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The inviscid limit for density-dependent
incompressible fluids(∗)

Raphaël Danchin (1)

ABSTRACT. — This paper is devoted to the study of smooth flows of
density-dependent fluids in RN or in the torus TN . We aim at extending
several classical results for the standard Euler or Navier-Stokes equations,
to this new framework.

Existence and uniqueness is stated on a time interval independent
of the viscosity µ when µ goes to 0. A blow-up criterion involving the
norm of vorticity in L1(0, T ; L∞) is also proved. Besides, we show that if
the density-dependent Euler equations have a smooth solution on a given
time interval [0, T0], then the density-dependent Navier-Stokes equations
with the same data and small viscosity have a smooth solution on [0, T0].
The viscous solution tends to the Euler solution when the viscosity µ goes
to 0. The rate of convergence in L2 is of order µ.

An appendix is devoted to the proof of elliptic estimates in Sobolev
spaces with positive or negative regularity indices, interesting for their
own sake.

RÉSUMÉ. — Cet article est consacré à l’étude des fluides incompressibles
à densité variable dans RN ou TN . On cherche à généraliser plusieurs
résultats classiques pour les équations d’Euler et de Navier-Stokes incom-
pressibles.

On établit un résultat d’existence et d’unicité sur un intervalle de
temps indépendant de la viscosité µ du fluide ainsi qu’un critère d’explosion
faisant intervenir la norme du tourbillon dans L1(0, T ; L∞). On montre
en outre que si les équations d’Euler ont une solution régulière sur un
intervalle de temps [0, T0] donné alors les équations de Navier-Stokes avec
mêmes données et petite viscosité ont une solution régulière sur le même
intervalle de temps. De plus la solution visqueuse tend vers la solution
d’Euler quand la viscosité tend vers 0. Le taux de convergence dans L2

est de l’ordre de µ.
En appendice, on démontre des estimations a priori de type ellip-

tique dans des espaces de Sobolev à indice positif ou négatif.
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0. Introduction

There is an important literature devoted to the mathematical study of
the so called incompressible Navier-Stokes equations{

∂tv + v · ∇v − µ∆v + ∇Π = 0,
div v = 0, (NSµ)

and of the limit system (E) def= (NS0), called incompressible Euler equations:{
∂tv + v · ∇v + ∇Π = 0,
div v = 0. (E)

Above, the parameter µ � 0 denotes the viscosity and v = v(t, x) ∈ R
N

(where t � 0 is the time and x ∈ R
N is the space variable) stands for the

velocity field. The term ∇Π (the gradient of the pressure) may be seen as
the Lagrange multiplier associated to the constraint div v = 0.

Let us give a (non exhaustive) list of questions which have been ad-
dressed:

1. Local or global well-posedness for (E) and (NSµ).
Local well-posedness for both systems holds true in the Sobolev space
Hs with s > 1+N/2 (see e.g. [12]). In the limit µ going to 0, estimates
independent of the viscosity on a fixed time interval may be proved.
In dimension N = 2, all these results are global in time.

2. Derivation of blow-up criteria.
According to a celebrated paper by J. Beale, T. Kato and A. Majda
(see [2]), no breakdown may occur at time T unless the vorticity
becomes unbounded when the time tends to T .

3. Inviscid limit: A “weak result”.
The construction of local solutions corresponding to smooth enough
data combined with a result of convergence in L2 norms gives “for
free” the existence of a fixed interval [0, T ] on which the viscous so-
lution vµ tends strongly to the inviscid solution v when µ goes to 0
(see e.g. [12]). Moreover, if u0 ∈ Hs with s large enough, the rate of
convergence in L2 is of order µ (see e.g. [5]).

4. Inviscid limit: A “strong result”
One can prove that, if the solution E remains smooth on some given
interval [0, T0] then (NSµ) with small µ has a solution on the same
time interval. Besides, strong convergence holds true on [0, T0] (see
e.g. [5]).
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Though very exciting from a mathematical viewpoint, studying (NSµ)
and (E) is somewhat disconnected from physical applications. Indeed, a
fluid is hardly homogeneous or incompressible. In the present paper, we are
concerned with the generalization of results 1., 2., 3. and 4. to incompressible
inhomogeneous fluids.

The fluid is now described by its velocity field u = u(t, x) and its density
ρ = ρ(t, x) ∈ R

+ and satisfies the density-dependent incompressible Navier-
Stokes equations:

∂tρ+ div ρu = 0,
∂t(ρu) + div(ρu⊗ u) − µ∆u+ ∇Π = ρf,
div u = 0,

(INSµ)

or the density-dependent incompressible Euler equations (IE) def= (INS0):
∂tρ+ div ρu = 0,
∂t(ρu) + div(ρu⊗ u) + ∇Π = ρf,
div u = 0.

(IE)

Equations (INSµ) and (IE) are supplemented with initial conditions
(ρ, u)|t=0 = (ρ0, u0), and the term f (which represents external forces) is
given. We shall assume throughout that the space variable x belongs to the
torus T

N or to the whole space R
N .

Few papers are devoted to density-dependent incompressible fluids. In
the viscous case however, the existence of global weak solutions has been
stated for long (see [1], [15] or [10] and the references therein). A few pages
in the book by P.-L. Lions (see [15]) are devoted to the density-dependent
Euler equations (IE). The study of smooth viscous solutions has been done
by O. Ladyzhenskaya and V. Solonnikov in W s,p spaces with p > N , and
by H. Okamoto in Sobolev spaces Hs (see [14] and [11]). In both papers,
system (INSµ) is considered in a smooth bounded domain with Dirichlet
boundary conditions on the velocity.

In the present paper, we show that (IE) and (INSµ) are locally well-
posed for u0 ∈ Hs, ρ0 such that infx ρ0(x) > 0 and (ρ0−c) ∈ Hs (where c is a
positive constant which may be assumed to be 1 with no loss of generality),
and f ∈ L1

loc(0, T ;Hs) with s > 1 + N/2 (the limit case s = 1 + N/2
is also addressed). As for smooth enough solutions, one has infx ρ(t, x) =
infx ρ0(x), one can define a def= ρ−1 − 1 so that system (INSµ) with data
bounded away from zero rewrites

∂ta+ u · ∇a = 0,
∂tu+ u · ∇u+ (1 + a)(∇Π − µ∆u) = f,
div u = 0.

(ĨNSµ)
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Let us introduce the functional framework needed in the statement of our
main well-posedness result:

Definition 0.1. — For s ∈ R, µ � 0 and T > 0, we denote

F
s
T,µ

def
=

{
(a, u,∇Π) ∈ C̃T (H

s
) ×

(
C̃T (H

s
)

)N

×
(
L̃

1
T (H

s
)

)N

| µu ∈
(
L̃

1
T (H

s+2
)

)N}
,

endowed with the norm

‖(a, u,∇Π)‖F s
T,µ

def= ‖a‖
L̃∞

T
(Hs)

+ ‖u‖
L̃∞

T
(Hs)

+ µ‖u‖
L̃1

T
(Hs+2)

+ ‖∇Π‖
L̃1

T
(Hs)

.

When µ = 0, we shall alternately denote F s
T,µ by F s

T .

Above, L̃1
T (Hσ) is a functional space containing L1(0, T ;Hσ) (but still

rather close to L1(0, T ;Hσ)), the notation L̃∞
T (Hσ) stands for a (large)

subspace of L∞
T (Hσ) and C̃T (Hσ) = L̃∞

T (Hσ) ∩ C([0, T ];Hσ). The reader
will find the rigorous definition in section 1. We shall also use the notation
L̃1
loc(H

σ) = ∩T>0L̃
1
T (Hσ).

Our main well-posedness result reads:

Theorem 0.2. — Let γ > 0, u0 ∈ H
N
2 +1+γ with div u0 = 0, f ∈

L̃1
loc(H

N
2 +1+γ) and ρ0 such that

ρ
def= inf

x
ρ0(x) > 0, ρ

def= sup
x
ρ0(x) <∞ and a0

def= ρ−1
0 −1 ∈ H N

2+1+γ .

For all µ � 0, there exists a positive T such that system (INSµ) has a unique
solution (ρ, u,∇Π) on the time interval [0, T ] with ρ � ρ � ρ, (a, u,∇Π) ∈
F

N
2 +1+γ

T,µ and ‖(a, u,∇Π)‖F s
T,µ

bounded independently of µ. Moreover, the
energy equality is satisfied:

‖√ρu(t)‖2
L2 +2µ

∫ t

0

‖∇u(τ)‖2
L2 dτ = ‖√ρ0u0‖2

L2 +2
∫ t

0

∫
(ρf·u)(τ, x) dx dτ.

(0.1)
The time T may be bounded from below by a constant depending only on γ,
N , µ, ρ, ρ and on the norm of the data. For small µ, this bound may be
chosen independent of µ.

Remark 0.3. — In the case µ > 0, local well-posedness may also be
proved under the assumption that f belongs to L̃mloc(H

N
2 −1+γ+ 2

m ) for some
m ∈ [1,+∞].

– 640 –
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Remark 0.4. — The limit case s = 1+N/2 may be handled by consider-

ing data in the Besov space B1+ N
2

2,1 rather than in H1+ N
2 . A similar approach

has been used by M. Vishik in [17] for the “standard” incompressible Euler
equations (E). The reader is referred to section 7 for more details.

The proof of theorem 0.2 relies on estimates for an appropriate lineariza-
tion of (ĨNSµ). The first equation reduces to a mere transport equation,
and the linearization of the momentum equation is a non-stationary Stokes
equation which contains both a convective term and a second order term
with variable coefficients (see section 3).

Taking advantage of theorem 0.2, one can prove that, for data satisfying
the assumptions above, the solution (ρµ, uµ,∇Πµ) to (INSµ) tends strongly
to the corresponding solution (ρ, u,∇Π) of (IE) with a rate of convergence
of order (at least) µ in L2 (see section 2). Therefore, results 1. and 3. extend
to density-dependent fluids.

Let us now discuss the possible breakdown of solutions. For that, we first
have to define what we mean by a smooth solution:

Definition 0.5. — For data (a0, u0, f) in (H
N
2 +1+γ)N × H N

2 +1+γ ×
(L̃1

loc(H
N
2 +1+γ))N with div u0 = 0 and (1 + a0)−1 � ρ > 0, we say that

(ρ, u,∇Π) is a smooth solution of (INSµ) on [0, T ) if (a, u,∇Π) belongs

to F
N
2 +1+γ

T ′,µ for all T ′ < T and satisfies (ĨNSµ) on [0, T ) in the sense of
distributions. The time

T � def= sup
{
T > 0 | (a, u,∇Π) is a smooth solution of (ĨNSµ) on [0, T )

}
is called lifespan of the solution (ρ, u,∇Π).

Let us now state the generalization of property 2. to non-homogeneous
fluids:

Proposition 0.6. — Let γ > 0. Assume that ρ0 is bounded away from
0, that a0, u0 ∈ H N

2 +1+γ (with div u0 = 0) and that f ∈ L̃1
loc(H

N
2 +1+γ). Let

(ρ, u,∇Π) be a smooth solution to (INSµ) on [0, T ). If in addition

curlu ∈ L1(0, T ;L∞) and{
∇a ∈ L̃∞

T (H
N
2 +γ) if µ = 0,

∇a ∈ L∞(0, T ;H
N
2+α−1) for some α > 0 if µ > 0,

then (ρ, u,∇Π) may be continued beyond T into a smooth solution of (INSµ).
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Remark 0.7. — The above criterion may be seen as an extension of the
Beale-Kato-Majda criterion (see [2]) to density-dependent fluids. The condi-
tion on curlu is the same as for homogeneous fluids. Due to inhomogeneity
however, an additional condition on ρ is required.

Combining proposition 0.6 with theorem 0.2, we get the following im-
portant result:

Corollary 0.8. — Given H∞ data with density bounded away from
zero, systems (INSµ) and (IE) have a (unique) local solution which belongs
to F s

T,µ for all s ∈ R.

Let us now focus on property 4. (i.e the strong result pertaining to
the inviscid limit). Once again, it may be generalized to density-dependent
fluids:

Theorem 0.9. — Let γ, ρ0, u0 and f satisfy the assumptions of the-
orem 0.2. Assume that the density-dependent Euler equations with data
(ρ0, u0, f) have a unique solution (ρ, u,∇Π) on [0, T0] with (a, u,∇Π) ∈
F

N
2 +1+γ

T0
.

There exists µ0 > 0 depending only on ‖(a, u,∇Π)‖
F

N
2 +1+γ

T0

, ‖f‖
L̃1

T0
(H

N
2 +1+γ)

,

T0, ρ, ρ, γ and N , and such that for all µ ∈ (0, µ0], system (INSµ) has a

unique solution (ρµ, uµ,∇Πµ) on [0, T0] with (aµ, uµ,∇Πµ) ∈ F
N
2 +1+γ

T0,µ
and

norm independent of µ. Moreover, (aµ, uµ,∇Πµ) tends to (a, u,∇Π) in

C̃T0(H
N
2 +1+γ′

)×
(
C̃T0(H

N
2 +1+γ′

)
)N

×
(
L̃1
T0

(H
N
2 +1+γ′

)
)N

for all γ′ < γ.

Let us conclude with a few remarks.

Remark 0.10. — For the sake of simplicity, we restricted ourselves to the
framework of Sobolev spaces Hs. Our results may be easily carried out to
Besov spaces Bs

2,r with 1 � r � ∞ and s > 1 +N/2. We also believe that
most of the results presented here are not specific to spaces built on L2 and
may be generalized to the Lp framework.

Remark 0.11. — The final conclusion is that results 1., 2., 3. and 4. are
true for density-dependent incompressible fluids, locally in time. Compare
to homogeneous fluids however, we lack global results in dimension N = 2.
Let us mention that in the viscous case, global existence of strong solutions
holds true in dimension N = 2, and in dimension N � 3 for small data (see
[7] and [8]). Constructing global solutions for (IE) is an open question.
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Our paper is structured as follows.

Section 1 is devoted to the presentation of the functional tool box:
Littlewood-Paley decomposition, product laws in Sobolev and Besov spaces,
elementary results on paradifferential calculus, etc. In section 2, we focus on
energy estimates associated to systems (INSµ) and (IE). We get a weak-
strong uniqueness result and state that the rate of convergence in L2 norm
for the inviscid limit pertaining to smooth enough solutions to (INSµ) is of
order µ (see corollary 2.4 and remark 6.2). The following section is devoted
to the study of linearized equations associated to (ĨNSµ). The proof of local
well-posedness for (INSµ) is postponed to section 4. In section 5, we give
a blow-up criterion for smooth solutions. In section 6, we prove estimates
for the difference between a viscous solution and an inviscid solution. This
in particular yields theorem 0.9. The last section is devoted to the critical
case γ = 0. Some technical lemmas are postponed in the appendix. There
we prove new estimates in Sobolev spaces for the elliptic equation satisfied
by the pressure, which are of independent interest.

Notation : Summation convention on repeated indices will be used.

Throughout the paper, C stands for a “harmless constant” whose pre-
cise meaning is clear from the context. We sometimes alternately use the
notation A � B instead of A � CB, and A ≈ B means that A � B and
B � A. We denote x ∨ y = min(x, y).

The notation P stands for the L2 projector on solenoidal vector-fields,
while Q stands for the L2 projector on potential vector-fields. Of course,
one has Pu+ Qu = u whenever u is a vector-field with coefficients in L2.

Acknowledgments: The author is grateful to the anonymous referee for
his careful reading and constructive criticisms.

1. The functional tool box

Most of the results presented in the paper rely on a Littlewood-Paley
decomposition. Let us briefly explain how it may be defined in the case
x ∈ R

N (for periodic boundary conditions, see e.g [6]).

Let (χ, ϕ) be a couple of C∞ functions with

Suppχ ⊂ {|ξ| � 4
3
}, Suppϕ ⊂ {3

4
� |ξ| � 8

3
} and χ(ξ) +

∑
q∈IN

ϕ(2−qξ) = 1.
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Let ϕq(ξ) = ϕ(2−qξ), hq = F−1ϕq and ȟ = F−1χ. The dyadic blocks are
defined by

∆qu
def= 0 if q � −2, ∆−1u

def= χ(D)u =
∫

RN

ȟ(y)u(x− y) dy,

∆qu
def= ϕ(2−qD)u =

∫
RN

hq(y)u(x− y) dy if q � 0.

We also introduce the low-frequency cut-off Squ
def= χ(2−qD)u. As ϕ(ξ) =

χ( ξ2 ) − χ(ξ), it is clear that we have

Squ =
∑

k�q−1

∆ku.

We shall make an extensive use of the following obvious fact:

∆k∆qu ≡ 0 if |k − q| � 2 and ∆k(Sq−1u∆qu) ≡ 0 if |k − q| � 5.(1.1)

A number of functional spaces may be characterized in terms of Littlewood-
Paley decomposition. Let us give the definition of (non-homogeneous) Besov
spaces:

Definition 1.1. — For s ∈ R, (p, r) ∈ [1,+∞]2 and u ∈ S ′(RN ), we
set

‖u‖Bs
p,r

def=
( ∑
q�−1

2rsq ‖∆qu‖rLp

) 1
r

,

with the usual modification if r = +∞.

We then define the Besov space Bs
p,r =

{
u ∈ S ′ | ‖u‖Bs

p,r
< +∞

}
.

The definition of Bs
p,r does not depend on the choice of the Littlewood-

Paley decomposition. One can further remark that Hs coincide with Bs
2,2.

Proposition 1.2. — The following properties hold true:

i) Derivatives: we have ‖∇u‖Bs−1
p,r

� ‖u‖Bs
p,r
.

ii) Sobolev embeddings: If p1 � p2 and r1 � r2 then Bs
p1,r1 ↪→ B

s−N( 1
p1

− 1
p2

)
p2,r2 .

If s1 > s2 and 1 � p, r1, r2 � +∞, then Bs1
p,r1 ↪→ Bs2

p,r2 .

iii) Algebraic properties: for s > 0, Bs
p,r ∩L∞ is an algebra. So does Hs

if s > N/2.

iv) Real interpolation: (Bs1
p,r, B

s2
p,r)θ,r′ = B

θs2+(1−θ)s1
p,r′ .
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Let us recall some classical estimates in Sobolev spaces for the product
of two functions.

Proposition 1.3. — The following estimates hold true:

‖uv‖Hs � ‖u‖L∞ ‖v‖Hs + ‖v‖L∞ ‖u‖Hs if s > 0, (1.2)

‖uv‖Hs1 � ‖u‖Hs1‖v‖Hs2 if s1 + s2 > 0, s1 � N

2
and s2 >

N

2
, (1.3)

‖uv‖
Hs1+s2− N

2
� ‖u‖Hs1‖v‖Hs2 if s1 + s2 > 0, and s1, s2 <

N

2
, (1.4)

‖uv‖Hs � ‖u‖Hs‖v‖
L∞∩H

N
2

if |s| < N

2
. (1.5)

More accurate results may be obtained by mean of (basic) paradifferen-
tial calculus, a tool which was introduced by J.-M. Bony in [3].

The paraproduct between f and g is defined by

Tfg
def=

∑
q∈IN

Sq−1f∆qg.

Denoting R(f, g) def=
∑
q�−1

∆qf ∆̃qg with ∆̃qg
def= ∆q−1g + ∆qg + ∆q+1g,

and T ′
fg

def= Tfg +R(f, g), we have the following so-called Bony’s decom-
position:

fg = Tfg + Tgf +R(f, g) = T ′
fg + Tgf.

A bunch of continuity results for the paraproduct T and the remainder R
are available. We have for instance the following results (see the proof in
[16], section 4.4):

Proposition 1.4. — For all s ∈ R, σ > 0 and 1 � p, r � +∞, the
paraproduct is a bilinear continuous application from B−σ

∞,∞×Bs
p,r to Bs−σ

p,r ,
and from L∞ ×Bs

p,r to Bs
p,r.

The remainder is bilinear continuous from Bs1
p,r × Bs2

p,∞ to B
s1+s2−N

p
p,r

whenever s1 + s2 > N min(0,−1 + 2/p).
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Remark 1.5. — According to (1.1), the paraproduct rewrites

Tuv =
∑
q�1

Sq−1u∆q

(
(1 − χ)(D)v

)
.

Thus, the low frequencies of v do not matter in the bilinear estimates for
the paraproduct. Therefore, one has for instance for all s ∈ R,

‖Tuv‖Bs
p,r

� ‖u‖L∞ ‖∇v‖Bs−1
p,r
.

Remark 1.6. — By decomposing uv into

uv = T
ũ
v + Tvũ+R(ũ, v) + v∆−1u with ũ

def= u− ∆−1u,

and combining proposition 1.4 and the above remark, one can also prove
that

‖uv‖
Hσ∨( N

2 +α) �
(
‖u‖L∞ + ‖∇u‖

H
N
2 +α−1

)
‖v‖Hσ

whenever σ + N
2 + α > 0.

The study of non stationary PDE’s requires spaces of type LρT (X) def=
Lρ(0, T ;X) for appropriate Banach spaces X. In our case, we expect X to
be a Sobolev or a Besov space, so that it is natural to localize the equations
through Littlewood-Paley decomposition. We then get estimates for each
dyadic block and perform integration in time. That remark naturally leads
to the following definition (introduced in [4]):

Definition 1.7. — For ρ ∈ [1,+∞], s ∈ R and T ∈ [0,+∞], we set

‖u‖
L̃ρ

T
(Hs)

def=
( ∑
q�−1

22qs

(∫ T

0

‖∆qu(t)‖ρL2 dt

) 2
ρ
) 1

2

and denote by L̃ρT (Hs) the subset of distributions u of S ′(0, T × R
N ) (or

S ′(0, T × T
N )) with finite ‖u‖

L̃ρ
T

(Hs)
norm. When T = +∞, the index T

will be omitted.

Of course, one can also define the spaces L̃ρT (Bs
p,r) pertaining to the

Besov space Bs
p,r.

Let us remark that by virtue of Minkowski inequality, we have

‖u‖
L̃ρ

T
(Hs)

� ‖u‖Lρ
T

(Hs) if ρ � 2 and ‖u‖Lρ
T

(Hs) � ‖u‖
L̃ρ

T
(Hs)

if ρ � 2,
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and one can easily prove that, whenever ε > 0,

‖u‖
L̃ρ

T
(Hs)

� ‖u‖Lρ
T

(Hs+ε) if ρ � 2

and ‖u‖Lρ
T

(Hs) � ‖u‖
L̃ρ

T
(Hs+ε)

if ρ � 2. (1.6)

We will often use the following interpolation inequality:

‖u‖
L̃ρ

T
(Hs)

�‖u‖θ
L̃

ρ1
T

(Hs1 )
‖u‖1−θ

L̃
ρ2
T

(Hs2 )

with
1
ρ

=
θ

ρ1
+

1−θ
ρ2

and s = θs1 + (1−θ)s2. (1.7)

Remark 1.8. — The product, the paraproduct and the remainder are
continuous in a number of spaces L̃ρT (Bs

p,r). The indices s, p and r just
behave like in propositions 1.3 and 1.4, and the indices pertaining to the time
integrability behave according to Hölder inequality. For example inequality
(1.2) becomes

‖uv‖
L̃ρ

T
(Hs)

� ‖u‖Lρ1
T

(L∞)‖v‖L̃ρ2
T

(Hs)
+ ‖v‖Lρ2

T
(L∞)‖u‖L̃ρ1

T
(Hs)

whenever s > 0, 1 � ρ, ρ1, ρ2 � +∞ and 1/ρ = 1/ρ1 + 1/ρ2.

2. Energy estimates

This section is devoted to the proof of energy-type estimates for lin-
earized versions of (INSµ). As applications, we shall prove a weak-strong
uniqueness result and bound the rate of convergence for the inviscid limit.

Proposition 2.1. — Let (ρ, u,∇Π) solve the following linear system
on [0, T ]:  ∂tρ+ v · ∇ρ = ρg,

ρ(∂tu+ v · ∇u) − µ∆u+ ∇Π = ρf,
div u = 0

(2.1)

where v is a conveniently smooth time-dependent solenoidal vector field.
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The following estimates hold true for t ∈ [0, T ]:

∀p ∈ [1,+∞], ‖ρ(t)‖Lp � ‖ρ0‖Lp +
∫ t

0

‖(ρg)(τ)‖Lp dτ, (2.2)

e
− 1

2

∫ t

0
‖g(τ)‖L∞dτ‖(√ρu)(t)‖L2� ‖√ρ0u0‖L2

+
∫ t

0

e
− 1

2

∫ τ

0
‖g(τ ′)‖

L∞dτ ′
‖(√ρf)(τ)‖L2 dτ. (2.3)

Proof. — The proof of (2.2) for solenoidal Lipschitz vector field v is
straightforward. It relies on the conservation of the measure by the flow
of v. For proving (2.3), take the scalar product in R

N of the momentum
equation with u. We get

∂t

(
ρ
|u|2
2

)
+ div

(
ρv

|u|2
2

)
− |u|2

2
(∂tρ+ v · ∇ρ) − µu · ∆u+ ∇Π · u

= (
√
ρf) · (√ρu).

Taking advantage of the first equation in (2.1) and integrating in space
yields:

1
2
d

dt
‖√ρu‖2

L2 + µ ‖∇u‖2
L2 =

∫
(
√
ρf) · (√ρu) dx+

∫
ρg

|u|2
2
dx,

hence∥∥(
√
ρu)(t)

∥∥
L2 �

∥∥√ρ
0
u0

∥∥
L2 +

∫ t

0

‖(√ρf)(τ)‖L2 dτ

+
1
2

∫ t

0

‖g(τ)‖L∞ ‖(√ρu)(τ)‖L2 dτ,

so that Gronwall inequality completes the proof. �

As a corollary of the above proposition, we get the following result:

Proposition 2.2. — Let (ρi, ui,∇Πi) (i = 1, 2) satisfy
∂tρi + ui · ∇ρi = ρigi,

ρ(∂tui + ui · ∇ui) − µ∆ui + ∇Πi = ρfi,

div ui = 0.
(2.4)
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Denote δρ def= ρ2 − ρ1, δu def= u2 − u1, δf
def= f2 − f1 and δg def= g2 − g1. The

following estimate holds true:

e−V1,2(t)
(
‖δρ(t)‖L2 +

∥∥(
√
ρ2δu)(t)

∥∥
L2

)
� ‖δρ(0)‖L2 +

∥∥(
√
ρ2δu)(0)

∥∥
L2

+
∫ t

0

e−V1,2(τ)
(
‖(ρ1δg)(τ)‖L2 +

∥∥(
√
ρ2δf)(τ)

∥∥
L2

)
dτ,

with

V1,2(t)
def=∫ t

0

(
‖g2(τ)‖L∞+

∥∥∥∥∇ρ1√
ρ
2

(τ)
∥∥∥∥
L∞
+ ‖∇u1(τ)‖L∞ +

∥∥∥∥(∇Π1−µ∆u1

ρ1
√
ρ
2

)
(τ)

∥∥∥∥
L∞

)
dτ.

Proof. — As ∂tδρ+ u2 · ∇δρ = −δu · ∇ρ1 + ρ1δg+ δρ g2, estimate (2.2)
combined with Gronwall inequality yields:

e
−

∫ t

0
‖g2(τ)‖L∞ dτ ‖δρ(t)‖L2 � ‖δρ(0)‖L2

+
∫ t

0

e
−

∫ τ

0
‖g2(τ ′)‖

L∞ dτ ′
‖(ρ1δg)(τ)‖L2 dτ

+
∫ t

0

e
−

∫ τ

0
‖g2(τ ′)‖

L∞ dτ ′ ∥∥(
√
ρ2δu)(τ)

∥∥
L2

∥∥∥∥∇ρ1√
ρ
2

(τ)
∥∥∥∥
L∞

dτ. (2.5)

On the other hand (ρ2, δu,∇δΠ) solves
∂tρ2 + u2 · ∇ρ2 = ρ2g2,

ρ2(∂tδu+ u2 · ∇δu) − µ∆δu+ ∇δΠ

= ρ2

(
δf − δu · ∇u1 +

δρ

ρ1ρ2
(∇Π1 − µ∆u1)

)
,

div δu = 0.

Applying inequality (2.3) yields

e
−

∫ t

0

‖g2(τ)‖L∞
2 dτ∥∥(

√
ρ2δu)(t)

∥∥
L2 �

∥∥(
√
ρ2δu)(0)

∥∥
L2

+
∫ t

0

e
−

∫ τ

0

‖g2(τ′)‖L∞
2 dτ ′∥∥(

√
ρ2δf)(τ)

∥∥
L2 dτ

+
∫ t

0

e
− 1

2

∫ τ

0
‖g2(τ ′)‖

L∞ dτ ′
‖δρ(τ)‖L2

∥∥∥∥(∇Π1 − µ∆u1

ρ1
√
ρ
2

)
(τ)

∥∥∥∥
L∞
dτ

+
∫ t

0

e
− 1

2

∫ τ

0
‖g2(τ ′)‖

L∞ dτ ′
‖∇u1(τ)‖L∞

∥∥(
√
ρ2δu)(τ)

∥∥
L2 dτ.
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Now, combining the above inequality with (2.5) and using Gronwall lemma
yields the desired estimate. �

Corollary 2.3. — Let (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) be two weak so-
lutions of (INSµ) or (IE) with the same initial data and external force. As-
sume that the density for both solution is bounded away from zero. If in addi-
tion ∇u1, ∇ρ1 and ∇Π1−µ∆u1 belong to L1(0, T ;L∞) then (ρ1, u1,∇Π1) ≡
(ρ2, u2,∇Π2) on [0, T ].

Proof. — Apply proposition 2.2 with f1 = f2 = f , g1 = g2 = 0 and
(ρ1(0), u1(0)) = (ρ2(0), u2(0)). �

Corollary 2.4. — Let (ρµ, uµ,∇Πµ) be a solution to (INSµ) and
(ρ, u,∇Π) be a solution to (IE) with the same external force and initial
data. If in addition 0 < ρ � ρ0 � ρ then the following estimate holds true:

‖(ρµ − ρ)(t)‖L2+
√
ρ ‖(uµ − u)(t)‖L2 � µ

√
ρ

ρ
eV (t)

∫ t

0

e−V (τ) ‖∆u(τ)‖L2 dτ,

with

V (t) def=
∫ t

0

(
ρ−

1
2 ‖∇ρ(τ)‖L∞ + ‖∇u(τ)‖L∞ + ρ−

3
2 ‖(∇Π − µ∆u)(τ)‖L∞

)
dt.

Proof. — Apply proposition 2.2 with viscosity µ and:

(ρ1, u1,∇Π1)
def= (ρ, u,∇Π), g1

def= 0, f1
def= f − µρ−1∆u,

(ρ2, u2,∇Π2)
def= (ρµ, uµ,∇Πµ), g2

def= 0, f2
def= f.

�

3. The linearized equations

This section is devoted to the proof of estimates and existence of solu-
tions for linearized system (ĨNSµ).

The first equation in (ĨNSµ) is a mere transport equation for which the
following proposition applies (see the proof in [9], Prop. 2.1).

Proposition 3.1. — Let s > −1 −N/2 be such that s �= 1 +N/2. Let

v be a solenoidal vector field such that ∇v belongs to L1(0, T ;B
N
2

2,∞ ∩L∞) if
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|s| < 1+N/2 or to L1(0, T ;Hs) if s > 1+N/2. Suppose also that a0 ∈ Hs,
g ∈ L̃1

T (Hs) and that a ∈ L∞(0, T ;Hs) ∩ C([0, T ];S ′(RN )) solves{
∂ta+ v · ∇a = g,
a|t=0 = a0.

(3.1)

Then a ∈ C̃T (Hs) and there exists a constant C depending only on s and
N , and such that the following inequality holds on [0, T ]:

‖a‖
L̃∞

t (Hs)
� eCV (t)

(
‖a0‖Hs + ‖g‖

L̃1
t (Hs)

)
,

with V (t) =


∫ t

0

‖∇v(τ)‖
B

N
2

2,∞∩L∞
dτ if |s| < 1 +N/2,∫ t

0

‖∇v(τ)‖Hs−1 dτ if s > 1 +N/2.

Let us now focus on the study of the following linearization of the mo-
mentum equation: ∂tu+ v · ∇u+ b(∇Π − µ∆u) = f + g,

div u = 0,
u|t=0 = u0,

(Mµ)

where b, f , g, v and u0 are given functions.

The reason why we introduce two types of external forces will appear in
section 6 when studying the inviscid limit. We assume that there exist two
positive constants b and b such that b � b � b and that b tends to some
positive constant (say 1 with no loss of generality) at infinity.

3.1. A priori estimates

In the present section, we aim at proving a priori estimates for (Mµ) in
the framework of non-homogeneous Sobolev spaces and for arbitrary posi-
tive b such that a def= b− 1 belongs to L̃∞

T (H
N
2 +α) for some α > 0. Before

stating our results let us introduce the notation

AT
def=

 b−1
(
b+ ‖∇a‖

L̃∞
T

(H
N
2 +α−1)

)
if α �= 1,

b−1
(
b+ ‖∇a‖

L̃∞
T

(H
N
2 )∩L∞

T
(L∞)

)
if α = 1.

(3.2)

We can now state a general estimate for (Mµ):
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Proposition 3.2. — Let µ � 0, m � 1 (m = 1 if µ = 0), α > 0 and
s ∈ (2− 2/m,α+N/2] with s �= 1 +N/2. Let u0 be a solenoidal vector field
with coefficients in Hs and f (resp. g) be a time dependent vector field with
coefficients in L̃1

T (Hs) (resp. L̃mT (Hs−2+ 2
m )). Assume that a ∈ C̃T (H

N
2 +α)

(and also that a ∈ L∞(0, T ; Lip) if α = 1). Let v be a time dependent
solenoidal vector field such that ∇v ∈ L1(0, T ;H

N
2 ∩ L∞) if s < N/2 + 1

and ∇v ∈ L1(0, T ;Hs) if s > N/2 + 1. Let u ∈ L̃∞
T (Hs) be a solution of

(Mµ) on [0, T ] for some ∇Π ∈ L̃1
T (Hs) + L̃mT (Hs−2+ 2

m ). Let α′ > 0 satisfy

α′�min
(
1, α,

s−2+ 2
m

2

)
if

[
s<

N

2
+α or

(
s =

N

2
+α and (m>1 or α>1)

)]
,

α′ ∈ (0, α) ∩
(

0,
s−2+ 2

m

2

]
if

[
s =

N

2
+α, m = 1 and α � 1

]
.

There exists C = C(s,N, α, α′,m) such that

‖u‖
L̃∞

T
(Hs)

+ µ
1
m ‖u‖

L̃m
T

(Hs+ 2
m )

�

CeCAκ
TV (T )

(
‖u0‖Hs + Aκ

T

(
‖f‖

L̃1
T

(Hs)
+ µ

1
m−1‖g‖

L̃m
T

(Hs−2+ 2
m )

+µ
1
m AT ‖u‖

L̃m
T

(Hs+ 2
m

−α′
)

))
, (3.3)

with µ def= bµ, and κ def= s/α′, and

V (T ) def=


∫ T

0

‖∇v‖
H

N
2 ∩L∞ dt if s< N

2 +1,∫ T

0

‖∇v‖Hs−1 dt if s> N
2 +1.

Moreover, we have

b‖∇Π‖
L̃1

T
(Hs)+L̃m

T
(Hs−2+ 2

m )
� CAκ

T

(
‖Qf‖

L̃1
T

(Hs)
+ ‖Qg‖

L̃m
T

(Hs−2+ 2
m )

+
∫ T

0

V ′(t)‖u(t)‖Hs dt+ µ
(
AT−b/b

)
‖u‖

L̃m
T

(Hs+ 2
m )

)
. (3.4)

If v = u, the above estimates hold with V (T ) =
∫ T

0
‖∇u‖L∞ dt (even if

s = 1 + N
2 ).
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For proving proposition 3.2 in the case b ≡ 1, one can project (Mµ) on
solenoidal vector-fields by making use of the Leray projector P. Then system
(Mµ) reduces to a convection-diffusion type equation which may be easily
solved by mean of energy estimates. In our case where b is not assumed to be
a constant, getting rid of the pressure will still be an appropriate strategy.
This may be achieved by applying the operator div to (Mµ). Indeed, in
doing so, we see that the pressure solves the elliptic equation

div(b∇Π) = divF (3.5)

with F = f + g + µa∆u− v · ∇u.

Therefore, denoting by Hb the linear operator F �→ ∇Π, system (Mµ)
reduces to a linear ODE in Banach spaces.

Actually, due to the consideration of two forcing terms f and g with
different regularities, the pressure has to be split into two parts, namely
Π = Π1 + Π2 with

div(b∇Π1) = divG and G
def= f − T∇uv − T ′

∇vu, (3.6)

div(b∇Π2) = divH and H
def= g + µa∆u. (3.7)

Note that the expression of G has been obtained by making use of Bony’s
decomposition and by taking advantage of div u = div v = 0 which implies
div(v · ∇u) = div(u · ∇v).

Proof of proposition 3.2. — To simplify the presentation, we assume that
α �= 1. The case α = 1 may be handled by changing ‖a‖

L̃∞
T

(H
N
2 +α)

into

‖a‖
L̃∞

T
(H

N
2 +1)∩L∞

T
(Lip)

.

Applying ∆q to (Mµ), we get for all q � −1,

∂t∆qu+ v · ∇∆qu+ ∆q∇Π − µdiv(b∆q∇u) =
∆qf + ∆qg + [v,∆q] · ∇u− ∆q(a∇Π) + µRq

with
Rj
q

def= ∆q(b∆uj) − div(b∆q∇uj).

Of course, we do not have to worry about Rq in the case µ = 0.

Let ã def= a− ∆−1a. Take the L2-scalar product with ∆qu. As div u = 0,
using Bony’s decomposition and performing an integration by parts yields
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∣∣∣(∆q(a∇Π)|∆qu)
∣∣∣ �

∣∣∣(∆qT∇ã
Π|∆qu)

∣∣∣ +
∣∣∣(∆qT

′
∇Πã|∆qu)

∣∣∣
+

∣∣∣(∆q(∆−1a∇Π)|∆qu)
∣∣∣. (3.8)

Therefore, denoting µ def= µb, we get

1
2
d

dt
‖∆qu‖2

L2 + µ ‖∇∆qu‖2
L2 � ‖∆qu‖L2

(
µ ‖Rq‖L2 + ‖[v,∆q] · ∇u‖L2

+ ‖∆qT∇aΠ‖L2+‖∆qT
′
∇Πa‖L2+‖∆q(∆−1a∇Π)‖L2+‖∆qPf‖L2+‖∆qPg‖L2

)
.

According to Bernstein inequality, there exists κ > 0 such that for all q � 0,
we have ‖∆q∇u‖L2 � √

κ2q ‖∆qu‖L2 . Elementary computations thus yield
(at least formally) :

e−κµ22qt d

dt

(
eκµ22qt ‖∆qu‖L2

)
� µ ‖Rq‖L2 +‖[v,∆q] · ∇u‖L2 +‖∆qT∇aΠ‖L2

+ ‖∆qT
′
∇Πa‖L2 + ‖∆q(∆−1a∇Π)‖L2 + ‖∆qPf‖L2 + ‖∆qPg‖L2 . (3.9)

When q = −1, a similar inequality holds true with κ = 0.

Let us now focus on the pressure. As explained above, the pressure has
to be split into two parts: ∇Π = ∇Π1 + ∇Π2 where ∇Π1 and ∇Π2 have
been defined in (3.6) and (3.7). Then proposition 1.4 combined with the
embedding L1

T (Hs) ↪→ L̃1
T (Hs) yields

‖QG‖
L̃1

T
(Hs)

� ‖Qf‖
L̃1

T
(Hs)

+
∫ T

0

V ′(t)‖u(t)‖Hs dt,

with

V ′(t) def=


‖∇v(t)‖

H
N
2 ∩L∞ if |s| < 1 + N

2 ,

‖∇v(t)‖Hs−1 if s> 1 + N
2 ,

‖∇u(t)‖L∞ if v = u and s > −1.

(3.10)

Hence, in view of proposition 8.5 and provided that 0 < α′ � min(1, α, s/2)
and s � α + N/2 (which is assumed in the statement of proposition 3.2),
we get for α′′ = 0 or α′,

b‖∇Π1‖L̃1
T

(Hs−α′′ )
� A

s−α′′
α′

T

(
‖Qf‖

L̃1
T

(Hs)
+

∫ T

0

V ′(t)‖u(t)‖Hs dt
)
. (3.11)
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By virtue of proposition 1.4 combined with remarks 1.6 and 1.8, we have
for α′′ = 0, α′ :

‖QH‖
L̃m

T
(Hs−2+ 2

m
−α′′

)
�

‖Qg‖
L̃m

T
(Hs−2+ 2

m )
+ µ

(
‖a‖L∞

T
(L∞)+‖∇a‖

L̃∞
T

(H
N
2 +α−1)

)
‖u‖

L̃m
T

(Hs+ 2
m

−α′′
)
.

As α′ � min(1, α, (s − 2 + 2/m)/2), applying proposition 8.5 with α = α′,
σ = s− 2 + 2/m or σ = s− 2 + 2/m− α′ (here comes s > 2 − 2/m) yields
for α′′ = 0, α′,

b‖∇Π2‖
L̃m

T
(Hs−2+ 2

m
−α′′

)
� Aκ

T

(
‖Qg‖

L̃m
T

(Hs−2+ 2
m )

+µ
(
‖a‖L∞

T
(L∞) + ‖∇a‖

L̃∞
T

(H
N
2 +α−1)

)
‖u‖

L̃m
T

(Hs+ 2
m

−α′′
)

)
. (3.12)

Note that summing (3.11) and (3.12) with α′′ = 0 gives (3.4).

Let δij stand for the Kronecker symbol on Z
2. Performing a time inte-

gration in (3.9) and using convolution inequalities yields for all q � −1,

‖∆qu‖L∞
T

(L2) + µ
1
m 2

2q
m ‖∆qu‖Lm

T
(L2) �

‖u0‖L2 + ‖∆qPf‖L1
T

(L2) + δ−1q µ
1
m 2

2q
m ‖∆−1u‖Lm

T
(L2)

+b−1µ
1
m 2q(

2
m−2)‖Rq‖Lm

T
(L2) + ‖[v,∆q]·∇u‖L1

T
(L2) + ‖∆qT∇ã

Π1‖L1
T

(L2)

+‖∆qT
′
∇Π1

ã‖
L1

T
(L2)

+ ‖∆q(∆−1a∇Π1)‖L1
T

(L2)

+µ
1
m−12q(

2
m−2)

(
‖∆qT∇ã

Π2‖Lm
T

(L2)

+‖∆qT
′
∇Π2

ã‖
Lm

T
(L2)

+ ‖∆q(∆−1a∇Π2)‖Lm
T

(L2) + ‖∆qPg‖Lm
T

(L2)

)
,

whence, multiplying both sides by 2qs and summing on q, we get

‖u‖
L̃∞

T
(Hs)

+µ
1
m ‖u‖

L̃m
T

(Hs+ 2
m )

� ‖u0‖Hs +‖Pf‖
L̃1

T
(Hs)

+µ
1
m ‖∆−1u‖Lm

T
(L2)

+‖T∇ã
Π1‖L̃1

T
(Hs)

+ ‖T ′
∇Π1

ã‖
L̃1

T
(Hs)

+ ‖∆−1a∇Π1‖L̃1
T

(Hs)

+µ
1
m−1

(
‖T∇ã

Π2‖
L̃m

T
(Hs−2+ 2

m )
+ ‖T ′

∇Π2
ã‖

L̃m
T

(Hs−2+ 2
m )

+‖∆−1a∇Π2‖
L̃m

T
(Hs−2+ 2

m )
+ ‖Pg‖

L̃m
T

(Hs−2+ 2
m )

)
+b−1µ

1
m

(∑
q�−1 22q(s−2+ 2

m )‖Rq‖2
Lm

T
(L2)

) 1
2

+
(∑

q�−1 22qs‖[v,∆q] · ∇u‖2
L1

T
(L2)

) 1
2

. (3.13)
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With our assumptions on α, α′ and s, the terms containing Π1 may be
bounded by (

‖a‖L∞
T

(L∞) + ‖∇a‖
L̃∞

T
(H

N
2 +α−1)

)
‖∇Π1‖L̃1

T
(Hs−α′ )

whereas those containing Π2 may be bounded by(
‖a‖L∞

T
(L∞) + ‖∇a‖

L̃∞
T

(H
N
2 +α−1)

)
‖∇Π2‖

L̃m
T

(Hs−2+ 2
m

−α′
)
.

Moreover, by virtue of lemmas 8.11 and 8.9 and using the notation (3.10),
we have ( ∑

q�−1

22qs‖[v,∆q]·∇u‖2
L1

T
(L2)

) 1
2 �

∫ T

0

V ′(t)‖u(t)‖Hs dt,

( ∑
q�−1

22q(s−2+ 2
m )‖Rq‖2

Lm
T

(L2)

) 1
2 � ‖∇a‖

L̃∞
T

(H
N
2 +α−1)

‖∇u‖
L̃m

T
(Hs−1+ 2

m
−α′

)
,

provided that α, s and α′ satisfy the conditions of proposition 3.2.

Plugging all these inequalities in (3.13) eventually yields

‖u‖
L̃∞

T
(Hs)

+µ
1
m ‖u‖

L̃m
T

(Hs+ 2
m )

�‖u0‖Hs

+µ
1
m ‖u‖

L̃m
T

(Hs+ 2
m

−α′
)
+

∫ T

0

V ′(t)‖u(t)‖Hsdt

+b−1µ
1
m ‖a‖

L̃∞
T

(H
N
2 +α)

‖∇u‖
L̃m

T
(Hs−1+ 2

m
−α′

)

+‖Pf‖
L̃1

T
(Hs)

+ µ
1
m−1‖Pg‖

L̃m
T

(Hs−2+ 2
m )

+
(
‖a‖L∞

T
(L∞) + ‖∇a‖

L̃∞
T

(H
N
2 +α−1)

)(
‖∇Π1‖L̃1

T
(Hs−α′ )

+µ
1
m−1‖∇Π2‖

L̃m
T

(Hs−2+ 2
m

−α′
)

)
.

Appealing to (3.11) and (3.12) with α′′ = α′, we conclude that

‖u‖
L̃∞

T
(Hs)

+ µ
1
m ‖u‖

L̃m
T

(Hs+ 2
m )

� ‖u0‖Hs + A
s

α′
T

(
‖f‖

L̃1
T

(Hs)

+µ
1
m−1‖g‖

L̃m
T

(Hs−2+ 2
m )

+
∫ T

0

V ′(t)‖u(t)‖Hs dt+ µ
1
m AT ‖u‖

L̃m
T

(Hs+ 2
m

−α′
)

)
.

Gronwall lemma completes the proof of the desired inequality for u. �
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Remark 3.3. — According to remark 8.6, in the case α < 1 and s <
N
2 + α one can take AT = b−1

(
b + ‖∇a‖

L∞
T

(B
N
2 +α−1

2,∞ )

)
. Note also that

if s < N
2 + 1 then the statement of proposition 3.2 holds with V (T ) =∫ T

0
‖∇v(t)‖

B
N
2

2,∞∩L∞
dt. Besides, as the restriction s �= N

2 + 1 is due to the

convective term only, it may be removed if ∇v ≡ 0.

3.2. Global well-posedness for (Mµ)

Proposition 3.4. — Let T > 0. Let µ, m, s, α, u0, f , g, a and v
satisfy the assumptions of proposition 3.2. Then system (Mµ) has a unique
solution (u,∇Π) such that

u ∈ C̃T (Hs), µ
1
mu ∈ L̃mT (Hs+ 2

m ) and ∇Π ∈ L̃1
T (Hs) + L̃mT (Hs−2+ 2

m ).

Moreover (u,∇Π) satisfies the estimates of proposition 3.2.

Proof. — Uniqueness is a consequence of the estimate given in propo-
sition 3.2. Indeed, assuming (with no loss of generality) that α′ � 2/m,
complex interpolation yields

‖u‖
L̃m

t (Hs+ 2
m

−α′
)
� (µt)

1
m− 1

m′ ‖u‖1− m
m′

L̃∞
t (Hs)

(
µ

1
m ‖u‖

L̃m
t (Hs+ 2

m )

) m
m′

with
1
m′ =

1
m

− α′

2
. (3.14)

Hence the term ‖u‖
L̃m

t (Hs+ 2
m

−α′
)

may be absorbed by the left-hand side of

(3.3) in the limit t goes to 0. This yields uniqueness on a small interval [0, τ ].
Repeating the argument yields uniqueness on the whole interval [0, T ].

For proving existence, we use the fact that, owing to (3.6) and (3.7),
system (Mµ) rewrites

∂tu = f+g+µb∆u−v ·∇u−bHb(f−T∇uv−T ′
∇vu)−bHb(g+µa∆u). (M̃µ)

This latter system may be solved by using Friedrichs mollifiers: introduce
the spectral cut-off Jn

def= 1{|D|�n}. Let fn
def= Jnf and gn

def= Jng. The
approximate equation

∂tun = fn + gn + µJn(b∆Jnun) − Jn(v · ∇Jnun)

−Jn
(
bHb(fn − T∇Jnun

v − T ′
∇vJnun)

)
− Jn

(
bHb(gn + µa∆Jnun)

)
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with initial data Jnu0 is a linear ODE in L2. Using the integrability prop-
erties of v we can easily conclude that it has a unique solution un in
C1([0, T ];L2).

As J2
n = Jn, we discover that Jnun also satisfies the equation. We thus

have Jnun = un. Because div Jnu0 = 0, elementary computations show that
div un = 0.

Next, going along the lines of the proof of proposition 3.2 and making an
extensive use of Jnun = un, one can check that un satisfies (3.3) uniformly
in n. Finally, combining (3.14) and Young inequality, we see that the bad
term ‖un‖

L̃m
T

(Hs+ 2
m

−α′
)

may be absorbed by the left-hand side of (3.3) at

small time. This provides a time T ∗ ∈ (0, T ] such that (un)n∈N is uniformly
bounded in C̃T∗(Hs)∩L̃mT∗(Hs+ 2

m ). Note that T ∗ may be bounded by below
in terms of b, µ, α, N, V (T ) and AT .

By using the equation satisfied by un, it is now obvious that (∂tun−fn−
gn)n∈N is uniformly bounded in some space L̃pT∗(H−S) with p > 1 and S
suitably large. Taking advantage of compact embeddings in (local) Sobolev
spaces, one can conclude to the convergence of a subsequence of (un)n∈N

to some distribution u. The uniform bounds for the sequence insure that
in addition we have u ∈ L̃∞

T∗(Hs)∩ L̃mT∗(Hs+ 2
m ). Interpolating between the

results of convergence in small norm and the uniform bounds in large norm,
it is now easy to show that u is indeed a solution to (M̃µ).

That u belongs to C([0, T ∗];Hs) may be obtained by using the properties
of the standard heat kernel. Finally, proposition 8.5 yields the desired result
on the pressure.

As T ∗ depends only on b, µ, α, N, V (T ) and AT , the above argument
may be repeated on [T ∗, 2T ∗], [2T ∗, 3T ∗], etc., until the whole interval [0, T ]
is exhausted. �

4. Existence of smooth solutions

This part is devoted to the proof of theorem 0.2.

First step: Construction of global approximate solutions

This may be done by induction. Set a0 def= a0 and u0 def= u0. Then, as-
suming that (an, un,∇Πn) is defined on R

+ and belongs to F
N
2 +1+γ

T,µ for all
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T > 0, we define an+1 as the global solution of the linear transport equation:{
∂ta

n+1 + un · ∇an+1 = 0,
an+1
|t=0 = a0.

(4.1)

Next, proposition 3.4 enables us to choose (un+1,∇Πn+1) as the global
solution to

∂tu
n+1 + un · ∇un+1 + (1 + an+1)(∇Πn+1 − µ∆un+1) = f,

div un+1 = 0,
un+1
|t=0 = u0.

(4.2)

The results of the previous section insure that (an+1, un+1,∇Πn+1) belongs

to F
N
2 +1+γ

T,µ for all T > 0. Besides, the energy equality (0.1) is satisfied (with
ρn+1 = 1/(1 + an+1)), and we have ρ � ρn+1(t, x) � ρ for all t ∈ R

+ and
x ∈ R

N .

Second step: Uniform bounds for the approximate solutions

On the one hand, according to proposition 3.1, we have for all T � 0,

‖an+1‖
L̃∞

T
(H

N
2 +1+γ)

� ‖a0‖
H

N
2 +1+γe

C
∫ T

0
‖∇un(t)‖

H
N
2 +γ

dt
. (4.3)

On the other hand, applying proposition 3.2 to (4.2) with m = 1, s =
N/2 + 1 + γ, α = 1 + γ and α′ = 1 yields

‖un+1‖
L̃∞

T
(H

N
2 +1+γ)

+ µ‖un+1‖
L̃1

T
(H

N
2 +3+γ)

� CAκ
T,ne

CAκ
T,n

∫ T

0
‖∇un(t)‖

H
N
2 +γ

dt
(
‖u0‖

H
N
2 +1+γ

+‖f‖
L̃1

T
(H

N
2 +1+γ)

+ µAT,n‖un+1‖
L̃1

T
(H

N
2 +2+γ)

)
,

with κ = N/2 + 1 + γ, AT,n
def= 1 + ρ‖an+1‖

L̃∞
T

(H
N
2 +1+γ)

and µ = µ/ρ.

Let Un+1(T ) be the left-hand side above and let
U0

def= ‖u0‖
H

N
2 +1+γ + ‖f‖

L̃1
T0

(H
N
2 +1+γ)

(for some large fixed T0). Using (4.3),

we gather

Un+1(T ) � CAκ
0e

C
∫ T

0
Un(t) dt

e
CAκ

0

∫ T

0
Un(t) dt exp(C

∫ T

0
Un(t) dt)

(
U0

+(µT )
1
2A0e

C
∫ T

0
Un(t) dt

Un+1(T )
)
,
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with A0
def= 1 + ρ‖a0‖

L̃∞
T

(H
N
2 +1+γ)

, whence, using that xex � e2x − ex for

x � 0, we get up to an irrelevant change of the constant C,

Un+1(T )�CAκ
0e

CAκ
0 exp(C

∫ T

0
Un(t) dt)

(
U0+

√
µTA0U

n+1(T )
)
. (4.4)

Fix a positive T so that the following conditions are satisfied:

C

∫ T

0

Un(t) dt � log 2 and CAκ+1
0 e2CAκ

0

√
µT � 1

2
· (Hn)

Then (4.4) yields for all t ∈ [0, T ]:

Un+1(t) � 2CU0Aκ
0e

2CAκ
0 . (4.5)

Now, choosing for T the largest real number in (0, T0] such that

C2TAκ
0U0e

2CAκ
0 � log 2

2
and C2µTA2κ+2

0 e4CAκ
0 � 1

4
, (4.6)

it may be shown by induction that (Hn) is satisfied, whence also (4.5).
Next, combining the estimates of proposition 3.2 with uniform bounds for
(an, un) provides uniform bounds for ∇Πn in L̃1

T (H
N
2 +1+γ). Hence, se-

quence {(an, un,∇Πn)}n∈N belongs to F
N
2 +1+γ

T,µ and ‖(an, un,∇Πn)‖
F

N
2 +1+γ

T,µ

may be bounded independently of n.

Remark 4.1. — It is worth noting that for small enough µ the lifetime T
does not depend on µ and that the bounds are independent of µ.

Third step: Convergence of the approximate solutions in the en-
ergy space

We claim that (an, un) is a Cauchy sequence in C([0, T ];L2).

Let ρn def= 1/(1+an), δρn def= ρn+1−ρn, δun def= un+1−un and δΠn def=
Πn+1−Πn. We have

∂tδρ
n + un · ∇δρn = −δun−1 · ∇ρn,

whence, according to (2.2),

‖δρn(t)‖L2 �
∫ t

0

∥∥∥(ρn)−
1
2∇ρn)(τ)

∥∥∥
L∞︸ ︷︷ ︸

Cn(τ)

∥∥(
√
ρnδun−1)(τ)

∥∥
L2 dτ. (4.7)
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Since 
∂tρ

n+1 + un · ∇ρn+1 = 0,
ρn+1(∂tδun + un · ∇δun) − µ∆δun + ∇δΠn

=
δρn

ρn
(∇Πn − µ∆un) − ρn+1δun−1 · ∇un,

div δun = 0,

inequality (2.3) yields∥∥∥(
√
ρn+1δun)(t)

∥∥∥
L2

�
∫ t

0

An(τ) ‖δρn(τ)‖L2 dτ

+
∫ t

0

Bn(τ)
∥∥(
√
ρnδun−1)(τ)

∥∥
L2 dτ, (4.8)

withAn(t) def=

∥∥∥∥∥
(∇Πn − µ∆un

ρn
√
ρn+1

)
(t)

∥∥∥∥∥
L∞

andBn(t) def=

∥∥∥∥∥∥
(√

ρn+1

ρn
∇un

)
(t)

∥∥∥∥∥∥
L∞

.

According to step two, for all t ∈ [0, T ], we have

K(t) def= sup
n∈N

∫ t

0

An(τ) dτ < +∞.

Therefore, adding (4.7) and (4.8) up, and using Gronwall lemma yields

Xn(t) def= e−K(t)
(
‖δρn(t)‖L2 +

∥∥∥√
ρn+1δun(t)

∥∥∥
L2

)
�

∫ t

0

(Bn + Cn)(τ)Xn−1(τ) dτ.

Now, step two insures that

L
def= sup

n∈N

sup
t∈[0,T ]

(
Bn(t) + Cn(t)

)
<∞

so that a straightforward induction yields

sup
t∈[0,T ]

Xn(t) � Ln

n!
sup

t∈[0,T ]

X0(t).

We conclude that (ρn − ρ0, un) (and thus (an, un)) is a Cauchy sequence in
C([0, T ];L2).

Denoting by (a, u) its limit, the bounds of step two give a ∈ L̃∞
T (H

N
2 +1+γ),

u ∈ L̃∞
T (H

N
2 +1+γ) and µu ∈ L̃1

T (H
N
2 +3+γ) uniformly in µ.
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Now, interpolating with the results of convergence in C([0, T ];L2), we
gather that (an, un) tends to (a, u) in every intermediate space C̃T (H

N
2 +1+γ′

)
with γ′ < γ, and that (un)n∈N tends to u in L̃1

T (H
N
2 +3+γ′

) if µ > 0.

As regards the convergence of the pressure, we remark that

div
(∇(Πm−Πn)

ρm

)
= div

[
µam∆(um−un) + (am−an)(µ∆un −∇Πn)

−(um−1−un−1)·∇um − un−1 ·∇(um−un)
]
.

The previous results of convergence insure that the term between brackets
tends to 0 in L1(0, T ;L2) when n,m go to infinity, hence, by virtue of
proposition 8.2, (∇Πn)n∈N is a Cauchy sequence in L1(0, T ;L2). Denoting
by ∇Π its limit in L1(0, T ;L2) and interpolating with the uniform estimates
of step two, we conclude that (an, un,∇Πn) tends to (a, u,∇Π) in every

intermediate space F
N
2+1+γ′

T,µ with γ′ < γ.

Fourth step: Checking that the limit is a solution

That (an, un,∇Πn) converges to (a, u,∇Π) in F
N
2+1+γ′

T,µ with γ′ < γ suf-
fices to pass to the limit in every nonlinear term of (4.1) and (4.2). Note
besides that one can also pass to the limit in the energy equality (0.1).

Fifth step: Continuity with respect to time:

As a satisfies the transport equation ∂ta+ u · ∇a = 0 with initial datum
a0 in H

N
2 +1+γ and u ∈ L1(0, T ;H

N
2 +1+γ), proposition 3.1 entails that a ∈

C̃T (H
N
2 +1+γ).

For the velocity, the same argument applies. Indeed u satisfies the trans-
port equation

∂tu+ u · ∇u = f − (1 + a)∇Π + µ(1 + a)∆u

with right-hand side in L̃1
T (H

N
2 +1+γ).

Last step: Uniqueness

Uniqueness in F
N
2 +1+γ

T,µ is given by corollary 2.3. Indeed, the embedding
H

N
2 +γ ↪→ L∞ ensures that ∇u,∇ρ belong to L∞(0, T ;L∞), and that ∇Π−

µ∆u belongs to L1(0, T ;L∞). �
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5. A blow-up criterion

This section is devoted to the proof of proposition 0.6. It relies on esti-
mates of section 3, logarithmic interpolation (see below) and on the following

Lemma 5.1 Let µ � 0, γ > 0, a0 ∈ H N
2 +1+γ with ρ � ρ0

def= (1+a0)−1 �
ρ, u0 ∈ H N

2 +1+γ with div u0 = 0 and f ∈ L̃1
loc(H

N
2 +1+γ). Let (ρ, u,∇Π) be

a smooth solution of (INSµ) on [0, T [ in the sense of definition 0.5.

If in addition a ∈ L∞
T (H

N
2 +1+γ) and u ∈ L∞(0, T ;H

N
2 +1+γ) then there

exists η > 0 such that (ρ, u,∇Π) may be continued into a smooth solution
of (INSµ) on [0, T + η].

Proof. — Let

η
def=

1
4C2

min
(
e−2CAκ

T log 2
Aκ
TUT

,
e−4CAκ

T

2µA2κ+2
T

)

where C and κ are the constants appearing in (4.6), AT
def= 1 + ρ‖a‖

L∞
T

(H
N
2 +1+γ)

and UT
def= ‖u‖

L∞
T

(H
N
2 +1+γ)

+ ‖f‖
L̃1

T
(H

N
2 +1+γ)

.

Theorem 0.2 insures that (INSµ) with data ρ(T − η), u(T − η) and
t �→ f(t+T − η) has a smooth solution (ρ̃, ũ,∇Π̃) on [0, 2η]. By virtue
of uniqueness, we have (ρ̃, ũ,∇Π̃)(t) = (ρ, u,∇Π)(t + T − η) for t ∈ [0, η).
Hence, (ρ̃, ũ,∇Π̃) provides the desired continuation. �

One can now state a first blow up criterion:

Proposition 5.2. — Let a0, u0, f satisfy the hypotheses of proposition
0.6 and (ρ, u,∇Π) be the corresponding smooth solution of (INSµ) on [0, T ).
If

∇u ∈ L1(0, T ;L∞)

and


∇a ∈ L̃∞

T (H
N
2 +γ) if µ = 0,

∇a ∈ L∞(0, T ;H
N
2+α−1) for some α > 0 if µ > 0,

then (ρ, u,∇Π) may be continued beyond T into a smooth solution of (INSµ).
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Proof. — The mass conservation equation insures that for all t ∈ [0, T ),
we have

∀x ∈ R
N , 0 < inf

y
ρ0(y) � ρ(t, x) � sup

y
ρ0(y) <∞ and ‖a(t)‖L2 = ‖a0‖L2 .

(5.1)
In the inviscid case, we have, by assumption, ∇a ∈ L̃∞

T (H
N
2 +γ). Hence

a ∈ L̃∞
T (H

N
2 +γ+1). Applying proposition 3.2 to (a, u,∇Π) in the case v = u

thus yields u ∈ L̃∞
T (H

N
2 +1+γ). Lemma 5.1 finally insures that no blow-up

may occur at time T .

Let us now focus on the viscous case. According to (5.1) and to (1.6), one
can assume that a ∈ L̃∞

T (H
N
2 +α) for some positive α. Therefore, proposition

3.2 yields

‖u‖
L̃∞

T
(H

N
2 +α)

+ µ‖u‖
L̃1

T
(H

N
2 +2+α)

� Ce
CÃκ

T

∫ T

0
‖∇u(t)‖L∞ dt

×
(
‖u0‖

H
N
2 +α + Ãκ

T

(
‖f‖

L̃1
T

(H
N
2 +α)

+ ÃTµ‖u‖
L̃1

T
(H

N
2 +2+ α

2 )

))
,

with ÃT
def= 1 + ρ‖a‖

L̃∞
T

(H
N
2 +α)

.

Interpolating between L̃1
T (H0) and L̃1

T (H
N
2 +2+α) and using Young in-

equality enables us to handle the last term. Up to a change of κ, we get

‖u‖
L̃∞

T
(H

N
2 +α)

+ µ‖u‖
L̃1

T
(H

N
2 +2+α)

� CÃκ
T e

CÃκ
T

∫ T

0
‖∇u(t)‖L∞ dt

×
(
‖u0‖

H
N
2 +α + ‖f‖

L̃1
T

(H
N
2 +α)

+ µT‖u‖L∞
T

(L2)

)
. (5.2)

Now, energy inequality (2.3) insures that the last term ‖u‖L∞
T

(L2) is finite,

hence u ∈ L̃∞
T (H

N
2 +α)∩ L̃1

T (H
N
2 +2+α). Note that in particular ∇u belongs

to L1
T (H

N
2 +1+ α

2 ). Coming back to the transport equation, we can now prove
that a ∈ L̃∞

T (H
N
2 +1+min(γ,1+ α

2 )).

Then, one can use again the momentum equation to get additional reg-
ularity for u. Within a finite number of steps, one concludes that a, u ∈
L̃∞
T (H

N
2 +1+γ). Applying lemma 5.1 completes the proof. �

As for most first-order quasilinear hyperbolic equations, we claim that
condition

∫ T

0
‖∇u(t)‖L∞ dt <∞ may be replaced by a slightly weaker con-

dition. Indeed we have:
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Proposition 5.3. — The conclusion of proposition 5.2 remains true if
the assumption ∇u ∈ L1(0, T ;L∞) is replaced by∫ T

0

‖∇u(t)‖Ḃ0
∞,∞

dt < +∞ with ‖∇u‖Ḃ0
∞,∞

def= sup
q∈Z

∥∥ϕ(2−qD)∇u
∥∥
L∞ .

Proof. — Let us concentrate on the case µ = 0, the case µ > 0 being
similar. The result stems from the following well known logarithmic inter-
polation inequality (see e.g [13]):

‖∇u‖L∞ � C
(
1 + ‖∇u‖Ḃ0

∞,∞
log(e+ ‖∇u‖

H
N
2 +γ )

)
. (5.3)

Now, in view of proposition 3.2, we have for all t ∈ [0, T [,

‖u(t)‖
H

N
2 +1+γ � CT e

CT

∫ t

0
‖∇u(τ)‖L∞ dτ

, (5.4)

where CT depends only on ρ, ρ, γ, N , ‖∇a‖
L̃∞

T
(H

N
2 +γ)

and on the data.

Integrating (5.3) over [0, t] and using (5.4) for bounding the term
‖∇u‖

H
N
2 +γ , we get (up to a change of CT ) for all t ∈ [0, T ),∫ t

0

‖∇u‖L∞ dτ � CT

∫ t

0

(
1 + ‖∇u‖Ḃ0

∞,∞

)(
1 +

∫ τ

0

‖∇u‖L∞ dτ ′
)
dτ.

Applying Gronwall inequality completes the proof. �

Finally, as for solenoidal u the map curlu �→ ∇u is a smooth homoge-
neous multiplier of degree 0, we have

∀q ∈ Z,
∥∥ϕ(2−qD)∇u

∥∥
L∞ � C

∥∥ϕ(2−qD)curlu
∥∥
L∞ � C ‖curlu‖L∞ .

This yields proposition 0.6.

6. The inviscid limit

This section is devoted to the proof of theorem 0.9.

Denote δa def= aµ − a, δu def= uµ − u and δΠ def= Πµ − Π. The desired result
of convergence stems from the following proposition.
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Proposition 6.1. — Let γ ∈ (0, 1) and b > 0. Assume that (ĨNSµ)

(resp. (ĨNS0)) has a solution (aµ, uµ,∇Πµ) ∈ F
N
2 +γ

T0,µ
(resp. (a, u,∇Π) ∈

F
N
2 +γ

T0
). If in addition

∆u ∈ L2(0, T0;H
N
2+γ−1), ∇Π, ∇a,

∇u ∈ L1(0, T0;H
N
2+γ), 1+min(a, aµ) � b, (6.1)

then there exist two positive constants X0 and µ0 depending only on
‖(a, u,∇Π)‖

F
N
2 +γ

T0

, N , γ, b, T0, and on the norms of the quantities appearing

in (6.1) such that

‖δa‖
L̃∞

T0
(H

N
2 +γ)

+ ‖δu‖
L̃∞

T0
(H

N
2 +γ)

+
√
µ‖δu‖

L∞
T0

(H
N
2 +γ)

+‖∇δΠ‖
L̃1

T0
(H

N
2 +γ)+L2

T0
(H

N
2 −1+γ)

� √
µX0

with µ def= bµ whenever µ ∈ [0, µ0].

Proof of theorem 0.9. — Let us admit for a while proposition 6.1.

We are given a solution (ρ, u,∇Π) to (IE) with (a, u,∇Π) ∈ F
N
2 +1+γ

T0

and 1 + a � b. Throughout the proof, we assume that µ � µ0 where µ0

is the limit viscosity given by proposition 6.1 applied with γ̌ def= min(1
2 , γ)

instead of γ.

First step: Local existence

According to theorem 0.2, there exists a T̃ > 0 and a unique local solution
(ρµ, uµ,∇Πµ) to (INSµ) with (aµ, uµ,∇Πµ) ∈ F

N
2+1+γ

T̃ ,µ
and 1 + aµ � b.

Second step: a lower bound for the existence time

Let Tµ be the lifespan for (aµ, uµ,∇Πµ). Applying proposition 6.1 yields

∀t ∈ [0, T0] ∩ [0, Tµ),
‖δa‖

L̃∞
t (H

N
2 +̌γ)

+ ‖δu‖
L̃∞

t (H
N
2 +̌γ)

+
√
µ‖δu‖

L2
t (H

N
2 +1+̌γ)

� √
µX0.

We notice that ‖aµ‖
L̃∞

t (H
N
2 +γ)

and ‖∇uµ‖L1
t (L∞) remain finite and bounded

independently of µ � µ0 whenever t � T0 and t < Tµ. Hence, by virtue of
proposition 5.2, we must have Tµ > T0.
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Third step: Uniform estimates in F
N
2 +1+γ

T,µ

Proposition 6.1 yields a bound independent of µ for ‖uµ‖
L2

T0
(H

N
2 +1+γ̌)

. From

it and proposition 3.1, we further gather a bound independent of µ for
‖aµ‖

L̃∞
T0

(H
N
2 +1+γ̌)

. Next, applying proposition 3.2 with m = 1, α = γ̌, s =

N
2 + 1 + γ̌ and α′ = γ̌/2 supplies uniform bounds for uµ in L̃∞

T0
(H

N
2 +1+γ̌),

for µuµ in L̃1
T0

(H
N
2 +3+γ̌), and for ∇Πµ in L̃1

T0
(H

N
2 +1+γ̌). (As usual, the

term ‖uµ‖
L̃1

T0
(H

N
2 +3+γ−α′

)
may be handled by interpolating between L2 and

H
N
2 +3+γ , and by using the energy inequality (2.3).) Hence we have obtained

uniform estimates in F
N
2 +1+γ̌

T,µ (and thus in F
N
2 +1+γ

T,µ if γ � 1/2).

If γ > 1/2, starting from uniform estimates in F
N
2 +1+ 1

2
T,µ , the above ar-

gument may be repeated to get uniform estimates in F
N
2 +1+min( 3

2 ,γ)

T,µ , then

in F
N
2 +1+min( 5

2 ,γ)

T,µ , etc.

Last step: Stronger results of convergence

In step two, convergence is shown to hold in

L̃∞
T0

(H
N
2+min( 1

2 ,γ)) × L̃∞
T0

(H
N
2+min( 1

2 ,γ))N

×
(
L̃1
T0

(H
N
2+min( 1

2 ,γ)) + L2
T0

(H
N
2−1+min( 1

2 ,γ))
)N

.

Interpolating with the uniform bounds of step three yields also convergence
in

C̃T0(H
N
2 +1+γ′

) ×
(
C̃T0(H

N
2 +1+γ′

)
)N

×
(
L̃1
T0

(H
N
2 +1+γ′

)
)N

.

for any γ′ < γ. �

Remark 6.2. — As a by-product of the proof, we get estimates indepen-
dent of µ for

‖∆uµ‖L1
T0

(L2), ‖∇uµ‖L1
T0

(L∞), ‖∇aµ‖L1
T0

(L∞) and ‖∇Πµ‖L1
T0

(L∞).

Applying proposition 2.2 with zero viscosity, (ρ1, u1,∇Π1) = (ρ, u,∇Π),
(ρ2, u2,∇Π2) = (ρµ, uµ,∇Πµ), f1 = f and f2 = f + µρ−1∆u, thus provides
a rate of convergence of order µ for the L2 norm of aµ and uµ.

Proof of proposition 6.1. — Let us observe that it suffices to prove that
the inequality of proposition 6.1 is satisfied by δa and δu. The result for the
pressure term ∇δΠ will follow from (3.4).
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Let T denote a real number of [0, T0]. As δa solves the following transport
equation on [0, T0]:

∂tδa+ uµ · ∇δa = −δu · ∇a, δa|t=0 = 0,

proposition 3.1 combined with the embedding H
N
2 ∩ L∞ ↪→ H

N
2 + γ

2 entails
that we have

‖δa‖
L̃∞

T
(H

N
2 +γ)

� CeCVµ(T )

∫ T

0

‖δu‖
H

N
2 +γ‖∇a‖H N

2 +γ dt (6.2)

with Vµ(T ) def=
∫ T

0
‖∇uµ(t)‖

H
N
2 + γ

2
dt.

Next, because (δu,∇δΠ) satisfies
∂tδu+ uµ · ∇δu+ (1+aµ)(∇δΠ − µ∆δu)

= −δu · ∇u− δa∇Π + µ(1+aµ)∆u,
div δu = 0, δu|t=0 = 0,

(6.3)

applying proposition 3.2 with m = 2, s = N
2 + γ, α = γ, α′ = γ

2 , f =
−δu·∇u−δa∇Π and g = µ(1+aµ)∆u, and using that H

N
2 ∩L∞ ↪→ H

N
2 + γ

2

yields

‖δu‖
L̃∞

T
(H

N
2 +γ)

+
√
µ‖δu‖

L2
T

(H
N
2 +γ+1)

� CÃκ
T,µe

CÃκ
T,µVµ(T )

(
b−1√µ‖(1+aµ)∆u‖

L2
T

(H
N
2 −1+γ)

+
∫ T

0

(
‖δu · ∇u‖

H
N
2 +γ +‖δa∇Π‖

H
N
2 +γ

)
dt+

√
µÃT,µ‖δu‖

L2
T

(H
N
2 +γ

2+1)

)
(6.4)

with ÃT,µ = 1 + b−1‖aµ‖
L̃∞

T
(H

N
2 +γ)

and κ = 2 +N/γ.

On one hand, according to proposition 1.3, we have

‖δu · ∇u‖
H

N
2 +γ � C‖δu‖

H
N
2 +γ‖∇u‖H N

2 +γ , (6.5)

‖δa∇Π‖
H

N
2 +γ � C‖δa‖

H
N
2 +γ‖∇Π‖

H
N
2 +γ , (6.6)

‖(1+aµ)∆u‖
H

N
2 +γ−1 � C

(
1+‖a‖

H
N
2 +γ +‖δa‖

H
N
2 +γ

)
‖∆u‖

H
N
2 +γ−1 . (6.7)

On the other hand, combining Hölder inequality and interpolation, we have√
µ‖δu‖

L2
T

(H
N
2 +γ

2+1)
� √

µT
γ
4 ‖δu‖

L̃
4

2−γ
T

(H
N
2 +γ

2+1)
,
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� (µT )
γ
4
(√
µ‖δu‖

L2
T

(H
N
2 +γ+1)

)1− γ
2
(
‖δu‖

L̃∞
T

(H
N
2 +γ)

) γ
2 . (6.8)

LetXµ(T ) def= µ−
1
2
(
‖δu‖

L̃∞
T

(H
N
2 +γ)

+√
µ‖δu‖

L2
T

(H
N
2 +γ+1)

+ b−1‖δa‖
L̃∞

T
(H

N
2 +γ)

)
.

Adding (6.2) (divided by b) to (6.4) and using (6.5), (6.6), (6.7) and
(6.8) yields

Xµ(T ) � CÃκ+1
T,µ e

CÃκ
T,µVµ(T )

(
‖∆u‖

L2
T

(H
N
2 −1+γ)

+ (µT )
γ
4Xµ(T )

+
∫ T

0

(
‖∇u(t)‖

H
N
2 +γ +b‖∇Π(t)‖

H
N
2 +γ +b−1‖∇a(t)‖

H
N
2 +γ

)
Xµ(t)dt

)
.

Remark that we have

Vµ(T ) � V (T ) +
√
T (Tµ)

γ
4Xµ(T ) with V (T ) def=

∫ T

0

‖∇u‖
H

N
2 + γ

2
dt,

ÃT,µ � ÃT + √
µXµ(T ) with ÃT

def= 1 + b−1‖a‖
L̃∞

T
(H

N
2 +γ)

.

Hence applying Gronwall lemma eventually leads to

Xµ(T ) � C
(
ÃT +

√
µXµ(T )

)κ+1
e
C
(
ÃT+

√
µXµ(T )

)κ(
Z(T )+

√
T (Tµ)

γ
4 Xµ(T )

)
×

(
‖∆u‖

L2
T

(H
N
2 −1+γ)

+ (µT )
γ
4Xµ(T )

)
(6.9)

with Z(T ) def=
∫ T

0

(
‖∇u(t)‖

H
N
2 +γ +b‖∇Π(t)‖

H
N
2 +γ +b−1‖∇a(t)‖

H
N
2 +γ

)
dt.

Let X0
def= 3C

(
1+ÃT0

)κ+1
eC

(
1+ÃT0

)κ(
1+Z(T0)

)
‖∆u‖

L2
T0

(H
N
2 +γ−1)

. Assume

that µ is so small as to satisfy
max

(√
T0(T0µ)

γ
4 ,
√
µ
)
X0 � 1,

C
(
1+ÃT0

)κ+1
eC

(
1+ÃT0

)κ(
1+Z(T0)

)
(µT0)

γ
4 � 1

2 .
(6.10)

Then we claim that we have Xµ(T0) � 2
3 X0.

Indeed, because T �→ Xµ(T ) is a continuous nondecreasing function
which vanishes at T = 0, the set

E
def=

{
T ∈ [0, T0] | Xµ(T ) � 2

3
X0

}
is a non-empty closed interval.
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Now, if T ∈ E is such that T < T0 then assumption (6.10) insures that
Xµ(T ) < 2

3 X0. As Xµ is a continuous function, this means that T is not
the supremum of E. Therefore E = [0, T0] and the proof of proposition 6.1
is complete. �

7. The critical case

In the present section, we investigate the limit case γ = 0. We shall see
that most of the qualitative results of the case γ > 0 remain true provided
that the initial data belong to the Besov space B

N
2 +1

2,1 . Let us first introduce
the following functional space:

Definition 7.1. — For s ∈ R, µ � 0 and T > 0, we denote

Gs
T,µ

def=
{

(a, u,∇Π) ∈ C([0, T ];Bs
2,1) ×

(
C([0, T ];Bs

2,1)
)N

×
(
L1(0, T ;Bs

2,1)
)N

| µu ∈
(
L1(0, T ;Bs+2

2,1 )
)N}

.

Our well-posedness result reads:

Theorem 7.2. — Let u0 ∈ B
N
2 +1

2,1 with div u0 = 0, 0 < ρ � ρ0 � ρ with

a0
def= ρ−1

0 − 1 ∈ B
N
2 +1

2,1 and f ∈ L1(R+;B
N
2 +1

2,1 ). There exists a T > 0 such
that systems (INSµ) and (IE) have a unique solution (ρ, u,∇Π) on [0, T ]

with (a, u,∇Π) ∈ G
N
2 +1

T,µ .

The time T may be bounded by below by a function depending only on
γ, N , µ, b and on the norm of the data in B

N
2 +1

2,1 , and may be chosen
independent of µ for vanishing µ. Moreover, the solution to (INSµ) tends
to the corresponding solution of (IE) when the viscosity tends to 0. The
convergence holds true in every space Gs

T,0 with s < 1 +N/2.

As the proof of this theorem is very similar to the one of theorem 0.2,
we only sketch it. It mainly lies on estimates in the space B

N
2 +1

2,1 for the
linearized system.

As regards (3.1), the following estimate is proved in [8]:

‖a‖
L∞

T
(B

N
2 +1

2,1 )
� eCV (T )

(
‖a0‖

B
N
2 +1

2,1

+
∫ T

0

e−CV (t)‖g(t)‖
B

N
2 +1

2,1

dt
)
, (7.1)
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with V (t) def=
∫ t

0
‖∇v(τ)‖

B
N
2

2,1

dτ.

For (Mµ) with g ≡ 0, we have

Proposition 7.3. — Let κ = N/2 + 1 if N � 3 (κ = 2 + ε for some
ε > 0 if N = 2). There exists a constant C depending only on N (and ε if
N = 2) and such that

‖u‖
L∞

T
(B

N
2 +1

2,1 )
+ µ‖u‖

L1
T

(B
N
2 +3

2,1 )
� CeCAκ

TV (T )

×
(
‖u0‖

B
N
2 +1

2,1

+ Aκ
T ‖f‖

L1
T

(B
N
2 +1

2,1 )
+ µA1+κ

T ‖u‖
L1

T
(B

N
2 +2

2,1 )

)
,

with µ def= µ/ρ, AT
def= 1 + ρ

(
‖a‖L∞

T
(L∞) + ‖∇a‖

L∞
T

(B
N
2

2,1)

)
and V (T ) def=∫ T

0
‖∇v‖

B
N
2

2,1

dt.

For the pressure, we have

b‖∇Π‖
L1

T
(B

N
2 +1

2,1 )

� A
N
2 +1

T

(
‖Qf‖

L1
T

(B
N
2 +1

2,1 )
+ µb(AT−1)‖u‖

L1
T

(B
N
2 +3

2,1 )
+ V (T )‖u‖

L∞
T

(B
N
2 +1

2,1 )

)
.

In the case v = u, the above estimate holds with V (T ) =
∫ T

0
‖∇u‖L∞ dt.

Sketchy proof of proposition 7.3. — Starting from (3.9), we get

‖u‖
L∞

T
(B

N
2 +1

2,1 )
+ µ‖u‖

L1
T

(B
N
2 +3

2,1 )
� ‖u0‖

B
N
2 +1

2,1

+ ‖Pf‖
L1

T
(B

N
2 +1

2,1 )

+µ‖∆−1u‖L1
T

(L2) + ‖T∇aΠ‖
L1

T
(B

N
2 +1

2,1 )
+ ‖T ′

∇Πa‖
L1

T
(B

N
2 +1

2,1 )

+µ
∫ T

0

( ∑
q�−1

2q(
N
2 +1)‖Rq‖L2

)
dt+

∫ T

0

( ∑
q�−1

2q(
N
2 +1)‖[v,∆q] · ∇u‖L2

)
dt.

According to lemma 8.8, we have∑
q�−1

2q(
N
2 +1)‖[v,∆q] · ∇u‖L2 � ‖∇v‖

B
N
2

2,∞∩L∞
‖∇u‖

B
N
2

2,1

.

On the other hand, according to remark 8.10,∑
q�−1

2q(
N
2 +1)‖Rq‖L2 � ‖∇a‖

B
N
2

2,1

‖∇u‖
B

N
2 +1

2,1

,
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and, arguing as in proposition 1.4 and remark 1.5, we get

‖T∇aΠ‖
B

N
2 +1

2,1

+ ‖T ′
∇Πa‖

B
N
2 +1

2,1

�
(
‖a‖L∞ + ‖∇a‖

B
N
2

2,1

)
‖∇Π‖

B
N
2

2,1

.

Therefore,

‖u‖
L∞

T
(B

N
2 +1

2,1 )
+ µ‖u‖

L1
T

(B
N
2 +3

2,1 )
�

‖u0‖
B

N
2 +1

2,1

+ ‖Pf‖
L1

T
(B

N
2 +1

2,1 )
+ µ‖∆−1u‖L1

T
(L2)

+
(
‖a‖L∞

T
(L∞) + ‖∇a‖

L∞
T

(B
N
2

2,1)

)
‖∇Π‖

L1
T

(B
N
2

2,1)

+
∫ T

0

(
µ‖∇a‖

B
N
2

2,1

+ ‖∇v‖
B

N
2

2,1

)
‖∇u‖

B
N
2

2,1

dt.

The pressure may be eliminated by making use of proposition 8.4 with
s = N/2. Indeed,

div(b∇Π) = ∂i(µa∆ui − T∂juivj − T ′
∂ivjuj + f i), (7.2)

so that

b‖∇Π‖
L1

T
(B

N
2

2,1)
� Aκ

T

(
‖Qf‖

L1
T

(B
N
2

2,1)
+

∫ T

0

‖u‖
B

N
2

2,1

‖∇v‖
B

N
2

2,1

dt

+
(
‖a‖L∞

T
(L∞) + ‖∇a‖

L∞
T

(B
N
2

2,1)

)
‖∆u‖

L1
T

(B
N
2

2,1)

)
, (7.3)

with κ = N/2 if N � 3, and κ = 1 + ε if N = 2.

Gronwall lemma yields the desired estimate for u. Next, applying propo-
sition 8.4 with s = N/2 + 1 to (7.2) yields the desired inequality for ∇Π.

Note that when v = u, we have∑
q�−1

2q(
N
2 +1)‖[v,∆q] · ∇u‖L2 � ‖∇u‖L∞‖∇u‖

B
N
2

2,1

so that ‖∇v‖
B

N
2

2,1

may be replaced by ‖∇u‖L∞ in the estimate for u. The

same remark applies to the estimates pertaining to the pressure. �

Let us now prove estimates for the solutions to (INSµ).
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Assuming that a ∈ L∞(0, T ;B
N
2 +1

2,1 ), u ∈ L∞(0, T ;B
N
2 +1

2,1 ),

µu ∈ L1(0, T ;B
N
2 +3

2,1 ) and ∇Π ∈ L1(0, T ;B
N
2 +1

2,1 ), inequality (7.1) and propo-
sition 7.3 yield

‖a‖
L∞

T
(B

N
2 +1

2,1 )
� ‖a0‖

B
N
2 +1

2,1

e
C‖∇u‖

L1
T

(B

N
2

2,1
)
,

‖u‖
L∞

T
(B

N
2 +1

2,1 )
+ µ‖u‖

L∞
T

(B
N
2 +3

2,1 )
�

Ce
CAκ

T ‖∇u‖
L1

T
(L∞)

(
‖u0‖

B
N
2 +1

2,1

+ Aκ
T ‖f‖

L1
T

(B
N
2 +1

2,1 )
+ µAκ+1

T ‖u‖
L1

T
(B

N
2 +2

2,1 )

)
,

with AT = 1 + ρ‖a‖
L∞

T
(B

N
2 +1

2,1 )
, κ = 1 + N/2 if N � 3, and κ = 1 + ε if

N = 2.

Next, going along the lines of the proof of the existence in theorem 0.2,
we easily get estimates independent of µ on the time interval [0, T ] with

T = c min
(
e−CAκ

0

Aκ
0U0

,
e−2CAκ

0

µA2κ+2
0

)
(7.4)

for some constants c and C, A0
def= 1 + b−1‖a0‖

B
N
2 +1

2,1

and

U0
def= ‖u0‖

B
N
2 +1

2,1

+ ‖f‖
L1(B

N
2 +1

2,1 )
.

Note that when µ goes to 0, the time T defined in (7.4) does not depend
on µ and one can get estimates independent of µ of the solution. Hence
applying proposition 2.2, one can prove that the viscous solution tends to
the inviscid one in L2 when the viscosity goes to 0. Interpolating with the
uniform estimates above, we conclude that convergence holds true in

C([0, T ];Bs
2,1) ×

(
C([0, T ];Bs

2,1)
)N

×
(
L1(0, T ;Bs

2,1)
)N

for all s < 1 +N/2.

Now, for data satisfying the assumptions of theorem 7.2, one can easily
prove existence on the interval [0, T ] with T defined in (7.4): as a first step
we smooth out the data (take (Sna0, Snu0, Snf) instead of (a0, u0, f)) and
solve the corresponding initial value problem. According to corollary 0.8 we
get a local solution (an, un,∇Πn) in H∞. By taking advantage of the above
calculations and of the continuation criterion given in proposition 5.2, the
lifespan of (an, un,∇Πn) may be bounded from below according to (7.4).
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Besides, one gets estimates in G
N
2 +1

T,µ independent on n (and of µ for small
µ) for (an, un,∇Πn). Convergence of the sequence together with uniqueness
then readily stem from corollary 2.3. �

Remark 7.4. — A blow-up criterion involving the L1
T (L∞) norm of ∇u

may also be proved. The details are left to the reader.

8. Appendix

8.1. Elliptic estimates

This section is devoted to the proof of new estimates (of independent
interest) for the elliptic equation (3.5). The results we prove here are some-
what more general than needed in the present paper. In particular, we state
estimates in Sobolev spaces with negative index of regularity, a result which
has been of much use in a recent work (see [8]).

Let us first study the stationary case where F and b are independent of
the time:

Proposition 8.1. — Assume that F ∈ L2 and that b is bounded and
satisfies b � b > 0. There exists a unique distribution Π modulo the con-
stants such that ∇Π ∈ L2 and Π solves (3.5) in the sense of distributions.
Moreover, the linear operator Hb : F �→ ∇Π is bounded in L2 and satisfies

b ‖Hb(F )‖L2 � ‖QF‖L2 for all F ∈ L2. (8.1)

Proof. — For smooth Π, the proof of (8.1) is straightforward: take the
L2-scalar product of (3.5) with Π, integrate by parts in the left-hand side and
use Hölder inequality to deal with the right-hand side. Density arguments
yield the estimate in the general case. As for existence, it stems from Lax-
Milgram theorem. �

For smoother b, one can get estimates in Sobolev spaces with positive
or negative regularity index. This latter point comes from the positive reg-
ularity of b outweighing the negative regularity of Π:

Proposition 8.2. — Let α > 0 and σ ∈ R satisfy 1∨α � |σ| � α+N/2.
Then the operator Hb is a linear bounded operator in Hσ and the following
estimate holds true:

b‖∇Π‖Hσ � A
|σ|
1∨α ‖QF‖Hσ , (8.2)
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with ∇Π def= Hb(F ) and A def=

{
1 + b−1‖∇b‖

H
N
2 +α−1 if α �= 1,

1 + b−1‖∇b‖
H

N
2 ∩L∞ if α = 1.

Proof. — i) Case σ ∈ [α ∨ 1, α+N/2].

Apply ∆q to (3.5) and proceed as in the L2 case. We gather:

b ‖∆q∇Π‖2
L2 �

∣∣∣(∆qQF |∆q∇Π) + (∆q∇Π | [b,∆q]∇Π)
∣∣∣, (8.3)

whence

b

(∑
q

22qσ ‖∆q∇Π‖2
L2

) 1
2

�

(∑
q

22qσ ‖∆qQF‖2
L2

) 1
2

+
(∑

‖[b,∆q]∇Π‖L2 22qσ

) 1
2

.

Assume α �= 1 to simplify the presentation. The commutator in the right-
hand side may be bounded thanks to lemma 8.8 below with p = r = 2,
σ̌ = σ − α ∨ 1 and σ̃ = σ (here comes the assumption σ � α+N/2).

If in addition σ �= 1 ∨ α+N/2, we end up with

b‖∇Π‖Hσ � ‖QF‖Hσ + ‖∇b‖
H

N
2 +α−1‖∇Π‖Hσ−α∨1 . (8.4)

Since σ � α ∨ 1, complex interpolation between L2 and Hσ yields

‖∇Π‖Hσ−α∨1 � ‖∇Π‖
σ−α∨1

σ

Hσ ‖∇Π‖
α∨1

σ

L2 . (8.5)

Let us now remark that for all a, b, c � 0 and θ ∈ [0, 1), we have

a bθc1−θ � θb+ (1−θ)a 1
1−θ c (8.6)

Plugging (8.5) in (8.4), and using (8.6) and (8.1), we get (8.2).

In the limit case σ = 1∨α+N/2, we have to bound ‖∇Π‖
H

N
2 ∩L∞ . This

may be done by combining real interpolation with the embedding B
N
2

2,1 ↪→
L∞. We end up with

‖∇Π‖
B

N
2

2,1

� ‖∇Π‖
N/2

1∨α+N/2

H1∨α+N/2 ‖∇Π‖
α∨1

1∨α+N/2

L2 ,

and we can conclude as before.

– 675 –
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Actually, we did not prove that ∇Π ∈ Hσ. Note that proposition 8.1
insures that ∇Π ∈ L2. Therefore, applying (8.4) with σ = α ∨ 1 yields
∇Π ∈ Hα∨1. Next, applying again (8.4) yields ∇Π ∈ Hσ∨(2α∨2), etc.

ii) Case σ ∈ [−α−N/2,−α ∨ 1].

Unsurprisingly, a duality method will do. Indeed

‖∇Π‖Hσ = sup
‖g‖H−σ �1

∫
g · ∇Π dx,

= sup
‖g‖H−σ �1

∫
Π div g dx. (8.7)

Since −σ � α∨1, the results of case i) yield a unique ∇hg ∈ H−σ satisfying

div(b∇hg) = div g

and, besides,

b‖∇hg‖H−σ � A− σ
1∨α ‖Qg‖H−σ . (8.8)

On the other hand, according to the definition of hg, integrating twice by
parts in (8.7) and using (3.5), we get

‖∇Π‖Hσ = sup
‖g‖H−σ �1

∫
hg divF dx,

= sup
‖g‖H−σ �1

∫
QF · ∇hg dx, (8.9)

which, according to (8.8), completes the proof of (8.2). Of course, in order to
make the above computations rigorous, one has to argue by density. �

Remark 8.3. — Actually, if 0 < α < 1 and α � |σ| < N
2 + α, lemma 8.7

enables us to take A = 1 + b−1‖∇b‖
B

N
2 +α−1

2,∞

.

Let us now state continuity results in Besov spaces, a result which is needed
in section 7.

Proposition 8.4. — Let s ∈ (1, N2 + 1] and Π satisfy ∇Π ∈ Bs
2,1 and

div(b∇Π) = divF . Denote A def= 1 + b−1‖∇b‖
B

N
2

2,1

. The following estimate

holds true:

b‖∇Π‖Bs
2,1

� As‖Qf‖Bs
2,1
. (8.10)
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In the limit case s = 1, we have for all ε > 0,

b‖∇Π‖B1
2,1

� A1+ε‖Qf‖B1
2,1
. (8.11)

Proof. — Starting from (8.3), we get

b‖∇Π‖Bs
2,1

� ‖Qf‖Bs
2,1

+
∑
q�−1

2qs ‖[b,∆q]∇Π‖L2 .

The commutator may be bounded thanks to lemma 8.8 with σ̌ = s − 1,
σ̃ = s, α = 1, p = 2 and r = 1. We get

b‖∇Π‖Bs
2,1

� ‖Qf‖Bs
2,1

+ C‖∇a‖
B

N
2

2,1

‖∇Π‖Bs−1
2,1
.

If s > 1, real interpolation between L2 and Bs
2,1 yields

‖∇Π‖Bs−1
2,1

� ‖∇Π‖
1
s

L2 ‖∇Π‖
s−1

s

Bs
2,1
,

whence the desired result.

If s = 1, one can alternatively use the estimate∑
q�−1

2q ‖[b,∆q]∇Π‖L2 � ‖∇a‖
B

N
2 −ε

2,1

‖∇Π‖Bε
2,1

then interpolate between L2 and B1
2,1. �

Let us finally study the non-stationary problem (3.5). We have the fol-
lowing

Proposition 8.5. — Let m ∈ [1,+∞], ε > 0, α > 0 and σ satisfy
1∨α � |σ| � α+N/2. Then Hb is a bounded operator on L̃mT (Hσ). Besides,
the following estimate holds:

b‖∇Π‖
L̃m

T
(Hσ)

� A
|σ|+ε
1∨α

T ‖QF‖
L̃m

T
(Hσ)

, (8.12)

with AT defined in (3.2).

If 1 � m � 2 and σ � α ∨ 1, or 2 � m � +∞ and σ � −(α ∨ 1), the
above inequality holds with ε = 0.
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Proof. — It is very similar to the one of proposition 8.2. We now have
to use a non-stationary version of lemma 8.8, namely lemma 8.7.

Assuming for the sake of simplicity that α �= 1 and that α+N/2 > σ �
α ∨ 1, inequality (8.3) eventually leads to

b‖∇Π‖
L̃m

T
(Hσ)

� ‖QF‖
L̃m

T
(Hσ)

+ ‖∇a‖
L̃∞

T
(H

N
2 +α−1)

‖∇Π‖
L̃m

T
(Hσ−α∨1)

.

If m � 2, Minkowski inequality yields

‖∇Π‖
L̃m

T
(H0)

� ‖∇Π‖Lm
T

(L2).

Therefore complex interpolation entails

‖∇Π‖
L̃m

T
(Hσ−α∨1)

� ‖∇Π‖
α∨1

σ

Lm
T

(L2)‖∇Π‖
σ−α∨1

σ

L̃m
T

(Hσ)
(8.13)

whence, according to (8.1) and Young inequality (8.6),

b‖∇Π‖
L̃m

T
(Hσ)

� ‖QF‖
L̃m

T
(Hσ)

+
(‖∇b‖

L̃∞
T

(H
N
2 +α−1)

b

) σ
α∨1

‖QF‖Lm
T

(L2).

Since σ > 0, we have

‖QF‖
L̃m

T
(L2)

� ‖QF‖
L̃m

T
(Hσ)

which yields (8.12).

If m > 2, the embedding LmT (L2) ↪→ L̃mT (L2) fails so that we are induced
to interpolate between H−ε and Hσ. We eventually get

b‖∇Π‖
L̃m

T
(Hσ)

� ‖QF‖
L̃m

T
(Hσ)

+
(‖∇b‖

L̃∞
T

(H
N
2 +α−1)

b

) σ+ε
α∨1

‖∇Π‖
L̃m

T
(H−ε)

.

As ‖∇Π‖
L̃m

T
(H−ε)

� ‖∇Π‖Lm
T

(L2), we can now conclude as before.

The limit cases α = 1 or σ = α+N/2 are left to the reader.

Note that we actually did not prove that Hb is bounded in L̃mT (Hσ). This
may be achieved by using that, according to proposition 8.1 (combined with
time mollifiers), problem (3.5) has a unique solution ∇Π ∈ Lm(0, T ;L2)
whenever F ∈ Lm(0, T ;L2). Next, arguing like in proposition 8.2, one can
show that ∇Π belongs to L̃mT (Hσ).

The case σ � −α ∨ 1 stems from duality arguments. �

Remark 8.6. — If 0 < α < 1 and α � σ < N
2 + α, lemma 8.7 enables us

to take AT = 1 + b−1‖∇b‖
L̃∞

T
(B

N
2 +α−1

2,∞ )
.
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8.2. Commutator estimates

The following lemma was needed in the proof of proposition 8.5:

Lemma 8.7 Let m ∈ [1,+∞], 1 � p, r � +∞, α �= 1 and σ̌ ∈ R satisfy

α+ σ̌ +N min(1/p, 1/p′) > 0 and α+N/p > 0.

Let σ̃ � min(σ̌ + α ∨ 1, α+N/p). The following inequalities hold true:( ∑
q�−1

‖[a,∆q]w‖rLm
T

(Lp)2
rqσ̃

) 1
r

� ‖∇a‖
L̃∞

T
(B

N
p

+α−1
p,∞ )

‖w‖
L̃m

T
(Bσ̌

p,r)

if σ̌ < N/p,( ∑
q�−1

‖[a,∆q]w‖rLm
T

(Lp)2
rqσ̃

) 1
r

� ‖∇a‖
L̃∞

T
(B

N
p

+α−1
p,r )

‖w‖
L̃m

T
(Bσ̌

p,r)

if σ̌ � N/p.

In the limit case α = 1, the term ‖∇a‖
L̃∞

T
(B

N
p

p,∞)
(resp. ‖∇a‖

L̃∞
T

(B
N
p

p,r)
) has

to be replaced by ‖∇a‖
L̃∞

T
(B

N
p

p,∞)∩L∞
T

(L∞)
(resp. ‖∇a‖

L̃∞
T

(B
N
p

p,r)∩L∞
T

(L∞)
).

Proof. — Let ã def= a− ∆−1a. Decompose [a,∆q]w as follows:

[a,∆q]w=[T
ã
,∆q]w︸ ︷︷ ︸
R1

q

+T ′
∆qwã︸ ︷︷ ︸
R2

q

−∆qTwã︸ ︷︷ ︸
R3

q

−∆qR(ã, w)︸ ︷︷ ︸
R4

q

+ [∆−1a,∆q]w︸ ︷︷ ︸
R5

q

. (8.14)

The term R1
q may be bounded by combining (1.1) and first order Taylor’s

formula. We get∥∥R1
q

∥∥
Lp � 2−q

∑
|q′−q|�4

‖∇Sq′−1ã‖L∞ ‖∆q′w‖Lp .

Hence, ( ∑
q�−1

(
2q(α+σ̌)‖R1

q‖Lm
T

(Lp)

)r
) 1

r

� ‖∇ã‖L∞
T

(Bα−1
∞,∞)‖w‖L̃m

T
(Bσ̌

p,r)

if α < 1, (8.15)( ∑
q�−1

(
2q(1+σ̌)‖R1

q‖Lm
T

(Lp)

)r
) 1

r

� ‖∇ã‖L∞
T

(L∞)‖w‖L̃m
T

(Bσ̌
p,r)

if α � 1. (8.16)

– 679 –
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Taking advantage of (1.1) and of Hölder inequality, R2
q may be bounded as

follows:

2q(α+σ̌)‖R2
q‖Lm

T
(Lp)

�
∑

q′�q−2

2(q−q′)(α+N
p )

(
2q

′(α+ N
p )‖∆q′ ã‖L∞

T
(Lp)

)(
2q(σ̌−

N
p )‖∆qw‖Lm

T
(L∞)

)
.

If α+N/p > 0, convolution inequalities for series yield( ∑
q�−1

(
2q(α+σ̌)‖R2

q‖Lm
T

(Lp)

)r
) 1

r

� ‖ã‖
L∞

T
(B

N
p

+α

p,∞ )
‖w‖

L̃m
T

(B
σ̌− N

p
∞,r )

. (8.17)

For bounding the third term in (8.14), one can further decompose it into

∆qTwã =
∑

|q′′−q|�4

∑
q′�q′′−2

∆q

(
∆q′w∆q′′ ã

)
.

Now, denoting σ1 = σ̌ − N
p and σ2 = α+ N

p , we have

2q(σ1+σ2)‖∆qTwã‖Lm
T

(Lp)

�
∑

|q′′−q|�4
q′�q′′−2

2(q′′−q′)σ1

(
2q

′σ1‖∆q′w‖Lm
T

(L∞)

)(
2q

′′σ2‖∆q′′ ã‖L∞
T

(Lp)

)
,

so that, if σ1 < 0,( ∑
q�−1

(
2q(σ̌+α)‖R3

q‖Lm
T

(Lp)

)r
) 1

r

� ‖w‖
L̃m

T
(B

σ1
∞,r)

‖ã‖L∞
T

(B
σ2
p,∞). (8.18)

Remark that one can also prove that( ∑
q�−1

(
2qσ2‖R3

q‖Lm
T

(Lp)

)r
) 1

r

� ‖w‖Lm
T

(L∞)‖ã‖L̃∞
T

(B
σ2
p,r)
. (8.19)

A straightforward adaptation of proposition 1.4 to non-stationary spaces
yields

‖R(ã, w)‖
L̃m

T
(Bα+̌σ

p,r )
� ‖w‖

L̃m
T

(Bσ̌
p,r)

‖ã‖
L∞

T
(B

α+N
p

p,∞ )

if α+ σ̌ > −N min(1/p, 1/p′). (8.20)
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The term R5
q may be treated by arguing like in the proof of (8.16). One

ends up with

( ∑
q�−1

(
2q(1+σ̌)‖[∆−1a,∆q]w‖Lm

T
(Lp)

)r
) 1

r

� ‖∇∆−1a‖L∞
T

(L∞)‖w‖L̃m
T

(Bσ̌
p,r)
. (8.21)

Of course, since ã has no low frequencies, we have for all r′ ∈ [1,+∞],

‖ã‖
L̃∞

T
(B

N
p

+α

p,r′ )
� ‖∇a‖

L̃∞
T

(B
N
p

+α−1

p,r′ )
. (8.22)

Therefore, plugging (8.15) or (8.16), (8.17), (8.18) or (8.19), (8.20) and
(8.21) in (8.14), we conclude to lemma 8.7. �

Let us also give a stationary statement of lemma 8.7:

Lemma 8.8. — Let p, r, α, σ̃ and σ̌ be as in the statement the previous
lemma. The following inequalities hold true:( ∑

q�−1

‖[a,∆q]w‖rLp2rqσ̃
) 1

r

� ‖∇a‖
B

N
p

+α−1
p,∞

‖w‖Bσ̌
p,r

if σ̌ < N/p,

( ∑
q�−1

‖[a,∆q]w‖rLp2rqσ̃
) 1

r

� ‖∇a‖
B

N
p

+α−1
p,r

‖w‖Bσ̌
p,r

if σ̌ � N/p.

In the limit case α = 1, the term ‖∇a‖
B

N
p

p,∞
(resp. ‖∇a‖

B
N
p

p,r

) has to be

replaced by ‖∇a‖
B

N
p

p,∞∩L∞
(resp. ‖∇a‖

B
N
p

p,r∩L∞
).

Lemma 8.9. — Let (r,m) ∈ [1,+∞]2. Assume that α > 1−N/2, α �= 1,
and σ ∈ (1 −N/2, 1 + α+N/2). Let Rq

def= ∆q(adivw)−div(a∆qw). Then
we have( ∑

q�−1

(
2q(σ−1)‖Rq‖Lm

T
(L2)

)r
) 1

r

� ‖∇a‖
L∞

T
(B

N
2 +α−1

2,∞ )
‖w‖

L̃m
T

(Bσ−α∨1
2,r )

.

with the usual modifications if r = +∞ or α = 1.
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In the limit case σ = 1 + α+N/2, we have( ∑
q�−1

(
2q(

N
2+α)‖Rq‖Lm

T
(L2)

)r
) 1

r

� ‖∇a‖
L̃∞

T
(B

N
2 +α−1

2,r )
‖w‖

L̃m
T

(B
N
2 +1

2,r )∩Lm
T

(Lip)

if α < 1,

� ‖∇a‖
L̃∞

T
(B

N
2

2,r)∩L∞
T

(L∞)
‖w‖

L̃m
T

(B
N
2 +1

2,r )∩Lm
T

(Lip)
if α = 1,

� ‖∇a‖
L̃∞

T
(B

N
2 +α−1

2,r )
‖w‖

L̃m
T

(B
N
2 +α

2,r )
if α > 1.

Proof. — Let ã def= a− ∆−1a. Using Bony’s decomposition, Rq rewrites

Rq = ∂i[∆q, Tã]w
i︸ ︷︷ ︸

R1
q

−∆qT∂iã
wi︸ ︷︷ ︸

R2
q

+ ∆qT
′
divwã︸ ︷︷ ︸
R3

q

− ∂iT ′
∆qwi ã︸ ︷︷ ︸
R4

q

+ [∆q,∆−1a] divw︸ ︷︷ ︸
R5

q

−∇∆−1a·∆qw︸ ︷︷ ︸
R6

q

.

In view of (1.1), R1
q further decomposes into

R1
q =

∑
|q′−q|�4

∂i[∆q, Sq′−1ã]∆q′w
i.

Now, combining Bernstein inequality with the first order Taylor’s formula
yields

‖∂i[∆q, Sq′−1ã]∆q′w‖L2 � 2q
′−q ‖∇Sq′−1ã‖L∞ ‖∆q′w‖L2 ,

whence,( ∑
q�−1

(
2q(σ−1)‖R1

q‖Lm
T

(L2)

)r
) 1

r

�‖∇ã‖L∞
T

(Bα−1
∞,∞)‖w‖L̃m

T
(Bσ−α

2,r )

if α < 1, (8.23)

( ∑
q�−1

(
2q(σ−1)‖R1

q‖Lm
T

(L2)

)r
) 1

r

� ‖∇ã‖L∞
T

(L∞)‖w‖L̃m
T

(Bσ−1
2,r )

if α � 1. (8.24)
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Applying proposition 1.4 combined with remark 1.8 yields( ∑
q�−1

(
2q(σ−1)‖R2

q‖Lm
T

(L2)

)r
) 1

r

� ‖∇ã‖L∞
T

(Bα−1
∞,∞)‖w‖L̃m

T
(Bσ−α

2,r )

if α < 1, (8.25)

( ∑
q�−1

(
2q(σ−1)‖R2

q‖Lm
T

(L2)

)r
) 1

r

� ‖∇ã‖L∞
T

(L∞)‖w‖L̃m
T

(Bσ−1
2,r )

if α � 1. (8.26)

By virtue of (8.18), (8.19) and (8.20), one has also, if 1−N
2 < σ < 1+α+N

2 ,( ∑
q�−1

(
2q(σ−1)‖R3

q‖Lm
T

(L2)

)r
) 1

r

� ‖ã‖
L∞

T
(B

N
2 +α

2,∞ )
‖divw‖

L̃m
T

(Bσ−1−α
2,r )

(8.27)

and( ∑
q�−1

(
2q(

N
2 +α)‖R3

q‖Lm
T

(L2)

)r
) 1

r

� ‖ã‖
L̃∞

T
(B

N
2 +α

2,r )
‖divw‖

L̃m
T

(B
N
2

2,∞)∩Lm
T

(L∞)
. (8.28)

If α > 1 and σ = 1 + α + N/2, one can further use that L̃mT (Bσ−2
2,r ) ↪→

L̃mT (B
N
2

2,r) ∩ LmT (L∞).

In view of (1.1) and according to Bernstein inequality, we have

2q(σ−1)‖R4
q‖Lm

T
(L2)

�
∑

q′�q−2

2(q−q′)(α+N
2−1)

(
2q

′(α+N
2 )‖∆q′ ã‖L∞

T
(L2)

)(
2q(σ−α−

N
2 )‖∆qw‖Lm

T
(L∞)

)
.

Using that convolution maps B1 C Br onto Br, we easily conclude that, if
α− 1 +N/2 > 0,( ∑

q�−1

(
2q(σ−1)‖R4

q‖Lm
T

(L2)

)r
) 1

r

� ‖ã‖
L∞

T
(B

N
2 +α

2,∞ )
‖w‖

L̃m
T

(B
σ−α− N

2
∞,r )

. (8.29)

For bounding R5
q , we use the decomposition

R5
q =

∑
|q′−q|�4

[∆q,∆−1a]∆q′ divw,

– 683 –
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whence, by virtue of the first order Taylor’s formula,( ∑
q�−1

2rq(σ−1)‖R5
q‖

r

Lm
T

(L2)

) 1
r

� ‖∇∆−1a‖L∞
T

(L∞)‖w‖L̃m
T

(Bσ−1
2,r )
. (8.30)

Finally, it is straightforward that( ∑
q�−1

2rq(σ−1)‖R6
q‖

r

Lm
T

(L2)

) 1
r

� ‖∇∆−1a‖L∞
T

(L∞)‖w‖L̃m
T

(Bσ−1
2,r )
. (8.31)

Combining (8.23), (8.25) or 8.26), (8.27) or (8.28), (8.29), (8.30), (8.31) and
(8.22) yields the desired inequality. �

Remark 8.10. — Under the same assumptions on s and α, one can easily
prove the following stationary estimate:∥∥∥2q(σ−1)‖∆q(adivw)−div(a∆qw)‖L2

∥∥∥
6r

� ‖∇a‖
B

N
2 +α−1

2,r

‖w‖Bσ−α∨1
2,r

with the same modifications in the endpoint cases as in proposition 8.9.

Lemma 8.11. — Let v be a solenoidal vector field. There exists a con-
stant C = Cσ,N such that the following estimates hold true:(∑

q 22qσ‖[vj ,∆q]∂ju‖2

L1
T

(L2)

)1
2

�
∫ T

0
‖∇v(t)‖

L∞∩B
N
2

2,∞

‖∇u(t)‖Hσ−1 dt

if |σ| < 1+N
2 ,(∑

q 22qσ‖[vj ,∆q]∂ju‖2

L1
T

(L2)

)1
2

�
∫ T

0
‖∇v(t)‖Hσ−1‖∇u(t)‖Hσ−1 dt

if σ > 1+N
2 .

Besides, if v = u, for all σ > −1 holds(∑
q

22qσ‖[uj ,∆q]∂ju‖
2

L1
T

(L2)

)1
2

�
∫ T

0

‖∇u(t)‖L∞‖∇u(t)‖Hσ−1 dt.

Proof. — We proceed as for proving lemma A.1 in [8]. Let ũ def= u− ∆−1u

and ṽ def= v − ∆−1v. Note that for all τ ∈ R, 1 � p, r � +∞, we have

‖ũ‖Bτ
p,r

� ‖∇u‖Bτ−1
p,r

and ‖ṽ‖Bτ
p,r

� ‖∇v‖Bτ−1
p,r
. (8.32)
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Split the commutator into six parts: [vj ,∆q]∂ju =
∑6

i=1R
i
q with

R1
q = [T

ṽj ,∆q]∂ju =
∑

|q′−q|�4[Sq′−1ṽ
j ,∆q]∆q′∂ju,

R2
q = T ′

∆q∂ju
ṽj =

∑
q′�q−2 Sq′+2∆q∂ju ∆q′ ṽ

j ,

R3
q = −∆qT∂juṽ

j =
∑

|q′−q|�4 ∆q

(
Sq′−1∂ju ∆q′ ṽ

j
)
,

R4
q = −∆q∂jR(ũ, ṽj) =

∑
q′�q−3 ∆q∂j

(
∆q′ ũ ∆̃q′ ṽ

j
)
,

R5
q = [∆−1v

j ,∆q]∂ju =
∑

|q′−q|�2[∆−1v
j ,∆q]∂j∆q′u,

R6
q = −∆qR(∂j∆−1u, ṽ

j) =
∑

q′�1 ∆q

(
∂j∆̃q′∆−1u ∆q′ ṽ

j
)
,

and denote

Ri def=
(∑

q

22qσ‖Ri
q‖

2

L1
T

(L2)

) 1
2
.

In the light of first order Taylor’s formula, we have

R1 �
4∑

i=−4

[∑
q

22q(σ−1)

(∫ T

0

∥∥∇Sq+i−1ṽ
j
∥∥
L∞ ‖∆q+i∂ju‖L2 dt

)2] 1
2

.

Now, as
∥∥∇Sq+i−1ṽ

j
∥∥
L∞ � ‖∇v‖L∞ , Minkowski inequality entails

R1 �
∫ T

0

‖∇v(t)‖L∞ ‖∇u(t)‖Hσ−1 dt. (8.33)

We have

R2 �
[∑

q

(∫ T

0

∑
q′�q−2

2q
′( N

2+1)‖∆q′ ṽ‖L2 2q(σ−
N
2−1)‖∆q∇u‖L∞ 2(q−q′)( N

2+1)dt

)2]1
2

.

Minkowski and convolution inequalities enable us to get

R2 �
∫ T

0

‖∇v(t)‖
B

N
2

2,∞

‖∇u(t)‖
B

σ−1− N
2

∞,2

dt. (8.34)

In the particular case u = v, using Bernstein inequality, one can rather write
that

R2 �
[∑

q

(∫ T

0

∑
q′�q−2

2q−q′ 2q(σ−1) ‖∆q∇u‖L2 2q
′σ ‖∆q′∇ũ‖L∞ dt

)2] 1
2

whence

R2 �
∫ T

0

‖∇u(t)‖B0
∞,∞

‖∇u(t)‖Hσ−1 dt. (8.35)
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Next, we have

R3 �[∑
q

( ∑
q′�q−2

∫ T

0

2(q−q′)(σ−N
2−1)2q

′(σ−N
2−1)‖∆q′∂ju‖L∞ 2q(

N
2+1)

∥∥∆q ṽ
j
∥∥
L2 dt

)2] 1
2

.

If σ < 1 +N/2, Minkowski and convolution inequalities yield

R3 �
∫ T

0

‖∇v(t)‖
B

N
2

2,∞

‖∇u(t)‖
B

σ−1− N
2

∞,2

dt. (8.36)

In the case σ > 1 +N/2 or u = v, one can alternately get

R3 �
∫ T

0

‖∇v(t)‖Hσ−1 ‖∇u(t)‖L∞ dt. (8.37)

For bounding R4, we first use Bernstein inequality, which yields

R4 �[∑
q

( ∑
q′�q−3

∫ T

0

2(q−q′)( N
2 +σ+1) 2q

′σ ‖∆q′ ũ‖L2 2q
′( N

2 +1)
∥∥∥∆̃q′ ṽ

∥∥∥
L2
dt

)2] 1
2

,

hence, if σ > −N
2 − 1,

R4 �
∫ T

0

‖∇v(t)‖
B

N
2

2,∞

‖∇u(t)‖Hσ−1 dt. (8.38)

If u = v and σ > −1, one can rather write

R4 �
[∑

q

( ∑
q′�q−3

∫ T

0

2(q−q′)(σ+1) 2q
′σ ‖∆q′ ũ‖L2 2q

′
∥∥∥∆̃q′ ũ

∥∥∥
L∞

dt

)2] 1
2

,

whence, in view of Minkowski inequality and (8.32),

R4 �
∫ T

0

‖∇u(t)‖B0
∞,∞

‖∇u(t)‖Hσ−1 dt. (8.39)

Next, according to first order Taylor’s formula, we have∥∥[∆−1v
j ,∆q]∆q′∂ju

∥∥
L2 � 2−q ‖∇∆−1v‖L∞ ‖∇∆q′u‖L2 .

Therefore, in the light of Minkowski inequality,

R5 �
∫ t

0

‖∆−1∇v(t)‖L∞ ‖∇u(t)‖Hσ−1 dt. (8.40)
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Finally, as R6
q vanishes for q > 3, we easily get

R6 �
∫ t

0

‖∇v(t)‖B0
∞,∞

‖∆−1∇u(t)‖L2 dt. (8.41)

Combining inequalities (8.33), (8.34), (8.36), (8.38), (8.40) and (8.41) with
elementary embeddings yields the desired estimates. If in addition u = v,
one can use inequalities (8.33), (8.35), (8.37), (8.39), (8.40) and (8.41). The
proof of lemma 8.11 is complete. �
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équations aux dérivées partielles non linéaires, Annales Scientifiques de l’école Nor-
male Supérieure, 14, p. 209-246 (1981).
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