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The category of cofinite modules for ideals of
dimension one and codimension one

Ken-ichiroh Kawasaki

We assume that all rings are commutative and noetherian with identity throughout this paper. In
this paper, we shall introduce several results on the categoryM(A, I)cof (See Definition 1 below)
for ideals I of dimension one and codimension one (cf. [11] and [9]).

1. Introduction

In this section, we introduce former results on our research and several definitions. The following
theorem is fundamental, due to Matlis and Grothendieck (cf. [13] and [3]).
Theorem A. Let A be a complete local ring, with maximal ideal m, and residue field k = A/m.
Let E = EA(k) be an injective hull of k over A. For an A-module N , the following conditions are
equivalent.

(i) N satisfies the descending chain conditions (dcc);
(ii) N is a submodule of En, the direct sum of n copies of E, for some n;
(iii) There is an A-module M of finite type such that N is isomorphic to HomA(M, E);
(iv) SuppAN ⊆ V (m) and HomA(k, N) is of finite type;
(v) SuppAN ⊆ V (m) and Exti

A(k, N) is of finite type for all i;
(vi) SuppAN ⊆ V (m) and HomA(N, E) is of finite type.

Proof. See [5] for the proof (See [8] also). �

Next recall several definitions. LetM(A) be the category of all modules over a ring A.
Definition 1 (I-cofiniteness on modules). LetM(A, I)cof be the class of modules N over a ring
A satisfying the condition
(∗) SuppA(N) ⊆ V (I) and Extj

A(A/I, N) is of finite type, for all j,

where I is an ideal of A. The objects ofM(A, I)cof are called I-cofinite.
Definition 2 (Abelian category). Let A, I andM =M(A, I)cof be as above. The full subcategory
M is called Abelian, if it is closed under the kernel and cokernel of a morphism (See [6, p. 202]
for the definition of Abelian category).
Definition 3 (Derived categories and Thick subcategories (cf. [7] and [12])). Let D∗(A) be the
derived category, whose objects are complexes consisting of A-modules, where we write ∗ in place
of +, −, b or ∅. Further let A′ be a thick Abelian subcategory of M(A), that is any extension
in M(A) of two objects of A′ is in A′. We define D∗A′(A) to be the full subcategory of D∗(A)
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consisting of those complexes X• whose cohomology objects Hi(X•) are all in A′. In this paper,
we denote D∗ft(A) for D∗A′(A) in the case that A′ is the category consisting of all A-modules of
finite type, following the notations of [5].

Definition 4 (I-dualizing functor). Let A be a ring equipped with a dualizing complex D, I an
ideal of A. Let ΓI(− ) be the I-power torsion subfunctor of the identity functor onM(A) (cf. [12,
§1]). Set DI( − ) to be the functor RHom•( − ,RΓI(D)) on the derived category D(A). In this
paper, we call this functor DI(− ) the I-dualizing functor (See [12, § 4.3]).

Definition 5 (I-cofiniteness on complexes). Let A and I be as above. Let N• be an object of
the derived category D(A). We say that N• is I-cofinite, if there exists M• ∈ Dft(A), such that
N• ' DI(M•) in D(A). Here DI(− ) is the I-dualizing functor.

Here we recall the affine duality theorem and a characterization of cofinite complexes (See [5]
for the proofs):

Theorem B (Affine duality theorem). Let R be a regular ring of finite Krull dimension d and
J an ideal of R. Suppose that R is complete with respect to J-adic topology. Then the natural
morphism of functors id → DJ ◦DJ is an isomorphism, for complexes in either of the categories
Dft(R) or D(R, J)cof , where we denote by D(R, J)cof the essential image of Dft(R) by DJ( − ).

Theorem C (Characterization of cofinite complexes). Let R and J be as above, N• in D+(R).
Suppose that R is complete with respect to the J-adic topology. Then N• is J-cofinite if and only
if

(a) Supp Hi(N•) ⊆ V (J) for each i, and
(b) Extj(R/J, N•) is of finite type over R, for each j.

It is natural to ask whether Theorem A holds for non-maximal ideals of A. Four questions were
proposed in the paper [5, §2]. In particular the following are given:

Question 1 (Second Question). Let J be an ideal of a regular ring R of finite Krull dimension.
Does the classM(R, J)cof form an Abelian full subcategory ofM(R)?

Question 2 (Fourth Question). Does there exist an Abelian category Mcof consisting of R-
modules, such that objects N• ∈ D(R, J)cof are characterized by the property “Hi(N•) ∈Mcof”
for all i?

In [5, §3 An Example], Question 1 and Question 2 are answered negatively for an ideal of
dimension two. The example is as follows: Let R be the formal power series ring k[x, y][[u, v]] over
a polynomial ring k[x, y], where k is a field and J the ideal (u, v) of R. Let M be the R-module
R/(xv + yu). Then it is proved that the local cohomology module H2

J(M) is not J-cofinite in
[5, §3 An Example]. Even the socle HomR(k, H2

J(M)) is not finitely generated. The ideal J is of
dimension two and not principal, and there is an exact sequence:

0 −→ H1
J(M) −→ H2

J(R) −→ H2
J(R) −→ H2

J(M) −→ 0.

Since J is generated by a regular sequence u, v, the local cohomology module H2
J(R) is J-cofinite.

If Question 1 is affirmatively answered for the ideal J , then the local cohomology module H2
J(M)

must be J-cofinite, which is false for this example. Further, if Question 2 is affirmatively answered
for the ideal J , then HomR(R/J, H2

J(M)) must be of finite type by the local duality theorem (cf.
[5, Theorem 2.1]) and the characterization of cofinite complexes, which gives a contradiction.

2. The cases for ideals of dimension one over local rings

Now we shall introduce the following theorems:

Theorem 1 (cf. [11, Theorem 1]). Let (A,m) be a local ring, and I an ideal of A. If I is an ideal
of A of dimension one, thenM(A, I)cof is an Abelian full subcategory ofM(A).

Theorem 2 (cf. [11, Theorem 2]). Let (R, n) be a regular local ring, and J an ideal of R of
dimension one. Let N• be in the derived category D+(R) and suppose that R is complete with
respect to the J-adic topology. Then N• is J-cofinite if and only if Hi(N•) is inM(R, J)cof for
all i.
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Remark 1. Recently Theorem 2 is extended to complete Gorenstein domains, using the refined
Lemmas from those of Huneke-Koh [8] (cf. [1, Theorem 1]).

Delfino and Marley proved thatM(A, P )cof is an Abelian full subcategory ofM(A) for a prime
ideal P of dimension one over a complete local ring A (cf. [2, Theorem 2]). Melkersson proved
some related results (cf. [14, Theorem 7.4, Theorem 7.6, Theorem 7.7]).

3. The cases for ideals of codimension one over rings

The following result from [9] may have been known before, though the author has been unable
to find it in the literature.
Theorem 3 (cf. [9]). Let A be a noetherian ring, and I an ideal of A. If I is an ideal generated
by one element x of A up to radical, thenM(A, I)cof is an Abelian full subcategory ofM(A).

Remark 2. Let M be a non zero module inM(A, I)cof . If
√

I =
√

(x) and x is not a unit, then
xn is a zero divisor on M for some n, since SuppM is contained in V (x). Further it holds that
ΓI(M) = M .
The following also holds from Theorem 3, since the height one prime ideal is principal in a unique
factorization domain.
Corollary 1. Let R be a unique factorization domain, and J an ideal of pure height one. Then
M(R, J)cof is an Abelian full subcategory ofM(R).

Finally, the author conjectures that Theorem 1 may be true without the hypothesis that the
ring be local, though this has not yet been proved:
Conjecture. Let A be a noetherian ring, which is not local, and I an ideal of A. If I is an ideal
of dimension one, then the categoryM(A, I)cof is Abelian.
On the other hand, the author suspects that M(A, I)cof is a Serre subcategory of M(A), for an
ideal I of dimension one. But he has no counterexample.
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