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Fast numerical schemes related to curvature
minimization: a brief and elementary review

Xue-Cheng Tai

Abstract
We will treat variational models that use Euler’s elastica and related higher order

derivatives as regularizers. These models normally lead to higher order partial differential
equations with complicated nonlinearities. It is difficult to solve these equations numerically.
Recently, some fast numerical techniques have been proposed that can solve these equations
with very good numerical speed. We will try to explain the essential ideas of these numerical
techniques and point to some central implementation details for these algorithms.

1. Introduction

Variational models are becoming essential for image processing and computer vision. A vari-
ational model normally needs to minimize an energy functional. This energy functional usually
has a "fitting" part and also a "regularizer" part. In this work, we will specially be interested in
regularizers involving higher order derivatives.

The goal of image denoising is to remove noise while keeping meaningful vision information
such as object edges and boundaries. It is a crucial step in image processing with a wide range
of applications in medical image analysis, video monitoring, and others. One of the most popular
variational models was proposed by Rudin, Osher, and Fatemi in their seminal work (ROF model)
[34]. In [34], a cleaned image is obtained by minimizing the following energy functional

E(u) =
∫

Ω
|∇u|+ η

2

∫
Ω

(f − u)2,(1.1)

where f : Ω → R is a given noisy image defined on Ω,
∫

Ω |∇u| stands for the total variation of
a function u (see [40] for a definition), and η > 0 is a positive tuning parameter controlling how
much noise will be removed. The remarkable feature of the ROF model lies in its effectiveness
in preserving object edges while removing noise. In fact, the total variation regularizer has been
widely employed in accomplishing other image processing tasks such as deblurring, segmentation,
and registration.

In order to incorporate more geometrical information into the regularizer, a number of higher
order regularization models have been proposed and used for image processing and computer
vision problems. In this work, we will mainly consider three higher models and outline some fast
algorithms to solve them, c.f. Section 2. To make the presentation clearer, we will only state these
models for simple image restoration problems with a given noisy image f . There exist extensions
of these models for more general applications related to image processing and computer vision
including deblurring, inpainting, zooming and geometry minimization.
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2. Higher order regularizations

The ROF model has several unfavorable features. The main caveat is the stair-case effect, that
is, the resulting clean image would present blocks even though the desired image could be smooth.
Other undesirable properties include corner smearing and loss of image contrast. To remedy these
drawbacks, a very rich list of results exists in the literature, see [24, 1, 11, 49, 52]. Despite the
effectiveness of these models in removing the staircase effect, it is often a challenging issue to
minimize the corresponding functionals. Note that the models contain second order derivatives,
the related Euler-Lagrange equations are fourth-order. It is a nontrivial task to develop effective
and efficient algorithms to solve these higher order nonlinear equations.

In this section, we will first give an informal introduction to three higher order models. In the
subsequent sections, we will introduce fast algorithms to solve them.

Remark 1. We remark on a few important issues for the models and algorithms:
(1) The introduction about the higher order mathematical models is very informal in a math-

ematical sense. To define and analyze these models for proper function spaces is far more
difficult and is beyond the content of this note. Analysis of these models in the continuous
setting is still incomplete in the literature.

(2) For image processing problems, the computation domain is always a rectangle. The pixels
of an image give a ready mesh for the discretization. This leads to easy discretization with
finite difference approximations for our models and algorithms. However, this is not a
restriction for the models. The models and algorithms are valid for general domains as well.
For general domains with curved boundaries, the discrete approximation of the functions
(including primal and auxiliary functions) could be complicated near the boundaries.

(3) In the literature, discrete curvature is often used, see other publications in this proceeding.
Instead, we have chosen to present these models in a continuous setting. The algorithms
are also presented in the continuous setting. For numerical implementation, we must
discretize the continuous functions.

Both approaches ("discrete curvature" or "continuous curvature") have advantages and
disadvantages. For many discrete curvature models, it seems that the "discrete curvature"
is not converging to the "continuous curvature" when the mesh size goes to zero. For
the continuous models, it is easy to see that we are using the curvature. Standard finite
difference or finite element approximations would lead to natural approximations for the
curvature terms. However, a rigorous proof for this is still missing due to the complexity
of the models.

2.1. Regularization using TV2. In [24], Lysaker et al. directly incorporated second order
derivative information into the image denoising process. They proposed to minimize the following
energy functional to denoise an image:

E(u) =
∫

Ω

√
u2
xx + u2

xy + u2
yx + u2

yy + η

2

∫
Ω

(f − u)2.(2.1)

This higher order energy functional is much simpler than the elastic regularizer that we shall
introduce later. Numerically, this regularizer shows rather good performance with noise suppres-
sion and edge preservation. In the literature, there exists quite a number of related models, see
[13, 20, 42, 3, 12, 6, 18, 36, 31, 5, 14, 8, 19, 48, 30, 7]. The well-posedness for this energy functional
and its gradient flow equation have been studied in [27, 26, 17].

2.2. Regularization using the Euler’s Elastica energy. Given a function f : Ω 7→ R, the
Euler’s elastica model needs to find a function u to minimize the following energy functional:

E(u) =
∫

Ω

[
a+ b

(
∇ · ∇u
|∇u|

)2
]
|∇u|+ η

2

∫
Ω

(f − u)2.(2.2)

The nonnegative constants a, b and η need to be chosen properly for different purposes of appli-
cations. This model comes from the Euler’s Elastca energy for curves, see [11] for some more
explanations for this energy. For a given curve Γ ⊂ R2 with curvature κ, the Euler’s elastica
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energy is defined as: ∫
Γ
(a+ bκ2)ds.

For a function u, the curvature for the level curve Γc : u(x) = c is:

κ = ∇ ·
(
∇u
|∇u|

)
.

Thus, the Euler’s elastica energy for the level curve: u(x) = c is:

`(c) =
∫

Γc

(
a+ b

[
∇ ·
(
∇u
|∇u|

)]2)
ds.

Summing up (integrating) the Euler’s elastica energy for all the level curves Γc : c ∈ (−∞,∞), we
get from the co-area formula [39] that the total Euler’s elastica energy for all the level curves is:∫ ∞

−∞
`(c)dc =

∫ ∞
−∞

∫
Γc

(
a+ b

[
∇ ·
(
∇u
|∇u|

)]2)
dsdc =

∫
Ω

(
a+ b

[
∇ ·
(
∇u
|∇u|

)]2)
|∇u|dx.

Minimization problem (2.2) is trying to use the total Euler’s Elastica energy as a regularizer to
remove noise from the image f .

2.3. Regularization using the image surface mean curvature. In [49], the authors proposed
a variational model that uses the mean curvature of the induced image surface (x, y, f(x, y)) to
remove noise. Specifically, the model employs the L1 norm of the mean curvature of the image
surface as the regularizer and minimizes the following functional to get a clean image:

E(u) =
∫

Ω

∣∣∣∣∣∇ ·
(

∇u√
1 + |∇u|2

)∣∣∣∣∣+ η

2

∫
Ω

(f − u)2.(2.3)

Above, η is a tuning parameter. The term ∇ · ( ∇u√
1+|∇u|2

) is the mean curvature of the surface
φ(x, y, z) = u(x, y) − z = 0. The model tries to fit the given noisy image surface (x, y, f(x, y))
with a surface (x, y, u(x, y)) that is regularized by the mean curvature. This idea can be traced to
much earlier papers, see [22]. The model can sweep noise while keeping object edges, and it also
avoids the staircase effect. More importantly, as discussed in [49, 53], the model is also capable of
preserving image contrasts as well as object corners.

3. Fast numerical algorithms based on augmented Lagrangian method (ALM)

In this section, we first show the split-Bregman altorithm of Goldstein-Osher [16] for the ROF
model [34]. We then extend this idea for the three higher order models we have introduced in
Section 2 to get fast algorithms for them.

3.1. Split-Bregman for ROF. In work by Goldstein-Osher [16], fast iterative schemes were
proposed and tested for the ROF model. It is one of the most efficient numerical schemes for
solving the ROF model. Later, it was observed that the split-Bregman algorithm of Golstein-
Osher [16] is equivelent to the Augmented Lagrangian method [38, 41]. Here, we explain the ideas
in an “informal” fashion. We will present the ideas in a continuous setting. As stated in Remark
1, to make our statements precise, more precise definitions of the function spaces and the norms
need to be given. That is one of the reasons that discrete models have been used to explain these
algorithms as in [41]. We will not get into the details related to this kind of technicalities.

Let p = ∇u, then it is easy to see that the ROF model is equivalent to the following constrained
minmization problem:

(3.1) min
u,p
p=∇u

∫
Ω
|p|+ η

2 |u− f |
2dx.

Let us use the Augmented Lagrangian method (ALM) [15] to deal with the constraint p = ∇u.
Then we need to find a saddle point for the following Lagrangian functional:

(3.2) Lrof (u, p, λ) =
∫

Ω
|p|+ η

2 |u− f |
2 + λ · (p−∇u) + r

2 |p−∇u|
2dx.
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Above: u : Ω 7→ R denotes the image we need to find, p : Ω 7→ R2 is a vector valued function
related to the gradient of the function u, λ : Ω 7→ R2 denotes the Lagrangian multiplier. Due to
convexity, problem (3.1) has a unique solution (in the discrete setting as well as in a proper space
in the continuous setting). If (u∗, p∗) is a global minimizer for (3.1), then there exists a λ∗ such
that (u∗, p∗, λ∗) is a saddle point for (3.2). We propose to use Algorithm 1 to search for a saddle
point for (3.2).

Algorithm 1 Augmented Lagrangian method for the ROF model
Initialization: λ0 = 0, u0 = f ; For k=0,1,2,...:

(1) Compute pk+1 from :
(3.3) pk+1 = arg min

q
Lrof (uk, q;λk),

(2) Compute uk+1 from:
(3.4) uk+1 = arg min

v
Lrof (v, pk+1;λk),

(3) Update
(3.5) λk+1 = λk + r(pk+1 −∇uk+1).

(4) Go to the next iteration if not converged.

Minimization subproblem (3.3) has closed-form solutions and thus can be easily computed.
Minimization subproblem (3.4) can be solved by FFT (Fast Fourier Transform) or simple Gauss-
Seidel iterative solvers to get an approximate solution. See [43, 41] for more details. Theoretically,
it is necessary to have sufficiently many iterations between subproblems (3.3) and (3.4). In practice,
the above algorithm works well for most of the cases for the ROF model.

It is also easy to extend the above model for vector-valued functions and vector-TV regulariza-
tion, see [41, p.320] and [33, 32].

3.2. Split-Bregman for second order Total variation. Here, we explain how to use the fast
algorithm explained in the last section for the regularization model (2.1) related to second order
derivatives. The idea follows the work [41].

The essential idea for the fast schemes is to introduce some auxiliary variables and consider the
complicated minimization problem as a constrained minimization. We then use splitting ideas to
decompose the complicated minimization problem into some simpler minimization problems. Let

p = D2u =
(
uxx uxy
uyx uyy

)
.

Thus p is a matrix function defined on Ω, i.e. p is equal to the Hessian matrix of u over Ω. The
minimization of the energy functional given in (2.1) is equivalent to:

(3.6) min
u,p

p=D2u

∫
Ω
|p|+ η

2 |u− f |
2dx.

Above, |p| =
√∑

i,j p
2
ij stands for the Frobenius norm of the matrix p.

Again, we use the Augmented Lagrangian method (ALM) [15, 41] to deal with the constraint
p = D2u. Then we need to find a saddle point for the following Lagrangian functional:

(3.7) Lllt(u, p, λ) =
∫

Ω
|p|+ η

2 |u− f |
2 + λ : (p−D2u) + r

2 |p−D
2u|2dx.

Here u : Ω 7→ R denotes the image we need to find, p : Ω 7→ R4 is a matrix valued function related
to the Hessian of the function u, λ : Ω 7→ R4 denotes the Lagrangian multiplier. The notation
A : B denotes the elementwise inner product of two matrices A and B. We use Algorithm 2 to
search for a saddle point for (3.7).

Similar to Algorithm 1, the minimization subproblem (3.8) needs to compute a matrix-valued
function and it has closed-form solutions and thus can be easily computed. Minimization subprob-
lem (3.9) gives raise to a linear 4th order equation on a regular mesh. It can be solved by FFT
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Algorithm 2 Augmented Lagrangian method for the TV2 model
Initialization: λ0 = 0, u0 = f ; For k=0,1,2,...:

(1) Compute pk+1 from
(3.8) pk+1 = arg min

q
Lllt(uk, q;λk),

(2) Compute uk+1 from:
(3.9) uk+1 = arg min

v
Lllt(v, pk+1;λk),

(3) Update
(3.10) λk+1 = λk + r(pk+1 −D2uk+1).

(4) Go to the next iteration if not converged.

(Fast Fourier Transform) or simple Gauss-Seidel iterative solvers to get an approximate solution.
See [41, p.324] for more details.

3.3. Augmented Lagrangian method for Euler’s elastica model. In order to use fast algo-
rithms related to ALM for the minimization of the Euler’s elastica given in (2.2), it is necessary
to introduce a few more auxiliary functions. The ideas presented here follow the work [37]. The
following lemma is easy to prove using Hölder’s inequality:

Lemma 2. Let n 6= 0 and p 6= 0 be two given vectors. They satisfy

|n| ≤ 1, |p| = n · p,

if and only if

n = p

|p|
.

Let us define
p = ∇u, n = p

|p|
.

It is easy to see that the minimization of the Euler’s elastica energy (2.2) is equivalent to the
following constrained minimization:

min
u,p,n

∫
Ω

(
a+ b(∇ · n)2) |p|+ η

2

∫
Ω
|u− f |2

with p = ∇u, |p| = n · p, |n| ≤ 1.
(3.11)

The use of n with |n| ≤ 1 can be viewed as a relaxation. Moreover, the constraint |n| ≤ 1 is
crucial to prevent the unboundedness of n when p = 0. Define the characteristic function δR(·) on
R as

δR(m) =
{

0 m ∈ R ≡ {m ∈ L2(Ω) | |m| ≤ 1 a.e. in Ω},
+∞ otherwise.(3.12)

then, the constrained minimization problem (3.11) can be rewritten as:

min
u,p,n

∫
Ω

(
a+ b(∇ · n)2) |p|+ η

2

∫
Ω
|u− f |2 + δR(n)

with p = ∇u, |p| = n · p,
(3.13)

We know that |n| ≤ 1 in Ω, thus

|p| − n · p ≥ 0 ∀x ∈ Ω.

There are two constraints in (3.13). Two different penalizations are used for these two constraints.
For constraint p = ∇u, we use the L2-norm for the penalization term; but for |p| = n · p, we use
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the L1-norm. With this special treatment for the last constraint, the corresponding Lagrangian
functional becomes:

Lelas(u, p, n, λ1, λ2) =
∫

Ω

(
a+ b(∇ · n)2) |p|+ η

2 |u− f |
2dx+ δR(n)

+
∫

Ω
λ1 · (p−∇u) + r1

2 |p−∇u|
2 + λ2(|p| − n · p) + r2(|p| − n · p)dx.

(3.14)

The meanings of the primal and dual variables are listed in the following:
• u : Ω 7→ R denotes the image we need to find,
• p : Ω 7→ R2 is a vector-valued function related to the gradient of the function u,
• n : Ω 7→ R2 is a vector-valued function related to the unit vectors of the level curves of u,
• λ1 : Ω 7→ R2 denotes the Lagrangian multiplier for constraint p = ∇u,
• λ2 : Ω 7→ R denotes the Lagrangian multiplier for constraint |p| = n · p.

We shall use Algorithm 3 to search for a saddle point of this Lagrangian functional.

Algorithm 3 Augmented Lagrangian method for the Euler’s elastica model
Initialization: λ0 = 0, u0 = f, n0 = 0; For k=0,1,2,...:

(1) Compute pk+1 from
(3.15) pk+1 = arg min

q
Lelas(uk, q, nk;λk),

(2) Compute nk+1 from
(3.16) nk+1 = arg min

m
Lelas(uk, pk+1,m;λk),

(3) Compute uk+1 from:
(3.17) uk+1 = arg min

v
Lelas(v, pk+1, nk+1;λk),

(4) Update
λk+1

1 = λk1 + r1(pk+1 −∇uk+1),(3.18)

λk+1
2 = λk2 + r2(|pk+1| − nk+1 · pk+1).(3.19)

(5) Go to the next iteration if not converged.

In the following, we give some remarks on the solutions of the subproblems and some imple-
mentation issues for Algorithm 3:

(1) Minimization subproblem (3.15) has closed-form solutions. A simple thresholding is suffi-
cient to get the solution pk+1.

(2) Minimization subproblem (3.16) can be approximated by solving a linear partial differential
equation first and then projecting the obtained solution onto the convex set R defined in
(3.12). The linear equation is:

(3.20) − b∇(|pk+1|∇ · nk+1) = (λ2 + r2)pk+1.

This equation has some similarities with the gradient-divergence equations from the Maxwell
equation for magnetic simulations or Darcy-Stokes flow, see [25]. It can be approximately
solved by a few Gauss-Seidel iterations or a coefficient freezing FFT solver, see [37] for
more details. Note that both p and n are vector-valued functions. We need to solve for all
the components of the vector functions.

(3) The minimizer uk+1 of subproblem (3.17) satisfies the following linear partial differential
equation:

uk+1 − f +∇ · λk1 + r1∇ · (pk+1 −∇uk+1) = 0.
This equation is the same as for the ROF model, c.f. Algorithm 1. It can be easily solved
by FFT or few Gauss-Seidel iterations.

(4) Theoretically, we need sufficiently many iterations between (3.15)-(3.17) to guarantee con-
vergence of the algorithm. In practice, just one iteration, as stated in Algorithm 3, is
enough to have convergence of the iterative solutions.
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(5) As the energy functional is not convex, we need to choose some of the penalization param-
eters ri sufficiently big to obtain convergence of this algorithm. Tuning the parameters ri
is a delicate issue. Fortunately, there exists an easy way to get the correct values for these
penalization parameters ri. We outline the details in section 5.

(6) Another relaxation method for the Euler’s Elastica model was proposed in [4]. It solves
the problem by means of tractable convex relaxation in higher dimensions.

The algorithm presented in [37] for the minimization of the Euler’s elastica energy has one more
auxiliary function variable. There, the following constrained minimization was considered:

min
u,p,n

∫
Ω

(
a+ b(∇ · n)2) |p|+ η

s

∫
Ω
|u− f |s + δR(m)

with p = ∇u, |p| = n · p, n = m,

(3.21)

Note that the fidelity term has also been changed and it is powered by s. Normally, the value
of s can be chosen as s = 1 or s = 2 depending on the nature of the noise contained in f . For
salt-and-pepper noise, we prefer to choose s = 1. For Gaussian noise, we choose s = 2. There
could exist cases where we need to choose s ∈ [1,∞].

In [37], the following Lagrangian functional is used for the above constrained minimization
problem (3.21):

Lelas(u, p,m, n, λ1, λ3, λ3) =
∫

Ω

(
a+ b(∇ · n)2) |p|+ η

s
|u− f |sdx+ δR(m)

+ λ1 · (p−∇u) + r1

2 |p−∇u|
2 + λ2(|p| − n · p) + r2(|p| − n · p) + λ3 · (m− n) + r3

2 |n−m|
2dx

(3.22)

An algorithm similar to Algorithm 3 can be used to find a saddle point for the above Lagrangian
functional. We will not repeat the details. We can see that the minimization subproblem for n
does not have the constraint |n| ≤ 1 and we only need to solve a linear PDE system to get the
values of nk+1 which can be done by using FFT or a few Gauss-Seidel iterations, c.f. (3.20). The
convex constraint is only imposed on m now. The solution of the minimization subproblem for m
is in fact just a simple projection to the convex set, see [37] for the details.

It is also possible to use these ideas for a generalized Euler’s elastica model with the energy
functional modified to be:

E(u) =
∫

Ω

[
a+ b

∣∣∣∣(∇ · ∇u|∇u|
)∣∣∣∣s1]

|∇u|+ η

s2

∫
Ω
|f − u|s2 .(3.23)

In case that s1 = 2, s2 = 1, we could consider the following splitting:

min
u,p,n

∫
Ω

(
a+ b(∇ · n)2) |p|+ η

∫
Ω
|v − f |+ δR(n)

with v = u p = ∇u, |p| = n · p,
(3.24)

It is easy to define the corresponding Lagrangian functional and use an alternating minimization
scheme to search for its saddle point. The details of the corresponding algorithm will be omitted
and all the minimization subproblems can be easily solved or have closed-form solutions, see [37,
p.33] for the needed details.

If we consider the case that s1 = 1, s2 = 2, then it would be better to use the following splitting
idea:

min
u,p,n

∫
Ω

(a+ b|q|) |p|+ η

2

∫
Ω
|u− f |2 + δR(m)

with q = ∇ · n, p = ∇u, |p| = n · p, n = m.

(3.25)

It is easy to define the corresponding Lagrangian functional and use an alternating minimization
scheme to search for its saddle point. The details of the corresponding algorithm will be omitted
and all the minimization subproblems can be easily computed or have closed-form solutions, see
[37, p.33] for the needed details.

We want to emphasise that for the constraint |p|−m ·p = 0, we use L1-norm for the penalization
and it is true that |p| −m · p ≥ 0 due to the fact that |m| ≤ 1.
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So far, we have explained the splitting techniques needed for the cases s1 = 2, s2 = 1 and
s1 = 1, s2 = 2. For the case s1 = s2 = 1, we need to combine the splitting techniques for both
cases. These techniques can be easily extended for more general values of s1 an s2. In fact, the
algorithm given in [37] can deal with general Lp fidelity terms.

3.4. Augmented Lagrangian method for the mean curvature (MC) model. The ideas
presented in this section follow the work [53]. Let us recall the idea of introducing the mean
curvature denoising model. In this model, a 2D image f(x, y) is regarded as a surface (x, y, f(x, y))
in R3, c.f. [22, 49]. One thus considers the surface φ(x, y, z) = u(x, y) − z = 0 and the mean
curvature κ = ∇ · (∇φ/|∇φ|) = ∇ · (〈∇u,−1〉/|〈∇u,−1〉|). Here and later, 〈·, ·〉 is used to denote
the concatenation of vectors. Note that one introduces two variables p = ∇u and n = ∇u/|∇u| to
tackle the Euler’s elastica for its curvature term κ = ∇ · (∇u/|∇u|). This gives us a hint on how
to treat the curvature term in our case, that is, we may introduce a variable p = 〈∇u,−1〉 instead
of p = ∇u. Accordinlgy, we will also introduce n = 〈∇u,−1〉/|〈∇u,−1〉|.

With constraints
p = 〈∇u,−1〉,n = 〈∇u,−1〉/|〈∇u,−1〉|,

the MC model (2.3) is then transformed to the following constrained minimization problem:

minu,q,n,p
[
λ

∫
Ω
|q|+ 1

2

∫
Ω

(f − u)2
]
,

with q = ∇ · n, n = p
|p| , p = 〈∇u,−1〉.(3.26)

The associated augmented Lagrangian functional is then:

L(u, q,p,n,m;λ1,λ2, λ3,λ4) = λ

∫
Ω
|q|+ 1

2

∫
Ω

(f − u)2

+ r1

∫
Ω

(|p| − p ·m) +
∫

Ω
λ1(|p| − p ·m)

+ r2

2

∫
Ω
|p− 〈∇u,−1〉|2 +

∫
Ω

λ2 · (p− 〈∇u,−1〉)

+ r3

2

∫
Ω

(q − ∂xn1 − ∂yn2)2 +
∫

Ω
λ3(q − ∂xn1 − ∂yn2)

+ r4

2

∫
Ω
|n−m|2 +

∫
Ω

λ4 · (n−m) + δR(m),(3.27)

where r′is, i = 1, · · ·, 4, are the penalization parameters, and λ1, λ3 : Ω 7→ R and λ2,λ4 : Ω 7→ R3

are Lagrange multipliers, and p,n,m : Ω 7→ R3 are vector-valued functions. For the sake of
completeness of presentation, we make a few remarks in the following.

Introduction of the variable m aims to relax variable n that is defined as n = p/|p|. The
variable m is required to lie in the set R so that the term |p| − p ·m is always non-negative. As
discussed in [37], the benefit of this non-negativeness is that the L2 penalization is unnecessary.
Instead, we use L1-norm for the penalization. As this term is always positive, the penalization
term becomes just |p| − p ·m.

As the saddle points of the augmented Lagrangian functional (3.27) correspond to the minimizers
of the constrained minimization problem (3.26), one just needs to find the saddle points of (3.27).
Similar to algorithms for the Euler’s elastica model, we apply an iterative procedure. Specifically,
for each variable in (3.27), we fix all the other variables and seek a critical point of the induced
functional to update this variable. Once all the variables are updated, the Lagrangian multipliers
will also be updated. Then we repeat the process until the variables converge to a steady state.
The algorithm is summarized in Algorithm 4.

The sub-minimization problems (3.28)-(3.32) are very easy to solve. We list their corresponding
minimization energy functionals in the following:

ε1(u) = 1
2

∫
Ω

(f − u)2 + r2

2

∫
Ω
|p− 〈∇u,−1〉|2 +

∫
Ω

λ2 · (p− 〈∇u,−1〉),(3.33)

ε2(q) = λ

∫
Ω
|q|+ r3

2

∫
Ω

(q − ∂xn1 − ∂yn2)2 +
∫

Ω
λ3(q − ∂xn1 − ∂yn2),(3.34)
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Algorithm 4 Alternating minimization method for surface mean curvature minimization.
(1) Initialization: u0, q0, p0, n0, m0, and λ0

1, λ0
2, λ0

3, λ0
4. For k ≥ 1, loop over the following

two steps:
(2) Compute an approximate minimizer (uk, qk,pk,nk,mk) of the augmented Lagrangian

functional with the fixed Lagrangian multiplier λk−1
1 , λk−1

2 , λk−1
3 , λk−1

4 from the following
minimization problems:

uk = argmin L(u, qk−1,pk−1,mk−1,nk−1, λk−1
1 ,λk−1

2 , λk−1
3 , λ4

k−1)(3.28)
qk = argmin L(uk, q,pk−1,mk−1,nk−1, λk−1

1 ,λk−1
2 , λk−1

3 , λ4
k−1)(3.29)

pk = argmin L(uk, qk,p,mk−1,nk−1, λk−1
1 ,λk−1

2 , λk−1
3 , λ4

k−1)(3.30)
mk = argmin L(uk, qk,pk,m,nk−1, λk−1

1 ,λk−1
2 , λk−1

3 , λ4
k−1)(3.31)

nk = argmin L(uk, qk,pk,mk,n, λk−1
1 ,λk−1

2 , λk−1
3 , λ4

k−1)(3.32)
(3) Update the Lagrangian multipliers

λk1 = λk−1
1 + r1(|pk| − pk ·mk)

λk2 = λk−1
2 + r2(|p|k − 〈∇uk,−1〉)

λk3 = λk−1
3 + r3(qk − ∂xnk1 − ∂ynk2)

λk4 = λk−1
4 + r4(nk −mk),

where n = 〈n1, n2, n3〉.
(4) Stop if the given stopping criteria have been satisfied. Otherwise, go to the next iteration.

ε3(p) = r1

∫
Ω

(|p| − p ·m) +
∫

Ω
λ1(|p| − p ·m)+r2

2

∫
Ω
|p− 〈∇u,−1〉|2

+
∫

Ω
λ2 · (p− 〈∇u,−1〉),(3.35)

ε4(m) = r1

∫
Ω

(|p| − p ·m) +
∫

Ω
λ1(|p| − p ·m) + r4

2

∫
Ω
|n−m|2

+
∫

Ω
λ4 · (n−m) + δR(m),(3.36)

ε5(n) = r3

2

∫
Ω

(q − ∂xn1 − ∂yn2)2 +
∫

Ω
λ3(q − ∂xn1 − ∂yn2) + r4

2

∫
Ω
|n−m|2

+
∫

Ω
λ4 · (n−m).(3.37)

Fast solvers and closed-form solutions are available for all these subproblems, c.f. [53].

4. Euler’s elastica regularizer for interface problems

The classical snake and active contour model was given by Kass, Witkin, and Terzopoulos [21]
where they proposed minimizing the functional

E(C) = α

∫ 1

0
|C′(s)|2ds+ β

∫ 1

0
|C′′(s)|ds− η

∫ 1

0
|∇f(C(s))|2ds,(4.1)

where f : Ω → R denotes a given image and C(s) : [0, 1] → Ω is a parameterized curve and α, β,
and η are some positive tuning parameters. The first two terms impose regularity restriction on
the contour while the third one denotes the drive induced by the given image. As the image f
has large gradient along object boundaries, the functional E(C) will take a small value when the
active contour C resides on these boundaries.

Mumford and Shah [29] proposed minimizing the following functional:

E(u,K) =
∫

Ω\K
|∇u|2dx+ η

∫
Ω

(u− f)2dx+ µLength(K)(4.2)
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with respect to both the function u defined on Ω and the boundary K ⊂ Ω. η, µ are positive
tuning parameters.

The segmentation model of Chan-Vese [9] can be expressed as the minimization of the following
functional:

ECV (φ, c1, c2) =
∫

Ω
µ(f − c1)2H(φ) + (f − c2)2(1−H(φ)) + η

∫
Ω
|∇H(φ)|,(4.3)

where φ is a level set function whose zero level curve presents the segmentation boundary, H(·)
is the Heaviside function, c1, c2 are two scalars, and µ, η are positive parameters. The parameter
µ is often set to be 1 in many applications. If the minimizer of the objective functional in the
Mumford-Shah’s model is restricted to be u = c1H(φ) + c2(1−H(φ)), a "binary image", one can
easily get Chan-Vese’s model.

In Chan-Vese’s model, the first two terms are the fitting terms while the third one represents
the length of the segmentation boundary. As discussed in [29], the length term prohibits the
excessive segmentation boundaries obtained by the Chan-Vese model. Moreover, it also imposes
regularity on the boundaries. Chan-Vese model has proven to be an effective segmentation model.
However, the length regularization term is insufficient to accomplish the segmentation task under
some circumstances. For instance, as shown in Figure 4.1(A), parts of the letters "UCLA" are
erased. Even though one can easily recognize the four letters, existing segmentation models,
such as Chan-Vese’s model, might often capture the existing boundaries instead of restoring the
missing ones as illustrated in Figure 4.1(B). In inpainting problems [11], missing image information
is also recovered but within given regions assigned in advance. In contrast, we intend to have a
segmentation model that can interpolate the missing boundaries automatically without specifying
the regions.
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Figure 4.1: Incomplete letters "UCLA" and its integrate segmentation.

To this end, we employ Euler’s elastica as a new regularization for the segmentation contour to
replace the length term in Chan-Vese’s model and get the following functional:

ECV E(φ, c1, c2) =
∫

Ω
µ(f − c1)2H(φ) + (f − c2)2(1−H(φ))

+
[
a+ b

(
∇ · ∇φ
|∇φ|

)2
]
|∇H(φ)|,(4.4)

where µ, a, b are positive parameters. For φ being the signed distance level set function, it can
be proven that the last term equals to the Euler’s elastica energy of the segmentation curve.
Specifically, the parameter µ has a more important role in this modified model than in Chan-
Vese’s model. It can relax the competition of the fitting term and the Euler’s elastica term, aiming
to complete missing boundaries as shown in Figure 4.1(B). The parameters a, b control the length
and curvature of segmentation boundary. This regularization was originally proposed and used
in the famous work of segmentation with depth by Nitzberg, Mumford, and Shiota [28]. It has
also been used in the inpainting problem [11] and the illusory contour problem [51, 50]. Recently,
in [35], Schoenemann et al. developed a numerical method to minimize the curvature dependent
functionals by using linear programming method. In their work, they also considered Chan-Vese’s
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model with the substitution of Euler’s elastica for the length term. In this section, we shall show
the details on using the techniques developed in the earlier sections to minimize the Euler’s elastic
energy for the CVE model (4.4).

In the current work, we use the same technique as in Section 3.3 to deal with the curvature term
in the functional (4.4). Note that the functional (4.4) involves the level set function φ, however,
only the sign of this function, H(φ), is needed for the segmentation problem. Following the ideas
of the binary level set representation of [23], we introduce a new function u = H(φ). This was
also used in [10] for finding the global minimizer of Chan-Vese’s model. More general binary level
set representations with global minimization techniques have been developed [45, 47, 44, 2, 46]
through some beautiful connections between graph cuts, binary labeling and continuous max-flow
problems. As ∇ · ∇H(φ)

|∇H(φ)| = ∇ · ∇φ|∇φ| , one can rewrite the functional (4.4) to be

E(u, c1, c2) =
∫

Ω
µ(f − c1)2u+ (f − c2)2(1− u) +

[
a+ b

(
∇ · ∇u
|∇u|

)2
]
|∇u|,(4.5)

where u is supposed to take on either 0 or 1. But note that the curvature makes sense for smooth
functions. To fix this issue, as in [2, 10], one can relax the restriction on u to be 0 ≤ u ≤ 1. To
minimize the functional (4.5), one considers the following constrained minimization problem

minu,p,n,c1,c2

∫
Ω µ(f − c1)2u+ (f − c2)2(1− u) +

[
a+ b (∇ · n)2

]
|p|,

with p = ∇u, |p| = p · n, |n| ≤ 1, u ∈ [0, 1].(4.6)

We then construct the following augmented Lagrangian functional:

L(v, u,p,n,m, c1, c2;λ1,λ2, λ3,λ4) =
∫

Ω
µ(f − c1)2v + (f − c2)2(1− v) +

[
a+ b (∇ · n)2

]
|p|

+ r1

∫
Ω

(|p| − p ·m) +
∫

Ω
λ1(|p| − p ·m)

+ r2

2

∫
Ω
|p−∇u|2 +

∫
Ω

λ2 · (p−∇u)

+ r3

2

∫
Ω

(v − u)2 +
∫

Ω
λ3(v − u) + δD(v)

+ r4

2

∫
Ω
|n−m|2 +

∫
Ω

λ4 · (n−m) + δR(m),(4.7)

where D = [0, 1] and R = {m ∈ L2(Ω) : |m| ≤ 1 a.e. in Ω}, and δD(v) and δR(·) are the
characteristic functions on the sets D and R respectively:

δD(v) =
{

0, v ∈ D;
+∞, otherwise.

δR(m) =
{

0, m ∈ R;
+∞, otherwise.

Moreover, ri, i = 1, ..., 4 are positive parameters while λ1,λ2, λ3,λ4 are Lagrange multipliers. In
this augmented Lagrangian functional, as was explained in Section 3.3, the new variable m is
introduced to simplify the associated subproblem on p. As m is required to be inside R, |m| ≤ 1,
then |p| − p ·m ≥ 0 for any p, and |p| − p ·m = 0 if and only if m = p

|p| . This avoids the term∫
Ω(|p|−p ·m)2, which results in a relatively complex functional on p. Moreover, by using the new
variable m, the minimizer of the functional related to p can be obtained exactly and explicitly by
using some appropriate shrinkage.

It is well known that some saddle point of the augmented Lagrangian functional (4.7) relates
to a minimizer of the functional (4.5). Therefore, one just needs to find the saddle points of the
augmented functional. The minimization energy functional for the CVE model given in (4.6) is
very similar to the Euler’s elastica energy of Section 3.3. We could use an alternating minimization
procedure to approximately minimize the variables u, v,p,n, c1, c2 and use a simple gradient ascent
method to update the Lagrange multipliers. Algorithms and numerical performance are exposed
in [54].
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5. Tuning of the penalization parameters for ALM

The values of the penalization parameters ri are very important. They influence the convergence
as well as the speed of convergence of the proposed algorithms. Fortunately, there exist some very
easy techniques to find the proper intervals for the values of these penalization parameters. Here
we review some details.

The ROF model associated with the energy functional (3.1) is convex, thus the ALM is con-
vergent for any positive values of ri used in Algorithm 1. However, the speed of the convergence
depends on the values of ri. Choosing ri too big or too small could result in more iterations for
the solution to converge to the same stopping cretria. For the other higher order models discussed
earlier, the values of ri also influence speed of convergence. In addition, for non-covex energy
functionals, some of the penalization parameters need to be sufficiently large to guarantee the
convergence.

Fortunately, there are good numerical indicators to use for the determination of the values of
ri. This makes it very easy to tune the penalization parameters. The indicators are related to
the constraint errors and the decay of the energy functional value. Let us take Algorithm 4 as an
example. First, we need to monitor the constraint errors:

(Rk1 , Rk2 , Rk3 , Rk4) = (‖Rk1‖L1/‖R0
1‖L1 , ‖Rk2‖L1/‖R0

2‖L1 , ‖Rk3‖L1/‖R0
3‖L1 , ‖Rk4‖L1/‖R0

4‖L1),(5.1)

with

Rk1 = |pk| − pk ·mk,

Rk2 = pk − 〈∇uk, 1〉,
Rk3 = qk − ∂xnk1 − ∂ynk2 ,
Rk4 = nk −mk,

Note that all the errors are normalized by scaling the errors with their values from the first
iteration. In addition, we also need to monitor the value of the energy functional. Here are some
“troubleshooting” tips on how to tune the parameters ri:
Step 1 Take some reasonable guess for the values of all the ri and run the algorithms until the

stopping criteria are satisfied.
Step 2 Tune the values of ri so that the constraint errors Rki converge to zero with nearly the

same speed asymptotically. If Rki goes to zero slower than the others, then increase the
value of ri. If Rki goes to zero quicker than the others, then decrease the value of ri. It is
possible that these constraints errors “behave” rather chaotically in the starting phase of
the iterations. However, they shall converge to zero asymptotically with the same "speed"
if the values of the ri are chosen correctly.

Step 3 By choosing the penalization values ri sufficiently large, it is always possible to make the
constraint errors go to zero. However, the energy functional value may stay large all the
time. For ALM, it is not possible to guarantee that the energy functional will decrease
monotonically. However, the energy will decrease and then stay at a constant value if ri
are chosen correctly. Thus, if the constraint errors are decreasing correctly, but not the
energy functional value, then reduce all the ri and repeat this tuning process from step 2.

We also need to stop the iterations properly. In all our numerical experiments, we use the relative
residuals (5.1), the relative errors of Lagrange multipliers and value of E(uk) as the stopping
criteria. To check the convergence of the iteration process, we first check on Rki . As in [37], we
also check the relative errors of Lagrange multipliers:

(Lk1 , Lk2 , Lk3 , Lk4) =
(
‖λk1 − λk−1

1 ‖L1

‖λk−1
1 ‖L1

,
‖λk2 − λk−1

2 ‖L1

‖λk−1
2 ‖L1

,
‖λk3 − λk−1

3 ‖L1

‖λk−1
3 ‖L1

,
‖λk4 − λk−1

4 ‖L1

‖λk−1
4 ‖L1

)
,

(5.2)

and the relative error of the solution uk

‖uk − uk−1‖L1

‖uk−1‖L1
.(5.3)
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Besides all these quantities, we also consider how the energy (2.3) is evolving during the iter-
ations by tracking the value of E(uk). If all the residual errors Rki satisfy the stopping criteria
Rki < εr for some given small threshold εr, the relative errors for the multipliers and the solution
u have been reduced to a sufficiently small level (normally can be close to machine accuracy) and
the energy functional E(uk) has come to a steady constant value, then the algorithm has reached
a steady state and we can stop the iterations.
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