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Multigrid-convergence of digital curvature
estimators

Jacques-Olivier LACHAUD

Abstract

Many methods have been proposed to estimate differential geometric quantities like
curvature(s) on discrete data. A common characteristics is that they require (at least)
one user-given scale or window parameter, which smoothes data to take care of both the
sampling rate and possible perturbations. Digital shapes are specific discrete approximation
of Euclidean shapes, which come from their digitization at a given grid step. They are thus
subsets of the digital plane Z?. A digital geometric estimator is called multigrid convergent
whenever the estimated quantity tends towards the expected geometric quantity as the grid
step gets finer and finer. The problem is then: can we define curvature estimators that are
multigrid convergent without such user-given parameter ? If so, what speed of convergence
can we achieve 7 We review here three digital curvature estimators that aim at this objective:
a first one based on maximal digital circular arc, a second one using a global optimization
procedure, a third one that is a digital counterpart to integral invariants and that works on
2D and 3D shapes. We close the exposition by a discussion about their respective properties
and their ability to measure curvatures on gray-level images.

1. INTRODUCTION

Context and objectives. In many shape processing applications, the estimation of differential
quantities on the shape boundary is usually an important step. Their correct estimation makes
easier further processing, like quantitative evaluation, feature detection, shape matching or visual-
ization. A considerable amount of approaches have been proposed to estimate curvature(s) given
only discrete data. It is often desirable to have theoretical guarantees on the given estimation.
This property is called stability in Geometry processing: given a continuous shape and a specific
sampling of its boundary, the estimated measure should converge to the Euclidean one when the
sampling become denser. Perhaps Amenta et al. [2] is one of the first work toward this goal.

When discrete data are meshes, most approaches are local and do not provide theoretical
guarantees (see [41] and [18] for comprehensive evaluations, and Desbrun et al. [13] or Bobenko
and Suris [3] for a more general theory). Results on the stability of curvature estimators are scarce.
We may quote the result [42] for Gaussian curvature, integral curvature measures [10, 11], and to
some extent integral invariants of [35, 34].

When discrete data are limited to point clouds, fitting polynomials is probably the most
common approach (e.g. the osculating jets of Cazals and Pouget [5] is representative of these
approaches), but the stability result is restricted to a perfect sampling. A more appealing family
of techniques exploits the Voronoi diagram [1, 30, 31]. Several stability results are achieved even
in presence of (Hausdorff noise), but they do not entail the stability of curvature estimations.
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Note that all the preceding approaches require some parameter tuning, the most important one
determining the window of computation or the scale of the estimation in the terminology of scale-
spaces.

This paper focuses on estimating the curvature (or curvature tensor) on the boundary of dig-
ital shapes. Such digital structures are subsets of the d-dimensional digital space Z% and come
generally from the digitization of some Euclidean shape. Of course, the curvature tensor esti-
mation should be as close as possible to the curvature tensor of the underlying Euclidean shape
before digitization. Digital data form a special case of discrete data with specific properties: (1)
digital data cannot sample the boundary of the Euclidean shape (i.e. they do not lie on the shape
boundary), (2) digital data are distributed around the true sample according to arithmetic noise,
which looks rather uniform over a range [—h, h] from a statistical point of view, where h is the
digitization grid step. Another (weaker) way of stating these characteristics is to say that the
Hausdorft distance between the Euclidean shape and its digitization is some O(h). Of course, the
quality of the estimation should be improved as the digitization step gets finer and finer. This
property is called the multigrid convergence [22, 9]. Tt is thus similar in spirit with the stability
property.

For 2D digital objects, a few approaches achieve multigrid convergence with some hypothe-
ses. We quote the ones based either on binomial convolution principles [29, 15]. Algorithms are
parametrized by the size of the support of the convolution kernel. Convergence theorem holds
when such support size is an increasing function of the grid resolution and some shape character-
istics. The polynomial fitting method of [36] is an almost parameter-free method for estimating
second derivatives on functional digital data, and could perhaps be adapted to estimate the cur-
vature along 2D contours. For 3D digital objects, several empirical methods exist for estimating
curvatures, but none achieves multigrid convergence (e.g. see [27, 17]).

We look for digital curvature estimators with the following properties: (1) provably uniformly
multigrid convergent, (2) accurate in practice, (3) computable in an exact manner, (4) efficiently
evaluable at one point or everywhere, (5) robust to perturbations (i.e. bad digitization around
the boundary, outliers), (6) parameter free. The last point is crucial since it allows the analysis
of shapes without any user supervision. Note that parameter free convergence results have been
obtained for length [40, 23] and normal vector estimation [24, 26, 12].

Paper organization. We review here three different approaches which aim at fulfilling these
goals:

2D: Maximal Digital Circular Arcs (Section 3),
2D /3D: Constrained minimization of squared curvature (Section 4),
2D/3D: digital Integral Invariants (Section 5),

and we discuss there respective qualities in the last part. Note that the presentation of the
different estimators may slightly differ from the original papers. Indeed, the intent is to homogenize
notations and properties.

2. NOTATIONS AND PRELIMINARIES

Shapes, digitization, boundary. In all subsequent sections, the symbol X denotes a family of
compact simply connected subsets of R? with continuous curvature fields. The Gauss digitization
Dig;,(X) of X € X with grid step h is defined as the set of integer points within the dilation of X
by a factor %, i.e. Digy,(X) = (% - X)NZ% Any finite subset Z of Z% is called a digital shape.
Tts digital boundary A(Z) is the set of d — 1-dimensional cubical cells that form the topological
border of U,z Q,, where Q. is the unit cube centered on z. The h-boundary 0, X of a shape X

is the union of the cells of the digital boundary of Dig;, (X), rescaled by a factor h, i.e.

def
X = h-Ucea(big, (x)¢ = 9 Uzeig, (x) L=

Some of these notions are illustrated on Fig. 5.1, right.

Digital contour, multigrid convergence. Geometrically, the h-boundary of X is close (in
the Hausdorff sense) to the topological boundary of X, but it is combinatorially equivalent to the
digital boundary of the digitization of X with step h. In 2D, the digital boundary is often called
digital contour, since it is easy to organize its 1-cells as one or several sequences of 1-cells (called
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Convergence of curvature estimators

linels or cracks depending on authors). Of course, a pizel is a point of Z2 and wvozel is a point of
Z3. The multigrid convergence property for local geometric estimators is formally defined below.

Definition 1. The estimator & is multigrid-convergent toward the geometric quantity ~ for the
family X if and only if, for any X € X, there exits some positive hg such that, for any 0 < h < hg,

Vo € 0X,Vy € 0, X with |ly — z||1 < h,|R(Dig,(X),y, h) — k(X,x)| < 7(h),

where 7x , : R™* — R has null limit at 0. This function defines the speed of convergence of &
toward & at point = of X. The convergence is uniform for X when every 7x , is bounded from
above by a function 7x independent of x € X with null limit at 0.

Medial axis, projection, and reach. For a compact set X C R%, let §x be the distance
function to 0X. The medial azis MAyx of OX is the subset of R? whose points have at least two
closest points on dX. Any point 2 of R? \ MAyx has only one closest point on X which we
denote by £x (). The mapping £x is called projection and is defined for almost every point of RY.
The reach of X [16] is the infimum of {dx(y),y € MAsx}. It is denoted by psx. Note that any
shape of X has a positive reach, which is related to the inverse of the maximal curvature but also
to the gaps between shape parts.

3. CURVATURE BY MAXIMAL DIGITAL CIRCULAR ARCS

The curvature estimator by maximal digital circular arcs (MDCA) was introduced in [38].
Maximal digital straight segments proved to be an excellent basis for tangent estimation. Hence
maximal digital circular arcs is an excellent candidate for curvature estimation.

Let C be some digital contour to a digital shape Z. We look only at connected contours, since
each connected component can be treated separately. In this case, the digital contour is a circular
sequence of linels. Any proper connected part C’ of C' is a sequence of linels, whose discrete length
is its number of linels. Each linel of C’ lies between two edge-adjacent pixels, one pixel belonging
to Z and called interior to C’, the other pixel belonging to Z? \ Z and called exterior to C".

Any part C” of C is a digital circular arc (DCA for short) if and only if the interior and exterior
pixels of C" are circularly separable, i.e. there exists a (Euclidean) circle that either encloses the
interior points without enclosing any exterior points or that encloses the exterior points without
enclosing any interior points. Any map associating to a DCA A the value 0 if the interior and
exterior points of A are linearly separable and the curvature of an arbitrary separating circle
otherwise is denoted by k.

Any DCA A of C is mazimal if and only if all the parts C’ containing A, i.e. such that
A C C" C C, are not a DCA. The set of all maximal DCA (MDCA for short) that lie on a given
contour is unique. Two distinct MDCA have two distinct starting linels and two distinct ending
linels. The MDCA can be ordered according to the position of their first linel in the contour. Let
us then denote by (A;)ie1,...n} the sequence of the n MDCA lying on C.

As a result, a contour C' can be partitioned without ambiguity into a sequence (V;)ieq1,....n}
such that V; is the set of linels closer to m(A;) than to any other linel m(A;), j € {1,...,n} and
j # 1 (the first one with respect to the clockwise orientation of the contour is assumed to be closer
in case of tie).

Definition 2. Let Z C Z? be a digital shape of digital contour C' = A(Z). Let p be any point
of a linel ¢ € C. Then linel ¢ and thus point p belongs to some V;. The parameter-free MDCA
curvature estimator Ripca is defined as

N def
(3.1) Rymoa(Z,p) = k(A;).
The rescaled MDCA curvature estimator Rypca is naturally defined for some point & € 9 X as
. . Loy def 1 ) 1,
(3.2) fvpea (Digy, (X)), 2, ) = E“ﬁDCA(Dlgh(X)7 Ex)

This estimator approaches the curvature at a pointel as the curvature of the most-centered
maximal digital circular arc around it (see Figure 3.1).

We have a limited multigrid convergence result for the MDCA estimator, whose validity depends
on the asymptotic length of maximal digital circular arcs.

173



JACQUES-OLIVIER LACHAUD

0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11

0.1
0.09

0.08 | | | 11 | |
0 10 20 30 40 50 60

Crack index

Curvature

Figure 3.1: The set of MDCAs (12 arcs) is depicted in a) with pieces of rings
along the contour of the digitization of an ellipse having a great axis of 9 pixels
long and a small axis of 6 pixels long. The angle between the main orientation
and the x-axis is equal to 1.9 radians. The curvature plot defined from the set of
MDCAs is shown in b). The blue grid edges are those whose curvature depends
on the radius of the blue MDCA.

Theorem 3 (Theorem 1, [38]). Let X € X. If the Euclidean length of MDCAs along any 0, X
is lower bounded by Q(h®) and upper bounded by O(h%), 0 < b < a < 1/2, then the curvature
estimator Rypoa 18 uniformly multigrid convergent to the curvature K, with T = O(hmin(l_ga’b)).

Although experiments indicate that the length of MDCA falls into the hypothesis of this theo-
rem, this fact is not proven. However, experiments show that this estimator is very accurate and
convergent in practice.

4. CURVATURE BY MINIMIZATION OF SQUARED CURVATURE

A completely different approach to curvature estimation was proposed in [19, 20]. Given a digital
shape Z, the idea is to take into account all the smooth Euclidean shapes whose digitization is Z.
Then, among all these shapes, the most representative shape for curvature estimation is the one
that minimizes its total squared curvature. More precisely, the shape of reference to Z is sought
in the “compactified” family

d . .
X(2) Y {X € X, Dig, (X \ 0X) C Z and Dig, (R? \ X) c 2\ Z}.
It just means that points exactly on the shape boundary may be either digitized “in” or “out”.
The shape of reference X*f(Z) is the solution to the following minimization problem

xref(7) = argmin/ K2ds,
xex(z) Jax

where k is the mean curvature field over 0.X.

Definition 4. Let Z be a digital shape. Let p be any point inside some d — 1-cell of A(Z). The
parameter-free MK2 curvature estimator R} is defined as

A def
(4.1) Ruk2(Z,p) = K}(Xref(Z),faxref(Z) (p)),
where {gxrer(z) is the closest point to p on the boundary of the shape of reference to Z.

The rescaled MK2 curvature estimator Ry is naturally defined for some point & € 9, X as

N . ~ def 1. . 1,

(4.2) ke (Digp (X), 2, h) = E”ﬁ/m? (Digy, (X), EI)

Finding this shape of reference is not a trivial task. In [20], a fast algorithm called GMC and
using digital straight segments provides an approximation with no theoretical guarantees. This
variational problem is also known as the minimization of a Willmore energy under constraints.
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Convergence of curvature estimators

Hence, in [4] two other numerical techniques were proposed to find a solution: (i) a precise one
based on convex optimization (but limited to convex shapes): (ii) a more versatile technique based
on phase field approximation which is also extensible to 3D.

It is rather clear by definition that such an estimator should be uniformly multigrid convergent,
provided one may determine the exact shape of reference. However, whatever the chosen algorithm
or numerical technique, there is yet no theoretical guarantee on this estimator. A comprehensive
2D evaluation shows that it is experimentally multigrid convergent, although it is slightly less
accurate than the MDCA estimator on perfect data. However, it is very stable and presents no
oscillations in the result. It is thus easy to find the dominant points (maxima and minima of
curvatures) and inflexion zones [21]. Another advantage of this approach is that it reconstructs a
shape of reference. We have thus more than just an estimation of the curvature field. Figure 4.1
illustrates MK2 curvature estimations and contour reconstruction for 2D digital shapes, while
Figure 4.2 gives 3D reconstruction results on a digital rabbit.

5. CURVATURE BY DIGITAL INTEGRAL INVARIANTS

Integral invariants were proposed in [35, 34] as a tool to analyze locally the geometry of trian-
gulated mesh. The idea is to define integral quantities over the intersection of the shape X with a
ball B,.(x), centered on the point of interest z and of given radius r (see Fig. 5.1). These integral
quantities are thus functions of the parameter r. For instance, the mean curvature is related to
the volume of X N B,.(z): it participates in the second term of the Taylor expansion of the volume
at 7 = 0. We may note that a very similar tool was proposed earlier in [6].

It is possible to adapt this approach to digital data. In [7], the authors define a curvature
estimator for 2D shapes and a mean curvature estimator for 3D shapes, based on digital integral
invariants. The full curvature tensor is estimated by means of digital integral invariants in [8].

The 2D parameter-free curvature estimator is presented in [28].

Given a digital shape Z C Z¢, the discrete volume at step h is defined as \//&d(z h) def

hiCard(Z).

Definition 5. Given a digital shape Z C Z2, any point € R?, some radius r > 0 and a gridstep
0 < h < r, the II curvature estimator is defined as:

def 3n Vol (B,n(32) N Z,h)

5.1 r1i(Z,z,h) = — .
(5.1) ir11(Z, . h) 2r r3

The 3D extension to this estimator, when Z C Z? and z € R?, is called the II mean curvature
estimator and is written as:

def 8  ANoly(B, () N Z,h)
- 3r rd

(5.2) Ar(Z,x, h)

When one wishes to estimate the full curvature tensor (principal curvatures, principal direc-

tions), we must estimate the second order moments of X N B,.(z), also known as covariance ma-

trix. For integers 14, j, k, the i, j, k-discrete moment of Z at step h is defined as m; ji(Z, h) def

hititk (e )ez x'yIz*. The digital covariance matriz is naturally defined as a centered version
of the tensor of second order discrete moments:

N def Mm2,0,0(Z,h) mi11,0(Z,h) Mio1(Z,h)
J(Z,h) = | m110(Z,h) Mmo20(Z,h) mo11(Z,h)
mi,0,1(Z,h) mo1,1(Z,h) Moo2(Z,h)
1 m1,0,0(Z, h) ro0(Z,h) 1"
——————— | Mmo1,0(Z,h) | ® | Mmo1,0(Z,h)
mo.00(Z, h) mo,0,1(Z, h) mo,0,1(Z, h)

Following the truncated Taylor expansion of [35], Theorem 2, we define estimators of curvatures
from the diagonalization of the digital covariance matrix. Note that principal direction estimators
are simply the two main eigenvectors of this matrix.
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Figure 4.1: Digital shapes (left: contour as white digital path between interior and
exterior pixels), shape of reference obtained with phase field reconstruction (left:
red curve) and comparison of curvature estimations (right) with: true curvature
(red), GMC algorithm (green) and Phase-field technique (cyan).

Definition 6. Given a digital shape Z C Z3, any point « € R?, some radius r > 0 and a gridstep
0 < h < r, the II principal curvature estimators are defined as:

. 6 5 a5, 8

(53) K}‘,II(Z7-'I;7 h) = ﬁ()‘Q - 3)‘1> + 5’
A 6 % ot 8

(5.4) Fra(Zoah) = —5(h = 3h) + =,

where A; and ), are the two greatest eigenvalues of j(BT/h(%m) NZ,h).
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b

iteration 0 iteration 48

Figure 4.2: Phase field reconstruction of 3D digital rabbit.

(a)

Figure 5.1: Integral invariant computation (left) and notations (right) in dimen-
sion 2.

The IT curvature estimator can be made parameter-free. The idea is to use the average discrete
length of all mazimal segments of A(Z). Any part C’ of a digital contour C' is a digital straight
segment (DSS for short) if and only if the interior and exterior pixels of C” are linearly separable,
i.e. there exists a Euclidean straight line that separates interior points from exterior points. Any
DSS M of C is a mazimal segment if and only if all the parts M’ containing M, i.e. such that
M C M’ C C, are not a DSS.

When the digital shape is the digitization of some Euclidean shape X at gridstep h, the discrete
length of maximal segments follows several asymptotic relations [12]. If we denote by Lp(Z) the
average of the discrete length of all maximal segments on the contour A(Z), then the precise fact
used here is

O(h™%) < Lp(Dig,, (X)) < ©(h~ % log(h™1)).

Definition 7. Let Z C Z? be a digital shape, and C = A(Z) its digital contour. Let p be any
point of a linel of C. The parameter-free II curvature estimator k7, is defined as:

ke dif 3 3A(Z,p)
(55) KJII<Z’p) - 2p(Z) - p(Z)3

where p(Z) = (Lp(Z))? and A(Z,p) = Card(B,(z)(p) N Z).
The rescaled II curvature estimator K1y is naturally defined for some point & € 9, X as

~ . ~ def 1 P . 1.
(5.6) Fur(Digy, (X), . h) < -5 (Digy, (X), 2.

We do have several multigrid convergence for these estimators, for the family of shapes X
(compact sets, C3-smooth boundary):
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Figure 5.2: Hlustration of 3D curvature estimation. Mean curvature on rounded
cube (a), Goursat’s surface (b), Leopold surface (¢) and a bunny (d). First prin-
cipal direction and second principal direction Goursat’s surface (e and f) and
Stanford bunny (g and h) .

estimator quantity parameters convergence speed reference
Ry 2D curvature r=~hs o( %) [7]
Ry 3D mean curvature r=h3 O(h% ) [7]
"%i,n 1st principal curvature r= h% O(h% ) 8]
ot 2nd principal curvature r=nhs O(h3) 8]
R 2D unscaled curvature parameter-free O(h§ log?(h™1)) [28]
Rt 2D curvature scale h O(h3 log?(h™1)) [28]

A very comprehensive set of experimental evaluation has been performed on II curvature estima-
tors [7, 8, 28], as well as many comparisons with other approaches (MDCA, binomial convolutions
[29, 15], jet fitting [5]). It is of course experimentally multigrid convergent. It is one of the most
accurate in practice. Furthermore it is robust to noise due to its integral form. Figure 5.2 displays
some results of estimators &}y and directions of /?;714,11 and /%2711. This has been implemented in the
open-source library DGTAL [14].

6. DISCUSSION

We have presented three families of digital curvature estimators. It is clear that the gridstep
h is necessary to get the correct unit for curvature, but we have shown above that we can define
curvature estimators requiring no parameter if we assume simply that a pixel or voxel has unit
length. Even better, we have exhibited one curvature estimator, the parameter-free Il curvature
estimator A7, the multigrid convergence of which is established for the classical family X of compact
shapes with C3-boundary. Experiments show that this estimator competes with the accurate
MDCA estimator but with the advantage of theoretical guarantees as well as a robustness to
noise.

The following table summarizes the respective qualities of each curvature estimator, according
to the desired properties described in the introduction. When an estimator meets fully a property,
it is circled by a frame. The symbol n stands for the number of elements of A(Z). Note that
n = O(h41) if d is the dimension of the space.
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convergence accuracy exact comp. efficient robust parameters

2D estimators

Aipoa ? O(hs) yes no
ke (GMC) ? ~ O(h%) Opt. Hausdorff ~ unit
Ake (PF) ? O(h3) Opt. no
R 11 [O(h%)] {O(h%)] Yes yes need h
A [omd)]  [owmh)] 7o)
3D estimators

Rz (PF) ? ? Opt. iter XO(n%) no A2 unit
Ry [O(h%)] [O(h%)J Yes O(n?) yes need h
’%:a,n [O(h%)] [O(h%U O(n%) yes need h
7 [O(h%ﬂ [O(h%)] Yes O(n%) yes need h

It is clear that the next step is to define parameter-free 3D principal curvature estimators, with
guaranteed multigrid convergence. For now, for this problem, only empirical solutions exist.

Relevance of digital estimators for estimating curvatures in gray-level images. An-
other natural question is the suitability of using digital curvature estimators on 2D or 3D gray-level
image data. In this case, the input data is much richer than a simple binary image, since grey-level
values could potentially be used for determining curvatures. Therefore there exists standard image
derivation techniques to estimate the curvature of isocontours or isosurfaces within images, some
involve derivative filters (e.g. [32]), specialized finite difference schemes [39, 33], or image structure
tensor [37, 25].

Since it is parameter-free, we examine here the upwind finite difference scheme used in Level-Set
(LS) techniques for estimating the mean curvature of some isosurface [39, 33], and we compare its
accuracy to the 3D Integral Invariant (IT) mean curvature estimator. Given a point p of value I(p)
in image I, LS curvature estimator uses grey-level information around p and estimates the mean
curvature at p of the isosurface of value I(p). On the other hand, II estimator processes only the
binary image obtained by thresholding I at the value I(p). We have compared numerically the
respective performance of LS and II on a 3D image of a ball of radius 30, with a linear gradient of
50 at its boundary. We have also add a Gaussian noise of standard deviation o € {0,1,2,3,4,5},
which is a very small perturbation considering that the background is 50 and the foreground is
200. Input data and experiments are illustrated on Figure 6.1. As one can see, even the noise with
deviation 5 is almost imperceptible. If we look however at the average mean curvature computed
by LS and II estimators, we see that their behaviors are dramatically different. LS estimator is
accurate if the image is perfect (average is very close with 0.8% relative error but samples have
a relative deviation of 38%). However, as soon a slight perturbation is added to the data, this
estimator becomes very unstable. On the other hand, the accuracy of II estimator is related to
a correct choice of ball radius (here r =~ 10 gives excellent results), but this estimator is stable
whatever the noise. Note that the discussion above gives indication for the correct radius. Indeed
it is as if we are digitizing a ball of radius 1 with gridstep h = %. A correct Euclidean radius for

1
IT estimator should follow h%, hence the corresponding discrete radius is % =h~3% =~ 9.65.

To conclude, the image curvature estimator of [39, 33] is too unstable for analyzing real images
coming from camera or biomedical devices. More robust techniques using image structure tensor
[37, 25] can be parameterized to address noise in a global manner. The II digital curvature
estimator gives reasonably accurate results even if the gray-level information is not reliable, and
is stable with respect to noise (with zero mean). A natural open question is to extend digital
curvature estimator to gray-level images (hence the shape is defined as a fuzzy characteristic set).
IT estimator may be a good candidate since the covariance matrix can be weighted accordingly.
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Figure 6.1: Mean curvature computation in a 3D gray-level image. Left: Slices
in the input 3D 8-bit gray-level image, which represent a 3D ball of radius 30 with
gradient 50 around its isosurface 128 (top image is perfect data, bottom image is
data damaged with a Gaussian noise of deviation 5, i.e. PSNR=84.5). Middle:
Average and deviation of mean curvature computed with LS estimator. Right:
Average and deviation of mean curvature computed with I estimator, with several
radii.
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