW; s2R˚ s2D� ˚ s

2S/

D I˚ sV ˚ sW ˚ s2R˚ s2D� ˚ s
2S ˚ � � � :

Applying i1, I is sent on I by the identity map and sV , resp. sW , is sent to I ı sV ,
resp. sW ı I , and s2R, resp. s2S , is sent to Iı s2R, resp. s2S ı I , and s2D� is sent
to i1.s2D�/ � sW ı.1/ sV � B¡ ıA¡. The application i2 is defined similarly.

Remark B.2. The map pWA ı B ! A _� B given in [11], Section 8.6.2, is
defined dually.
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Proposition B.3. Let A D P.V; R/ and B D P.W; S/ be two quadratic

operads and A¡ D C.sV; s2R/ and B¡ D C.sW; s2S/ be their Koszul dual

cooperads. For any morphism of S-modules �WW ı.1/ V ! V ı.1/ W such that

i1WA¡ _� B¡ ,! B¡ ıA¡ is an isomorphism, the composite

ƒc WB¡ ıA¡
i�1
1
��! A

¡ _� B¡ i2
�! A

¡ ıB¡

induces a distributive law for cooperads and a decomposition map

�ƒc WD .IdB¡ ıƒc ı IdA¡/ � .�B¡ ı�A¡/WB¡ ıA¡ �! .B¡ ıA¡/ ı .B¡ ıA¡/;

and a counit

�ƒc WD �B¡ ı �A¡ WB¡ ıA¡ �! I;

such that the map i1WA¡ _� B¡ ! .B¡ ı A¡; �ƒc ; �ƒc/ is an isomorphism of

cooperads.

Proof. The proof is dual to the proof of Proposition 8.6.4 in [11]. The previous
descriptions of the application i1 and i2 provide the commutative diagrams

B¡ ıA¡

�
B

¡ ıId
A

¡
&&▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
A¡ _� B¡i1oo i2 // A¡ ıB¡

Id
A

¡ ı�
B

¡
xxrrr

rr
rr
rr
rr
r

A¡

and

A¡ ıB¡

�
A

¡ıId
B

¡
&&▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
A¡ _� B¡i2oo i1 // B¡ ıA¡

Id
B

¡ ı�
A

¡
xxrrr

rr
rr
rr
rr
r

B¡

:

We therefore obtain the commutativity of diagrams (i) and (ii) and two surjections

pA¡ WA¡ _� B¡ �! A and pB¡ WA¡ _� B¡ ! B:

Remembering the fact that the decomposition maps �A¡ , �B¡ and �A¡_�B¡ are
all the cofree decomposition map, we get the commutativity of the following
diagrams:

.a/ A¡ _� B¡

�
A

¡_�B
¡

��

i2

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

i1

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

A¡ ıB¡ .A¡ _� B¡/ ı .A¡ _� B¡/
p
A

¡ ıp
B

¡
oo

p
B

¡ ıp
A

¡
// B¡ ıA¡
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and

.b/ A¡ _� B¡

�
A

¡_�B
¡ ��

i2 // A¡ ıB¡ Id
A

¡ ı�
B

¡
// A¡ ıB¡ ıB¡

.A¡ _� B¡/ ı .A¡ _� B¡/ // .A¡ _� B¡/ ıB¡
i2ıId

B
¡

55❥❥❥❥❥❥❥❥❥❥❥

and

.c/ A¡ _� B¡

�
A

¡_�B
¡ ��

i1 // B¡ ıA¡ �
B

¡ıId
A

¡
// B¡ ıB¡ ıA¡

.A¡ _� B¡/ ı .A¡ _� B¡/ // B¡ ı .A¡ _� B¡/
Id

B
¡ ıi1

55❥❥❥❥❥❥❥❥❥❥❥

:

Finally, the commutativity of the diagram (I) is a consequence of (a), (b)
and (c), and of the coassociativity of �A¡_�B¡:

B¡A¡
i�1
1 //

��

A¡ _� B¡ i2 //

vv❧❧❧
❧❧❧

❧❧❧

((❘❘
❘❘❘

❘❘❘
❘ A¡B¡

��

.A¡ _� B¡/.A¡ _� B¡/

��

.A¡ _� B¡/.A¡ _� B¡/

��

B¡B¡A¡

Id
B

¡ i�11

// B¡.A¡ _� B¡/
Id

B
¡ i2

// B¡A¡B¡

i�1
1

Id
B

¡

// .A¡ _� B¡/B¡
i2 Id

B
¡
// A¡B¡B¡:

The case of the diagram (II) is similar. �

Remark B.4. (1) We denote by A_�B the operad P.V ˚W;R˚D�˚S/ so
that the previous proposition provides a way to compute the decomposition map
on .A _� B/¡ D A¡ _� B¡ in terms of ƒc and the decomposition maps on A¡ and
on B¡ since

�A¡_�B¡ D .i�11 ı i
�1
1 / � .IdB¡ ıƒc ı IdA¡/ � .�B¡ ı�A¡/ ı i�11 :

(2) The diagrams (I) and (II) give a way to compute the map ƒc knowing the
map �.

B.3 – The Diamond Lemma for distributive laws

The Diamond Lemma, Theorem 8.6.5 of [11], provides an effective way of proving
that i1 is an isomorphism. Similarly as in the book [11], the operadsA andB and the
cooperadsA¡ andB¡ are weight graded by the opposite of the number of generators
in V and in W . Therefore, the S-modules A ı B, A _� B, B¡ ı A¡ and A¡ _� B¡
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are also weight graded by the opposite of the number of generators in V minus
the number of generators in W . The injective map i1WA¡ _� B¡ ! B¡ ı A¡, resp.
the surjective map pWA ıB! A_�B given in [11], preserves the weight grading
and is always surjective, resp. injective, in weight 0, �1 and �2. The following
theorem is a slightly different version of Theorem 8.6.5 of [11] and says that if p
is an isomorphism in weight �3, the map i1 is an isomorphism in any weight.

Theorem B.5. Let A D P.V; R/ and B D P.W; S/ be two Koszul operads

endowed with a rewriting rule �WW ı.1/ V ! V ı.1/ W such that the restriction

of pWA ıB� A _� B on .A ıB/.�3/ is injective. In this case, the morphisms p

and i1WA¡ _� B¡ ,! B¡ ı A¡ are isomorphisms, the map � induces a distributive

law and the induced operad .A ı B; ƒ/ is Koszul, with Koszul dual cooperad

.B¡ ıA¡; �ƒc/.

Proof. The only point to prove which is not in Theorem 8.6.5 of [11] is that
i1 is an isomorphism. In this case, we can conclude by Proposition B.3. By
Theorem 8.6.5 of [11], we know that pWA ı B Š A _0 B � A _� B is an
isomorphism. It follows that the extension to the bar constructions BpWB.A _0
B/! B.A_� B/ is also an isomorphism. On the bar construction, we consider a
homological degree, called syzygy degree, given by the weight degree minus the
cohomological degree. The map Bp is not dg but it commutes with the differential
in syzygy degree 0 up to a boundary given by dbar.�.w˝v// for w˝v 2 W ı.1/V
and zero otherwise. By means of the fact that the bar constructions are zero in
syzygy degree 1, we get that Bp descend to the syzygy degree 0 homology group
to give an isomorphism

H0BpWH0B.A _0 B/ Š .A _0 B/¡ Š A
¡ _0 B¡ Š B

¡ ıA¡

�! H0B.A _� B/ Š A
¡ _� B¡

inverse to i1. �

Remark B.6. It is also enough to prove that i1 is surjective in weight�3 to get
the theorem. The proof is the same as the one in [11], where we replace operads
by cooperads, A ı B by B¡ ı A¡, p by i1, B by �, the syzygy degree in Step 1 by
the number of inversions and vice versa in Step 2.
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