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When does the F-signature exists?(∗)

Ian M. Aberbach (1), Florian Enescu (2)

ABSTRACT. — We show that the F -signature of an F -finite local ring R of
characteristic p > 0 exists when R is either the localization of an N-graded
ring at its irrelevant ideal or Q-Gorenstein on its punctured spectrum.
This extends results by Huneke, Leuschke, Yao and Singh and proves the
existence of the F -signature in the cases where weak F -regularity is known
to be equivalent to strong F -regularity.

RÉSUMÉ. — Nous prouvons dans cet article l’existence de la F -signature
d’un anneau local F -fini R, de caractéristique positive p, quand R est la
localisation à l’unique idéal homogène maximal d’un anneau N-gradué
ou quand R est Q-Gorenstein sur son spectre épointé. Ceci généralise les
résultats de Huneke, Leuschke, Yao et Singh et prouve l’existence de la
F -signature dans les cas où faible et forte F -régularité sont équivalentes.

1. A sufficient condition for the existence of the F-signature

Let (R,m, k) be a reduced, local F -finite ring of positive characteristic
p > 0 and Krull dimension d. Let

R1/q = Raq ⊕Mq

be a direct sum decomposition of R1/q such that Mq has no free direct sum-
mands. If R is complete, such a decomposition is unique up to isomorphism.
Recent research has focused on the asymptotic growth rate of the numbers
aq as q → ∞. In particular, the F -signature (defined below) is studied in [7]
and [3], and more generally the Frobenius splitting ratio is studied in [2].
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For a local ring (R,m, k) , we set α(R) = logp[kR : kpR]. It is easy to
see that, for an m-primary ideal I of R, λ(R1/q/IR1/q) = λ(R/I [q])/qα(R),
where λ(−) represents the length function over R.

We would like to first define the notion of F -signature as it appears in [3]
and [7].

Definition 1.1. — The F -signature of R is s(R) = limq→∞
aq

qd+α(R)
, if

it exists.

The following result, due to Aberbach and Leuschke [3], holds:

Theorem 1.2. — Let (R,m, k) be a reduced Noetherian ring of positive
characteristic p. Then lim infq→∞ aq/q

d+α(R) > 0 if and only if
lim supq→∞ aq/q

d+α(R) > 0 if and only if R is strongly F -regular.

The question of whether or not, in a strongly F -regular ring, s(R) exists,
is open. We show in this paper that its existence is closely connected to the
question of whether or not weak and strong F -regularity are equivalent.

Smith and Van den Bergh ([10]) have shown that the F -signature of R
exists when R has finite Frobenius representation type (FFRT) type, that
is, if only finitely many isomorphism classes of indecomposable maximal
Cohen-Macaulay modules occur as direct summands of R1/q for any q = pe.
Yao has proven that, under mild conditions, tight closure commutes with
localization in a ring of FFRT type, [11]. Moreover, Huneke and Leuschke
proved that if R is also Gorenstein, then the F -signature exists, [7]. Yao
has recently extended this result to rings that are Gorenstein on their punc-
tured spectrum, [12]. Singh has also shown that the F -signature exists for
monomial rings, [9].

Let (R,m) be an approximately Gorenstein ring. This means that R has
a sequence of m-primary irreducible ideals {It}t cofinal with the powers of m.
By taking a subsequence, we may assume that It ⊃ It+1. For each t, let ut be
an element of R which represents a socle element modulo It. Then there is,
for each t, a homomorphism R/It ↪→ R/It+1 such that ut+It �→ ut+1+It+1.
The direct limit of the system will be the injective hull E = ER(R/m) and
each ut will map to the socle element of E, which we will denote by u.
Hochster has shown that every excellent, reduced local ring is approximately
Gorenstein ([5]).
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Aberbach and Leuschke have shown that, for every q, there exists t0(q),
such that

aq/(qd+α(R)) = λ(R/(I [q]
t : uqt ))/q

d,

for all t � t0(q) (see [3], p. 55).

The situation when t0(q) can be chosen independently of q is of special
interest.

Definition 1.3. — We say that R satisfies Condition (A), if there exist
a sequence of irreducible m-primary ideals {It} and a t0 such that, for all
t � t0 and all q

(I [q]
t : uqt ) = (I [q]

t0 : uqt0).

Proposition 1.4. — Let (R,m, k) be a local reduced F -finite ring. If R
satisfies Condition A, then the F -signature exists.

Proof. — We know that R is approximately Gorenstein and hence we
will use the notation fixed in the paragraph above.

As explained above, Condition A implies that there exists t0, indepen-
dent of q, such that

aq/(qd+α(R)) = λ(R/(I [q]
t0 : uqt0))/q

d,

for all q.

But λ(R/(I [q]
t0 : uqt0)) = λ(R/I [q]

t0 ) − λ(R/(It0 + ut0R)[q]). Dividing by
qd and taking the limit as q → ∞ yields s(R) = eHK(It0 , R) − eHK(It0 +
ut0R,R). �

Now we would like to concentrate on another condition, Condition (B),
that appeared first in the work of Yao. First we need to introduce some
notation.

Assume that E is the injective hull of the residue field k. By R(e) we
denote the R-bialgebra whose underlying abelian group equals R and the left
and right R-multiplication is given by a · r ∗ b = arbq, for a, b ∈ R, r ∈ R(e).

Let k = Ru → E be the natural inclusion and consider the natural
induced map φe : R(e) ⊗R E → R(e) ⊗R (E/k). Then aq/q

α(R) = λ(ker(φe))
(by Aberbach-Enescu, Corollary 2.8 in [2], see also Yao’s work [12]).
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One can in fact see that

λ(ker(φe)) = λ(R/(c ∈ R : c⊗ u = 0 in R(e) ⊗R E)) = λ(R/ ∪t (I [q]
t : uqt )).

Definition 1.5. — We say that R satisfies Condition (B) if there exists
a finite length submodule E′ ⊂ E such that, if
ψe : R(e) ⊗R E′ → R(e) ⊗R E′/k, then λ(ker(φe)) = λ(ker(ψe)), for all e.

Yao [12] has shown that Condition (B) implies that the F -signature of
R exists.

Proposition 1.6. — Let (R,m, k) be a local reduced F -finite ring. Then
Conditions (A) and (B) are equivalent.

Proof. — Assume that Condition (A) holds. Then one can take
E′ = R/It0 and then Condition (B) follows.

If Condition (B) holds, then take t0 large enough such that
E′ ⊂ Im(R/It0 → E).

As noted above, one can compute the length of the kernel of ψe as the
colength of {c ∈ R : c⊗u = 0 in R(e) ⊗RE′}. Since R/It0 injects into E we
see that {c ∈ R : c ⊗ u = 0 in R(e) ⊗R E′} is a subset of {c ∈ R : c ⊗ u =
0 in R(e) ⊗R R/It0} = (I [q]

t0 : uqt0).

Since (I [q]
t0 : uqt0) ⊂ (I [q]

t : uqt ) for all t � t0, we see that Condition (B)
implies that (I [q]

t0 : uqt0) = (I [q]
t : uqt ) for all t � t0, which is Condition (A).

�

2. N-Graded rings

Let (R,m) be a Noetherian N-graded ring R = ⊕n�0Rn, where R0 = k
is an F -finite field of characteristic p > 0.

For any graded R-module M one can define a natural grading on
R(e)⊗M : the degree of any tensor monomial r⊗m equals deg(r)+q deg(m).

In what follows we will need the following important Lemma by Lyubeznik
and Smith ([8], Theorem 3.2):
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Lemma 2.1. — Let R be an N-graded ring and M,N two graded R-
modules. Then there exists an integer t depending only on R such that
whenever

M → N

is a degree preserving map which is bijective in degrees greater than s, then
the induced map

R(e) ⊗M → R(e) ⊗N

is bijective in degrees greater than pe(s+ t).

Let E be the injective hull of Rm. In fact, E is also the injective hull of
R/m over R and as a result is naturally graded with socle in degree 0. We
can write E = ⊕n�0En.

Let t be as in Lemma 2.1, and let s � −t − 1. Obviously the map
E′ = ⊕s�n�0En → E = ⊕n�0En is bijective in degrees greater than s. So
by Lemma 2.1, the map R(e) ⊗E′ → R(e) ⊗E is bijective in degrees greater
than pe(s+ t) � −pe.

Theorem 2.2. — Let R be an N-graded reduced ring over an F -finite
field k of positive characteristic. Then Condition (B) is satisfied by R and
hence the F -signature of R exists.

Proof. — Let E be the injective hull of k = R/m over Rm. As above,
E = ⊕n�0En, where 0 is the degree of the socle generator u of E.

Using the notation introduced above, we will let s = −t − 1 and
E′ = ⊕s�n�n0En → E. So, R(e) ⊗ E′ → R(e) ⊗ E is bijective in degrees
greater than −pe. In particular it is bijective in degrees greater or equal
to 0.

We have the following exact sequences:

0 → k = Ru → E → E/k → 0

and
0 → k = Ru → E′ → E′/k → 0.

After tensoring with R(e), we get the exact sequences

R(e) ⊗ k = R(e) ⊗Ru → R(e) ⊗ E
φe→ R(e) ⊗ E/k → 0

and
R(e) ⊗ k = R(e) ⊗Ru → R(e) ⊗ E′ ψe→ R(e) ⊗ E′/k → 0.
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One can easily see that ker(φe) and ker(ψe) are the submodules gener-
ated by 1 ⊗ u in R(e) ⊗ E and R(e) ⊗ E′, respectively.

The degree of 1⊗ u is q · 0 = 0 and we have noted that the natural map
R(e) ⊗ E′ → R(e) ⊗ E is bijective in degrees greater than −pe. This shows
that ker(φe) � ker(ψe) and hence Condition (B) is satisfied. �

3. Q-Gorenstein rings

We turn now to showing that Condition (A) holds in strongly F -regular
local rings which are Q-Gorenstein on the punctured spectrum. Let (R,m, k)
be such a ring of dimension d, and assume that R has a canonical module
(e.g. R is complete). In this case R has an unmixed ideal of height 1, say
J ⊆ R, which is a canonical ideal. We may pick an element a ∈ J which
generates J at all minimal primes of J , and then an element x2 ∈ m which
is a parameter on R/J such that x2J ⊆ aR. It is easy to see that then
xnJ (n) ⊆ anR for all n � 1 (where J (n) is the height one component of Jn).
The condition that R is Q-Gorenstein on the punctured spectrum implies
that there is an integer h and two sequences of elements x3, . . . , xd ∈ m and
a3, . . . , ad ∈ J (h) such that xiJ (h) ⊆ aiR for 3 � i � d, and x2, . . . , xd is a
s.o.p. on R/J . We may then pick x1 ∈ J such that x1, . . . , xd is an s.o.p. for
R. See [1], section 2.2 for more detail. Then by [1], Lemma 2.2.3 we have
that for any N � 0 and any n � 0,

(J (nh), xN2 , . . . , x̂
N
i , . . . , x

N
d ) : x∞i = (J (nh), xN2 , . . . , x̂

N
i , . . . , x

N
d ) : xni .

(3.1)

Theorem 3.1. — Let (R,m, k) be an F -finite strongly F -regular ring
which is Q-Gorenstein on the punctured spectrum. Then R satisfies Condi-
tion (A). In particular the F -signature of R exists.

Proof. — If R is not complete, we observe that, since R is excellent, R̂
is strongly F -regular and Q-Gorenstein on the punctured spectrum. If {It}
is a sequence of ideal in R̂ showing condition (A) in R̂, then {It ∩R} does
so for R. Thus we will assume that R is complete.

Let J , h, and x1, . . . , xd be as discussed above. Let It = (xt−1
1 J, xt2, . . . , x

t
d).

Since xn1J
∼= J as R-modules, the quotient R/xn1J is Gorenstein. The

hypothesis that x2, . . . , xd are parameters on R/J and R/x1R (hence on
R/xn1J) then shows that It is irreducible (see [4], Proposition 3.3.18). The
sequence {It} is then a sequence of m-primary irreducible ideals cofinal with
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the powers of m. If u1 represents the socle element of I1, then we may take
ut = (x1 · · ·xd)t−1u1 to represent the socle element of It. We will show that
t0 may be taken to be 3.

Suppose that c ∈ I
[q]
t : uqt for some q. We will show that c ∈ I

[q]
3 : uq3.

Raising to the q′th power we have cq
′
uqq

′

t = cq
′ (

(x1 · · ·xd)t−1u1

)qq′ ∈ I
[qq′]
t

= (xt−1
1 J, xt2, . . . , x

t
d)

[qq′]. Hence cq
′ (

(x2 · · ·xd)t−1u1

)qq′ ∈ (xt2, . . . , x
t
d)

[qq′] :

x
(t−1)qq′

1 + (J, xt2, . . . , x
t
d)

[qq′] = (J, xt2, . . . , x
t
d)

[qq′].

Write qq′ = nq′h+rq′ with 0 � rq′ < h. Repeated application of equation
3.1 (using 1 rather than h for x2) gives

cq
′
((x2 · · ·xd)u1)qq

′ ∈ (J (nq′h), x2qq′

2 , . . . , x2qq′

d ). (3.2)

Let d ∈ J (h) ⊆ J (rq′ ). Multiplying by xqq
′

2 and using that xqq
′

2 J (qq′) ⊆
aqq

′
R ⊆ J [qq′] we have dcq

′ (
(x2 · · ·xd)2u1

)qq′ ∈ (J, x3
2, . . . , x

3
d)

[qq′]. Multi-
plying by x2qq′

1 shows that dcq
′
uqq

′

3 = d(cuq3)
q′ ∈ (I [q]

3 )[q
′]. Thus cuq3 ∈

(I [q]
3 )∗ = I

[q]
3 , as desired. �
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