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Cohen–Macaulayness

and sequentially Cohen–Macaulayness

of monomial ideals

Hassan Noormohammadi (�) – Ahad Rahimi (��)

Abstract – In this paper, we give a characterization for Cohen–Macaulay rings R=I where

I � R D KŒy1; : : : ; yn� is a monomial ideal which satisfies bigsize I D size I .

Next, we let S D KŒx1; : : : ; xm; y1; : : : ; yn� be a polynomial ring and I � S a

monomial ideal. We study the sequentially Cohen–Macaulayness of S=I with respect

to Q D .y1; : : : ; yn/. Moreover, if I � R is a monomial ideal such that the associated

prime ideals of I are in pairwise disjoint sets of variables, a classification of R=I to be

sequentially Cohen–Macaulay is given. Finally, we compute grade.Q; M/ where M is

a sequentially Cohen–Macaulay S-module with respect to Q.
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1. Introduction

The notions of the size and bigsize of a monomial ideal were introduced by

Lyubeznik and Popescu in [9] and [11], respectively. Let K be a field, I � R D
KŒy1; : : : ; yn� a monomial ideal and p1; : : : ; pr be the associated prime ideals of I .

(�) Indirizzo dell’A.: Department of Mathematics, Azarbaijan Shahid Madani University,

Tabriz, Iran

E-mail: h_nuri77@yahoo.com

(��) Indirizzo dell’A.: Department of Mathematics, Razi University, Kermanshah, Iran

E-mail: ahad.rahimi@razi.ac.ir

mailto:h_nuri77@yahoo.com
mailto:ahad.rahimi@razi.ac.ir


222 H. Noormohammadi – A. Rahimi

According to [9], the size of I is the number v C .n � h/ � 1, where h is the

height of
Pr

iD1 pi and v is the minimum number e for which there exist integers

i1 < � � � < ie such that
Pe

kD1 pik D
Pr

iD1 pi : The bigsize of I , is the number

t C .n � h/ � 1, where t is the minimal number e such that for all integers

i1 < � � � < ie it follows that
Pe

kD1 pik D
Pr

iD1 pi : Lyubeznik [9] showed that

depth R=I � size I . If bigsize.I / D size.I /, then depth R=I D size I and so I

satisfies Stanley’s Conjecture by [7]. Fact 2.3 gives an equivalent condition for the

ideal I satisfies bigsize.I / D size.I /. We observe that, if bigsize.I / D size.I /

then I has no embedded prime ideal and all the associated primes are minimal.

In Section 2, we give a classification for all Cohen–Macaulay rings R=I where

I � R is a monomial ideal such that bigsize I D size I:

Next, we let S D KŒx1; : : : ; xm; y1; : : : ; yn� be the standard bigraded polyno-

mial ring in the variables x1; : : : ; xm; y1; : : : ; yn. In other words, deg xi D .1; 0/

and deg yj D .0; 1/ for all i and j . We set Q D .y1; : : : ; yn/. The second au-

thor has been studying the algebraic properties of a finitely generated bigraded

S -module M and also the local cohomology modules of M with respect to Q,

see for instance [12], [13], [14], and [15]. In Section 3, we study the sequen-

tially Cohen–Macaulayness of S=I with respect to Q where I � S is a mono-

mial ideal. A finite filtration F: 0 D M0   M1   � � �   Mr D M of

M by bigraded submodules M , is called a Cohen–Macaulay filtration with re-

spect to Q if each quotient Mi=Mi�1 is Cohen–Macaulay with respect to Q and

0 � cd.Q; M1=M0/ < cd.Q; M2=M1/ < � � � < cd.Q; Mr=Mr�1/: Here by

"Cohen–Macaulay with respect to Q" we mean grade.Q; M/ D cd.Q; M/ where

cd.Q; M/ denotes the cohomological dimension of M with respect to Q which

is the largest integer i for which H i
Q.M/ ¤ 0. If M admits a Cohen–Macaulay

filtration with respect to Q, then we say that M is a sequentially Cohen–Macaulay

S -module with respect to Q. Ordinary sequentially Cohen–Macaulay results from

our definition if we assume m D 0.

In [14] it is shown that if M is a finitely generated bigraded Cohen–Macaulay

S -module, then M is Cohen–Macaulay with respect to P D .x1; : : : ; xm/ if and

only if M is Cohen–Macaulay with respect to Q. Inspired by this fact and on the

evidence of all known examples we raised the following question in [10].

Question 1.1. Let I � S be a monomial ideal. Suppose S=I is Cohen–

Macaulay.

(a) If S=I is sequentially Cohen–Macaulay with respect to P , is S=I sequen-

tially Cohen–Macaulay with respect to Q?

(b) Is S=I sequentially Cohen–Macaulay with respect to P and Q?
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An example is given to show that this question has negative answer, see

Example 3.5. However, it is shown in the case that bigsize I D size I , the question

has positive answer, see Theorem 3.6. We end this section with the following

question.

Question 1.2. Let M be a finitely generated bigraded S -module. If M is

sequentially Cohen–Macaulay with respect to Q, is M=PM sequentially Cohen–

Macaulay?

In the following section, we let I � R be a monomial ideal and the associ-

ated prime ideals of I are in pairwise disjoint sets of variables. It is shown that

R=I is sequentially Cohen–Macaulay if and only if I is an intersection of irre-

ducible monomial ideals such that at most one of the factors is not principal. As

a consequence, if I � R is an intersection of monomial prime ideals in pairwise

disjoint sets of variables, then R=I is sequentially Cohen–Macaulay if and only

if I is a product of monomial prime ideals such that at most one of the factors is

not principal. In particular, R=I is Cohen–Macaulay if and only if I is a product

of principal monomial prime ideals.

There is an algebraic proof [6] as well as a combinatorial proof ([4], [16])

to compute the depth sequentially Cohen–Macaulay monomial ideals. In the final

section, we extend this result by computing grade.Q; M/ where M is sequentially

Cohen–Macaulay with respect to Q.

2. Size, bigsize and Cohen–Macaulayness of monomial ideals

Let I � R D KŒy1; : : : ; yn� be a monomial ideal. Then I D
Ts

iD1 qi , where each

qi is generated by pure powers of the variables. In other words, each qi is of the

form .y
ˇ1

i1
: : : ; y

ˇt

it
/. Moreover, an irredundant presentation of this form is unique.

As a consequence a monomial ideal is irreducible if and only if it is generated

by pure powers of the variables, see [5, Theorem 1.3.1] and [5, Corollary 1.3.2].

Thus for a monomial ideal I � R an irredundant irreducible decomposition

always exists. Let qi be pi -primary. Then each pi is a monomial prime ideal and

Ass.R=I / D ¹p1; : : : ; prº where r � s. Notice that if I is a squarefree monomial

ideal, then all the associated prime ideals are minimal and hence r D s. In this

note, by a minimal(irredundant) primary decomposition, we mean pi ¤ pj if

qi ¤ qj . For the squarefree case, the irredundant irreducible decomposition is the

same as minimal primary decomposition.
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Example 2.1. The ideal

I D .y3
1 ; y3

3 ; y2
1y2

2 ; y1y2
2y3; y2

3y2
2/ � R D KŒy1; y2; y3�

has the irredundant irreducible decomposition

I D .y3
1 ; y2

2 ; y3
3/ \ .y2

1 ; y3/ \ .y1; y2
3/:

Hence Ass.R=I / D ¹.y1; y3/; .y1; y2; y3/º.

Definition 2.2. According to Lyubeznik [9, Proposition 2] the size of I ,

denoted size I , is the number v C .n � h/ � 1, where h is the height of
Pr

iD1 pi

and v is the minimum number t for which there exist integers i1 < � � � < it such

that
t

X

kD1

pik D
r

X

iD1

pi :

Replacing in the previous definition "there exist i1 < � � � < it" by "for all

i1 < � � � < it" one obtains the definition of bigsize of I , introduced by Popescu [11].

Of course, bigsize I � size I and in fact the bigsize of I is in general much

bigger than the size of I . In Example 2.1, we have size I D 0 and bigsize I D 1.

In this section, we may assume
Pr

iD1 pi D m the graded maximal ideal

of R, because each free variable on I increases size and bigsize with 1. In

fact, if Z D ¹yj W yj …
Pr

iD1 piº; T D KŒY n Z� and J D I \ T . Then

size I D size J C jZj and bigsize I D bigsize J C jZj. In this case, h D n

and so size I D v � 1.

Fact 2.3. Notice that bigsize I D size I D v � 1 if and only if v is the largest

integer such that pj ª
P

i2An¹j º pi for all j 2 Œr � D ¹1; : : : ; rº; where ; ¤ A � Œr �

with jAj � v. In particular,

(1) bigsize I D size I D r � 1 () pj ª
X

i2Œr�n¹j º

pi :

Observe that if bigsize I D size I , then all the associated prime ideals pi are

minimal.

Remark 2.4. Suppose size I D bigsize I where I � R is a monomial

ideal. We observed that the ideal I has no embedded prime ideal, and so all

the associated prime ideals are minimal. Thus if I D
Tr

iD1 qi is an irredun-

dant irreducible decomposition of I , then
p

I D
Tr

iD1 pi is an irredundant ir-

reducible decomposition of
p

I where pi D p
qi for i D 1; : : : ; r . It follows that
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Ass.R=I / D Ass.R=
p

I / and hence size I D size
p

I . Note that size I is not

equal to size
p

I in general. Consider the ideal I D .y2
1 ; y1y2/ � KŒy1; y2�. As

Ass.R=I / D ¹.y1/; .y1; y2/º and Ass.R=
p

I / D ¹.y1/º, we have 0 D size I ¤
bigsize I D 1 and size

p
I D 1.

The following example shows that if all the associated prime ideals are mini-

mal, then the equality size I D bigsize I may not hold.

Example 2.5. Let I D
T3

iD1 qi be an ideal of R D KŒy1; y2; y3; y4� such that

q1 D .y1; y2
2 ; y3

3/ , q2 D .y2
3 ; y2

4/ and q3 D .y3
2 ; y4/. Thus

Ass.R=I / D ¹.y1; y2; y3/; .y3; y4/; .y2; y4/º;

and so all the associated prime ideals are minimal. On the other hand,

size I D 2
„ƒ‚…

v

C. 4
„ƒ‚…

n

� 4
„ƒ‚…

h

/ � 1 D 1;

bigsize I D 3
„ƒ‚…

v

C. 4
„ƒ‚…

n

� 4
„ƒ‚…

h

/ � 1 D 2:

In the following, we give a classification for R=I to be Cohen–Macaulay when

bigsize I D size I: We first recall the following result from [7, Theorem 1.2].

Lemma 2.6. Let I � R be a monomial ideal. Assume that bigsize I D size I:

Then

depth R=I D size I:

For the proof of our main result we need the following.

Lemma 2.7. Let I � R be a monomial ideal and I D
Tr

iD1 qi an irredundant

irreducible decomposition of I . Assume that bigsize I D size I . Then for each

F � Œr � we have bigsize IF D size IF where IF D
T

i2F qi .

Proof. Put Ass.R=IF / D ¹p1; : : : ; ptº where t � r . Here we consider two

cases. First suppose t � v. It follows that bigsize IF D size IF D v � 1: Now let

t < v. By Fact 2.3

pj ª
X

i2An¹j º

pi for all j 2 Œt �;

where ; ¤ A � Œt � with jAj � t . In particular, bigsize IF D size IF D t � 1,

as desired. �
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Theorem 2.8. Let I � R be a monomial ideal and I D
Tr

iD1 qi an irre-

dundant irreducible decomposition of I with
p
qi D pi . Assume that bigsize I D

size I . Then the following statements are equivalent

(a) R=I is Cohen–Macaulay;

(b) R=
p

I is Cohen–Macaulay;

(c) pi differs with pj only in one variable for all i ¤ j with i; j 2 Œr �;

(d) For each subset F � Œr �, R=
T

i2F qi is Cohen–Macaulay.

Proof. .a/ () .b/: By Lemma 2.6,

depth R=I D size I D size
p

I D depth R=
p

I :

Remark 2.4 provides the second equality. On the other hand,

dim R=I D dim R=
p

I :

Thus the assertion follows.

.a/ () .c/. Suppose R=I is Cohen–Macaulay. It follows that R=I is un-

mixed and hence dim R=I D dim R=pi D n � height pi for all i 2 Œr �. On the

other hand, depth R=I D size I D v � 1 by Lemma 2.6. Thus

(2) n � height pi D v � 1 for all i 2 Œr �:

Let A � Œr � with jAj D v. Note that

n D height
� X

i2A

pi

�

D height pj C height
� X

i2An¹j º

.pi n ¹ykj
W ykj

2 pj º/
�

:

We set

cj D
X

i2An¹j º

.pi n ¹ykj
W ykj

2 pj º/:

Thus height cj D v � 1 by (2). It follows that each pi differs with pj only in one

variable for all i ¤ j .

.c/ H) .a/: Let pi differs with pj only in one variable and cj and A be as

above. It follows that R=I is unmixed and height cj D v � 1. Using these facts we

have,
dim R=I D n � height pj

D height
� X

i2A

pi

�

� height pj

D height pj C height cj � height pj

D v � 1

D size I

D depth R=I;

as desired.
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.c/ H) .d/: Lemma 2.7 and the equivalence .a/ and .c/ yield the desired

conclusion.

The implication .d/ H) .a/ is trivial. �

In particular, if size I D bigsize I D r � 1 which is equivalent to say

pj ª
P

i2Œr�n¹j º pi by (1), then we have the following

Corollary 2.9. Let I � R be a monomial ideal and I D
Tr

iD1 qi an

irredundant irreducible decomposition of I . Assume that pj ª
P

i2Œr�n¹j º pi for

all j 2 Œr �. Then R=I is Cohen–Macaulay if and only if
p

I D q C L where q is

a monomial prime ideal and L is a product of principal monomial prime ideals.

Proof. Suppose R=I is Cohen–Macaulay. By Theorem 2.8, each pi differs

with pj only in one variable for all i ¤ j . Our assumption implies that each pi is

of the form .z1; z2; : : : ; zt ; wi/ where z1; z2; : : : ; zt ; wi 2 ¹y1; : : : ; ynº. Note that

p
I D

r
\

iD1

pi D
�

z1; z2; : : : ; zt ;

r
Y

iD1

wi

�

:

We set q D .z1; z2; : : : ; zt /. Hence the assertion follows.

For the converse, we suppose
p

I D q C L. It follows that R=
p

I is Cohen–

Macaulay. Hence by Theorem 2.8, R=I is Cohen–Macaulay as well. �

In particular, we have the following classification of all Cohen–Macaulay rings

R=I where I is an intersection of monomial prime ideals in pairwise disjoint sets

of variables.

Corollary 2.10. If I is an intersection of monomial prime ideals in pairwise

disjoint sets of variables, then R=I is Cohen–Macaulay if and only if I is a product

of principal monomial prime ideals.

3. Sequentially Cohen–Macaulayness of monomial ideals

with respect to P , Q, and P C Q

Let S D KŒx1; : : : ; xm; y1; : : : ; yn� be the standard bigraded polynomial ring over

K. In other words, deg xi D .1; 0/ and deg yj D .0; 1/ for all i and j . We set

P D .x1; : : : ; xm/ and Q D .y1; : : : ; yn/. Let M be a finitely generated bigraded

S -module. A filtration D: 0 D D0   D1   � � �   Dt D M of bigraded

submodules of M is called the dimension filtration of M with respect to Q if Di�1

is the largest bigraded submodule of Di for which cd.Q; Di�1/ < cd.Q; Di/ for

all i D 1; : : : ; t . We recall the following facts from [10].
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Fact 3.1. Let D W 0 D D0   D1   : : :   Dt D M be the dimension filtration

of M with respect to Q. Then

(a) Di D
T

pj 62Bi;Q
Nj for i D 1; : : : ; t �1 where 0 D

Ts
j D1 Nj is an irredundant

primary decomposition of 0 in M with Nj is pj -primary for j D 1; : : : ; s and

Bi;Q D ¹p 2 Ass.M/ W cd.Q; S=p/ � cd.Q; Di/ºI

(b) Ass.M=Di/ D Ass.M/ n Ass.Di/ for i D 1; : : : ; t ;

(c) grade.Q; M=Di�1/ D cd.Q; Di/ for i D 1; : : : ; t if and only if M is

sequentially Cohen–Macaulay with respect to Q.

Fact 3.2. The following statements hold.

(a) The exact sequence 0 ! M 0 ! M ! M 00 ! 0 of finitely generated S -

modules yields cd.Q; M/ D max¹cd.Q; M 0/; cd.Q; M 00/º, see [2, Proposi-

tion 4.4].

(b) cd.Q; M/ D max¹cd.Q; S=p/ W p 2 Ass.M/º D max¹cd.Q; S=p/ W p 2
Supp.M/º, see [2, Corollary 4.6].

(c) grade.Q; M/ � dim M � cd.P; M/, and the equality holds if M is Cohen–

Macaulay, see [14, Formula 5].

(d) cd.P; M/ D dim M=QM and cd.Q; M/ D dim M=PM , see [14, Formula 3].

A finite filtration F: 0 D M0   M1   � � �   Mr D M of M by

bigraded submodules M is called a Cohen–Macaulay filtration with respect

to Q if each quotient Mi=Mi�1 is Cohen–Macaulay with respect to Q and

0 � cd.Q; M1=M0/ < cd.Q; M2=M1/ < � � � < cd.Q; Mr=Mr�1/. If M admits

a Cohen–Macaulay filtration with respect to Q, then we say M is sequentially

Cohen–Macaulay with respect to Q. Ordinary sequentially Cohen–Macaulay in-

troduced by Stanley results from our definition if we assume P D 0. Note that

if M is sequentially Cohen–Macaulay with respect to Q, then the filtration F is

uniquely determined and it is just the dimension filtration of M with respect to Q,

that is, F D D, see [15].

Remark 3.3. Let I � S be a monomial ideal and I D
Tr

iD1 qi an ir-

redundant irreducible decomposition of I where qi are pi -primary monomial

ideals. As before, we may write qi D qx
i C q

y
i where qx

i D .x
˛1

i1
; : : : ; x

˛k

ik
/ and

q
y
i D .y

ˇ1

i1
: : : ; y

ˇs

is
/ are monomial ideals in KŒx1; : : : ; xm� and KŒy1; : : : ; yn�, re-

spectively. We set
p
qi D pi D px

i C p
y
i for all i where px

i D
p

qx
i and p

y
i D

q

q
y
i .
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The ideal I has the irredundant irreducible decomposition

I D .q1 \ � � � \ qa1
/ \ � � � \ .qat�1C1 \ � � � \ qat

/

where

height p
y
ai�1C1 D � � � D height py

ai
D d

y
i for i 2 ¹1; : : : ; tºI

assuming a0 D 0 and d
y
1 < d

y
2 < � � � < d

y
t . By Fact 3.1(a), S=I has the dimension

filtration F: 0 D I0=I   I1=I   � � �   It =I D S=I with respect to Q where

I0 D I;

I1 D .q1 \ � � � \ qa1
/ \ � � � \ .qat�2C1 \ � � � \ qat�1

/;

:::

It�2 D .q1 \ � � � \ qa1
/ \ .qa1C1 \ � � � \ qa2

/;

It�1 D q1 \ � � � \ qa1
;

It D S:

Here It�1 is the unmixed component of S=I with respect to Q. Observe that

(3) cd.Q; Ii=Ii�1/ D cd.Q; Ii=I / D n � d
y
t�iC1;

by Fact 3.2(b) and Fact 3.1(b).

In [14] it is shown that if M is a finitely generated bigraded Cohen–Macaulay

S -module, then M is Cohen–Macaulay with respect to P if and only if M is

Cohen–Macaulay with respect to Q. Inspired by this fact and on the evidence of

all known examples we raised the following question in [10].

Question 3.4. Let I � S be a monomial ideal. Suppose S=I is Cohen–

Macaulay.

(a) If S=I is sequentially Cohen–Macaulay with respect to P , is S=I sequen-

tially Cohen–Macaulay with respect to Q?

(b) Is S=I sequentially Cohen–Macaulay with respect to P and Q?

The following example shows that the answer is negative.
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Example 3.5. Let S D KŒx1; x2; y1; y2; y3; y4� be the standard bigraded poly-

nomial ring. We set R D S=I where I D .y2y4; y1y4; y2y3; y1y3; x1y3; x2y2/,

P D .x1; x2/ and Q D .y1; y2; y3; y4/. The ideal I has the minimal pri-

mary decomposition I D
T4

iD1 pi where p1 D .x1; y1; y2/, p2 D .x2; y3; y4/,

p3 D .y1; y2; y3/ and p4 D .y2; y3; y4/. The ring R has dimension 3 and by using

CoCoA [3] depth 3. Hence R is Cohen–Macaulay.

We first show that R is sequentially Cohen–Macaulay with respect to P . By

Fact 3.1(a), R has the dimension filtration F: 0 D J0=I   J1=I   J2=I D
S=I with respect to P where J0 D I , J1 D p3 \ p4 and J2 D S . By

Fact 3.2(c) and Fact 3.1(b) we have grade.P; S=I / D cd.P; J1=I / D 1. One has

grade.P; S=J1/ D cd.P; S=I / D 2: Thus, R is sequentially Cohen–Macaulay

with respect to P by Fact 3.1(c).

Next we show that R is not sequentially Cohen–Macaulay with respect to Q.

By Fact 3.1(a), R has the dimension filtration F: 0 D I0=I   I1=I   I2=I D
S=I with respect to Q where I0 D I , I1 D p1 \ p2 and I2 D S . Observe

that grade.Q; S=I / D cd.Q; I1=I / D 1 by Fact 3.2(c) and Fact 3.1(b). Hence

1 D grade.Q; S=I1/ ¤ cd.Q; S=I / D 2: Thus, R is not sequentially Cohen–

Macaulay with respect to Q by Fact 3.1(c).

However, we show that Question 3.4 has positive answer in the following

special case. Notice that in Example 3.5, size I D 1 and bigsize I D 3:

Theorem 3.6. Let I � S be a monomial ideal such that bigsize I D size I . If

S=I is Cohen–Macaulay, then S=I is sequentially Cohen-Macaulay with respect

to P and Q.

Proof. We show that S=I is sequentially Cohen–Macaulay with respect

to Q. The argument for P is similar. By Fact 3.1(c) we only need to show

grade.Q; S=Ii�1/ D cd.Q; Ii=I / for i D 1; : : : ; t where Ii described in Re-

mark 3.3. By Theorem 2.8, S=Ii�1 is Cohen–Macaulay for all i D 1; : : : ; t . Thus

we have

grade.Q; S=Ii�1/ D dim S=Ii�1 � cd.P; S=Ii�1/

D m C n � .d x
t�iC1 C d

y
t�iC1/ � .m � d x

t�iC1/

D n � d
y
t�iC1

D cd.Q; Ii=Ii�1/:

Fact 3.2(c) explains the first step in this sequence. For the second step, in Re-

mark 3.3 we set

height px
ai�1C1 D � � � D height px

ai
D d x

i for i 2 ¹1; : : : ; tº:
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Since S=I is Cohen–Macaulay, it follows that d x
t < � � � < d x

2 < d x
1 and

d x
i Cd

y
i D height pi . The fourth step follows from (3) and the remaining steps are

standard. �

Remark 3.7. The following example shows that the converse of Theorem 3.6

does not hold in general. Let S D KŒx1; x2; y1; y2� be the polynomial ring. We

set P D .x1; x2/, Q D .y1; y2/, p1 D .x1; y1/, p2 D .x2; y2/ and R D S=I

where I D p1 \ p2. One has cd.Q; R/ D cd.P; R/ D 1 and grade.Q; R/ D
grade.P; R/ D 1. Thus R is Cohen–Macaulay with respect to P and Q, and hence

sequentially Cohen–Macaulay with respect to P and Q. Moreover, bigsize I D
size I D 1. On the other hand, dim R D 2, and depth R D 1 by Lemma 2.6.

Hence R is not Cohen–Macaulay.

We end this section with the following question.

Question 3.8. Let M be a finitely generated bigraded S -module. If M is

sequentially Cohen–Macaulay with respect to Q, is M=PM sequentially Cohen–

Macaulay?

4. Sequentially Cohen–Macaulayness of monomial ideals

In the following, our aim is to classify all rings R=I for a special class of monomial

ideal I for which R=I to be sequentially Cohen–Macaulay.

Proposition 4.1. Let I � R be a monomial ideal and I D
Ts

iD1 qi an

irredundant irreducible decomposition of I where the associated prime ideals

of I are in pairwise disjoint sets of variables. Then R=I is sequentially Cohen–

Macaulay if and only if I is an intersection of irreducible monomial ideals such

that at most one of the factors is not principal.

Proof. . H) / Suppose R=I is sequentially Cohen–Macaulay. By Fact 3.1(c)

we have

depth R=Ii�1 D dim Ii=I D n � dt�iC1;

for all i D 1; : : : ; t where t and Ii described in Remark 3.3 with setting P D 0 and

d
y
i D di . The second equality follows from (3). Let p1; : : : ; pb1

and pb1C1; : : : ; pb2

with bi � ai for i D 1; 2 be the distinct monomial prime ideals of height d1 and

d2, respectively. For i D t; t � 1, by using Lemma 2.6 we have

(4) b1C.n�b1d1/�1 D n�d1 and b2C.n�b1d1�.b2�b1/d2/�1 D n�d2:
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Thus

b1 � 1 D d1.b1 � 1/(5)

and

b2 � b1d1 � 1 D d2.b2 � b1 � 1/:(6)

We claim that d1 D 1, b2�b1 D 1 and t � 2. This completes the proof. To show the

first claim, suppose d1 > 1. Thus b1 D 1 by (5). Hence b2 � d1 � 1 D d2.b2 � 2/

by (6). This yields d2 < 1, a contradiction. Therefore, d1 D 1. For the second

claim, we observe that b2 � b1 � 1 D d2.b2 � b1 � 1/ by (6). If b2 � b1 � 1 > 0,

then d2 D 1, a contradiction. Thus b2 � b1 D 1: Finally we show that t � 2.

Suppose t > 2. Let pb2C1; : : : ; pb3
with b3 � a3 be the distinct monomial prime

ideals of height d3. For i D t � 2, by using Lemma 2.6 we have

b3 C .n � b1d1 � .b2 � b1/d2 � .b3 � b2/d3/ � 1 D n � d3:

Thus

b3 � b1 � d2 � 1 D d3.b3 � b1 � 2/:

As d2 � 2, we have d3 < 1, a contradiction.

. (H / The assertion follows by replacing d1 D 1 and b2 � b1 D 1 in (4). �

Corollary 4.2. Let I � R be the intersection of monomial prime ideals in

pairwise disjoint sets of variables. Then R=I is sequentially Cohen–Macaulay if

and only if I is a product of monomial prime ideals such that at most one of the

factors is not principal. In particular, R=I is Cohen–Macaulay if and only if I is

a product of principal monomial prime ideals.

Proof. The first statement follows from Proposition 4.1. To show the second

statement, suppose R=I is Cohen–Macaulay. It follows from the proof of Propo-

sition 4.1 that b1 D b2 and t D 1. Therefore, the conclusion follows. The converse

of the second statement is obvious. �

5. Compute grade.Q; M/ where M is sequentially Cohen–Macaulay

with respect to Q

In this section, we compute grade.Q; M/ where M is sequentially Cohen–

Macaulay with respect to Q. Here M is a finitely generated bigraded S -module

and as usual R D KŒy1; : : : ; yn�: We recall the following fact from [15].
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Fact 5.1. If M is sequentially Cohen–Macaulay with respect to Q with the

Cohen–Macaulay filtration F W 0 D M0   M1   � � �   Mr D M , then one

observes that

grade.Q; Mi/ D grade.Q; M1/ for i D 1; : : : ; r:

Lemma 5.2. Let M be sequentially Cohen–Macaulay with respect to Q with

the Cohen–Macaulay filtration 0 D M0   M1   � � �   Mr D M . Then for

i D 1; : : : ; r , we have

Ass.Mi=Mi�1/ D ¹p 2 Ass.Mi / W cd.Q; S=p/ D cd.Q; Mi/º:

In particular,

Ass.M/ D
r

[

iD1

Ass.Mi=Mi�1/:

Proof. Let p 2 Ass.Mi=Mi�1/. Since Mi=Mi�1 is Cohen–Macaulay with

respect to Q, it follows that cd.Q; S=p/ D cd.Q; Mi=Mi�1/ D cd.Q; Mi/: Thus

we only need to show that p 2 Ass.Mi /: As we always have Ass.Mi=Mi�1/ �
Ass.Mi / [ Supp.Mi�1/, it suffices to show that p 62 Supp.Mi�1/. Assume p 2
Supp.Mi�1/. Fact 3.2(b) implies that cd.Q; S=p/ � cd.Q; Mi�1/ < cd.Q; Mi/, a

contradiction. Thus p 62 Supp.Mi�1/ and hence p 2 Ass.Mi /.

Now let p 2 Ass.Mi / such that cd.Q; S=p/ D cd.Q; Mi/. The exact se-

quence 0 ! Mi�1 ! Mi ! Mi=Mi�1 yields Ass.Mi / � Ass.Mi�1/ [
Ass.Mi=Mi�1/: A similar argument as above shows that p 62 Ass.Mi�1/. Hence

p 2 Ass.Mi=Mi�1/. �

Proposition 5.3. Suppose that the maximal height of an associated prime of

M in R is d and jKj D 1. Then

grade.Q; M/ � n � d:

In particular, if M is sequentially Cohen-Macaulay with respect to Q, then

grade.Q; M/ D n � d:

Proof. By [8, Proposition 1.7] we have grade.Q; M/ � cd.Q; S=p/ for all

p 2 Ass.M/. Let q 2 Ass.M/ has maximal height d in R. Thus by using

Fact 3.2(d) we have

grade.Q; M/ � cd.Q; S=q/ D dim S=.P C q/ D dim S=.P C q
y/ D n � d:
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Now let M be sequentially Cohen–Macaulay with respect to Q. Observe that

grade.Q; M/ D grade.Q; M1/

D cd.Q; M1/

D cd.Q; S=p/ for all p 2 Ass.M1/

D n � d:

Fact 5.1 provides the first step in this sequence. The second step follows from the

definition. [8, Corollary 1.11] explains the third step. The final step follows from

the definition and Lemma 5.2. �

As a consequence we have the following known result. For a combinatorial

proof see [4, Theorem 4]. See also ([6] and [16]).

Corollary 5.4. Let J � R be a monomial ideal with jKj D 1. Suppose that

the maximal height of an associated prime of J is d . Then

depth R=J � n � d and pd R=J � d:

In particular, if R=J is sequentially Cohen-Macaulay, then

depth R=J D n � d and pd R=J D d:

We end this section with the following.

Proposition 5.5. Let I � S be a monomial ideal such that S=I is Cohen–

Macaulay. Suppose that the maximal height of an associated prime of I in R is d .

Then

grade.Q; S=I / D n � d:

Proof. Since S=I is Cohen–Macaulay, it follows that d x
t < � � � < d x

2 < d x
1

where

height px
ai�1C1 D � � � D height px

ai
D d x

i for i 2 ¹1; : : : ; tºI

and d x
i C d

y
i D height pi , see Remark 3.3. By Fact 3.2(c) we have

grade.Q; S=I / D dim S=I � cd.P; S=I /

D m C n � .d x
t C d

y
t / � .m � d x

t /

D n � d
y
t ;

as desired. �
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