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Abstract
We give the maximal length of a Newton or a Schinzel sequence in a quadratic extension

of a global field. In the case of a number field, the maximal length of a Schinzel sequence
is 1, except in seven particular cases, and the Newton sequences are also finite, except for
at most finitely many cases, all real. We give the maximal length of these sequences in the
special cases. We have similar results in the case of a quadratic extension of a function field
Fq(T ), taking in account that the ring of integers may be isomorphic to Fq[T ], in which case
there are obviously infinite Newton and Schinzel sequences.

1. Introduction

This talk1 gives an account of a paper with the same title and by the same authors, in Journal
of Pure and Applied Algebra, 215 (2011) 1902–1918.

For a domain D with quotient field K, we let, as usual, Int(D) be the ring of integer-valued
polynomials on D, that is

Int(D) = {f ∈ K[X] | f(D) ⊆ D}.
We are interested in Newton and Schinzel sequences. Let us start with the first ones: they are the
test sequences for integer-valued polynomials, that is,

Definition 1. Let D be a domain, with quotient field K and {un}n≥0 be a sequence in D. We
say that {un}n≥0 is a Newton sequence if, for each n ≥ 0 and each polynomial f ∈ K[X] of degree
d ≤ n,

f ∈ Int(D)⇐⇒ ∀j ≤ n, f(uj) ∈ D.
If D is endowed with an infinite Newton sequence we say that D is a Newtonian domain.

It is easy to see that the sequence {n}n≥0 of natural integers is a Newton sequence of Z, and
hence, that Z is a Newtonian domain. Yet no number field K (other than Q) is known to be such
that the the ring of integers OK of K is Newtonian. Another approach is the following.

Recall, following M. Bhargava [4, 5], that for a maximal ideal P of a Dedekind domain D, a P-
ordering of D is a sequence {un}n≥0 in D such that, u0 being arbitrarily chosen, un is inductively
defined by the condition

(1.1) vP

(
n−1∏
k=0

(un − uk)
)

= inf
x∈D

vP

(
n−1∏
k=0

(x− uk)
)
,

where vP is the valuation associated to P. For a valuation domain with maximal ideal P, it is
immediate that a P-ordering is nothing else than a Newton sequence.

In a Dedekind domain D, a Newton sequence is then a simultaneous ordering, that is, a P-
ordering for every maximal ideal of D [8]. M. Wood actually proved, in particular, that the ring
of integers of an imaginary quadratic field is never endowed with a simultaneous ordering [16,
Theorem 5.2].
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As noted by J. Yeramian [17], a P-ordering {un}n≥0 is nothing else than a very well ordered
sequences of Y. Amice [3]: letting q be the norm ofP then, for each s, and each k, the qk consecutive
elements {usqk , usqk+1, . . . , u(s+1)qk−1} form a complete system of representatives of OK modulo
Pk [8, Proposition 3.9].

This question is then related to Schinzel’s problem [13, Problem 8]: given a number field K,
is there a sequence {un}n≥0 in the ring of integers OK such that, for each ideal I with norm
N = N(I), the first N terms of the sequence {un}n≥0 represent all residue classes modulo I? We
shall call such a sequence {un}n≥0 a Schinzel sequence.

As for Newton sequences, the sequence of natural integers clearly gives a positive answer for Z
but no number field K is known to have this property (in fact, the question was first raised by
J. Browkin in 1965 for Q[i] with already a negative answer provided by E.G. Strauss in 1966).
In the same direction, B. Wantula [14] showed the answer again to be negative for all quadratic
number fields with seven possible exceptions, J. Latham [11] proved the same for cubic fields with
a negative discriminant, again with at most finitely many exceptions, and so did R. Wasen [15] for
pure extensions of prime degree. But also, Wasen characterized the Schinzel sequences {un}n≥0
by a condition on the norm of the difference of two terms of the sequence. We shall take this
condition as the general definition of Schinzel sequences, for a domain D, letting the norm N(I)
of an ideal I of D, possibly infinite, to be the cardinality of the quotient D/I and the norm N(a)
of an element a ∈ D to be the norm of the principal ideal aD.

Definition 2. Let D be a domain, with quotient field K and {un}n≥0 be a sequence of D. We
say that {un}n≥0 is a Schinzel sequence if,

for i 6= j, N(ui − uj) ≤ max(i, j).

If D is endowed with an infinite Schinzel sequence we say that D is a Schinzel domain.

(But as Wasen indexed a sequence from u1, he wrote N(ui − uj) < max(i, j)).
In this talk we investigate Newton and Schinzel sequences in the ring of integers of a global field

K, that is, either a number field or an algebraic extension of a function field Fq(T ). We say that
a K is a Newtonian or a Schinzel field if the corresponding ring of integers OK is a Newtonian or
a Schinzel domain (for a function field, OK is the integral closure of Fq[T ]).

In the case of a function field, Fq[T ] is endowed, similarly to Z, with a sequence {an}, the Car
sequence [9], that is both a Newtonian and Schinzel ordering: letting a0 = 0, a1 = 1, . . . , aq−1
be the elements of Fq, and n = n0 + n1q + . . . + nsq

s be the q-adic expansion of n, an = an0 +
an1T + . . . + ans

T s. Unlike the case of number fields, there are obvious cases where an algebraic
extension K of Fq(T ) is both a Newtonian and a Schinzel field: for instance, if K = Fq(

√
T )

then OK = Fq[
√
T ] is clearly isomorphic to Fq[T ], and the same holds for K = Fq2(T ), with

OK = Fq2 [T ]. Yet, we conjecture there are no Newtonian or Schinzel function field other than
these trivial cases.

As there are likely no infinite Schinzel or Newton sequence, we investigate the maximal length
of such sequences with the following natural definition for sequences of finite length.

Definition 3. Let {u0, . . . , uL} be a sequence of length L in the domain D.
(1) We say that {un}n≥0 is a Newton sequence if, for each polynomial f ∈ K[X] of degree

n ≤ L,
f ∈ Int(D)⇐⇒ ∀j ≤ n, f(uj) ∈ D.

(2) We say that {un}n≥0 is a Schinzel sequence if,

for i 6= j, N(ui − uj) ≤ max(i, j).

In fact, we restrict our attention to quadratic extensions. In a first part we shall investigate the
maximal length for a Newton or Schinzel sequence in the ring of integers of a quadratic number
field K = Q(

√
d). Some computations were performed by computer on the cluster Gaia of Paris

13 with the software of formal calculus Pari/GP [12]. In the second and last part, we investigate
the case of quadratic function fields.

In all cases, as noted in [6, 8], if {un}n≥0 is either a Newton or a Schinzel sequence of a domain
D, then so is the sequence {aun+ b}, for each unit a and each b ∈ D. We shall thus always assume

16



Newton and Schinzel sequences in quadratic fields

that u0 = 0 and u1 = 1. And in many cases, we shall see that the longest Schinzel or Newton
sequence is but the sequence {0, 1}!

2. Maximal lengths of sequences in quadratic number fields

In this section we consider a quadratic number field K = Q(
√
d), assuming as usual that d is a

square-free integer and denote by OK its ring of integers. Recall that for x = α+ β
√
d in K, the

relative norm of x is NK/Q(x) = α2 − dβ2 and that, for x ∈ OK , |NK/Q(x)| = N(x), the absolute
norm of x, is the cardinality of OK/xOK . We denote respectively by m(d) and n(d) the maximal
length of a Schinzel and a Newton sequence in OK .

2.1. Schinzel sequences. Here is our main result.

Theorem 4. Let K = Q(
√
d). Then, m(d) = 1, except for seven cases, with the following values:

d -7 -3 -1 2 3 5 17
m(d) 2 11 3 5 5 17 3

The fact that m(d) = 1, but for 7 cases, is essentially due to B. Wantula [14], yet he wrote in
Polish and we thought it might be useful to translate (and rewrite) the proof in English. Moreover,
his list of exceptions, in his introduction, contains d = −5 instead of d = 5, and although it is
clear from the body of the paper that this is a typo, the wrong list is to be found in the review by
Witold Wieslaw [MR0369314]. We sketch the proof that there are only 7 exceptional cases.

Proof. As we assume that u0 = 0 and u1 = 1, a sequence of length L > 1 is of the form {0, 1, α, . . .}.
We then derive easily from Definition 3 that N(α) ≤ 2 and N(α − 1) ≤ 2 in particular, α 6∈ Z.
Write α = a+b

√
d

2 , with a, b ∈ Z, b 6= 0.
• In the imaginary case (that is, d < 0), it is enough to use the first condition to derive the
diophantine inequality

a2 + |d|b2 ≤ 8.
Thus |d| ≤ 8, in fact |d| ≤ 7, as d is square-free.

• In the real case (that is, d > 0), using both conditions, we have

−8 ≤ a2 − db2 ≤ 8 and − 8 ≤ (a− 2)2 − db2 ≤ 8.

By substraction, we obtain −3 ≤ a ≤ 5 which in turn implies

d ≤ db2 ≤ 8 + inf{a2, (a− 2)2} = 17.

A little more work allows to narrow to 7 exceptional cases. �

To compute the maximal length of a Schinzel sequence, we can also use the following, due to
Sophie Frisch [6, Corollary 1.12].

Proposition 5. Let D be a domain. If there exists a Schinzel sequence of length L in D then
every ideal I of D with norm N(I) ≤ L is principal.

In particular, a Schinzel domain is principal (in fact, Sophie Frisch showed that a Schinzel
domain with finite residue rings is Euclidean for the norm).

For d = −7,−3,−1, a case by case argumentation allows to conclude. In the real case, as the
units provide infinitely many element with norm 1, we had to use a computer. The computations
were performed on the cluster Gaia of Paris 13, using the software of formal calculus Pari/GP [12].

2.2. Newton sequences. We can link Newton sequences to Schinzel sequences with the following
from [6, Corollary 4.12].

Proposition 6. Let D be a Dedekind domain and n an integer. If there is at most one prime
ideal P of D with norm N(P) ≤ n, then every Newton sequence of length L ≤ n in D is also a
Schinzel sequence.
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In particular, if d 6≡ 1 (mod 8), then 2 is non split in K = Q(
√
d) and it follows that a Newton

sequence of length 2 in the ring of integers OK is also a Schinzel sequence. Thus n(d) = 1, except
in the five cases (among seven), given in Theorem 4, where d 6≡ 1 (mod 8).

For the case d ≡ 1 (mod 8), recall that {0, 1, . . . ,mK − 1} is always a Newton sequence of
OK contained in Z, where mK denotes the least non splitting prime in K, and there are no longer
Newton sequences contained in Z [16, Proposition 4.3]. M. Wood could prove that, in the imaginary
case, there are no longer Newton sequences of OK , wether contained in Z or not [16, Theorem 5.2].
In the paper we are presenting here, we proved the same in the real case, for d large enough. We
can summarize our results as follows.

Theorem 7. Let K = Q(
√
d).

(1) For d 6≡ 1 (mod 8), then n(d) = 1, except for five case with the following values
d -3 -1 2 3 5

n(d) 4 3 4 5 6
(2) For d ≡ 1 (mod 8), denoting bymK the least non splitting prime in K, then n(d) ≥ mK−1.

Moreover n(d) = mK − 1 in the imaginary case and for d larger than a constant D > 0 in
the real case.

The principle of the proof for the real case is similar to M. Wood argument in the imaginary
case. We first show that, for d large enough and some function f(d) of d, every Newton sequence
(beginning with 0 and 1) of length L ≤ f(d) is contained in Z. We then derive a bound for mK

from a result by Granville et al. [10]:

Lemma 8. Let K = Q(
√
d). For each λ > 1

4
√
e
, there exists a constant Cλ > 0 such that for

d > Cλ, mK < dλ.

We then show that, for d large enough again, mK ≤ f(d). A Newton sequence of length mK

would thus be contained in Z, contradicting [16, Proposition 4.3].

Remarks. 1) For d 6≡ 1 (mod 8), 2 is either ramified or inert, thus mK = 2 and we could also say
that n(d) = mK − 1, as for d 6≡ 1 (mod 8).
2) In [10] the authors note that the constant Cλ > 0 is probably enormous, well beyond the range
of computation.
3) Contrarily to m(d), we see that n(d) can be arbitrarily large, since this is the case for the least
non splitting prime mK .
4) −7 and 17 are special cases for Schinzel sequences, not for Newton sequences. The case d = 17
could be among the real exceptions such that n(d) > mK − 1 (if any) but the computation shows
that n(17) = 4 = mK − 1 (mK = 5, as 2 and 3 are decomposed, but 5 is inert).

3. Function fields

We consider a quadratic extension K of a function field Fq(T ).We always suppose the extension
to be geometric, that is, Fq is algebraically closed in K. We denote by OK the ring of integers of
K, that is, the integral closure of Fq[T ] in K.

Recall that a place of Fq(T ) is a (rank one discrete) valuation of Fq(T ), either the (1/T )-adic
valuation, called the infinite place, or the P -adic valuation for some monic irreducible polynomial
P of Fq[T ]. The degree of a place is the degree of the corresponding polynomial, the infinite place
being of degree one. Places of degree n thus correspond to the valuations with residue field of
cardinal qn. Recall also that a quadratic extension K of Fq(T ) is said to be real if the infinite place
is split in K, and imaginary otherwise, that is,

( 1
T

)
is inert or ramified in K.

An extension is said to be rational if it is of the form K = Fq(U) for some U ∈ K. In this case,
we have the following:

Proposition 9. Let K be a rational quadratic real extension of Fq(T ). Then the ring of integers
OK is both a Schinzel and a Newtonian domain.
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3.1. Newton sequences in real quadratic function fields. In [1], we proved that if K is
an imaginary quadratic extension of Fq(T ), then K is never a Newtonian field unless OK is Fq-
isomorphic to Fq[T ]. In the real case, if the extension is geometric as assumed throughout this
paper, OK is never isomorphic to Fq[T ], as it admits infinitely many units, and we could show it
is not Newtonian but for finitely many cases, similarly to Theorem 7 for real quadratic number
fields. Here we denote by mK the least degree of a place that is non split in K.

Theorem 10. Assume q odd. There exists a constant C > 0 such that, for any real quadratic
geometric extension K := Fq(T )[

√
U ] of Fq(T ), with U ∈ Fq[T ] and degU > C, the longest length

of a Newton sequence in K is nK = qmK − 1.

The pattern of the proof is similar to the case of a real number field, using a bound for mK ,
similar to Lemma 8, thanks to results kindly communicated to us by M. Car. It follows there exist
at most finitely many separable real quadratic Newtonian extensions of Fq(T ), among which the
rational real quadratic extensions of Fq(T ) for which d ≤ 2.

Similar results are obtained in the case of characteristic 2.

3.2. Schinzel sequences in quadratic function fields. Clearly, the elements of Fq form always
both a Schinzel and Newton sequence. But we could prove, in the real case, that the longest length
of Schinzel sequence is q− 1 except for the “trivial” case where K is a Schinzel field. We also have
the following link with Newton sequences.

Proposition 11. Let K be a separable and geometric quadratic extension of Fq(T ). If K is a
Schinzel field then K is Newtonian.

The converse holds in the imaginary case. We then end with two results, the first one is for the
real case.

Proposition 12. Let K be a separable and geometric real quadratic extension of Fq(T ). The
followings are equivalent.

(1) K is a Schinzel field.
(2) K is a rational extension of Fq(T ).

Moreover, if K is not a Schinzel field, the longest length of a Schinzel sequence in OK is q − 1.

The second and last result is for the imaginary case.

Proposition 13. Let K be a separable geometric imaginary quadratic extension of Fq(T ). The
followings are equivalent.

(1) K is a Schinzel field,
(2) K is Newtonian,
(3) OK is Fq-isomorphic to Fq[T ].
(4) K is a rational extension of Fq(T ) and the place above

( 1
T

)
is of degree 1.
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