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Semisimple groups that are quasi-split

over a tamely ramified extension

Philippe Gille (�)

Abstract – Let K be a discretly henselian field whose residue field is separably closed.
Answering a question raised by G. Prasad, we show that a semisimple K-group G is
quasi-split if and only if it quasi–splits after a finite tamely ramified extension of K.
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1. Introduction

Let K be a discretly valued henselian field with valuation ring O and residue
field k. We denote by Knr the maximal unramified extension of K and by Kt

its maximal tamely ramified extension. If G=K is a semisimple simply connected
group, Bruhat–Tits theory is available in the sense of [14, 15] and the Galois co-
homology set H 1.Knr=K; G/ can be computed in terms of the Galois cohomol-
ogy of special fibers of Bruhat–Tits group schemes [6]. This permits to compute
H 1.K; G/ when the residue field k is perfect.

On the other hand, if k is not perfect, “wild cohomology classes” occur, that is
H 1.Kt ; G/ is non-trivial. Such examples appear for example in the study of bad
unipotent elements of semisimple algebraic groups [11]. Under some restrictions
on G, we would like to show that H 1.Kt=Knr; G/ vanishes (see Corollary 3.3).
This is related to the following quasi-splitness result.
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Theorem 1.1. Let G be a semisimple simply connected K-group which is
quasi-split over Kt .

(1) If the residue field k is separably closed, then G is quasi-split.

(2) G �K Knr is quasi-split.

This theorem answers a question raised by Gopal Prasad who found another
proof by reduction to the inner case of type A [15, Theorem 4.4]. Our first obser-
vation is that the result is quite simple to establish under the following additional
hypothesis:

(�) If the variety of Borel subgroups of G carries a 0-cycle of degree one, then it
has a K-rational point.

Property .�/ holds away of E8 for an arbitrary base field (Section 2). It is an
open question if .�/ holds for groups of type E8. For the E8 case (and actually for
any strongly inner K-group G) of Theorem 1.1, our proof is a Galois cohomology
argument using Bruhat–Tits buildings (Section 3).

We can make at this stage some remarks about the statement. Since Knr is a
discretly valued henselian field with residue field ks, we observe that (1) H) (2).
Also a weak approximation argument [8, Proposition 3.5.2] reduces to the com-
plete case. If the residue field k is separably closed of characteristic zero, we have
then cd.K/ D 1, so that the result follows from Steinberg’s theorem [16, §4.2,
Corollary 1]. In other words, the main case to address is that of characteristic ex-
ponent p > 1.

Acknowledgements. The author is grateful to G. Prasad for raising this inter-
esting question and also for fruitful discussions.

The author is supported by the project ANR Geolie, ANR-15-CE40-0012
(The French National Research Agency).

2. The variety of Borel subgroups and 0-cycle of degree one

Let k be a field, let ks be a separable closure and let Gal.ks=k/ be the absolute
Galois group of k. Let q be a nonsingular quadratic form. A celebrated result of
Springer states that the Witt index of q is insensitive to odd degree field extensions.
In particular the property to have a maximal Witt index is insensible to odd degree
extensions and this can be rephrased by saying that the algebraic group SO.q/ is
quasi-split if and only if it is quasi-split over an odd degree field extension of k.
This fact generalizes for all semisimple groups without type E8.
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Theorem 2.1. Let G be a semisimple algebraic k-group without quotient of
type E8. Let k1; : : : ; kr be finite field extensions of k with coprime degrees. Then
G is quasi-split if and only if Gki

is quasi-split for i D 1; : : : ; r .

The proof is far to be uniform hence gathers several contributions [1, 9]. Note
that the split version (in the absolutely almost simple case) is [10, Theorem C]. We
remind the reader that a semisimple k-group G is isomorphic to an inner twist of
a quasi-split group Gq and that such a Gq is unique up to isomorphism. Denoting
by G

q
ad the adjoint quotient of Gq , this means that there exists a Galois cocycle

zWGal.ks=k/ ! G
q
ad.ks/ such that G is isomorphic to zG

q . We denote by
� WGsc, q ! G

q
ad the simply connected cover of G

q
ad. Then zG

sc, q is the simply
connected cover of zG

q Š G.

Lemma 2.2. The following are equivalent:

(i) G is quasi-split;

(ii) Œz� D 1 2 H 1.k; G
q

ad/;

If furthermore Œz� D ��Œzsc� for a 1-cocycle zscWGal.ks=k/ ! Gsc, q.ks/, then (i)
and (ii) are also equivalent to

(iii) Œzsc� D 1 2 H 1.k; Gsc, q/.

Proof. The isomorphism class of G is encoded by the image of Œz� under the
map int�WH 1.k; G

q
ad/ ! H 1.k; Aut.Gq//: The map int� has trivial kernel since

the exact sequence

1 �! G
q
ad

int
�! Aut.Gq/ �! Out.Gq/ �! 1

is split ([7, XXIV.3.10] or [13, 31.4]), whence the implication (ii) H) (i). The
reverse inclusion (i) H) (ii) is obvious.

Now we assume that z lifts to a 1-cocycle zsc. The implication (iii) H) (ii)
is then obvious. The point is that the map H 1.k; Gsc, q/! H 1.k; Gq/ has trivial
kernel [10, III.2.6] whence the implication (ii) H) (iii). �

We proceed to the proof of Theorem 2.1.

Proof. Let X be the variety of Borel subgroups of G [7, XXII.5.8.3], a
projective k-variety. The k-group G is quasi-split if and only if X has a k-rational
point. Thus we have to prove that if X has a 0-cycle of degree one, then X has a
k-point.
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Without loss of generality, we can assume that G is simply connected. Ac-
cording to [7, XXIV.5] we have that G

�
!

Q

j D1;:::;s Rlj =k.Gj / where Gj is an
absolutely almost simple simply connected group defined over a finite separable
field extension lj of k (the notation Rlj =k.Gj / stands as usual for the Weil re-
striction to lj to k). The variety of Borel subgroup X of G is then isomorphic to
Q

j D1;:::;s Rlj =k.Xj / where Xj is the lj -variety of Borel subgroups of Gj .

Reduction to the absolutely almost simple case. Our assumption is that
X.ki / 6D ; for i D 1; : : : ; r hence Xj .ki ˝ lj / 6D ; for i D 1; : : : ; r and
j D 1; : : : ; s. Since lj =k is separable, ki˝ lj is an étale lj -algebra for i D 1; : : : ; r

and it follows that Xj carries a 0-cycle of degree one. If we know to prove the case
of each Xj , we have Xj .kj / 6D ; hence X.k/ 6D ;. From now on, we assume that
G is absolutely almost simple. We denote by G0 the Chevalley group over Z such
that G is a twisted form of G0 �Z k.

Reduction to the characteristic zero case. If k is of characteristic p > 0,
let O be a Cohen ring for the residue field k, that is a complete discrete valuation
ring such that its fraction field K is of characteristic zero and for which p is an
uniformizing parameter [3, IX.41]. The isomorphism class of G is encoded by a
Galois cohomology class in H 1.k; Aut.G0//. Since Aut.G0/ is a smooth affine
Z-group scheme [7, XXIV.1.3], we can use Hensel’s lemma [7, XXIV.8.1] i.e.
the bijection H 1

étale.O; Aut.G0//
�
! H 1.k; Aut.G0//. It implies that G lifts in

a (unique) semisimple simply connected group scheme G over O. Let X be the
O-scheme of Borel subgroups of G [7, XXII.5.8.3]. It is smooth and projective.
For i D 1; : : : ; r , let Ki be an unramified field extension of K of degree Œki W k�

and of residue field ki . Denoting by Oi its valuation ring, we consider the maps

X.Ki / D X.Oi / �!! X.ki /:

The left equality come from the projectivity and the right surjectivity is Hensel’s
lemma. It follows that X.Ki / 6D ; for i D 1; : : : ; r so that XK has a 0-cycle of
degree one. Assuming the result in the characteristic zero case, it follows that
X.K/ D X.O/ 6D ; whence X.k/ 6D ;.

We may assume from now that k is of characteristic zero. We denote by � the
center of G and by tG 2 H 2.k; �/ the Tits class of G [13, §31]. Since the Tits
class of the quasi-split form Gq of G is zero, the classical restriction-corestriction
argument yields that tG D 0. In other words G is a strong inner form of its quasi-
split form Gq . It means that there exists a Galois cocycle z with value in Gq.ks/

such that G Š zG
q , that is the twist by inner conjugation of G by z. Lemma 2.2
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shows that our problem is rephrased in Serre’s question [17, §2.4] on the triviality
of the kernel of the map

H 1.k; Gq/ �!
Y

iD1;:::;r

H 1.ki ; Gq/

That kernel is indeed trivial in our case [2, Theorem 0.4], whence the result. �

We remind the reader that one can associate to a semisimple k-group G its set
S.G/ of torsion primes which depends only of its Cartan–Killing type [17, §2.2].
Since an algebraic group splits after an extension of degree whose primary factors
belong to S.G/, see [18], we get the following refinement.

Corollary 2.3. Let G be a semisimple algebraic k-group without quotient of
type E8. Let k1; : : : ; kr be finite field extensions of k such that g:c:d:.Œk1 W k�; : : : ;

Œkr W k�/ is prime to S.G/. Then G is quasi-split if and only if Gki
is quasi-split

for i D 1; : : : ; r .

Lemma 2.2 together with the Corollary implies the following statement.

Corollary 2.4. Let G be a semisimple simply connected quasi-split algebraic
k-group without factors of type E8. Let k1; : : : ; kr be finite field extensions of k

such that g:c:d:.Œk1 W k�; : : : ; Œkr W k�/ is prime to S.G/. Then the maps

H 1.k; G/ �!
Y

iD1;:::;r

H 1.ki ; G/

and

H 1.k; Gad/ �!
Y

iD1;:::;r

H 1.ki ; Gad/

have trivial kernels.

We can proceed now on the proof of Theorem 1.1.(1) away of E8 since Theo-
rem 2.1 shows that the condition .�/ is fullfilled in that case.

Proof of Theorem 1.1.(1) under assumption .�/. Here K is a discretly val-
ued henselian field whose residue field is separably closed. We are given a
semisimple K-group G satisfying assumption .�/, and such that G becomes quasi-
split after a finite tamely ramified extension L=K. Note that ŒL W K� is prime to p.
We denote by X the K-variety of Borel subgroups of G. We want to show that
X.K/ 6D ;. We are then reduced to the following cases:

(i) K is perfect and the absolute Galois group Gal.Ks=K/ is a pro-l-group for a
prime l 6D p.

(ii) Gal.Ks=K/ is a pro-p-group.
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By weak approximation [8, Proposition 3.5.2], we may assume that K is complete.
Note that this operation does not change the absolute Galois group (ibid, 3.5.1).

Case (i). We have that cdl .K/ � cdl .k/C1 D 1 [16, §II.4.3] so that cd.K/ � 1.
Since K is perfect, Steinberg’s theorem [16, §4.2, Corollary 1] yields that G is
quasi-split.

Case (ii). The extension K has no proper tamely ramified extension hence our
assumption implies that G is quasi-split. �

Remarks 2.5. a/ In case (i) of the proof, there is no need to assume that K is
perfect and l can be any prime different from p. The point is that if Gal.Ks=K/

is a pro-l-group, then the separable cohomological dimension of K is less than or
equal to 1, and then any semi-simple K-group is quasi-split, see [14, §1.7]

b/ It an open question whether a k-group of type E8 is split if it is split after
coprime degree extensions ki=k. A positive answer to this question would imply
Serre’s vanishing conjecture II for groups of type E8 [12, §9.2].

c/ Serre’s injectivity question has a positive answer for an arbitrary classical
group (simply connected or adjoint) and holds for certain exceptional cases [2].

3. Cohomology and buildings

The field K is as in the introduction.

Proposition 3.1. Assume that k is separably closed. Let G be a split semisim-
ple connected K-group. Then H 1.Kt=K; G/ D 1.

Proof. We can reason at finite level and shall prove that H 1.L=K; G/ D 1 for
a given finite tamely ramified extension of L=K. We put � D Gal.L=K/, it is a
cyclic group whose order n is prime to the characteristic exponent p of k.

Let B.GL/ be the Bruhat–Tits building of GL. It comes equipped with an
action of G.L/ Ì � [5, §4.2.12]. Let .B; T / be a Killing couple for G. The split
K-torus T defines an apartment A.TL/ of B.GL/ which is preserved by the action
of NG.T /.L/ Ì �.

We are given a Galois cocycle zW� ! G.L/; it defines a section uzW� !

G.L/ Ì �; � 7! z�� of the projection map G.L/ Ì � ! �. This provides an
action of � on B.GL/ called the twisted action with respect to the cocycle z. The
Bruhat–Tits fixed point theorem [4, §3.2] provides a point y 2 B.GL/ which is
fixed by the twisted action. This point belongs to an apartment and since G.L/ acts
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transitively on the set of apartments of B.GL/ there exists a suitable g 2 G.L/

such that g�1:y D x 2 A.TL/. We observe that A.TL/ is fixed pointwise by �

(for the standard action), so that x is fixed under �. We consider the equivalent
cocycle z0

� D g�1 z� �.g/ and compute

z0
� : x D z0

� : �.x/

D .g�1 z� �.g//.�.g�1/:�.y//

D g�1 : ..z��/:y/

D g�1 : y [y is fixed under the twisted action]

D x:

Without loss of generality, we may assume that z� :x D x for each � 2 �. We
put Px D StabG.L/.x/; since x is fixed by �, the group Px is preserved by the
action of �. Let Px be the Bruhat–Tits OL-group scheme attached to x. We have
Px.OL/ D Px and we know that its special fiber Px �OL

k is smooth connected,
that its quotient Mx D .Px �OL

k/=Ux by its split unipotent radical Ux is split
reductive.

An important point is that the action of � on Px.OL/ arises from a semilinear
action of � on the OL-scheme Px as explained in the beginning of §2 of [15].
It induces then a k-action of the group � on Px �OL

k, on Ux and on Mx.
Since x belongs to A.TL/, Px carries a natural maximal split OL-torus Tx ; the
k-torus Tx D Tx �OL

k is a maximal k-split torus of Px �OL
k and its image

in Mx still denoted by Tx is a maximal k-split torus of Mx . Once again we use
that � acts trivially on A.TL/ by observing that � acts trivially on the k-torus
Tx . But Tx=C.Mx/ D Aut.Mx; idTx

/ [7, XXIV.2.11], so that � acts on Mx by
means of a group homomorphism �W� ! Tx; ad.k/ where Tx; ad D Tx=C.Mx/ �

Mx=C.Mx/ D Mx; ad. For each m 2 Mx.k/ and for each � 2 �, we have
�.m/ D int.�.�//:m.

Now we take a generator � of � and denote by a� the image in Mx.k/ of
z� 2 Px and by

N
a� its image in .Mx=C.Mx//.k/. The cocycle relation yields

N
a�2 D

N
a� �.

N
a�/ D

N
a� �.�/

N
a��.�/�1 and more generally (observe that �.�/ is

fixed by �) we have

N
a�j D

N
a� �.�/

N
a��.�/�1 : : : �.�/j �1

N
a� �.�/1�j �.�/j

N
a� �.�/�j

D .
N
a��.�//j �.�/�j

for j D 2; : : : ; n. Since �.�/n D 1, we get the relation

1 D .
N
a��.�//n:
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Then
N
a� �.�/ is an element of order n of Mx; ad.k/ so is semisimple. But k is

separably closed so that
N
a� �.�/ belongs to a maximal k-split torus mTx; ad with

m 2Mx.k/. It follows that

m�1

N
a� �.�/ m 2 Tx; ad.k/:

Since �.�/ belongs to Tx; ad.k/, we have that m�1

N
a� �.�/ m �.�/�1 2 Tx; ad.k/

hence m�1

N
a� �.m/ 2 Tx; ad.k/. It follows that m�1 a� �.m/ 2 Tx.k/. Since the

map Px.OL/! Mx.k/ is surjective we can then assume that a� 2 Tx.k/ without
loss of generality so that the cocycle a D .a� /�2� takes value in Tx.k/. But Tx.k/

is a trivial �-module so that a is given by a homomorphism faW� ! Tx.k/. This
homomorphism lifts (uniquely) to a homomorphism QfaW� ! Tx.OL/� . The main
technical step is

Claim 3.2. The fiber of H 1.�; Px/! H 1.�; Mx.k// at Œfa� is ¹Œ Qfa�º.

Using the Claim, we have Œz� D Œ Qfa� 2 H 1.�; Px/. Its image in H 1.�; G.L//

belongs to the image of the map H 1.�;Tx.L// ! H 1.�; G.L//. But 0 D

H 1.�;Tx.L// (Hilbert 90 theorem) thus Œz� D 1 2 H 1.�; G.L// as desired.
It remains to establish the Claim. We put P ?

x D ker.Px ! Mx.k// and this
group can be filtered by a �-stable decreasing filtration by normal subgroups
U.i/

i�0 such that for each i � j there is a split unipotent k-group U .i;j / equipped
with an action of � such that U.i/=U.j / D U .i;j /.k/, see [15, p. 6]. We denote
by Qfa

Px
? the �-group Px

? twisted by the cocycle Qfa; the set H 1.�; Qfa
Px

?/ maps

onto on the fiber at Œfa� of the map H 1.�; Px/ ! H 1.�; Mx.k//, see [16, I.5.5,
Corollary 2]. It is then enough to show that H 1.�; Qfa

Px
?/ D 1. It happens

fortunately that the filtration is stable under the adjoint action of the image of
Qfa. By using the pro-unipotent k-group U D lim

 �
U .0;j / and Lemma A.1 in the

next subsection, we have that H 1.�; Qfa
Px

?/ D H 1.�; . Qfa
U /.k// D 1. The Claim

is established. �

This permits to complete the proof of Theorem 1.1.

Proof of Theorem 1.1.(1). By the usual reductions, the question boils down to
the semisimple simply connected case and even to the absolutely almost K-simple
semisimple simply connected case. Taking into account the cases established in
Section 2, it remains to deal with the case of type E8. Denote by G0 the split
group of type E8, we have G0 D Aut.G0/. It follows that G Š zG0 with Œz� 2

H 1.K; G0/. Our assumption is that GKt
is quasi-split so that Œz� 2 H 1.Kt=K; G0/.

Proposition 3.1 states that H 1.Kt=K; G0/ D 1, whence G is split. �
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We record the following cohomological application.

Corollary 3.3. Let G be a semisimple algebraic K-group which is quasi-split
over Kt . We assume that G is simply connected or adjoint. Then H 1.Kt=Knr;G/D1.

Proof. Theorem 1.1 permits to assume that G is quasi-split. We denote by
� WG ! Gad the adjoint quotient of G. Since the map H 1.K; G/! H 1.K; Gad/

has trivial kernel [10, lemme III.2.6], we can assume that G is adjoint. Let Œz� 2

H 1.Kt=Knr; G/. We consider the twisted Knr-form G0 D zG of G. Since G0
Kt

is isomorphic to GKt
, G0

Kt
is quasi-split and Theorem 1.1 shows that G0 is quasi-

split hence isomorphic to G. It means that z belongs to the kernel of the map
int�WH 1.K; G/! H 1.K; Aut.G//. But the exact sequence of K-groups

1 �! G
int
�! Aut.G/ �! Out.G/ �! 1

splits (see [7, XXIV.3.10]) so that the above kernel is trivial. Thus, Œz� D 1 2

H 1.Knr; G/. �

Appendix A. Galois cohomology of pro-unipotent groups

Let k be a separably closed field. Let U be a pro-unipotent algebraic k-group
equipped with an action of a finite group �, that is U admits a decreasing filtration
U D U0 � U1 � U2 � � � � by normal pro unipotent k-groups which are stabilized
by � and such that Ui=UiC1 is an unipotent algebraic k-group for i D 1; : : : ; n.

Lemma A.1. We assume that ]� is invertible in k and that the Ui=UiC1’s are
smooth and connected. Then H 1.�; U.k// D 1.

Proof. We start with the algebraic case, that is of a smooth connected unipo-
tent k-group. According to [7, XVII.4.11], U admits a central characteristic fil-
tration U D U0 � U1 � � � � � Un D 1 such that Ui=UiC1 is a twisted form
of a k-group G

ni
a . Since UiC1 is smooth and k is separably closed, we have the

following exact sequence of �-groups

1 �! UiC1.k/ �! Ui .k/ �! .Ui=UiC1/.k/ �! 1:

The multiplication by ]� on the abelian group .Ui=UiC1/.k/ is an isomorphism
so that H 1.�; .Ui=UiC1/.k// D 0. The exact sequence above shows that the
map H 1.�; UiC1.k// ! H 1.�; Ui.k// is onto. By induction it follows that 1 D

H 1.�; Un.k// maps onto H 1.�; U.k// whence H 1.�; U.k// D 1.
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We consider now the pro-unipotent case. Since the U=Ui ’s are smooth, we have
that U.k/ D lim

 �
.U=Ui /.k/. Therefore by successive approximations the kernel of

the map

H 1.�; U.k// �! lim
 �

H 1
�

�; .U=Ui /.k/
�

is trivial. But according to the first case, the right handside is trivial thus we get
H 1.�; U.k// D 1. �

References

[1] E. Bayer-Fluckiger – H. W. Lenstra, Jr., Forms in odd degree extensions and
self-dual normal bases, Amer. J. Math. 112 (1990), no. 3, pp. 359–373.

[2] J. Black, Zero cycles of degree one on principal homogeneous spaces, J. Algebra 334
(2011), pp. 232–246.

[3] N. Bourbaki, Éléments de mathématique. Algèbre commutative, Chapitres 8 et 9,
Reprint of the 1983 original. Springer, Berlin, 2006.

[4] F. Bruhat – J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci.
Publ. Math. 41 (1972), pp. 5–251.

[5] F. Bruhat – J. Tits, Groupes réductifs sur un corps local, II. Schémas en groupes.
Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60
(1984), pp. 197–376.

[6] F. Bruhat – J. Tits, Groupes algébriques sur un corps local, Chapitre III. Complé-
ments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 34 (1987), no. 3, pp. 671–698.

[7] M. Demazure – A. Grothendieck (eds.), Schemas en Groupes, Seminaire de Ge-
ometrie Algebrique du Bois Marie, 1962/64, Lecture Notes in Mathematics 151–153,
Springer-Verlag, Berlin etc., 1970.

[8] O. Gabber – P. Gille – L. Moret-Bailly, Fibrés principaux sur les corps valués
henséliens, Algebr. Geom. 1 (2014), no. 5, pp. 573–612.

[9] S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank,
Comment. Math. Helv. 76 (2001), no. 4, pp. 684–711.

[10] P. Gille, La R-équivalence sur les groupes algébriques réductifs définis sur un corps
global, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 199–235.

[11] P. Gille, Unipotent subgroups of reductive groups of characteristic p > 0, Duke
Math. J. 114 (2002), no. 2, pp. 307–328.

[12] P. Gille, Groupes algébriques semi-simples sur un corps de dimension coho-
mologique séparable � 2, monograph in preparation.



Tamely ramified extension 183

[13] M.-A. Knus – A. Merkurjev – M. Rost, J.-P. Tignol, The book of involutions,
With a preface in French by J. Tits, American Mathematical Society Colloquium
Publications 44, American Mathematical Society, Providence, R.I., 1998.

[14] G. Prasad, A new approach to unramified descent in Bruhat–Tits theory, to appear
in Amer. J. Math., preprint, 2016. arXiv:1611.07430 [math.RT]

[15] G. Prasad, Finite group actions on reductive groups and tamely-ramified descent in
Bruhat–Tits theory, to appear in Amer. J. Math., preprint, 2017. arXiv:1705.02906
[math.RT]

[16] J.-P. Serre, Cohomologie galoisienne, 5th edition, Lecture Notes in Mathematics 5,
Springer-Verlag, Berlin etc., 1994.

[17] J.-P. Serre, Cohomologie galoisienne: Progrès et problèmes, Séminaire Bourbaki,
Vol. 1993/94, Astérisque 227 (1995), Exp. № 783, pp. 229–257.

[18] J. Tits, Sur les degrés des extensions de corps déployant les groupes algébriques
simples, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 11, pp. 1131–1138.

Manoscritto pervenuto in redazione il 7 luglio 2016.

http://arxiv.org/abs/1611.07430
http://arxiv.org/abs/1705.02906

	Introduction
	Acknowledgements
	The variety of Borel subgroups and 0@let@token --cycle of degree one
	Cohomology and buildings
	Galois cohomology of pro-unipotent groups
	References

