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Classical Poincaré metric pulled back
off singularities using a Chow-type theorem

and desingularization(∗)

Caroline Grant Melles(1), Pierre Milman(2)

ABSTRACT. — We construct complete Kähler metrics on the nonsingular
set of a subvariety X of a compact Kähler manifold. To that end, we
develop (i) a constructive method for replacing a sequence of blow-ups
along smooth centers, with a single blow-up along a product of coherent
ideals corresponding to the centers and (ii) an explicit local formula for
a Chern form associated to this ‘singular’ blow-up. Our metrics have a
particularly simple local formula of a sum of the original metric and of
the pull back of the classical Poincaré metric on the punctured disc by
a ‘size-function’ SI of a coherent ideal I used to resolve the singularities
of X by a ‘singular’ blow-up, where (SI)2 :=

∑r

j=1
| fj |2 and the fj ’s

are the local generators of the ideal I . Our proof of (i) makes use of
our generalization of Chow’s theorem for coherent ideals. We prove Saper
type growth for our metric near the singular set and local boundedness of
the gradient of a local generating function for our metric, motivated by
results of Donnelly-Fefferman, Ohsawa, and Gromov on the vanishing of
certain L2-cohomology groups.

RÉSUMÉ. — Nous construisons des métriques complètes Kähleriennes
sur le lieu non-singulier d’une sous-variété X d’une variété compacte
Kählerienne lisse. A cet effet, nous développons : (i) une méthode con-
structive pour le remplacement d’une suite d’éclatements le long des cen-
tres lisses par un seul éclatement le long d’un produit d’idéaux cohérents
et (ii) une formule locale explicite pour une forme de Chern associée à cet
éclatement. Nos métriques sont décrites par une formule locale particu-
lièrement simple comme la somme de la métrique de départ et le tire-en-
arrière de la métrique de Poincaré classique sur le disque épointé par une
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‘fonction de grandeur’ SI de l’idéal cohérent I utilisé pour la résolution des
singularités de X, ou (SI)2 :=

∑r

j=1
| fj |2 et les fj sont des générateurs

locaux de I. Notre preuve de (i) utilise notre généralisation du théorème
de Chow pour les idéaux cohérents. Nous montrons que la vitesse de crois-
sance de notre métrique près du lieu singulier est de type Saper ainsi que le
fait que le gradient d’une fonction génératrice locale de notre métrique est
borné. Cela est motivé par les résultats de Donnelly-Fefferman, Ohsawa,
et Gromov sur l’annulation de certains groupes de cohomologie L2.

0. Introduction

Let X be a singular subvariety of a compact Kähler manifold M . In
[GM1] we showed how to construct a particular type of complete Kähler
metric on the nonsingular set of X. These metrics grow less rapidly than
Poincaré metrics near the singular set Xsing of X (cf. Example 9.8), and are
of interest because in certain cases it is known that their L2-cohomology
equals the intersection cohomology of X, while the L2-cohomology of a
Poincaré metric is not equal to the intersection cohomology of X, but rather
to the cohomology of the desingularization ofX ([Zu1], [Zu2]). We called our
metrics Saper-type or modified Saper metrics after Leslie Saper, who first
drew our attention to this subject. Saper proved that on any variety with iso-
lated singularities there is a complete Kähler metric whose L2-cohomology
equals its intersection cohomology (see [Sa1], [Sa2]). We show that our met-
rics are locally quasi-isometric to metrics satisfying a boundedness condition
of Ohsawa’s: the gradient of a generating function is locally bounded with
respect to the metric. Our construction requires no restriction on the type
of singularities and relates directly the desingularizations of X by means
of a ‘singular’ blow-up with certain complete Kähler metrics of Saper-type
growth near Xsing and satisfying Ohsawa’s boundedness condition for a lo-
cal generating function. Below we introduce these metrics explicitly by a
particularly simple formula involving the pull back of the Poincaré metric
on the punctured disc by a ‘size-function’ of a coherent ideal used to resolve
the singularities of X by a ‘singular’ blow-up.

The construction of Saper-type metrics in [GM1] used the geometry of
a finite sequence of blow-ups along smooth centers which resolves the sin-
gularities of X. In this paper we show how to replace a finite sequence of
blow-ups along smooth centers by a single blow-up along one center (per-
haps singular), which we describe in terms of its coherent sheaf of ideals I.
Hironaka and Rossi proved in [HR] that there is such an ideal sheaf. We give
a constructive proof, using our version of Chow’s Theorem for ideals, which
we prove using the Direct Image Theorem (for a blow-up along a smooth

– 690 –
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center). Blowing up M along I desingularizes X. The support of I is the
singular locus Xsing of X. The ideal sheaf I is a product of coherent ideals
Ij corresponding to the smooth centers Cj . Each Ij is the direct image on
M of a product of the ideal sheaf of Cj with a sufficiently high power of the
exceptional ideal of the previous blow-ups. In practice, the calculation of I
may be quite explicit: see for example the algorithm of [GM2] for combina-
torial blow-ups, which may be applied to desingularization of toric varieties
by [BM2]. We then give a simple and explicit construction of a Chern form
associated to the blow-up along I, in terms of local generators of I. Finally
we use this Chern form to obtain a simpler and more explicit expression for
our Saper-type metrics. We also give an example in which we compute I
explicitly in a neighborhood of a singular point.

The Saper-type metric which we obtain can be described in terms of its
Kähler (1,1)-form as

ωS = ω −
√
−1
2π

∂∂ log(logF )2,

where ω is the Kähler (1,1)-form of a Kähler metric on M , and F is a C∞

function on M , vanishing on Xsing. We first construct local C∞ functions
Fα, on small open sets Uα in M , by setting

Fα =
r∑

j=1

| fj |2

where f1, ..., fr are local holomorphic generating functions on Uα for the
coherent ideal sheaf I described above. To construct a global metric on
M −Xsing (and consequently on X −Xsing), we patch with a C∞ partition
of unity onM . It is crucial that this patching takes place onM , rather than
on a blow-up of M (cf. [GM1]), which might add unwanted elements to the
L2-cohomology.

In an appendix we give a simple constructive proof of a valuation crite-
rion due to M. Lejeune and B. Teissier.

We are grateful to the two referees who have read this paper and given us
helpful suggestions. A preliminary version of this paper appeared as [GM3].
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1. Outline and main results

In sections 2 and 3 we give some background and basic results about
coherent sheaves of ideals and blow-ups. We begin by describing the direct
and inverse images of sheaves, and in particular, direct and inverse images
of coherent sheaves of ideals. Then we describe the blow-up π : M̃ →M of a
complex manifold M along a coherent sheaf of ideals I. The analytic subset
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C = V (I) of M determined by I is called the center of the blow-up. If C is
smooth and of codimension at least 2, then M̃ is smooth. The blow-up map
π is proper and is a biholomorphism except along its exceptional divisor
E = π−1(C). Even though the direct image of an ideal sheaf may not be
an ideal sheaf in general, the direct image of an ideal sheaf under a blow-up
map is an ideal sheaf.

Section 4 is devoted to a proof of our version of the Chow’s Theorem
that we state below, using the Direct Image Theorem (for the blow-up map
of U ×C

n+1 along the smooth center U ×{0}), which states that the direct
image of a coherent sheaf under a proper map is coherent. Section 5 contains
some corollaries for blow-up maps which are useful in constructing single-
step blow-ups from a sequence of blow-up maps.

Chow’s Theorem for Ideals. — Let U be an open neighborhood of 0
in C

m and let X be an analytic subset of U ×P
n. Let J be a coherent sheaf

of ideals on X. Then J is relatively algebraic in the following sense: J is
generated (after shrinking U if necessary) by a finite number of homogeneous
polynomials in homogeneous P

n-coordinates, with analytic coefficients in U -
coordinates.

Chow’s Theorem for Ideals helps to describe the relatively algebraic
structure of blow-ups. Most useful for the purposes of this paper is the
following corollary, which shows that, even though the inverse image of the
direct image of an ideal sheaf may not be the original ideal sheaf in general,
on a blow-up of a compact complex manifold we can ensure that the two are
equal by first multiplying by a high enough power of the ideal sheaf IE of the
exceptional divisor. This result was proved by Hironaka and Rossi in [HR]
but our proof is constructive in nature and is substantially simpler, being
more explicit in the methods used. We also describe the relationship between
local generators of the sheaves J2 and J2IdE on M̃ . We go on to apply this
corollary repeatedly to get an explicit description of a coherent sheaf for
single-step blow-ups, as a product of coherent sheaves corresponding to a
sequence of blow-ups along smooth centers.

Corollary 1.1. — Let π : M̃ → M be the blow-up of a compact com-
plex manifold M along a coherent sheaf of ideals J1 and let E be the excep-
tional divisor of π. Let J2 be a coherent sheaf of ideals on M̃ . Then there
exists an integer d0 such that

π−1π∗(J2IdE) = J2IdE

for all d � d0.
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We end section 5 with a simple proof of a valuation criterion due to M.
Lejeune and B. Teissier, which illustrates the methods developed in sections
4 and 5 and applied similarly in section 6.

For the purposes of this paper and to apply Hironaka’s theorem on
embedded resolution of singularities, we need only to consider blow-ups
of smooth spaces. If the blow-up M̃ (ofM along J1) is smooth, the blow-up
of M̃ along J2 is isomorphic to the blow-up of M̃ along J2IdE . Furthermore,
the blow-up of M̃ along J2IdE is isomorphic to the blow-up of the base
space M along J1π∗(J2IdE). Thus we can replace the pair of blow-ups,
first along J1 and then along J2, by a single blow-up along J1π∗(J2IdE).
Repeating this procedure for a finite sequence of smooth centers enables us
to construct a coherent sheaf of ideals I onM such that blowing upM along
I is equivalent to blowing up successively along smooth centers. Section 6
contains a more detailed version of the proof of the following proposition,
which was proved by Hironaka and Rossi in [HR]. This result is also related
to Theorem II.7.17 of [Ha1]. The method of construction of I is of interest
in itself, because in practice it may be quite explicit and algorithmic, as for
example, for combinatorial blow-ups for desingularization of toric varieties
(see [GM2] and [BM2]).

Proposition 1.2 (Single-Step Blow-ups). — Let M be a compact
complex manifold and let

Mm
πm→Mm−1 → ...→M2

π2→M1
π1→M0 =M

be a finite sequence of blow-ups along smooth centers Cj ⊂ Mj−1 of codi-
mension at least 2. Then there is a coherent sheaf of ideals I on M such
that the blow-up of M along I is isomorphic to the blow-up of M along the
sequence of smooth centers Cj. Furthermore, we may construct I to be of
the form

I = I1I2...Im,
where each Ij is a coherent sheaf of ideals on M and

i. Ij is the direct image on M of the ideal sheaf of Cj multiplied by a
high enough power of the ideal sheaf of the exceptional divisor of the
first j − 1 blow-ups,

ii. the inverse image of Ij on Mj−1 is the ideal sheaf of Cj multiplied
by the same power of the exceptional ideal sheaf as in (i), and

iii. the blow-up of Mj−1 along the inverse image of Ij is isomorphic to
the blow-up of Mj−1 along Cj.
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We are particularly interested in the case of a sequence of blow-ups
along smooth centers which resolves the singularities of a singular subvariety
X of M . In this case, the proposition gives us a coherent ideal sheaf I
on M , supported on the singular locus of X, such that blowing up along
I desingularizes X, and also gives a factorization of I in terms of ideals
corresponding to the original sequence of blow-ups. This factorization of I
is essentially unique for curves ([ZS], Appendix 5).

In section 7 we give a simple and explicit construction of a Chern form
associated to a blow-up. Suppose that π : M̃ → M is the blow-up of a
complex manifold M along a coherent sheaf of ideals I such that M̃ is
smooth. Let E be the exceptional divisor and LE the line bundle on M̃
associated to E. Let f1, ..., fr be local holomorphic generating functions for
I on a small open set U ⊂M . We show that there is a hermitian metric h, on
the restriction of LE to Ũ = π−1(U), whose Chern form may be constructed
as the pullback of the negative of a Fubini-Study form on projective space.
This Chern form is given on Ũ − Ũ ∩ E by

c1(LE , h) = π∗(−
√
−1
2π

∂∂ log
r∑

j=1

| fj |2).

If M is compact, we may patch together local Chern forms using a C∞

partition of unity on M , in such a way that the negativity on fibres is
preserved.

Now consider in more detail a singular subvariety X of a compact Kähler
manifold M . Hironaka’s famous theorem on embedded desingularization
(and its canonical version in [BM1]) tell us that the singularities of X may
be resolved by a finite sequence of blow-ups of M along smooth centers,
such that the total exceptional divisor of the composite of all the blow-
ups is a normal crossings divisor D in M̃ which has normal crossings with
the desingularization X̃ in M̃ and such that M̃ − D ∼= M − Xsing and
X̃ − X̃ ∩D ∼= X −Xsing. By the Single-Step Blow-up Proposition, we may
resolve the singularities of X by blowing upM along a single coherent sheaf
of ideals I on M , whose blow-up is isomorphic to the blow-up obtained
using the sequence of smooth centers. The inverse image ideal sheaf of I in
the blow-up M̃ determines the normal crossings divisor D and the support
of I in M is Xsing. We construct a Chern form for the line bundle LD
corresponding to the blow-up along I, using local holomorphic generating
functions of I as above and patching with a C∞ partition of unity on M .
We show that subtracting this Chern form from the Kähler (1,1)-form of
a Kähler metric on M gives the (1,1)-form of a Kähler metric on M̃ , our
“desingularizing metric.” The completion of X −Xsing with respect to this
metric is nonsingular.
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We say that two metrics on an open set U are quasi-isometric if their
fundamental (1, 1)-forms ωA and ωB satisfy cωA � ωB � CωA on U , for
some positive constants c and C. We call a metric on M̃−D a modified Saper
or Saper-type metric if it is quasi-isometric to a metric with fundamental
(1, 1)-form

lπ∗ω −
√
−1
2π

∂∂ log(log || s ||2)2,

where ω is the fundamental (1, 1)-form of a metric on M , l is a positive
integer, s is a global holomorphic section of the line bundle LD whose van-
ishing set is D, and || s || is the norm of s with respect to a metric h on
LD. The corresponding metric on M −Xsing

∼= M̃ −D and its restriction to
X −Xsing are also called Saper-type or modified Saper. In [GM1], a more
general class of modified Saper metrics is discussed and the growth rates of
such metrics are studied in more detail.

Our main theorem on desingularizing and Saper-type metrics is proved
in section 8.

Theorem 1.3. — Let X be a singular subvariety of a compact Kähler
manifold M and let ω be the Kähler (1,1)-form of a Kähler metric on M .
Then there exists a C∞ function F on M , vanishing on Xsing, such that for
k a large enough positive integer,

i. the (1,1)-form

ω̃ = kω +
√
−1
2π

∂∂ logF

is the Kähler form of a desingularizing Kähler metric for X, i.e. the
completion of X−Xsing with respect to ω̃ is a desingularization of X
and

ii. the (1,1)-form

ωS = ω −
√
−1
2π

∂∂ log(logF )2

is the Kähler form of a complete Kähler Saper-type metric on M −
Xsing and hence on X −Xsing.

Furthermore, the function F may be constructed to be of the form

F =
∏
α

F ρα
α ,
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where {ρα} is a C∞ partition of unity subordinate to an open cover {Uα}
of M , Fα is a function on Uα of the form

Fα =
r∑

j=1

| fj |2,

and f1, ..., fr are holomorphic functions on Uα, vanishing exactly on
Xsing ∩Uα. More specifically, f1, ..., fr are local holomorphic generators of a
coherent ideal sheaf I on M such that blowing up M along I desingularizes
X, I is supported on Xsing, and the exceptional divisor in the blow-up M̃
along I has normal crossings and is also normal crossings with the strict
transform X̃ of X in M̃ (the so-called embedded desingularization of X).

The coherent ideal sheaf I is constructed as a product I1I2...Im of
coherent ideal sheaves corresponding to a sequence of blow-ups along smooth
centers Cj which resolves the singularities of X. This factorization of I gives
a corresponding factorization of Fα, as essentially a product of distances to
the centers,

Fα =
m∏
j=1

rj∑
i=1

| vji |2

where, for each j, the functions {vji} are local holomorphic functions on
Uα whose pullbacks to the preimage of Uα under the first j − 1 blow-ups
generate an ideal sheaf with the same blow-up as Cj .

The idea behind the metric constructions in this paper is to first find
simple and explicit formulas locally on M , then patch by C∞ partitions of
unity on M . We wish to avoid formulas which are local only on blow-ups of
M and we also wish to avoid introducing C∞ partition-of-unity functions
on the blow-ups (unlike in our previous work [GM1]).

We prove that, locally on M , our Saper-type metrics are quasi-isometric
to metrics satisfying a boundedness criterion of Ohsawa’s: the gradient of
a generating function of the fundamental (1,1)-form of the metric is locally
bounded with respect to the metric. In view of results of Donnelly-Fefferman
[DF], Ohsawa [O], and Gromov [Gro] on vanishing of certain L2-cohomology
groups, we hope (and expect) that this property would allow one to apply
Goresky-MacPherson’s work on the axiomatic characterization of intersec-
tion cohomology for the purpose of identification of the latter (for the middle
perversity) with the L2-cohomology groups for our Saper-type metrics.

We conclude, in section 10, by constructing I for the cuspidal cubic
y2 − x3. The method used generalizes to the case of any singular locally
toric complex analytic variety (see [GM2] and [BM2]).
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2. Direct and inverse images of coherent sheaves of ideals

Coherent Sheaves

We first review the important concept of coherence (see e.g. [GrR1],
[GuR]).

Let M be a complex space and let S be an analytic sheaf on M , i.e. a
sheaf of OM -modules. For example, consider an ideal sheaf of OM or the
sheaf of holomorphic sections of a holomorphic vector bundle on M .

Definition 2.1. — The sheaf S is of finite type at x ∈ M if there
exists an open set U of x such that the restriction SU of S to U is generated
by a finite number of sections of S over U . This means that there exist
sections s1, ..., sr of S over U such that for each point y ∈ U and for each
germ gy ∈ Sy, there exist a1y, ..., ary ∈ OM,y such that

gy =
r∑
i=1

aiysiy.

The sheaf S is of finite type on M if S is of finite type at x for all x ∈M .

Remark 2.2. — Note that if s and t are sections of S on a neighborhood
of a point y such that sy = ty (i.e. they have the same germs at y), then s = t
in an open neighborhood of y, by fundamental properties of sheaves. In par-
ticular, in the definition above, if gy, a1y, ..., ary are the germs of g, a1, ..., ar
at y then there exists a neighborhood V ⊂ U of y such that

g =
r∑
i=1

aisi

on V .

Each finite collection s = (s1, ..., sr) of sections of S over U determines
a sheaf homomorphism

ψs : Or
U → SU

given by

(f1, ..., fr) �→
r∑
i=1

fisi.

Definition 2.3. — The sheaf S is of relation finite type at x ∈ M
if ker ψs is of finite type at x for all finite collections s of sections of S over
an open neighborhood U of x. S is of relation finite type on M if S is
of relation finite type at x for all x ∈M .
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Definition 2.4. — The sheaf S is coherent on M if

1. S is of finite type on M , and

2. S is of relation finite type on M .

Since coherent sheaves are always finite type, by definition, it follows that
if S is a coherent sheaf on a complex space X and s1, ..., sr are sections of S
on a neighborhood U of a point x such that the germs s1x, ..., srx generate
Sx, then there exists a neighborhood V ⊂ U of x such that s1, ..., sr generate
SV .

We refer the reader to [F], [GrR1], [GrR2], [GuR], and [W] for back-
ground on the following and other fundamental properties of coherent sheaves:

i. The sheaf OM is coherent.

ii. A subsheaf of a coherent sheaf is coherent if and only if it is of finite
type. In particular, an ideal sheaf of OM is coherent if and only if it
is of finite type.

iii. A coherent ideal sheaf I on a complex space determines a closed
complex analytic subspace V (I), and the ideal sheaf IY of a closed
complex analytic subspace Y of a complex space is coherent.

Lemma 2.5. — If I1 and I2 are coherent sheaves of ideals on a complex
space M , then the product ideal sheaf I1I2 is also coherent.

Proof. — Since both I1 and I2 are of finite type, their product is of finite
type and is thus coherent. �

We define direct images and inverse images of coherent sheaves of ideals,
and give some conditions under which these sheaves are themselves coherent
ideal sheaves (in general they may be only sheaves of modules). We show
that direct and inverse images of composite maps are composites of the
direct and inverse image maps (functoriality). We also show that the inverse
image of a product of ideals is the product of the inverse image ideals. Direct
and inverse images of ideal sheaves under blow-up maps are discussed in
Lemmas 3.9 and 5.7.

Direct images

Direct Image. — Let f : M → N be a holomorphic map of complex
spaces and let S be a sheaf on M . The direct image sheaf f∗S on N is the

– 699 –



Caroline Grant Melles, Pierre Milman

sheaf associated with the presheaf given by f∗S(U) = S(f−1(U)), for U any
open set in N .

If S is coherent, the direct image f∗S is not necessarily coherent. However
f∗S is coherent if f is proper, by the Direct Image Theorem. We recall the
Direct Image Theorem in our context (see e.g. [GrR1], pp 207, 227, and 36).

Direct Image Theorem . — Let f : M → N be a holomorphic map
of complex spaces and let S be a coherent sheaf on M . If f is proper then
f∗S is coherent.

In particular, if f is a blow-up map (see section 3), then f is proper and
f∗S is coherent if S is.

If J is a sheaf of ideals on M , then f∗J is a sheaf of ON -modules but
not, in general, an ideal sheaf on N . We will show (Lemma 3.9) that if f is
a blow-up map then f∗J is an ideal sheaf.

Inverse images

Once again, let f : M → N be a holomorphic map of complex spaces.
Let S be a sheaf of ON -modules.

Topological Inverse Image. — We define the topological inverse im-
age f ′S to be the fibre product S ×N M , i.e. the stalk of f ′S over a point
m ∈M is the stalk of S over f(m) ∈ N :

(f ′S)m = Sf(m).

Note that f ′S is a sheaf of f ′ON -modules. If S is coherent then so is
f ′S.

Pullback Sheaf . — We define the pullback sheaf as

f∗S = f ′S ⊗f ′ON
OM .

Note that f∗S is a sheaf of OM -modules and once again, if S is coherent
then so is f∗S. Also

f∗ON = f ′ON ⊗f ′ON
OM = OM .

If I is an ideal sheaf on N , we have an exact sequence

0 → I → ON .
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Since tensoring is not in general left exact, the induced map

f∗I → f∗ON = OM

is not necessarily injective, so f∗I is not necessarily an ideal sheaf on M .
The image of f∗I in OM is an ideal sheaf, which we call the inverse image
ideal sheaf and will describe in more detail later in this section.

Flat Maps. — A holomorphic map f : M → N of complex spaces is
flat if

OM,m is ON,f(m)-flat

for all m ∈M . Equivalently, f is flat if for every exact sequence

0 → S1 → S2

of ON,f(m)-modules, the induced sequence

0 → S1 ⊗ON,f(m) OM,m → S2 ⊗ON,f(m) OM,m

is also exact.

There are many references on flat maps, e.g. ([F], p. 147 and p. 155).

Example 2.6. — If X and Y are complex spaces, the canonical projec-
tion X × Y → Y is flat. Every locally trivial holomorphic map is flat. In
particular, if f : L → X is a line bundle over a complex space X (or more
generally, a vector bundle), then f is flat.

Lemma 2.7. — If f : M → N is a flat holomorphic map of complex
spaces and 0 → S1 → S2 is an exact sequence of sheaves of ON -modules,
then 0 → f∗S1 → f∗S2 is an exact sequence of sheaves of OM -modules.

Proof. — Suppose that
0 → S1 → S2

is an exact sequence of sheaves of ON -modules, i.e.

0 → S1,n → S2,n

is an exact sequence of ON,n-modules for each n ∈ N . Then in particular,

0 → S1,f(m) → S2,f(m)

is an exact sequence of ON,f(m)-modules for all m ∈ M . If f : M → N is
flat, then

0 → S1,f(m) ⊗ON,f(m) OM,m → S2,f(m) ⊗ON,f(m) OM,m
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is exact for all m ∈M , i.e.

0 → (f ′S1)m ⊗(f ′ON )m
OM,m → (f ′S2)m ⊗(f ′ON )m

OM,m

is exact for all m ∈M . These tensor products can be rewritten as

0 → (f ′S1 ⊗f ′ON
OM )m → (f ′S2 ⊗f ′ON

OM )m,

showing that
0 → f ′S1 ⊗f ′ON

OM → f ′S2 ⊗f ′ON
OM

is exact. By the definition of f∗, this means that

0 → f∗S1 → f∗S2

is exact. �

Lemma 2.8. — If L is the sheaf of holomorphic sections of a line bundle
(or more generally of a vector bundle) over a complex space M , and

0 → S1 → S2

is an exact sequence of sheaves of OM -modules, then

0 → S1 ⊗ L → S2 ⊗ L

is also exact.

Proof. — A finitely generated module over a local noetherian ring is flat
if and only if it is free ([Ma], Proposition 3.G, p. 21). Therefore ⊗OM,m

Lm
preserves exact sequences. �

Inverse Image Ideal . — Let f : M → N be a holomorphic map of
complex spaces. If I is an ideal sheaf on N , the image of f∗I in OM is an
ideal sheaf which we define to be the inverse image ideal sheaf f−1I.

The ideal sheaf f−1I is sometimes written f∗I · OM or f−1I · OM . If I
is coherent, then f−1I is also coherent.

If I is a coherent ideal, the subscheme of M determined by f−1I is the
inverse image scheme of the subscheme of N determined by I, i.e.

V (f−1I) = f−1(V (I)).

Lemma 2.9. — If f : M → N is a flat holomorphic map of complex
spaces and I is an ideal sheaf on N , then f−1I ∼= f∗I.

– 702 –
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Proof. — By Lemma 2.7 above, if f is flat, then the map f∗I → f∗ON =
OM is injective. �

Corollary 2.10. — If f : L → X is a line bundle (or more generally
a vector bundle) and I is an ideal sheaf on X, then f−1I = f∗I.

Proof. — As noted in the discussion of flat maps above, the projection
of a line bundle (or vector bundle) onto its base space is a flat map. �

Composites

Next we describe the behavior of direct and inverse images under com-
posites. The proofs are straightforward, using the definitions above.

Lemma 2.11 (The Composite of Direct Images is the Direct

Image of the Composite). — Let M1
f→M2

g→M3 be holomorphic maps
of complex spaces and let S be a sheaf on M1. Then

g∗(f∗S) ∼= (g ◦ f)∗S.

Proof. — Let U be an open set in M3. Then

g∗(f∗S)(U) = (f∗S)(g−1(U))
= S(f−1g−1(U))
= S((g ◦ f)−1(U))
= (g ◦ f)∗(U). �

Lemma 2.12 (The Composite of Topological Inverse Images
is the Topological Inverse Image of the Composite). — Let

M1
f→M2

g→M3 be holomorphic maps of complex spaces and let S be a sheaf
on M3. Then

f ′(g′S) ∼= (g ◦ f)′S.

Proof. — We will prove the statement on stalks. Let m be a point inM1.
Then

(f ′(g′S))m = (g′S)f(m)

= Sg◦f(m)

= ((g ◦ f)′S)m. �
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Lemma 2.13 (The Composite of Pullbacks is the Pullback of

the Composite). — Let M1
f→M2

g→M3 be holomorphic maps of complex
spaces and let S be a sheaf on M3. Then

f∗(g∗S) ∼= (g ◦ f)∗S.

Proof. — For convenience, let Oi represent OMi for i = 1, 2, 3. Recall
that

g∗S = g′S ⊗g′O3 O2.

Similarly

f∗(g∗S) = f ′(g∗S) ⊗f ′O2 O1

= f ′(g′S ⊗g′O3 O2) ⊗f ′O2 O1.

Looking at stalks over m ∈M1 we have

(f∗(g∗S))m = f ′(g′S ⊗g′O3 O2)m ⊗(f ′O2)m
O1,m

= (g′S ⊗g′O3 O2)f(m) ⊗O2,f(m) O1,m

= (g′S)f(m) ⊗(g′O3)f(m)
O2,f(m) ⊗O2,f(m) O1,m

= Sg(f(m)) ⊗O3,g(f(m)) O2,f(m) ⊗O2,f(m) O1,m

= Sg(f(m)) ⊗O3,g(f(m)) O1,m

= ((g ◦ f)′S)m ⊗((g◦f)′O3)m
O1,m

= ((g ◦ f)∗S)m. �

The following lemma is more naturally understood in terms of sub-
schemes determined by coherent sheaves of ideals. Its interpretation in term
of subschemes is that the inverse image subscheme under a composite map
is the composite of the inverse images. Briefly, f−1 is functorial on ideals
and their corresponding subschemes.

Lemma 2.14 (The Composite of Inverse Images is the Inverse

Image of the Composite). — Let M1
f→M2

g→M3 be holomorphic maps
of complex spaces and let I be a sheaf of ideals on M3. Then

f−1(g−1I) ∼= (g ◦ f)−1I.

Proof. — As in the previous proof, let Oi = OMi . Recall that g−1I is
defined to be the image of g∗I in O2, so there is a surjective map

g∗I �→ g−1I.
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The map of topological inverse images

f ′g∗I �→ f ′g−1I
is also surjective.

Tensoring over f ′O2 by O1 we obtain the map

f∗g∗I �→ f∗g−1I,
which is surjective since tensoring is right exact.

Finally we note that

f−1g−1I = image of f∗g−1I in O1 by definition
= image of f∗g∗I in O1 by surjectivity
= image of (g ◦ f)∗I in O1 by Lemma 2.13
= (g ◦ f)−1I by definition �

Products of ideals

The following lemma is also more naturally understood in terms of sub-
schemes determined by coherent sheaves of ideals. The subscheme of M
determined by (f−1I1)(f−1I2) is the union of the subschemes determined
by f−1I1 and f−1I2, which are the inverse images of the subschemes de-
termined by I1 and I2. The subscheme of M determined by f−1(I1I2) is
the inverse image of the union of the subschemes determined by I1 and I2,
which is the same as the union of the inverse images.

Lemma 2.15 (The Inverse Image Ideal of a Product of Ideal
Sheaves is the Product of the Inverse Image Ideal Sheaves).
Let f :M → N be a holomorphic map of complex spaces and let I1 and I2

be sheaves of ideals on N . Then

(f−1I1)(f−1I2) ∼= f−1(I1I2).

Proof. — Note that both f−1(I1I2) and (f−1I1)(f−1I2) are generated
as ideals in OM by products of the form f∗w1f

∗w2 where w1 is a germ in
I1 and w2 a germ in I2. �

The direct image of a product of ideal sheaves is not necessarily equal to
the product of the direct images, but we will show later (Lemma 5.7) that
the two are equal if the map is a blow-up of a smooth center and the ideal
sheaves are first multiplied by a high enough power of the ideal sheaf of the
exceptional divisor.

– 705 –



Caroline Grant Melles, Pierre Milman

3. Blowing up a complex manifold along
a Coherent sheaf of ideals

Let M be a complex manifold and let I be a coherent sheaf of ideals
on M . Here and throughout the paper we will always assume that I is not
the zero sheaf. Since I is coherent, for each point p ∈ M we may choose
a coordinate neighborhood U , centered at p, such that I(U) is generated
by a finite number of global sections over U . We first define the blow-up of
M along I locally over such an open set U , using a collection of generators
of I(U). We then show that the result is independent of the collection of
generators chosen, so that the blow-up may be defined globally over M .

Blow-ups may also be defined for singular complex spaces but we do not
need such generality here.

Local description of blow-ups

Let M be a complex manifold and I a coherent sheaf of ideals on M
as above. Let U be a small enough coordinate neighborhood in M that
I = I(U) is generated by a finite collection of global sections f1, ..., fr on
U . Set

V (I) = {z ∈ U : h(z) = 0 for all h ∈ I}.
We define a map

φf : U − V (I) → P
r−1

by setting φf (z) = [f1(z) : ... : fr(z)]. Let Γ(φf ) be the graph of φf in
U × P

r−1, i.e.

Γ(φf ) = {(z, [ξ]) : z ∈ U − V (I) and [ξ] = [f1(z) : ... : fr(z)]}
= {(z, [ξ]) : z ∈ U − V (I) and fi(z)ξj = fj(z)ξi, 1 � i, j � r}.

We define Ũf to be the smallest reduced complex analytic subspace of
U × P

r−1 containing the graph Γ(φf ). The support of Ũf is the closure of
Γ(φf ) in the usual topology.

The blow-up map of U along I is the projection π : Ũf → U , which is
a proper map.

We will now show that the complex space Ũf is independent of the
generators f chosen for I.

Lemma 3.1. — If {f1, ..., fr} and {g1, ..., gs} are two collections of gen-
erators of I on U then

Ũf ∼= Ũg.
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Proof. — Define a map ψ : Γ(φf ) → Γ(φg) by

ψ(z, [ξ]) = (z, [g1(z) : ... : gs(z)].

The map ψ is well-defined because g1(z), ..., gs(z) are not all 0 for z ∈
U − V (I), (since g1, ..., gs are generators of I). Furthermore ψ−1 exists and
is given by

ψ−1(z, [ζ]) = (z, [f1(z) : ... : fr(z)].

Both ψ and ψ−1 are clearly holomorphic so Γ(φf ) ∼= Γ(φg). We will now
show that they extend to holomorphic maps on Ũf and Ũg.

Since {f1, ..., fr} and {g1, ..., gs} both generate I, there exist αij , βij ∈
O(U) such that

gi(z) =
r∑

j=1

αij(z)fj(z)

and

fi(z) =
s∑

j=1

βij(z)gj(z)

for all z in U . Briefly,

f(z) = β(z)g(z) = β(z)α(z)f(z) (∗)

for all z ∈ U . The functions α and β might not define maps on all of P
r−1

and P
s−1 but they do define maps on Γ(φf ) and Γ(φg).

Suppose that (z′, [ξ′]) ∈ U×P
r−1 is the limit of points (zγ , [ξγ ]) ∈ Γ(φf ),

i.e. there is a sequence of points {zγ} ∈ U such that

zγ → z′ and [ξγ ] = [f1(zγ) : ... : fr(zγ)] → [ξ′].

Some component of [ξ′] is nonzero, say the first component, so that we may
assume that ξ′ = (1, ξ′2, ...ξ

′
r). Then we may also assume that the sequence

{zγ} has the property that f1(zγ) �= 0 for all γ and that the sequence ξγ is
of the form

ξγ = (1, ξγ2, ..., ξγr) =
(

1,
f2(zγ)
f1(zγ)

, ...,
fr(zγ)
f1(zγ)

)
(∗∗)

where
ξγ → ξ′.
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We will use this description to show that α(z′)ξ′ �= 0. We have

β(zγ)α(zγ)ξγ = β(zγ)α(zγ)
f(zγ)
f1(zγ)

by (**)

=
f(zγ)
f1(zγ)

by (*)

= ξγ by (**).

Thus

β(z′)α(z′)ξ′ = lim
γ→∞

β(zγ)α(zγ)ξγ

= lim
γ→∞

ξγ

= ξ′

by continuity of α and β. In particular, α(z′)ξ′ �= 0 so [ζ] = [α(z′)ξ′] exists
as a point of P

s−1 (and is independent of the choices of representatives ξ′

and ξγ).

We define ψ on (z′, [ξ′]) to be

ψ(z′, [ξ′]) = (z′, [α(z′)ξ′]).

The definition of ψ−1 is similar. Clearly these extensions of ψ and ψ−1 to
the closures of Γ(φf ) and Γ(φg) are holomorphic and their compositions are
the identity, so we obtain the required isomorphism Ũf ∼= Ũg. �

Blow-ups Locally. — From the preceding lemma we see that it makes
sense to define the blow-up of U along I as BlIU = Ũ = Ũf for any set of
generators f .

If I is the ideal of a smooth subspace C of U then Ũ is also smooth.
The set C is called the center of the blow-up. If I is the ideal of a singular
subset of U then Ũ may be singular.

Lemma 3.2. — Let I and J be nonzero coherent ideal sheaves on U
which are generated by global sections on U . Suppose that J is principal,
i.e. generated by a single function on U . Then

BlIJU ∼= BlIU.

Proof. — Suppose that J is generated locally by the single function h.
Then

[hf1 : ... : hfr] = [f1 : ... : fr]

on U − V (IJ ). �
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Global description of blow-ups

Let I be a coherent sheaf of ideals on a complex manifoldM . By Lemma
3.1, we may extend the local definition of the blow-up canonically, to define
a global blow-up

π : M̃ = BlIM →M.

The blow-up map π is proper and the restriction of π from M̃ − π−1(V (I))
to M − V (I) is biholomorphic.

If I is the ideal sheaf of a smooth submanifold C of M , then M̃ is
smooth.

Ideals, divisors, line bundles, and sections

Let M be a complex manifold and let D be a divisor on M . We denote
by LD or [D] the corresponding line bundle on M . Let LD be the invertible
sheaf of holomorphic sections of [D].

Let sD be a meromorphic section of [D] whose divisor (sD) is D. Such
a section always exists: if D is defined on an open covering {Ui} of M by
meromorphic functions {fi}, the functions {fi} themselves define such a
section sD.

If s is any other meromorphic section of [D] then s
sD

is a meromorphic
function on M . Let KM be the sheaf of meromorphic functions on M . We
may embed LD into KM by the map

s �→ s

sD
,

i.e. if U is any open set in M and s ∈ LD(U), we map s to s
sD

∈ KM (U).

Now suppose that Y is an effective divisor (codimension one subscheme)
of M with ideal sheaf IY , and that Y is given on an open cover {Ui} of M
by holomorphic functions {fi}. Let sY be the corresponding holomorphic
section of [Y ]. Then 1

sY
is a meromorphic section of [−Y ]. We may embed

L−Y into KM by the map
s �→ ssY .

The image of L−Y in KM is just the ideal IY in OM ⊂ KM . Therefore

L−Y ∼= IY .

Suppose that I is any coherent ideal in OM . Tensoring the exact se-
quence

0 → I → OM
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by L−Y gives an exact sequence

0 → I ⊗ L−Y → OM ⊗ L−Y = L−Y

by Lemma 2.8 above. The image of I ⊗L−Y in L−Y is just IL−Y (see e.g.
[Ma], p. 18). The image of IL−Y under the embedding L−Y ↪→ KM is then
IIY . Therefore

Lemma 3.3. — Let I be a coherent sheaf of ideals on a complex manifold
M and let Y be an effective divisor on M . Then

I ⊗ L−Y ∼= IIY .

Lemma 3.4. — If I is a coherent sheaf of ideals on a complex manifold
M and Y is an effective divisor on M , then the blow-up of M along I is
biholomorphic to the blow-up of M along IIY ∼= I ⊗ L−Y .

Proof. — Apply Lemma 3.2, since IY is principal. �

Lemma 3.5. — Let M be a complex manifold and let I be a coherent
sheaf of ideals on M . Let π : M̃ = BlIM → M be the blow-up of M along
I. Then π−1I is a sheaf of principal ideals on M (i.e. an invertible sheaf).
The complex subspace of M̃ corresponding to π−1I is a hypersurface.

Proof. — Suppose that I is generated locally on an open set U in M
by f1, ..., fr. Since Ũ is contained in the subset of U × P

r−1 given by the
equations fi(z)ξj = fj(z)ξi, it is enough to prove that the inverse image ideal
of I on this set is principal. But this is clear since on the set Ui = {ξi �= 0},
we have

fj =
ξj
ξi
fi

so fi generates the inverse image ideal of I on Ui. �

Exceptional divisors of blow-ups

The hypersurface in M̃ corresponding to π−1I, described in Lemma 3.5
above, is called the exceptional divisor E of π, i.e.

E = V (π−1(I)) = π−1V (I).

The proof of Lemma 3.5 above gives us a local description of E. Suppose
that f1, ..., fr generate I on an open set U in M . Cover Ũ ⊂ U × P

r−1 by
sets Ui = {ξi �= 0}. Then E is given on Ui by fi = 0.
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The map π : M̃ → M is a proper map which is biholomorphic from
M̃ − E to M − V (I). If I is the ideal sheaf of a smooth center C, i.e.
I = IC , then M̃ is smooth, E = π−1(C) is a smooth submanifold of M̃ ,
and for each p ∈ C the inverse image Ep = π−1(p) is biholomorphic to P

k−1,
where k is the codimension of C in M .

Exceptional line bundles of blow-ups

Corresponding to the exceptional divisor E on M̃ is an exceptional line
bundle LE = [E]. Both E and LE are independent of the local generators
of I used to construct the blow-up.

In terms of local generators f1, ..., fr of I, transition functions for LE
are

gij =
fi
fj

=
ξi
ξj
,

i.e. if s is a holomorphic section of LE over Ũ then s is represented by
holomorphic functions si on Ui = {ξi �= 0} with

si = gijsj on Ui ∩ Uj .

Since local transition functions for LE on the set Ũ are of the form gij =
ξi

ξj
, the line bundle LE on Ũ is the restriction of the universal bundle O(−1)

on U×P
r−1. More precisely, let σ1 : U×P

r−1 → U and σ2 : U×P
r−1 → P

r−1

be the first and second projection maps, as shown below.

BlIU = Ũ −−−→ U × P
r−1 σ2−−−→ P

r−1

σ1

�
U

Let OPr−1(−1) be the universal bundle on P
r−1. Then the restriction to Ũ

of the line bundle σ∗2OPr−1(−1) is LE on Ũ .

We may interpret the fibre of LE over (z, [ξ]) ∈ Ũ as the line through ξ
in C

r.

Universal property of blow-ups

Lemma 3.6 (Universal Property of Blow-ups). — Let M be a
complex manifold and let I be a coherent sheaf of ideals on M . Let π : M̃ =
BlIM → M be the blow-up of M along I. Suppose that φ : N → M is a
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holomorphic map of a complex space N to M , such that the inverse image
ideal φ−1I is principal (i.e. an invertible sheaf). Then there exists a unique
holomorphic lifting

φ̃ : N → M̃

such that π ◦ φ̃ = φ.

Proof. — Suppose that f1, ..., fr are generators for I over a small open
set U ⊂ M . Then f1 ◦ φ, ..., fr ◦ φ are generators for φ−1I over φ−1(U) in
N . Since φ−1I is assumed to be a principal ideal sheaf, all of the functions
fi ◦ φ are multiples of one of them, so we have a well-defined map

φ̃ : φ−1(U) → U × P
r−1

given by
v �→ (φ(v), [f1 ◦ φ(v) : ... : fr ◦ φ(v)]).

By construction, the image of φ̃ lies in the blow-up Ũ in U × P
r−1 and

π ◦ φ̃(v) = φ(v).

By an argument similar to the proof of Lemma 3.1 above, which showed
that the blow-up Ũ is independent of the collection of generators {fi} used to
construct it, we see that the map φ̃ is independent of the generators {fi}.
Thus we can extend our local construction to a well-defined holomorphic
map φ̃ : N → M̃ .

Finally we check the uniqueness of φ̃. Suppose that φ̃′ is any holomorphic
map from N to M̃ such that π ◦ φ̃′ = φ = π ◦ φ̃. Since π is a biholomorphism
away from the exceptional set, φ̃′ and φ̃ must agree on φ−1(M − V (I)) =
N − V (φ−1I). But φ−1I was assumed to be a principal ideal, so V (φ−1I)
is a hypersurface in N . This means that φ̃′ and φ̃ agree on a dense set of
N , so they must agree everywhere. �

Blow-up of a product of ideals

We will show that the blow-up of a product of two ideals is isomorphic
to the composite of two blow-ups. Since we have defined blow-ups only for
smooth manifolds, we will restrict ourselves to the case in which the blow-up
along one ideal is smooth, for example if that ideal is the ideal of a smooth
submanifold.

Proposition 3.7. — Let M be a complex manifold and I1 and I2 co-
herent sheaves of ideals on M . Let π : BlI1M → M be the blow-up of M
along I1 and suppose that the blow-up space BlI1M is smooth. Then

BlI1I2M
∼= Blπ−1I2BlI1M,
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i.e. the blow-up of M along the product ideal I1I2 is isomorphic to the blow-
up ofM along I1 followed by the blow-up along the inverse image ideal of I2.

Proof. — We will apply the universal mapping property of blow-ups
(Lemma 3.6). Let N = Blπ−1I2BlI1M and let φ : N →M be the composite
of the blow-up maps. Then φ−1I1 and φ−1I2 are principal ideal sheaves on
N so φ−1(I1I2) is also principal. By the universal mapping property, φ lifts
to a holomorphic map φ̃ : N → BlI1I2M . This map is a biholomorphism
away from the exceptional sets.

Similarly, if ψ : BlI1I2M → M is the blow-up of M along I1I2, then
ψ−1I1 is a principal ideal sheaf on BlI1I2M and we can lift ψ to a map
ψ1 : BlI1I2M → BlI1M . Next we check that ψ−1

1 (π−1I2) is again a principal
ideal sheaf, so that we can lift ψ1 to a map ψ̃ : BlI1I2M → Blπ−1I2BlI1M
= N.

Since the maps ψ̃ and φ̃ are holomorphic everywhere and are inverses
of each other on open dense sets, they must be inverses of each other
everywhere. �

Corollary 3.8. — Let M be a complex manifold, C a smooth center
in M , and IC the ideal sheaf of C. Then the blow-up of M along IC is
isomorphic to the blow-up along IdC for any integer d > 1, i.e.

BlIC
M ∼= BlId

C
M.

Proof. — Apply Proposition 3.7, noting that π−1IC is principal and that
blowing-up along a principal ideal sheaf leaves a space unchanged. �

Direct images under blow-up maps

We conclude section 3 by showing that the direct image of an ideal sheaf
under a blow-up map is an ideal sheaf. As always, we assume that the
ideal sheaf I for our blow-up is not the zero sheaf, so that C = V (I) has
codimension at least 1.

Lemma 3.9. — Let π : M̃ → M be the blow-up of a complex manifold
M along a coherent sheaf of ideals I on M . Let J be a sheaf of ideals on
M̃ . Then the direct image π∗J is a sheaf of ideals on M . If J is coherent
then so is π∗J .

Proof. — We wish to define a map π∗J → OM and show that it is
injective. To define a sheaf map π∗J → OM , it is enough to define presheaf
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maps π∗J (U) → OM (U) for all open sets U in M . To show that a map
of sheaves π∗J → OM is injective, it is enough to show that π∗J (U) →
OM (U) is injective for all open sets U in M .

Recall that π∗J (U) = J (Ũ), where Ũ = π−1(U). If U does not intersect
C = V (I), then Ũ ∼= U and π∗J (U) may be identified naturally as an ideal
in OM (U). Now suppose that U does intersect C and consider g ∈ π∗J (U) =
J (Ũ). Let E be the exceptional divisor of π in M̃ . Since

Ũ − Ũ ∩ E ∼= U − U ∩ C,

we may define a holomorphic function G on U − U ∩ C whose pullback
to Ũ − Ũ ∩ E is g. For each p ∈ U ∩ C, the fibre π−1(p) is compact,
since π is proper. Therefore g is constant on π−1(p) and bounded on a
neighborhood of π−1(p) in Ũ . Thus the function G is locally bounded in
U , so G extends uniquely to a holomorphic function on U by Riemann’s
Removable Singularity Theorem. Since π∗G and g are holomorphic on Ũ
and equal on the dense set Ũ − Ũ ∩ E, they must be equal on all of Ũ , i.e.
π∗G = g on Ũ . For each g ∈ J (Ũ) there is a unique such G ∈ OM (U), so
we have a well-defined map

π∗J (U) → OM (U).

Clearly G is identically zero if and only if g is identically zero, so the map
is injective.

By the Direct Image Theorem, π∗J is coherent if J is, since π is proper
(used only in the proof of Lemma 4.5, where indicated). �

4. Chow’s theorem for ideals

This section is devoted to the proof of our version of Chow’s Theorem,
using the Direct Image Theorem (for a blow-up along a smooth center).
References for the ‘usual’ Chow’s theorem are [F] and [M]. In section 5 we
will state some applications to blow-ups.

Theorem 4.1 Chow’s Theorem for Ideals. — Let U be an open
neighborhood of {0} in C

r and let X be an analytic subset of U ×P
n. Let I

be a coherent sheaf of ideals on X. Then I is relatively algebraic in the
following sense: I is generated (after shrinking U if necessary) by a finite
number of homogeneous polynomials in homogeneous P

n-coordinates, with
analytic coefficients in U -coordinates.
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Since a sheaf on X ⊂ U × P
n may be considered as a sheaf on U × P

n,
we will ignore X and prove the theorem for a coherent sheaf of ideals I on
U × P

n. Although we have assumed that U is an open neighborhood of {0}
in C

r, the same methods could be used for any complex space U . When
we say that I is generated by homogeneous polynomials in homogeneous
P
n-coordinates, we mean that the dehomogenizations of these polynomials

generate the ideal locally. We will show at the end of this section that we
may choose all the polynomial generators of I to be of the same degree d,
for d sufficiently large.

The usual Chow’s theorem as well as its generalization in [F] follow
directly from Theorem 4.1: if Y is an analytic subset of U ×P

n and I = IY
is the ideal sheaf of Y onX = U×P

n, then (after shrinking U if necessary) Y
is cut out by a finite number of homogeneous polynomials in P

n-coordinates
with analytic coefficients in U -coordinates.

Outline of Proof of Chow’s Theorem for Ideals. Let C̃
n+1 be the blow-

up of C
n+1 at the origin and let σ1 and σ2 be the two projection maps of

U × C̃
n+1 as shown:

U × C̃
n+1 σ2−−−→ U × P

n

σ1

�
U × C

n+1

The map σ2 is flat since U × C̃
n+1 is a line bundle over U ×P

n, the product
of the identity on U with the universal line bundle on P

n. Thus σ−1
2 I =

σ∗2I (Lemma 2.9). This inverse image ideal sheaf is coherent (see facts on
inverse image ideals, section 2). The sheaf J = σ1∗(σ−1

2 I) is a sheaf of
ideals on U × C

n+1, not merely a sheaf of modules, since σ1 is a blow-up
(Lemma 3.9). Furthermore, the map σ1 is proper, so the direct image J is
also coherent, by the Direct Image Theorem. We will show (Lemmas 4.2 -
4.5) that J is generated by homogeneous polynomials in C

n+1-coordinates
on a neighborhood of (0, 0), and that the corresponding polynomials in
homogeneous P

n-coordinates generate I.

More specifically, let x = (x1, ..., xr) and y = (y0, ..., yn) be coordinates
for U and C

n+1. If F (x, y) is a holomorphic function in a neighborhood of
(0, 0) in U × C

n+1 and λ ∈ C
∗, let F (λ) be the holomorphic function given

by
F (λ)(x, y) = F (x, λy).

We first show (Lemma 4.2) that

F ∈ J(0,0) ⇔ F (λ) ∈ J(0,0) ∀λ ∈ C
∗.
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We use a corollary of Krull’s Theorem to show that if F (λ) ∈ J(0,0) for all
λ ∈ C

∗ then each homogeneous term in y of F (x, y) is in J(0,0) (Lemma 4.3).

It follows from Lemma 4.3 that J(0,0) is generated by a collection of ho-
mogeneous polynomials in y with analytic coefficients in x. We then show
that J(0,0) is generated by a finite number of these homogeneous polyno-
mials (Lemma 4.4). By the Direct Image Theorem, the latter generators
also generate J = σ1∗(σ−1

2 I) over a neighborhood of (0, 0) in U × C
n+1.

Finally we check that these polynomials generate I over a neighborhood of
{0} × P

n ⊂ U × P
n (Lemma 4.5). �

We will now prove Lemmas 4.2 - 4.5 to complete the proof of Chow’s
Theorem for Ideals. As above, let x = (x1, ..., xr) and y = (y0, ..., yn) be
coordinates for U ⊂ C

r and C
n+1, and let F (λ)(x, y) = F (x, λy).

Lemma 4.2. — A holomorphic function F is a section of J = σ1∗(σ−1
2 I)

on a neighborhood of (0, 0) ∈ U ×C
n+1 if and only if F (λ) is a section of J

in a neighborhood of (0, 0) for each λ ∈ C
∗.

Proof. — A holomorphic function is a section of J = σ1∗(σ−1
2 I) on a

neighborhood of (0, 0) in U × C
n+1 if and only if its pullback by σ1 is a

section of σ−1
2 I on a neighborhood of σ−1

1 (0, 0) ∼= {0} × P
n in U × C̃

n+1.
Suppose that F is a section of J on a neighborhood of (0, 0). To show that
F (λ) is a section of J on a neighborhood of (0, 0), it is enough to show that
σ∗1F

(λ) is a section of σ−1
2 I on a neighborhood of p for each p ∈ σ−1

1 (0, 0).
This reduces the proof to a simple calculation in local coordinates near p
and q = σ2(p).

Choose homogeneous coordinates [ξ0 : ... : ξn] on P
n such that the

point q = σ2(p) in U × P
n is given by q = (0, [1 : 0 : ... : 0]). Let W ⊂

{ξ0 �= 0} ⊂ P
n be a neighborhood of [1 : 0 : ... : 0] and let wi = ξi

ξ0
, for

1 � i � n, be nonhomogeneous coordinates for W . The preimage σ−1
2 (U ×

W ) ∼= U × C ×W is a neighborhood of p in U × C̃
n+1 with coordinates

(x, y0, w) = (x1, ..., xr, y0, w1, ..., wn) in which p = (0, 0, 0). The maps σ1

and σ2 are given by

σ1(x, y0, w) = (x, y0, y0w) and σ2(x, y0, w) = (x,w).

Since the ideal sheaf I is coherent, I is generated on a neighborhood of
q by a finite collection of holomorphic functions G1, ..., Gs. The pullbacks
σ∗2G1, ..., σ

∗
2Gs generate σ−1

2 I on a neighborhood of p. Since σ∗1F is a section
of σ−1

2 I on a neighborhood of p, there exist holomorphic functions A1, ..., As
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on a neighborhood of p such that

σ∗1F (x, y0, w) =
s∑
i=1

Ai(x, y0, w)σ∗2Gi(x, y0, w).

Fix λ �= 0. Then for y0 close enough to 0, (x, λy0, w) is in the domain of
the functions σ∗1F and A1, ..., As and

σ∗1F
(λ)(x, y0, w) = σ∗1F (x, λy0, w)

=
s∑
i=1

Ai(x, λy0, w)σ∗2Gi(x, λy0, w)

=
s∑
i=1

Ai(x, λy0, w)Gi(x,w)

=
s∑
i=1

Ai(x, λy0, w)σ∗2Gi(x, y0, w).

Let A(λ)
i (x, y0, w) = Ai(x, λy0, w) for 1 � i � s. Then each A(λ)

i is holomor-
phic on a neighborhood of p and

σ∗1F
(λ)(x, y0, w) =

s∑
i=1

A
(λ)
i (x, y0, w)σ∗2Gi(x, y0, w),

i.e. σ∗1F
(λ) is a section of σ−1

2 I on a neighborhood of p. �

Lemma 4.3. — If F (λ)(x, y) is a section of J on a neighborhood of
(0, 0) ⊂ U × C

n+1 for all λ ∈ C
∗, then each homogeneous term in y of

F (x, y) is a section of J on a neighborhood of (0, 0).

Proof. — For any holomorphic function F on a neighborhood of (0, 0),
let

F (x, y) =
∑
α

aα(x)yα

be the expansion of F (x, y) in terms of monomials yα = yα0
0 y

α1
1 ...y

αn
n in y

with analytic coefficients aα(x) in x. Let | α |= α0 + α1 + ... + αn. The
homogeneous term in y of degree k in F is

Fk(x, y) =
∑
|α|=k

aα(x)yα.

Then

F =
∞∑
k=0

Fk and F (λ) =
∞∑
k=0

λkFk.

– 717 –



Caroline Grant Melles, Pierre Milman

We wish to show that if F is a section of J on a neighborhood of (0, 0),
then each Fk is also a section of J on a neighborhood of (0, 0). To minimize
the use of subscripts, we will also use F and Fk to represent the germs of
these functions at (0, 0).

Let A = OU×Cn+1,(0,0) (a Noetherian local ring), (y) = (y0, ..., yn) (an
ideal contained in the unique maximal ideal in A), and J = J(0,0) (also an
ideal in A). Let

Jetm(F ) =
m∑
k=0

Fk

be the m-jet of F with respect to y. Note that F − Jetm(F ) ∈ (y)m+1.

By a corollary of Krull’s Theorem (see e.g. [K], Corollary 5.7, p. 151),

J = ∩m�0(J + (y)m),

where (y)0 is defined to be A. Since

A = J + (y)0 ⊃ J + (y)1 ⊃ J + (y)2 ⊃ ...

it follows that
J = ∩m�m0(J + (y)m)

for any m0 � 0.

Suppose that F (λ) ∈ J for all λ ∈ C
∗. Then since

F (λ) − Jetm(F (λ)) ∈ (y)m+1

we have
Jetm(F (λ)) ∈ J + (y)m+1

for all λ ∈ C
∗. Since Jetm(F (λ)) =

∑m
k=0 λ

kFk for all λ ∈ C
∗, by taking

m+ 1 distinct values of λ it follows that

Fk ∈ J + (y)m+1

for 0 � k � m. Fixing k, we have

Fk ∈ J + (y)m+1 for m � k

or
Fk ∈ J + (y)m for m � k + 1,

i.e.
Fk ∈ ∩m�k+1(J + (y)m).

By the corollary of Krull’s Lemma mentioned above, Fk ∈ J for all k. �
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Lemma 4.4. — If J(0,0) is generated by a collection of elements of
OU,0[y0, ..., yn] which are homogeneous in y, then J(0,0) is generated by a
finite collection of elements of OU,0[y0, ..., yn] which are homogeneous in y.

Proof. — This lemma is a simple consequence of the fact that the ring
OU×Cn+1,(0,0) is Noetherian, since whenever an ideal in a Noetherian ring
is generated by an infinite set of elements it is automatically also generated
by a finite subset of this set of elements. �

The homogeneous elements of OU,0[y0, ..., yn] in y are the homogeneous
polynomials in y with analytic coefficients in x as analytic germs at (0, 0).

Lemma 4.5. — The same polynomials that generate J(0,0) also gener-
ate J over a neighborhood of (0, 0) in U × C

n+1 and generate I over a
neighborhood of {0} × P

n in U × P
n.

Proof. — Suppose that J is generated in a neighborhood of (0, 0) by
F1(x, y), ..., Fs(x, y), where Fi(x, y) is a homogeneous polynomial of degree
di in y with analytic coefficients in x. We will show that I is generated on
a neighborhood of {0} × P

n in U × P
n by the corresponding polynomials

Fi(x, ξ), where [ξ] = [ξ0 : ... : ξn] are homogeneous coordinates for P
n. More

precisely, we will show that I is generated on a neighborhood of any point
q ∈ {0} × P

n by dehomogenizations of F1, ..., Fs near q.

Choose homogeneous coordinates ξ on P
n such that q = (0, [1 : 0 :

... : 0]). Nonhomogeneous coordinates on the set W = {ξ0 �= 0} ⊂ P
n are

wi = ξi

ξ0
for 1 � i � n. We will check that I is generated in a neighborhood

of q by the polynomials

Fi(x, ξ)
ξdi
0

= Fi

(
x,
ξ

ξ0

)
= Fi(x, 1, w1, ..., wn).

First we look at the maps σ1 and σ2 in local coordinates. We may use
(x, y0, w) as local coordinates in σ−1

2 (U×W ) ∼= U×C×W . Local coordinates
for U ×C

n+1 are (x, y0, y1, ..., yn), where yi = y0wi for 1 � i � n. The maps
σ1 and σ2 are given by

σ1(x, y0, w) = (x, y0, y0w) and σ2(x, y0, w) = (x,w).

Suppose that G is a holomorphic section of I on a neighborhood of q in
U × P

n. Then σ∗2G is a holomorphic section of σ−1
2 I in a neighborhood of

σ−1
2 (q) = {(0, y0, 0) : y0 ∈ C}. The homogeneous polynomials F1, ..., Fs that
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generate J(0,0) also generate J = σ1∗(σ−1
2 I) on a neighborhood of (0, 0) ∈

U × C
n+1 (since J is coherent, by the Direct Image Theorem), so their

pullbacks σ∗1F1, ..., σ
∗
1Fs generate σ−1

2 I on a neighborhood of σ−1
1 (0, 0) ∈

U × C̃
n+1. In particular, there exist holomorphic functions A1, ..., As on a

neighborhood of the point (x = 0, y0 = 0, w = 0) in U × C̃
n+1 such that

σ∗2G(x, y0, w) =
s∑
i=1

Ai(x, y0, w)σ∗1Fi(x, y0, w)

on that neighborhood. But σ∗2G(x, y0, w) = G(x,w) is independent of the
value of y0 and σ∗1Fi(x, y0, w) = Fi(x, y0, y0w) = ydi

0 Fi(x, 1, w) since Fi is
homogeneous of degree di in y. Therefore

G(x,w) =
s∑
i=1

Ai(x, y0, w)ydi
0 Fi(x, 1, w).

Choose some fixed nonzero value of y0, close enough to 0 that (x, y0, w) is
in the domain of all the functions Ai for x and w close enough to 0. Define

ai(x,w) = Ai(x, y0, w)y0di .

Then

G(x,w) =
s∑
i=1

ai(x,w)Fi(x, 1, w).

Since the functions ai are holomorphic on a neighborhood of the point q =
(x = 0, w = 0), and the functions Fi(x, 1, w) are the local dehomogenizations
of the homogeneous polynomials F (x, ξ), we are done. �

This completes the proof of Chow’s Theorem for Ideals. We now show
that the homogeneous polynomial generators of the ideal sheaf I can be
chosen to be of the same degree d, for large enough d.

Corollary 4.6. — Let U be an open neighborhood of {0} in C
r and

let X be an analytic subset of U × P
n. Let I be a coherent sheaf of ideals

on X. Then (possibly after shrinking U) there exists a positive integer d0
such that for all d � d0 the ideal I is generated by a finite number of degree
d homogeneous polynomials in homogeneous P

n-coordinates with analytic
coefficients in U -coordinates.

Proof. — As before, we may treat I as a sheaf on U × P
n. By Chow’s

Theorem for Ideals, we may choose a finite collection of homogeneous poly-
nomials generating I. We wish to show that we can choose homogeneous

– 720 –
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polynomials which are all of the same degree. Suppose that F1, ..., Fs are ho-
mogeneous polynomials of degrees d1, ..., ds generating I on U ×P

n. Let d0
be any integer at least as large as the largest of d1, ..., ds. Then replace each
Fi with the set of all ξαFi as ξα runs through all degree d0 − di monomials
in homogeneous coordinates [ξ] = [ξ0 : ... : ξn] on P

n, i.e. use all monomials
of the form ξα0

0 ξ
α1
1 ...ξ

αn
n where α0 +α1 + ...+αn = d0−di. At every point in

U × P
n, the dehomogenizations of the polynomials ξαFi generate the same

ideal as the dehomogenization of the polynomial Fi. �

Degree d homogeneous polynomials on P
n may be viewed as sections of

O(d), the sheaf of holomorphic sections of the dth power of the hyperplane
bundle on P

n. By abuse of notation, we will also use O(d) to refer to the
corresponding sheaf on U × P

n, obtained by pullback from P
n under the

projection map U × P
n → P

n. If I is a coherent sheaf of ideals on U × P
n,

holomorphic sections of I⊗O(d) may be represented by homogeneous poly-
nomials of degree d in homogeneous P

n-coordinates with analytic coefficients
in U -coordinates, whose local dehomogenizations are sections of I.

We can thus restate Corollary 4.6 as follows.

Corollary 4.7. — Let U be an open neighborhood of {0} in C
r and let

X be an analytic subset of U × P
n. Let I be a coherent sheaf of ideals on

X. Then (possibly after shrinking U) there exists a positive integer d0 such
that for all d � d0 the ideal I ⊗O(d) is generated by a finite number global
sections on X ⊂ U × P

n.

5. Chow’s theorem for ideals and an application to blow-ups

In this section we consider consider some consequences of Chow’s The-
orem for Ideals for blow-ups.

Consider a coherent sheaf of ideals J on M̃ . Corollary 4.7 tells us that if
U is a small enough open set in M and d is a large enough positive integer,
the sheaf J ⊗ O(d) is generated by a finite number of global sections on
Ũ ⊂ U × P

r−1. Recall from section 3 that the restriction of O(d) to Ũ is
just Ld−E , the sheaf of holomorphic sections of the dth power of the dual of
the exceptional line bundle. From this observation and from Lemma 3.3, we
have

J ⊗O(d) ∼= J ⊗ Ld−E ∼= J IdE .

Corollary 5.1. — Let π : M̃ →M be the blow-up of a complex mani-
foldM along a coherent sheaf of ideals I and let E be the exceptional divisor
of π. Let J be a coherent sheaf of ideals on M̃ . Then for each point p in
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M there exists a neighborhood U of p in M , an embedding of Ũ = π−1(U)
into U × P

r−1, for some r, and an integer d0 such that the ideal J IdE is
generated by a finite number of global sections on Ũ for all d � d0.

Proof. — Construct an embedding Ũ ↪→ U ×P
r−1 using local generators

of I, as usual. Then use Corollary 4.7 of Chow’s Theorem for Ideals, with
X = Ũ and the coherent sheaf of ideals J IdE on Ũ . �

Alternatively, the existence of these global generators over Ũ can be
proved using the positivity of the line bundle L−1

E along fibres of the map
from E to its image in M , as in Hironaka and Rossi [HR], using results of
Grauert. Except for the use of the Direct Image Theorem (for the blow-up
map of U × C

n+1 along the smooth center U × {0}), our method is more
explicit (cf. explicit calculations in the toric case in [GM2]).

We show not only that global sections exist on Ũ , but how they are re-
lated to homogeneous polynomials in P

r−1-coordinates generating I locally.

In the special case of compact projective manifolds, these constructions
can be made global, using an ample line bundle on the original manifold.

Applying the previous corollary and noting that homogeneous polyno-
mials on U × P

r−1 determine hypersurfaces of Ũ , we obtain the following.

Corollary 5.2. — Let π : M̃ → M be the blow-up of a complex man-
ifold M along a coherent sheaf of ideals I and let J be a coherent sheaf of
ideals on M̃ . Then for each point p in M there exists a neighborhood U of
p in M , such that the complex space V (J ) determined by J is cut out by
a finite number of hypersurfaces in Ũ = π−1(U). In particular, if C is a
smooth center in M̃ and J = IC , then C is cut out by hypersurfaces, not
only locally in M̃ , but over the pre-images Ũ of small open sets U in M .

The next corollary will be instrumental in constructing single-step blow-
ups. This result is proved in [HR] by other methods.

Corollary 5.3. — Let π : M̃ →M be the blow-up of a compact com-
plex manifold M along a coherent sheaf of ideals I and let E be the excep-
tional divisor of π. Let J be a coherent sheaf of ideals on M̃ . Then there
exists an integer d0 such that

π−1π∗(J IdE) = J IdE

for all d � d0.
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Classical Poincaré Metric & Desingularization with One Blow-up

Proof. — By compactness it is enough to prove the statement locally over
neighborhoods of points inM . By Corollary 5.1, for each point p inM there
exists a neighborhood U , an embedding Ũ ↪→ U × P̃

r−1, for some r, and an
integer d0 such that J IdE is generated by a finite number of global sections
on Ũ , for d � d0. These sections are holomorphic functions, vanishing on E
for d > 0. By the Riemann Extension Theorem, they determine holomorphic
functions on U . These functions on U generate π∗(J IdE) and their pullbacks
to Ũ generate π−1π∗(J IdE). Therefore π−1π∗(J IdE) = J IdE . �

Remark 5.4. — Using local coordinates and local generators of I, we can
describe more concretely the relationship between homogeneous polynomi-
als generating J over Ũ and holomorphic functions generating J IdE over Ũ .

Since I is coherent, I is generated by a finite collection of holomorphic
functions f1, ..., fr on U , for U small enough. Let z represent U -coordinates
and [ξ] = [ξ1 : ... : ξr] homogeneous P

r−1-coordinates. By Chow’s Theorem
for Ideals, J is generated by a finite collection of homogeneous polynomi-
als F (z, ξ) (homogeneous in ξ and analytic in z). The ideal sheaf IE of
the exceptional divisor is generated by the pullbacks of f1, ..., fr to Ũ . For
simplicity we will also refer to these pullbacks as f1, ..., fr. The sheaf IdE is
generated by all monomials of degree d in f1, ..., fr. The sheaf J IdE is gen-
erated by all products of the form fαF (z, ξ), where fα represents a degree
d monomial in f1, ..., fr. The function F (z, ξ) is of the form

F (z, ξ) =
∑
β

cβ(z)ξβ

where ξβ is a monomial of degree d in ξ1, ..., ξr and cβ(z) is a holomorphic
function of z. Then

fαF (z, ξ) =
∑
β

cβ(z)ξβfα

=
∑
β

cβ(z)ξαfβ since fiξj = fjξi.

Thus
fαF (z, ξ) = ξαF (z, f).

The sheaf J IdE is generated by all such products as ξα ranges over all
degree d monomials in ξ1, ..., ξr. Since these monomials in ξ cannot all be
zero simultaneously, the collection {ξαF (z, f)}α is generated by F (z, f).

We now see explicitly the holomorphic generators of J IdE described in
the previous corollary - they are the functions F (z, f). These functions are
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holomorphic on Ũ and vanish on E for d > 0, so they define holomorphic
functions on U . As functions on U , they generate π∗(J IdE). Their pullbacks
to Ũ generate π−1π∗(J IdE) and are once again the functions F (z, f).

Example 5.5. — Let I be ideal sheaf of the origin in C
3 (i.e. V (I) =

C = {Z1 = Z2 = Z3 = 0}), let π : C̃
3 → C

3 be the blow-up along I,
and let E = π−1(C) be the exceptional divisor. Let J be the ideal on C̃

3

generated by the homogeneous polynomial ξ1ξ2−ξ23 . Let F (Z) = Z1Z2−Z2
3

be the corresponding polynomial on C
3. Then π∗F is a holomorphic section

of J I2
E . We have

J ⊃ JIE ⊃ JI2
E ⊃ ...

and

π−1π∗(J IdE) =
{J I2

E d < 2
J IdE d � 2.

Note that although we refer to ξ1ξ2 − ξ23 as a generator of J , it is not a
function on C̃

3. If U is any neighborhood of 0 in C
3, the only nonzero holo-

morphic sections of J on Ũ = π−1(U) are those generated by homogeneous
polynomials of degree at least 2, which must be vanishing on E to degree
at least 2.

Once again, the next result is proved by other methods in [HR]. In the
algebraic setting it could be proved using ample line bundles. We restrict
ourselves to the case in which the blow-up M̃ is smooth, since this is the
only case we require and since we have defined the blow-up of M̃ along J
only in the case in which M̃ is smooth.

Corollary 5.6. — Let π : M̃ → M be the blow-up of a compact com-
plex manifold along a coherent sheaf of ideals I such that M̃ is smooth, and
let E be the exceptional divisor of π. Let J be a coherent sheaf of ideals on
M̃ . Then there exists an integer d0 such that the blow-up of M̃ along J is
isomorphic to the blow-up of M̃ along π−1π∗(J IdE) for all d � d0.

Proof. — By Corollary 5.3 there exists a d0 such that π−1π∗(J IdE) =
J IdE for all d � d0. By Lemma 3.4, the blow-up along J is isomorphic to
the blow-up along J IdE . �

The direct image of a product is not always the product of the direct
images. In the next lemma we give a condition under which products of
ideal sheaves behave well under direct images of blow-up maps.
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Lemma 5.7. — Let π : M̃ → M be the blow-up of a compact complex
manifold M along a coherent sheaf of ideals I and let E be the exceptional
divisor. Let J1 and J2 be coherent sheaves of ideals on M̃ . Then for d1 and
d2 large enough,

π∗(J1J2Id1+d2
E ) = π∗(J1Id1

E )π∗(J2Id2
E ).

Proof. — Since M is compact, it is enough to prove the lemma locally,
on a blow-up π : Ũ → U of an open set U . We use the notation of remark
5.4 above. By Corollary 4.6, if J is a coherent sheaf of ideals on Ũ , then
for d large enough and possibly after shrinking U , the ideal J is generated
on Ũ ⊂ U × P

r−1 by a finite number of degree d homogeneous polynomials
F (z, ξ) in homogeneous coordinates ξ on P

r−1. As was shown in remark 5.4,
the functions F (z, f) generate the direct image π∗(J IdE).

If a finite collection {F (z, ξ)} of degree d1 polynomials generates J1 and
a finite collection {G(z, ξ)} of degree d2 polynomials generates J2, then
the collection {F (z, f)} generates π∗(J1Id1

E ) and the collection {G(z, f)}
generates π∗(J2Id2

E ). The collection of all products F (z, f)G(z, f) generates
π∗(J1Id1

E )π∗(J2Id2
E ). Similarly, the collection of all products F (z, ξ)G(z, ξ)

generates J1J2, and since these products are degree d1 + d2 homogeneous
polynomials in ξ, the collection of all products F (z, f)G(z, f) generates
π∗(J1J2Id1+d2

E ). Thus

π∗(J1J2Id1+d2
E ) = π∗(J1Id1

E )π∗(J2Id2
E ). �

Remark 5.8. — To see that the direct image of a product is not always
the product of the direct images, we refer to Example 5.5. In that example,
we described a sheaf of ideals J on C̃

3 generated by a degree 2 homogeneous
polynomial and such that

π−1π∗(J IdE) =
{J I2

E d < 2
J IdE d � 2.

Suppose that π∗(J IdE) = (π∗J )(π∗IdE). Then

π−1π∗(J IE) = (π−1π∗J )(π−1π∗IE) by Lemma 2.15
= (J I2

E)IE
= J I3

E

which is impossible since

π−1π∗(J IE) = J I2
E

by the example.
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Appendix 5.A: A valuation criterion of Lejeune - Teissier

In the remainder of this section we provide, as an illustration of the
methods developed in sections 4 and 5, a simple constructive proof of the fol-
lowing variant of the ‘valuation criterion’ due to M. Lejeune and B. Teissier
[LT].

Theorem 5.A.1. — Let M be a complex manifold and let a be a point
in M . For any ideal J in OM,a the following ‘closures’ of J coincide:

(1) the ‘arc-closure’ Jarc := {f : for any arc γ(t) ordtJ(γ(t)) � ordtf(γ(t))}.

(2) the integral closure J := {f : f · N ⊂ J · N for a finite OM,a-module
N} = {f : fm +

∑
j cjf

m−j = 0, for some cj ∈ (J)j , j = 1, ...,m}.

(3) the set Jπ := π∗(π−1J), where π : M̃ → (M,a) is any desingularization
of J , i.e. π is a composite of blow-ups with smooth centers and π−1J is a
normal crossings divisor on M̃ .

(4) the set Jφ := {f ∈ OM,a : φ∗f ∈ φ−1J}, where φ : M̃ → (M,a) is any
proper dominating morphism from a smooth source M̃ , such that φ−1J is a
normal crossings divisor on M̃ .

Moreover, assuming that J is a coherent sheaf of ideals in OM and K is
a compact set in M , we construct ‘explicitly’ a coherent sheaf of ideals N in
OM , such that for any a ∈ K and f in the stalk Jπ at a of Jπ = π∗(π−1J )
from (3) above, the inclusion f ·N ⊂ J ·N holds (as in (2) above), with J
and N being the stalks at a of J and N .

Proof. — Obviously J ⊂ Jarc ⊂ Jπ. (Note that Jπ = Jπ.) We will now
show that Jarc = Jφ. The ideal φ−1J is generated by φ∗g for g ∈ J and
all arcs γ in (M,a) are the images of the arcs γ̃ in M̃ . Therefore f ∈ Jarc
if and only if φ∗f ∈ (φ−1J)arcb for all b ∈ φ−1(a). Assuming φ−1J is a
normal crossings divisor on M̃ , it follows that (φ−1J)arcb = (φ−1J)b for all
b ∈ φ−1(a). Therefore f ∈ Jarc if and only if φ∗f ∈ φ−1J , as required in (4).

It remains to show that Jπ ⊂ J . This inclusion follows directly from
Lemma 5.A.2 below applied inductively on the number of blow-ups, similarly
to the application of sections 4 and 5 in section 6.

The last statement of the theorem also follows from Lemma 5.A.2 (see
Remarks 5.A.3 below). �

Lemma 5.A.2. — Let U be a coordinate chart in a complex manifold.
Let σ : Ũ → U be a blow-up with smooth center C of codimension r, let
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b be a point in U , let h ∈ OU,b and set h̃ = σ∗h. Let E = σ−1C be the
exceptional divisor, and let IC ⊂ OU and IE ⊂ OŨ be the coherent sheaves
of ideals corresponding to C and E, respectively. Suppose that there are
coherent sheaves of ideals I ⊂ OU , Ñ ⊂ OŨ , and Ĩ = σ−1I, such that in
germs at the points of σ−1(b) the inclusion h̃ · Ñ ⊂ Ĩ · Ñ holds (our main
inductive assumption). Then in germs at b the inclusion h ·N ⊂ I ·N holds,
where N = σ∗(Ñ · IsE) · ImC and s and m are large enough integers.

Remarks 5.A.3.. — (a) Assuming g ∈ Jπ ⊂ OM,a, for a desingulariza-
tion map π, we take the element h in Lemma 5.A.2 to be the appropriate
pullback of g, which is therefore well defined at all points b of the respective
inverse image of a, and also is well defined as a germ of a ‘global’ section at
the whole inverse image of a ∈ M . Respectively there is a ‘global’ version
of Lemma 5.A.2, i.e. replacing a single point b by the whole appropriate
inverse image of a ∈ M . The version of Lemma 5.A.2 as stated above and
proved below implies this ‘global’ version by a compactness argument (as in
5.3) and a choice of sufficiently large s and m. It is this ‘global’ version that
we apply (see (b) below) inductively to conclude that g ∈ J , as required.

(b) Suppose that J is a coherent sheaf of ideals on a neighborhood of
a ∈ OM such that J is the stalk of J at a. Note that if h and I are the
pullbacks of the original g and J to the level preceding the blow-up σ in the
desingularization ‘tower’ in (3), we then may continue the inductive process
of ‘descent’ (one blow-up down in the desingularization ‘tower’) with N in
the place of Ñ . Starting with I0 := π−1J , the equality I0 = Iarc0 is direct
and easy, which allows us to start the inductive process. We have Ñ0 = OM̃

and π∗g ∈ I0 in germs at points of π−1(a) at this top level.

Proof of Lemma. — The claim of Lemma 5.A.2. is in terms of germs in
OU,b, which allows to assume in the proof below that U is a coordinate chart
such that IC is generated over OU by functions f1, ..., fr. Let z represent
U -coordinates and let ξ represent homogeneous P

r−1-coordinates.

The blow-up σ : Ũ → U is a composite of an inclusion i : Ũ ↪→ U ×P
r−1

and the natural projection p : U × P
r−1 → U . Below we freely identify

g ∈ OU and p∗g ∈ OU×Pr−1 as functions independent of variables along
P
r−1 and via this natural convention (and by a slight abuse of notation)

write g for p∗g, e.g. h̃ = h. Similarly, I as a subset of OU×Pr−1 stands for
{p∗g : g ∈ I}.

We can view our sheaves of ideals on Ũ as sheaves of ideals on U ×
P
r−1, generated by the generators of the sheaves on Ũ plus the generators
G̃ij(z, ξ) = fj(z)ξi − fi(z)ξj of the ideal IŨ on U × P

r−1 [cf. 5.4], e.g. Ĩ in
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OU×Pr−1 is generated by I and G̃ij ’s. Multiplying our main assumption of
the lemma by IsE gives h̃·Ñ ·IsE ⊂ Ĩ·Ñ ·IsE (in OU×Pr−1 modulo the ideal IŨ
of Ũ). By Theorem 4.1, we may assume that the ideals Ñ · IsE and Ĩ · Ñ · IsE
on Ũ are generated by finite collections of homogeneous-in-ξ polynomials
{Hj(z, ξ)} and {Gk(z, ξ)}, respectively, of the same degree d = s (as in 4.6
and 4.7), with analytic coefficients in U -coordinates z. The validity of the
latter is the only meaning of ‘s is large enough’ in the assumptions. When
we view these sheaves of ideals as sheaves on U × P

r−1, we include the
additional generators G̃ij , as described above.

Recall from the end of the proof of 4.6, that if we start with a collection
of homogeneous generators of differing degrees, we may obtain a collection
of homogeneous generators which are all of the same degree by multiply-
ing by suitable monomials in ξ. Thus, we may assume that the generators
{Gk(z, ξ)} of the ideal Ĩ · Ñ · IsE in OU×Pr−1 (modulo IŨ ) are products of
generators of I (functions of z only) times generators of Ñ · IsE (homoge-
neous in ξ by 4.1) times suitable monomials in ξ. This allows us to ‘view’
our main assumption in OU×Pr−1 as follows. Pick any Hj and let H = h·Hj .
Then our main assumption means that H is in the ideal generated by the
Gk’s (and G̃ij ’s) over OU×Pr−1 (in stalks at the points of U × P

r−1).

Now consider a point c in the coordinate chart Vi = {ξi �= 0} ⊂ P
r−1.

Set ξi = 1 and let (y1, ..., yr−1) represent the r − 1 entries of ξ other than
ξi on Vi ∼= C

r−1. Let H ′(z, y), G′
k(z, y), and G̃′

ij(z, y) be the restrictions of
H, Gk, and G̃ij , respectively, to the chart Ui = U × Vi. Then there exist
elements Ak,c and Bij,c in the local analytic ring on Ui at the point (b, c)
such that

H ′ =
∑
k

Ak,cG
′
k +

∑
ij

Bij,cG̃
′
ij .

We will show that the coefficients Ak,c and Bij,c may actually be chosen
to be quotients of polynomials in y with analytic coefficients in z, with
common denominators D′

c, depending on c, which do not vanish at the point
(b, c). The proof is by a standard application of Krull’s Theorem: given a
noetherian ring A with completion Â at its maximal ideal (completion in
Krull topology) then for any ideal G in A, the intersection of A with the
ideal Ĝ = G·Â is G (in [M] stated on the page preceeding Ch.1, follows from
[ZS] p. 262 Theorem 9 and p. 257 Corollary 2). We may assume, without
loss of generality, that z = b = 0 and y = c = 0. Let B = OU,0[y1, ..., yr−1],
and let A be the localization of B at the ideal generated by y’s. (Thus A
is a local noetherian ring and its completion in the Krull topology is the
ring Â = Ĉ, where C = OU×Cr,(0,0).) Let G be the ideal of A generated by
the polynomials G′

k (and G̃′
ij ’s). Then G = A∩ (G · Â) by Krull’s Theorem.
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Therefore, since H ′ =
∑

k Ak,cG
′
k +

∑
ij Bij,cG̃

′
ij at the point (b, c) with

coefficients Ak,c, Bij,c in Â and G′
k, G̃

′
ij in G ⊂ A, and H ′ ∈ A, then

also H ′ ∈ G, i.e. H ′ =
∑

kQk,cG
′
k +

∑
k Q̃ij,cG̃

′
ij with Qk,c and Q̃ij,c in

A (hence quotients of polynomials in y, with analytic coefficients in z, and
common denominators D′

c, depending on c ∈ Vi, that do not vanish at
(b, c)). Therefore

D′
cH

′ =
∑
k

P ′
k,cG

′
k +

∑
k

P̃ ′
ij,cG̃

′
ij ,

where P ′
k,c’s and P̃ ′

ij,c’s are polynomials in y with coefficients analytic germs
in z (and D′

c’s are as above).

Now, we replace the coordinates y by the r − 1 entries of ξ other than
ξi, and then replace ξj , for j �= i, by ξj/ξi. Multiplying both sides of
the latter equality of polynomials (in affine coordinates ξ of the chart
Ui = {ξ : ξi = 1}) by ξli for a sufficiently large integer l yields an equality
of homogeneous-in-ξ polynomials: ξni DcH =

∑
k ξ

n−dk
i Pk,cGk (mod IŨ ),

where the polynomials Dc and Pk,c are the ‘homogenizations’ of the poly-
nomials D′

c and P ′
k,c, the integers dk are the differences of the degrees in ξ

of Pk,c’s and Dc, and the integer n is large enough that n− dk � 0 for all k
(and all polynomials H and Gk are of the same degree d in ξ by our original
assumption about the Hj ’s and the Gk’s). The analogous argument yields
the same conclusion for every ξi for i = 1, ..., r. The polynomials Dc are
homogeneous in ξ ∈ C

r, with coefficients which are analytic germs in z at b,
c ∈ P

r−1, and we view them as analytic germs at (b, 0) in (z, ξ)-coordinates
on U×C

r) which have common zeroes only for ξ = 0. Therefore, making use
of the complex analytic Nullstellensatz (see e.g. [Lo, p. 196]), it follows that
for a sufficiently large integer m the ideal generated by all ‘denominators
ξni Dc’ in the ring of the germs at z = b, ξ = 0 ∈ C

r of complex analytic
functions in z, ξ contains all monomials ξα of order m, and since the de-
nominators are homogeneous in ξ yields a representation of each monomial
(of a sufficiently high order) as a finite linear combination of ‘denominators
ξni Dc’ with coefficients which are polynomials in ξ and analytic (germs at
z = b) in z. The latter implies (for all sufficiently large integers m) an equal-
ity (modulo ideal IŨ ) of homogeneous-in-ξ polynomials: ξαH =

∑
k Pk,αGk

(mod IŨ ), where all monomials ξα and polynomials Pk,α are of order m in
ξ (and all polynomials H and Gk’s are of the same degree d in ξ). Validity
of the latter suffices for the ‘m is large enough’ in the assumptions of the
Lemma 5.A.2.

Thus for sufficiently large integers m, all monomials ξα of order m, and
for all j,

ξαh̃(z)Hj(z, ξ) ∈ (ξ)m(G) (mod IŨ ),
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where (G) stands for the ideal generated by the Gk’s in the ring of polyno-
mials in ξ with coefficients that are in OU,b. Letting ξi = fi(z), where the
functions f1, ..., fr are the local defining equations for the smooth center
C ⊂ U , (similarly to the argument in 5.4) it follows, by making use of the
third and fourth paragraphs of our proof, that

fαh(z)Hj(z, f) ∈ I · (IC)m · (σ∗(Ñ · IsE))

for all sufficiently large integersm. In other words in germs at b the inclusion
h · N ⊂ I · N holds, with N = (IC)m · (σ∗(Ñ · IsE)), as required. �

Lemma 5.A.4. — Let U be a coordinate chart in a complex manifold.
Let σ : Ũ → U be a blow-up with smooth center C of codimension r. Let
E = σ−1C be the exceptional divisor, and let IC ⊂ OU and IE ⊂ OŨ

be the coherent sheaves of ideals corresponding to C and E, respectively.
Suppose that there are coherent sheaves of ideals I ⊂ OU , Ñ ⊂ OŨ , and
Ĩ = σ−1I, such that the blow-up σ̃ of Ũ along Ñ is a desingularization
of Ĩ, i.e., σ̃ is equivalent to a composite of a finite number of blow-ups
with smooth centers and σ̃−1Ĩ is a normal crossings divisor. Then (after
shrinking U if necessary) the blow-up of U along N desingularizes I, where
N = σ∗(Ñ · IsE) · ImC , m � 1 is an integer and s is a large enough integer.

Proof. — The blow-up of U along N is equivalent to the blow-up of U
along C followed by the blow-up of Ũ along σ−1σ∗(Ñ · IsE), by Proposition
3.7 and Corollary 3.8. But if s is large enough that Ñ ·IsE is generated on Ũ
by global sections (after shrinking U if necessary), then σ−1σ∗(Ñ · IsE) = Ñ ·
IsE (see Corollaries 5.3 and 4.6). The blow-up of Ũ along Ñ ·IsE is equivalent
to the blow-up of Ũ along Ñ , by Lemma 3.2. �

Corollary 5.A.5 In Theorem 5.A.1, the blow-up of M along the co-
herent sheaf of ideals N which we construct using Lemma 5.A.3 is a desin-
gularizing blow-up for J .

Proof. — Suppose that our desingularizing tower of blow-ups along
smooth centers is M̃=Mn

σ→Mn−1 → ...→M0 =M , where σ is a blow-up
along smooth center C with exceptional divisor E. In the first step of our
proof of 5.A.1 by inductive descent using Lemma 5.A.3, we construct N1 on
Mn−1 to be of the form N1 = σ∗(OM̃ ·IsE) ·ImC , i.e., N1 is of the form IkC for
k a large enough integer. We now apply Lemma 5.A.4 repeatedly. �
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6. Replacing a sequence of blow-ups by a single blow-up

Let X be a singular subvariety of a compact complex manifold M . In
this section we show how to replace a sequence of blow-ups along smooth
centers, which gives embedded desingularization of X, by a single blow-up
ofM along a coherent sheaf of ideals I, which is a product of coherent ideals
corresponding to the centers. The support of I is the singular locus of X,
the proper transform X̃ of X in the blow-up of M along I is nonsingular,
and the exceptional divisor of the blow-up along I has normal crossings and
is also normal crossings with the embedded desingularization X̃. This result
is proved by other methods in [HR] (or its canonical version in [BMI]).

Proposition 6.1. — Let M be a compact complex manifold and let

M ′′ π′
→M ′ π→M

be a sequence of blow-ups such that

a. π : M ′ → M is the blow-up of M along a coherent sheaf of ideals I
such that M ′ is smooth and V (I) has codimension at least 2 and

b. π′ : M ′′ → M ′ is the blow-up of M ′ along a smooth center C of
codimension at least 2.

Let E be the exceptional divisor of π in M ′. Then the sequence of blow-ups
M ′′ → M ′ → M is equivalent to a single blow-up along a coherent sheaf of
ideals J on M given by

J = II ′

where I ′ = π∗(ICIdE) and d is a large enough positive integer so that
π−1π∗(ICIdE) = ICIdE. Furthermore

i. the blow-up of M ′ along π−1I ′ = ICIdE is isomorphic to the blow-up
along C, i.e. the blow-up of M ′ along π−1I ′ is isomorphic to M ′′,
and

ii. the complex space V (J ) determined by J has codimension at least 2
in M .

Proof. — By Corollary 5.3

π−1π∗(ICIdE) = ICIdE
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for all sufficiently large d. We apply Proposition 3.7 to J = II ′ = I π∗(ICIdE)
to show that blowing upM along J is equivalent to first blowing upM along
I to obtainM ′, and then blowing upM ′ along ICIdE . But the blow-up along
ICIdE is equivalent to the blow-up along IC by Lemma 3.4.

Finally we note that

V (J ) = V (I) ∪ V (π∗(ICIdE))
= V (I) ∪ π(V (IC) ∪ V (IdE))
= V (I) ∪ π(C)

which has codimension at least 2. �

We apply Proposition 6.1 inductively to obtain

Proposition 6.2. — Let M0 be a compact complex manifold and let

Mm
πm→Mm−1

πm−1→ ...
π2→M1

π1→M0

be a sequence of blow-ups along smooth centers Cj ⊂ Mj−1 of codimension
at least 2. Then the composite π1 ◦ ... ◦ πm : Mm → M0 is equivalent to a
single blow-up along a coherent sheaf of ideals

I = I1I2...Im

where I1, I2, ..., Im are coherent sheaves of ideals on M such that

i. the blow-up of Mj−1 along the inverse image ideal of Ij on Mj−1 is
isomorphic to the blow-up of Mj−1 along Cj, and

ii. the complex space V (I) has codimension at least 2 in M0.

Proof. — We construct the ideal sheaves I1, ..., Im inductively, using
Proposition 6.1, and noting that all the spaces Mj are smooth, since the
centers of the blow-ups are smooth. We may construct an ideal sheaf Ij
from ICj

either step-by-step, going down one level at a time, or all in one
step, using the composite of the first j − 1 blow-ups. We use the second
method in this proof, because it is notationally simpler. The first method is
computationally simpler, so we use it in our example in section 10.

Start by letting I1 = IC1 , the ideal sheaf of the first center C1, and
construct I2 as in Proposition 6.1. The blow-up of M1 along π−1

1 I2 is iso-
morphic to M2 and the complex space V (I1I2) has codimension at least 2.
Next suppose that we have constructed I1, ..., Ij−1 satisfying condition (i),
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and such that V (I1...Ij−1) has codimension at least 2 in M0. Condition (i)
implies that the blow-up of M0 along the product I1...Ij−1 is isomorphic to
Mj−1. Let

τ = π1 ◦ ... ◦ πj−1 :Mj−1 →M0

be this blow-up map and let D be the exceptional divisor of τ inMj−1. Pick
d large enough such that τ−1τ∗(IjIdD) = IjIdD and set

Ij = τ∗(IjIdD).

Then apply Proposition 6.1. �

Using Hironaka’s theorem on the existence of embedded resolutions of
singularities we obtain

Corollary 6.3. — Let M be a compact complex manifold and let X be
a singular subvariety of M . Let

Mm
πm→Mm−1

πm−1→ ...
π2→M1

π1→M0 =M

be a sequence of blow-ups along smooth centers Cj ⊂ Mj−1 of codimension
at least 2 which gives embedded resolution of X. Then there exists a coherent
sheaf of ideals I on M of the form

I = I1I2...Im

such that for each j, the blow-up map of M along I1I2...Ij is equivalent to
the composite map π1 ◦ π2 ◦ ... ◦ πj :Mj →M0. In particular,

i. the proper transform X̃ of X in the blow-up M̃ of M along I is
nonsingular,

ii. V (π−1I) is a normal crossings divisor in M̃ which has normal cross-
ings with X̃, and

iii. the support of I is the singular locus of X in M .

7. Chern forms for exceptional line bundles

Let π : M̃ →M be the blow-up of a compact complex manifoldM along
a coherent sheaf of ideals I such that M̃ is smooth. Let E be the exceptional
divisor of π and LE = [E] the associated line bundle on M̃ . In this section
we describe explicitly the construction of a Chern form on LE .
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We first consider sets of the form Ũ = π−1(U), where U is a small
open set in M . We construct a local Chern form on Ũ associated with
an embedding ιf : Ũ ↪→ U × P

r−1 determined by holomorphic functions
f1, ..., fr which generate I on U . The embedding ιf induces a local metric
and local Chern form on the line bundle LE over Ũ , using the Fubini-Study
form on P

r−1. Different embeddings of Ũ corresponding to different choices
of local generators of I may give different Chern forms in the same Chern
class. This type of local Chern form has a particularly simple formula in
terms of the local generators of I and is negative semi-definite on Ũ , since
it is the pullback of the negative of the Fubini-Study form on P

r−1. If I
is the sheaf of ideals of a smooth center of codimension k � 2, so that the
fibers of the map E → C are isomorphic to P

k−1, then this Chern form is
negative definite on the fibres of the map E → C. We patch globally using
C∞ partitions of unity on M , to obtain global metrics and Chern forms for
LE .

Chern forms on line bundles

We begin with some background material on Chern forms. Let L→ N be a
holomorphic line bundle on a complex manifold N . Choose a cover of N by
open sets Vi such that L is trivial on Vi. A holomorphic section s of L over
N may be given by a collection of holomorphic functions si on Vi which
transform on Vi ∩ Vj by the rule

si = gijsj ,

where gij is a holomorphic transition function on Vi∩Vj . A hermitian metric
h on L may be described by a collection of positive C∞ functions hi on Vi
such that the norm of s is given on Vi by

|| s ||2 = | si |2hi.

The functions hi transform by the rule

hj = | gij |2hi.

Local description of a Chern form. — The Chern form of L with
respect to h is given on Vi by

c1(L, h) = −
√
−1
2π

∂∂ log hi.

Note that this formula gives a well-defined (1,1)-form on N , because

∂∂ log hj = ∂∂ log | gij |2hi
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= ∂∂(log gij + log gij + log hi)

= ∂∂ log hi since gij is holomorphic.

Formula for a Chern form in terms of the norm of a sec-
tion s. — For convenience, we often write the Chern form of L in terms of
the norm of a nonzero section s with respect to h, as

c1(L, h) = −
√
−1
2π

∂∂ log || s ||2.

We note that c1(L, h) is well-defined and independent of the section s used
to calculate it, since locally on an open set Vi minus the zero locus of s we
have ∂∂ log || s ||2 = ∂∂ log hi.

Chern forms via pullbacks. — Chern forms behave well under pull-
backs. Suppose that φ : N1 → N2 is a holomorphic map of complex mani-
folds and L is a line bundle on N2 with metric h. Then φ∗L is a line bundle
on N1 with an induced metric φ∗h, and the Chern form of φ∗L with respect
to φ∗h is the pullback by φ of the Chern form of L with respect to h, i.e.

c1(φ∗L, φ∗h) = φ∗c1(L, h).

Local Chern forms for blow-ups

Let U be an open set in C
n and let π : Ũ → U be the blow-up of U along a

coherent sheaf of ideals I such that Ũ is smooth. We will assume that U is
small enough that I is generated by global sections f1, ..., fr over U . Let E
be the exceptional divisor and LE the associated line bundle on Ũ .

If I is generated by a single function over U , then the sheaf I is principal,
the line bundle LE is trivial on Ũ , and we may choose a metric h on LE
such that c1(LE , h) = 0.

We assume from now on that the blow-up is non-trivial, i.e. that I is
not principal on U and has support of codimension at least 2 in U . In this
case r > 1 and the generators f1, ...., fr of I give an embedding

ιf : Ũ ↪→ U × P
r−1,

as described in section 3. Let [ξ1 : ... : ξr] be homogeneous coordinates for
P
r−1. The blow-up Ũ is covered by open sets

Ũi = Ũ ∩ {ξi �= 0}
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on which LE is trivial. Transition functions for LE on the intersections
Ũi ∩ Ũj are the functions gij = ξi

ξj
. To distinguish between a generating

function fi on U and its pullback to Ũ ⊂ U × P
r−1, we will let

f̃i = π∗fi.

The exceptional divisor E is given on Ũi by f̃i = 0. The collection of func-
tions f̃i on the sets Ũi determines a section s of LE over Ũ , vanishing exactly
on E.

Lemma 7.1. — Let U be an open set in C
n and let π : Ũ → U be the

blow-up of U along a coherent sheaf of ideals I which is generated by global
sections f1, ..., fr on U . Suppose that the blow-up is non-trivial and that
Ũ is smooth. Let E be the exceptional divisor and LE the associated line
bundle on Ũ . Then the embedding ιf : Ũ ↪→ U × P

r−1 induces a metric h
on LE and associated Chern form c1(LE , h) such that c1(LE , h) is negative
semi-definite on Ũ and is given on Ũ − E by

c1(LE , h) = π∗(−
√
−1
2π

∂∂ log
r∑

j=1

| fj |2).

Remark 7.2. — If I is the sheaf of ideals of a smooth center of codimen-
sion k � 2, so that the fibers of the map E → C are isomorphic to P

k−1,
then this Chern form is negative definite on the fibres of the map E → C.

Proof. — We will construct the Chern form by pullback, without using
an explicit formula for the metric h. For an explicit local formula for h, see
the remark following this proof.

Let σ2 be the second projection map σ2 : U × P
r−1 → P

r−1 and ιf the
inclusion map ιf : Ũ ↪→ U × P

r−1. Recall that the exceptional line bundle
LE on Ũ ⊂ U×P

r−1 is the pullback of the universal bundle OPr−1(−1). The
Fubini-Study form ωFub−St on P

r−1 gives a Chern form for OPr−1(1) and
−ωFub−St gives a Chern form for OPr−1(−1). Pulling back to Ũ , we obtain
a Chern form for LE (with respect to an induced metric h) given by

c1(LE , h) = ι∗fσ
∗
2(−ωFub−St).

The negativity properties of c1(LE , h) stated in the lemma follow directly
from the fact that ωFub−St is positive on P

r−1.

Now recall the formula for the Fubini-Study form on projective space. If
ξ1, ..., ξr are homogeneous coordinates on P

r−1, then wij = ξj

ξi
for j �= i are
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nonhomogeneous coordinates on Ui = {ξi �= 0} ⊂ U × P
r−1. The pullback

of the Fubini-Study form ωFub−St is given on Ui by

σ∗2ωFub−St =
√
−1
2π

∂∂ log(1 +
∑
j �=i

| wij |2)

=
√
−1
2π

∂∂ log(1 +
∑
j �=i

∣∣∣∣ξjξi
∣∣∣∣
2

).

We continue to use the notation f̃i = π∗fi to distinguish between the func-
tion fi on U and its pullback to Ũ . On Ũi = Ũ ∩Ui we have ξj

ξi
= f̃j

f̃i
which

gives us

c1(LE , h) = ι∗fσ
∗
2(−ωFub−St)

= −
√
−1
2π

∂∂ log(1 +
∑
j �=i

∣∣∣∣∣ f̃jf̃i
∣∣∣∣∣
2

)

= −
√
−1
2π

∂∂ log

∑r
j=1 | f̃j |

2

| f̃i |
2 .

On Ũi − Ũi ∩ E we have f̃i(z) �= 0 so

c1(LE , h) = −
√
−1
2π

∂∂(log
r∑

j=1

| f̃j |
2 − log | f̃i |

2
)

= −
√
−1
2π

∂∂ log
r∑

j=1

| f̃j(z) |
2

= π∗(−
√
−1
2π

∂∂ log
r∑

j=1

| fj(z) |2).

This formula is independent of i, so is valid on all of Ũ − E. �

Remark 7.3. — Local defining functions for the metric h on LE induced
from the embedding Ũ ↪→ U × P

r−1 may also be given explicitly. Let s be
the section of LE given on Ũi by f̃i = 0. The norm of s under the metric h
is given by

|| s ||2 =
r∑

j=1

| f̃j |
2
.

The metric h is described locally by positive C∞ functions hi on Ũi satisfying

|| s ||2 = | f̃i |
2
hi.
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Thus

hi =

∑r
j=1 | f̃j |

2

| f̃i |
2 = 1 +

∑
j �=i

| wij |2,

where wij = ξj

ξi
for j �= i are nonhomogeneous coordinates on Ũi.

Global Chern forms for blow-ups

We next use a C∞ partition of unity onM to patch local metrics and Chern
forms to obtain a global metric and Chern form for LE on M .

Remark 7.4. — Throughout sections 7 and 8 we will refer to a C∞ func-
tion F on M which we define by the formula

F =
∏
α

F ρα
α ,

where {ρα} is a C∞ partition of unity subordinate to an open cover {Uα}
of M and Fα is a function on Uα. More precisely, we mean that we extend
each function F ρα

α on Uα to a global function Gα on M by setting

Gα(x) =
{
Fα(x)ρα(x), if x ∈ Uα
1, otherwise

and note that Gα is C∞ because ρα is 0 on a neighborhood of the comple-
ment of Uα, by the definition of a partition of unity subordinate to {Uα}.
We set F =

∏
αGα. We use a similar convention when defining a metric h

of LE and the norm-squared || s ||2 of a section s of LE with respect to h.

Using compactness of M , we construct F so that F < 1 on M , in order
that the expression log(logF )2, which will occur in our Saper-type metrics,
is always defined.

Proposition 7.5. — Let π : M̃ →M be the blow-up of a compact com-
plex manifold M along a coherent sheaf of ideals I such that M̃ is smooth.
Let E be the exceptional divisor and LE the associated line bundle.

There is a metric h on LE and holomorphic section s of LE, vanishing
exactly on E, such that the norm-squared of s with respect to h is of the
form

|| s ||2 = π∗F,
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where F is a real C∞ function on M , vanishing on the support of I, with
F < 1 on M . Furthermore, the function F may be constructed to be of the
form

F =
∏
α

F ρα
α ,

where {ρα} is a C∞ partition of unity subordinate to an open cover {Uα}
of M , Fα is a function on Uα of the form

Fα =
r∑

j=1

| fj |2,

and f1, ..., fr are local holomorphic generators of the coherent ideal sheaf I
on Uα. The Chern form c1(LE , h) of h on M̃ is given on M̃ − E by

c1(LE , h) = −
√
−1
2π

∂∂ log || s ||2 = π∗(−
√
−1
2π

∂∂ logF ).

Proof. — Let {Uα} be a finite open cover ofM by open sets small enough
that I is generated by global sections on each Uα. If the support of I does
not intersect some Uα or if I is generated by a single generator on Uα,
then LE is trivial on the set Ũα = π−1(Uα). In this case we may choose
Fα to be a constant and the local Chern form will be 0. Otherwise, in the
nontrivial case, suppose that f1, ..., fr are local generating functions for I
on Uα and let

Fα =
r∑

j=1

| fj |2 and F̃α = π∗Fα.

By Lemma 7.1, there is a local C∞ metric hα for LE on Ũα whose associated
Chern form is given on Ũα − Ũα ∩ E by

c1(LE , hα) = π∗(−
√
−1
2π

∂∂ logFα) = −
√
−1
2π

∂∂ log F̃α.

Now choose a C∞ partition of unity {ρα} subordinate to {Uα} and let
ρ̃α be the pullback of ρα to M̃ . Then {ρ̃α} is a partition of unity on M̃
subordinate to the open sets {Ũα}.

We define a global C∞ metric for LE as follows. For any section s of
LE , let || s ||2α be the norm-squared of s with respect to the metric hα on
Ũα and let

|| s ||2 =
∏
α

|| s ||2ρ̃α
α .
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Let {Vi} be a finite open cover of M̃ by open sets on which LE is trivial,
and let hαi be the positive C∞ function representing hα on Ũα ∩ Vi. Then
the positive C∞ function for h on Vi is

hi =
∏
α

hρ̃α

αi .

If s is given on Vi by the holomorphic function si, then on Uα ∩ Vi we have

|| s ||2α= | si |2hαi

and on Vi,
|| s ||2 = | si |2hi.

The global form c1(LE , h) associated with this metric is given on Vi by

c1(LE , h) = −
√
−1
2π

∂∂ log hi

= −
√
−1
2π

∂∂ log
∏
α

hρ̃α

αi

= −
√
−1
2π

∑
α

∂∂ρ̃α log hαi.

Let s be a global holomorphic section of LE on M̃ whose associated
divisor is E. Such a section always exists - just choose local holomorphic
defining equations of E to determine s locally. For example, on Ũαi = Ũα ∩
{ξi �= 0} ⊂ Uα × P

r−1, take sαi = f̃i = π∗fi, where f1, ..., fr are local
holomorphic generators of I on Uα.

Then

|| s ||2α=
r∑

j=1

| f̃j |
2

= F̃α

and
|| s ||2 =

∏
α

F̃ ρ̃α
α = π∗(

∏
α

F ρα
α ).

Thus the Chern form c1(LE , h) is given on M̃ − E by

c1(LE , h) = −
√
−1
2π

∂∂ log || s ||2 = π∗(−
√
−1
2π

∂∂ logF ),

where
F =

∏
α

F ρα
α .
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We may also choose the functions fi so that F < 1 on M . For p ∈ Xsing,
we can choose a neighborhood Uα of p and local holomorphic generators
f1, ..., fr of I on Uα, such that Fα < 1. For p /∈ Xsing, we can choose a
neighborhood Uβ of p such that Uβ does not intersect Xsing. Then I is
generated by any nonzero constant on Uβ , so we can set Fβ equal to any
nonzero constant less than 1. Choosing a finite subcover of M by such
sets Uα and Uβ and defining Fα and Fβ this way ensures that F < 1
on M . �

8. Construction of Saper-type metrics

Let X be a singular subvariety of a compact Kähler manifold M and
let Xsing be the singular locus of X. We define what is meant by Saper-
type (or modified Saper) metrics. We then construct Saper-type metrics
on M −Xsing, first locally, then globally using a C∞ partition of unity on
M . We also show that our local and global Saper-type metrics are locally
quasi-isometric. Our global Saper-type metrics are complete Kähler metrics
on M −Xsing which grow less rapidly than Poincaré metrics near the singu-
lar locus. More details on the growth rate of Saper-type metrics and their
relationship to intersection cohomology may be found in [GM1], [Sa1], and
[Sa2].

We also construct a non-complete Kähler metric on M −Xsing with the
property that the completion of X −Xsing with respect to this metric is a
desingularization of X. We call this metric a “desingularizing metric” for X.

The constructions of both metrics are based on resolution of singularities
using a single coherent ideal sheaf I on M (see Corollary 6.3) and the
explicit formula for a Chern form for the blow-up of M along I given in
Proposition 7.5.

Quasi-Isometry. — We call two metrics hA and hB quasi-isometric
on an open set U if their fundamental (1, 1)-forms ωA and ωB satisfy
cωA � ωB � CωA on U for some positive constants c and C. For con-
venience, we also refer to the (1, 1)-forms ωA and ωB as quasi-isometric.
Metrics which are quasi-isometric have the same L2-cohomology.

Definition. — Let X be a singular subvariety of a compact complex man-
ifold M and let ω be the fundamental (1, 1)-form of a hermitian metric on
M . Let π : M̃ → M be a holomorphic map of a compact complex manifold
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M̃ to M whose exceptional set E is a divisor with normal crossings in M̃
and such that the restriction

π : M̃ − E →M −Xsing

is a biholomorphism. Let LE be the line bundle on M̃ associated with E and
let h be a hermitian metric on LE. Let s : M̃ → LE be a global holomorphic
section whose associated divisor (s) equals E (so s vanishes exactly on E)
and let || s || be the norm of s with respect to h.

A metric on M̃−E which is quasi-isometric to a metric with fundamental
(1, 1)-form

lπ∗ω −
√
−1
2π

∂∂ log(log || s ||2)2,

for l a positive integer, will be called a Saper-type or modified Saper
metric, distinguished with respect to the map π. The corresponding metric
on M−Xsing

∼= M̃−E and its restriction to X−Xsing are also called Saper-
type or modified Saper. We will usually omit the phrase “distinguished with
respect to π.”

We call the form

ν = −
√
−1
2π

∂∂ log(log || s ||2)2

a Poincaré-type (1, 1)-form. In [GM1], we discuss a more general class of
modified Saper metrics, in which the Poincaré-type form ν is replaced by a
finite sum of positive integer multiples of Poincaré-type forms. We will not
need this more general description in this paper.

Local construction of Saper-type metrics

Before constructing Saper-type metrics, we will describe a Kähler metric
for a local blow-up which is essentially the local model for our desingular-
izing metric.

Let U be an open set in C
n and let π : Ũ → U be the blow-up of U along

a coherent sheaf of ideals I such that Ũ is smooth. Let E be the exceptional
divisor of π. Assume that U is small enough that I is generated by global
sections on U and let

ιf : Ũ ↪→ U × P
r−1
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be the embedding associated with a collection of generators f . Let σ1 and
σ2 be the projection maps

U × P
r−1 σ2−−−→ P

r−1

σ1

�
U

Suppose that ω is the Kähler form of a Kähler metric on U and let
ωFub−St be the Kähler form of the Fubini-Study metric on P

r−1.

Lemma 8.1. — The embedding Ũ ↪→ U × P
r−1 induces a Kähler metric

on Ũ whose Kähler form is

ω′ = π∗ω − c1(LE , h),

where c1(LE , h) is a Chern form of the line bundle LE (with respect to a
metric h) of the type described in Lemma 7.1. If f1, ..., fr are local holomor-
phic generators for I on U , then ω′ is given on Ũ − E by

ω′ = π∗(ω +
√
−1
2π

∂∂ log
r∑

j=1

| fj |2).

The corresponding Kähler metric on U − V (I) has Kähler form

ω̃ = ω +
√
−1
2π

∂∂ log
r∑

j=1

| fj |2.

Proof. — The Kähler form on Ũ given by the restriction of the product
metric on U × P

r−1 is

ω′ = ι∗f (σ
∗
1ω + σ∗2ωFub−St)

= π∗ω + ι∗fσ
∗
2ωFub−St

= π∗ω − c1(LE , h)

where c1(LE , h) is given on the set Ũ − E by

c1(LE , h) = π∗(−
√
−1
2π

∂∂ log
r∑

j=1

| fj |2)

by Lemma 7.1. �

Remark 8.2. — The Kähler metric determined by ω̃ is essentially the
local model of our desingularizing metric.
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The function F =
∑r

j=1 | fj |
2 can also be used to construct a Saper-

type metric on U − V (I). We are particularly interested in the case of a
coherent sheaf of ideals I which determines a resolution of singularities of a
singular variety and which is supported on the singular locus of the variety.
Theorems 8.4 and 8.6 describe local and global constructions, respectively,
of Saper-type and desingularizing metrics for a singular variety. The main
differences between the two theorems are that we must patch with a C∞

partition of unity in the global case, and that our global desingularizing
metrics may also require a multiple of the original metric.

The following lemma will be useful in constructing Saper-type metrics
and describing their rates of growth (cf. [GM1, Theorem 9.2.1]).

Lemma 8.3. — Let F be a real C∞ function on a complex manifold Y
such that 0 � F < 1 on Y and F = 0 exactly on a subvariety Z of Y . Let
ω be the positive (1, 1)-form of a hermitian metric on Y . Suppose that the
(1, 1)-form

ω̃ = kω +
√
−1
2π

∂∂ logF

is positive on Y for some positive integer k. Then for each point p in Z,
there exists a neighborhood V of p in Y such that the (1, 1)-form

ωS = ω −
√
−1
2π

∂∂ log(logF )2

is positive and quasi-isometric to

ω′
S = ω +

√
−1
π

1
(logF )2F 2

∂F ∧ ∂F +
1

| logF | ω̃

on V − Z.

Proof. — Let R =| logF |= − logF and expand ωS as follows:

ωS = ω +
√
−1
π

1
R2
∂R ∧ ∂R−

√
−1
π

1
R
∂∂R

= ω +
√
−1
π

1
R2
∂R ∧ ∂R+

√
−1
2π

2
R
∂∂ logF

=
(

1 − 2k
R

)
ω +

√
−1
π

1
R2
∂R ∧ ∂R+

2
R

(
kω +

√
−1
2π

∂∂ logF
)

=
(

1 − 2k
| logF |

)
ω +

√
−1
π

1
(logF )2F 2

∂F ∧ ∂F +
2

| logF | ω̃.
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Since 1
|logF | → 0 as we approach Z, we may choose a neighborhood V of p

in Y such that the coefficient 1 − 2k
|logF | of ω is positive and bounded away

from 0 on V − Z. Since ω and ω̃ are positive and
√
−1
π ∂F ∧ ∂F is positive

semi-definite, ωS is positive and quasi-isometric to ω′
S on V − Z. �

Theorem 8.4 Local Metrics. — Let X be a singular subvariety of a
compact Kähler manifold M with singular locus Xsing. Let ω be the Kähler
(1,1)-form of a Kähler metric on M . Let p be any point in Xsing. Then
there exists a neighborhood U of p and a C∞ function F on U , vanishing
on U ∩Xsing, such that

i. the (1,1)-form

ω̃ = ω +
√
−1
2π

∂∂ logF

is the Kähler form of an incomplete metric on U − U ∩Xsing which
determines an embedded resolution of singularities locally over the
neighborhood U , and

ii. the (1,1)-form

ωS = ω −
√
−1
2π

∂∂ log(logF )2

on U − U ∩Xsing is the Kähler form of a Saper-type metric on U −
U ∩Xsing.

Furthermore, the function F may be constructed to be of the form

F =
r∑

j=1

| fj |2,

where f1, ..., fr are holomorphic functions on U which are local generators
of a coherent ideal sheaf I on M , such that blowing up M along I gives
embedded desingularization of X.

Proof. — Part (i) is a consequence of Corollary 6.3, Lemma 8.1, and
Lemma 7.1.

Positivity of ωS is a consequence of Lemma 8.3. Let π : Ũ → U be the
blow-up of U along I. By the remark following Lemma 7.1, π∗F = || s ||2,
where s is a holomorphic section over Ũ of the line bundle LE associated
to the exceptional divisor E of π, s vanishes exactly on E ∩ Ũ , and || s ||2
is the norm-squared of s with respect to a metric h on the restriction of
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LE to Ũ . Thus the metric determined by ωS is Saper-type. Completeness
of Saper-type metrics is proved in [GM1] (Theorem 9.2.1) and is essentially
due to the term of order

√
−1
π

1
(logF )2F 2

∂F ∧ ∂F

in the description of the quasi-isometry class of ωS in Lemma 8.3. This term
gives us a lower bound on the growth of the metric near Xsing in terms of
the growth of the Poincaré metric on the punctured disc. �

Remark 8.5. — Positivity of ωS in a neighborhood of p ∈ Xsing could
also be proved for F of this form using Lemma 9.4, which implies that
the form −

√
−1
2π ∂∂ log(logF )2 is positive semi-definite in a small enough

neighborhood of p.

Global construction of Saper-type metrics

To construct global metrics we patch together our local metrics using
C∞ partitions of unity on M .

Theorem 8.6 Global Metrics. — Let X be a singular subvariety of
a compact Kähler manifold M with singular locus Xsing. Let ω be the Kähler
(1,1)-form of a Kähler metric on M . There exists a global C∞ function F
on M , vanishing exactly on Xsing, such that for k a large enough positive
integer

i. the (1,1)-form

ω̃ = kω +
√
−1
2π

∂∂ logF

is the Kähler form of an incomplete Kähler metric onM−Xsing which
is a desingularizing metric for X (i.e. the completion of X − Xsing

with respect to ω̃ is nonsingular), and

ii. the (1,1)-form

ωS = ω −
√
−1
2π

∂∂ log(logF )2

on M − Xsing is the Kähler form of a complete Kähler Saper-type
metric.

Furthermore, the function F may be constructed to be of the form

F =
∏
α

F ρα
α ,
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where {ρα} is a C∞ partition of unity subordinate to an open cover {Uα}
of M , Fα is a function on Uα of the form

Fα =
r∑

j=1

| fj |2,

and f1, ..., fr are holomorphic functions on Uα, vanishing exactly on Xsing∩
Uα. More specifically, f1, ..., fr are local holomorphic generators of a coher-
ent ideal sheaf I on M such that blowing up M along I gives embedded
desingularization of X.

Before proving Theorem 8.6, we prove a lemma which we will apply to
the functions Fα.

Lemma 8.7. — Let I be a nonzero coherent sheaf of ideals on a complex
manifold M . Suppose that on an open neighborhood U of a point p in M
there are collections of holomorphic functions {f1, ..., fr} and {g1, ..., gs},
each of which generates I over U . Then there are positive constants C1 and
C2 such that, on some neighborhood V of p in M ,

C1

s∑
i=1

| gi |2 �
r∑

j=1

| fj |2 � C2

s∑
i=1

| gi |2.

Proof. — Since the collection {fj} generates I over U , there exist holo-
morphic functions {aij} on U such that, for each i,

gi =
r∑

j=1

aijfj on U . (8.1)

Similarly, there exist holomorphic functions {bjk} on U such that, for each j,

fj =
s∑

k=1

bjkgk on U . (8.2)

From equation (8.2) we have

| fj |2 �
s∑

k=1

| bjk |2
s∑

k=1

| gk |2

by the Schwartz inequality. Thus

r∑
j=1

| fj |2 �


 r∑
j=1

s∑
k=1

| bjk |2

 (

s∑
k=1

| gk |2
)
.
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Let V be a neighborhood of the point p with compact closure V contained
in U . Let

C2 = max




r∑
j=1

s∑
k=1

| bjk(x) |2

 for x ∈ V .

Clearly the constant C2 cannot be zero, because that would imply that all
the functions bjk are zero on V and hence all the functions fj are zero on
V , which is impossible because I is not the zero sheaf. On V we have

r∑
j=1

| fj |2 � C2

s∑
k=1

| gk |2.

Similarly, for some positive constant C3, we have

s∑
i=1

| gi |2 � C3

r∑
j=1

| fj |2

on V . Letting C1 = 1
C3

, we obtain

C1

s∑
i=1

| gi |2 �
r∑

j=1

| fj |2 � C2

s∑
i=1

| gi |2

on V . �

Proof of Theorem 8.6. — To prove part (i), we will show that we can
patch our local metrics using a C∞ partition of unity from M and adding
a high enough multiple of the original metric from M to obtain a positive
(1,1)-form.

Let I be a coherent sheaf of ideals on M such that blowing up M along
I gives embedded desingularization of X. Let {Uα} be an open cover of M
such that I is generated by global holomorphic sections on Uα. For each
Uα, pick a set of holomorphic generators f1, ..., fr of I over Uα and let

Fα =
r∑

j=1

| fj |2.

Let {ρα} be a C∞ partition of unity subordinate to the open cover {Uα} of
M and set

F =
∏
α

F ρα
α .
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As in Proposition 7.5, we may choose the neighborhoods Uα and functions
fj so that F < 1 on M .

To prove part (i) of the theorem, we will first note that the (1, 1)-forms

ω′
α = π∗(ω +

√
−1
2π

∂∂ logFα)

are well-defined and positive on the open sets Ũα = π−1Uα in M̃ by
Lemma 8.1. We next show that the form

ω′ = π∗(kω +
√
−1
2π

∑
α

∂∂(ρα logFα))

= π∗(kω +
√
−1
2π

∂∂ logF )

is positive on M̃ for k a large enough positive integer. It follows that

ω̃ = kω +
√
−1
2π

∂∂ logF

is the Kähler form of a desingularizing metric for X.

Let p be a point in M̃ and let q = π(p) be its image in M . There is some
β such that ρβ(q) > 0 (and consequently π∗ρβ(p) > 0). Let V be an open
set in Uβ containing q such that ρβ(q) > 0 on V and such that the closure
of V is compact.

The (1, 1)-form ∂∂(ρα logFα) is the sum of the following three terms:

ρα∂∂ logFα, (8.3)

∂ρα ∧ ∂(logFα) + ∂(logFα) ∧ ∂ρα, and (8.4)

(logFα)∂∂ρα. (8.5)

By our choice of the set V , the (1, 1)-form

π∗(ω +
√
−1
2π

∑
α

ρα∂∂ logFα)

is positive on V .

Next note that ∑
α

∂ρα = 0
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since
∑

α ρα = 1. Then∑
α

∂ρα ∧ ∂ logFα =
∑
α

∂ρα ∧ ∂ logFα − (
∑
α

∂ρα) ∧ ∂ logFβ

=
∑
α

∂ρα ∧ ∂(logFα − logFβ)

=
∑
α

∂ρα ∧ ∂(log
Fα
Fβ

).

Each form ∂ρα is bounded on V since ρα is C∞ and V is compact. The
quotients Fα

Fβ
are positive, bounded, bounded away from 0, and C∞ (where

defined), so the forms ∂(log Fα

Fβ
) are also bounded on V . Thus

kω +
√
−1
2π

∑
α

∂ρα ∧ ∂ logFα

is positive on V for k a large enough positive integer. A similar argument
applies to the terms of the form ∂(logFα) ∧ ∂ρα.

Finally we apply this argument to the terms (logFα)∂∂ρα, noting that∑
α

∂∂ρα = 0

so that ∑
α

(logFα)∂∂ρα =
∑
α

(logFα)∂∂ρα − logFβ
∑
α

∂∂ρα

=
∑
α

(logFα − logFβ)∂∂ρα

=
∑
α

(log
Fα
Fβ

)∂∂ρα

which is bounded on V . Thus

kω +
√
−1
2π

∑
α

(logFα)∂∂ρα

is positive on V for k a large enough positive integer.

Pulling back all the terms to π−1(V ) in M̃ , we see that the form

ω′ = π∗(kω +
√
−1
2π

∑
α

∂∂(ρα logFα))
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= π∗(kω +
√
−1
2π

∂∂ logF )

is positive on V for k a large enough positive integer. Since M̃ is compact,
we may choose a finite covering of M̃ by such open sets V , and choose a
large enough positive integer k such that ω′ is positive on all of M̃ .

Positivity of ωS is a consequence of Lemma 8.3. Let π : M̃ → M be
the blow-up of M along I. By Proposition 7.5, π∗F = || s ||2, where s is
a holomorphic section of the line bundle LE associated to the exceptional
divisor E of π, s vanishes exactly on E, and || s ||2 is the norm-squared
of s with respect to a metric h on LE . Thus the metric determined by
ωS is Saper-type. Completeness of Saper-type metrics is proved in [GM1]
(Theorem 9.2.1) and is essentially due to the term of order

√
−1
π

1
(logF )2F 2

∂F ∧ ∂F

in the description of the quasi-isometry class of ωS in Lemma 8.3, which
gives us a lower bound on the growth of the metric near Xsing in terms of
the growth of the Poincaré metric on the punctured disc. �

Quasi-isometry of local and global Saper-type metrics

We show that our local and global Saper-type metrics are locally quasi-
isometric. Both are locally quasi-isometric to a local Euclidean metric near
points not in the singular locus of X, so we need only prove quasi-isometry
near points of Xsing.

As above, let I be a coherent sheaf of ideals on M such that blowing
up M along I gives embedded desingularization of X. Let {Uα} be an open
cover of M such that I is generated by global holomorphic sections on each
Uα and let {ρα} be a C∞ partition of unity subordinate to {Uα}.

For each set Uα, we pick a collection of holomorphic generators f1, ..., fr
of I and let

Fα =
r∑

j=1

| fj |2.

We construct a global function F given by

F =
∏
α

F ρα
α .
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Before proving quasi-isometry of our local and global metrics, we com-
pare the rates of growth of our local and global generating functions Fα and
F (Lemma 8.8) and their logarithms (Corollary 8.9).

Lemma 8.8. — For each point p ∈ Xsing∩Uα there exists a neighborhood
V of p in Uα and positive constants c and C such that

cFα � F � CFα.

Proof. — Let p be a point in Xsing∩Uα and suppose that p is also in Uβ ,
for some β. By Lemma 8.7 there exists a neighborhood V of p in Uα ∩ Uβ
and positive constants cβ and Cβ such that

cβFα � Fβ � CβFα.

Let Λ = {β : p ∈ Uβ}. Note that ργ = 0 if p /∈ Uγ so
∑

β∈Λ ρβ = 1 and
F =

∏
β∈Λ F

ρβ

β . Set

c = min
β∈Λ

cβ and C = max
β∈Λ

Cβ .

Then
cFα � Fβ � CFα for β ∈ Λ

and
cFα =

∏
β∈Λ

(cFα)ρβ �
∏
β∈Λ

F
ρβ

β �
∏
β∈Λ

(CFα)ρβ = CFα,

i.e.
cFα � F � CFα. �

Corollary 8.9. — For each point p ∈ Xsing ∩ Uα there exists a neigh-
borhood V of p in Uα and positive constants k and K such that

−k logFα � − logF � −K logFα.

Proof. — By Lemma 8.8, we have

log(cFα) � logF � log(CFα),

i.e.
log c+ logFα � logF � logC + logFα.
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Note that logFα and logF are negative close enough to Xsing. Multiplying
by −1 and dividing by − logFα, we have

− logC
− logFα

+ 1 � − logF
− logFα

� − log c
− logFα

+ 1.

Since 1
− logFα

→ 0 as we approach Xsing,

− logF
− logFα

→ 1

so we can find a neighborhood V of p in Uα and positive constants k and
K such that

−k logFα � − logF � −K logFα. �

Recall that our global Saper-type metric on M −Xsing is given by

ωS = ω −
√
−1
2π

∂∂ log(logF )2

where ω is the positive hermitian (1, 1)-form of a metric on M .

If (z1, ..., zn) are local holomorphic coordinates on an open set Uα and
Fα is defined as above, we have a local Saper-type metric on Uα−Xsing∩Uα
given by

ωS,α = ωα −
√
−1
2π

∂∂ log(logFα)2

where

ωα =
√
−1
2π

n∑
i=1

dzi ∧ dzi.

Proposition 8.10. — For each point p ∈ Xsing∩Uα there exists a neigh-
borhood V of p in Uα, such that the metrics determined by ωS and ωS,α are
quasi-isometric on V −Xsing ∩ V .

Proof. — We wish to show that there exist positive constants c and C
and a neighborhood V of p in Uα such that for all tangent vectors ξ on
V −Xsing ∩ V we have

cωS,α(ξ, ξ) � ωS(ξ, ξ) � CωS,α(ξ, ξ).

Letting Rα = − logFα, we expand ωS,α as

ωS,α = ωα +
√
−1
π

1
R2
α

∂Rα ∧ ∂Rα −
√
−1
π

1
Rα
∂∂Rα.
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By Lemma 8.8, on a neighborhood of p ∈ Xsing ∩ Uα, we may write

Fα = Fh

where h is a bounded positive C∞ function which is bounded away from 0.
Then Rα = R− log h, where R = − logF , and

ωS,α = ωα +
√
−1
π

1
R2
α

(
∂R− 1

h
∂h

)
∧

(
∂R− 1

h
∂h

)

−
√
−1
π

1
Rα

(
∂∂R+

1
h2
∂h ∧ ∂h− 1

h
∂∂h

)
.

We rewrite ωS,α as the sum of three terms

ωS,α = ω′
S,α + σ + φ

where

ω′
S,α = ωα +

√
−1
π

1
R2
α

∂R ∧ ∂R−
√
−1
π

1
Rα
∂∂R,

σ =
√
−1
π

[(
1
R2
α

− 1
Rα

)
1
h2
∂h ∧ ∂h+

1
Rαh

∂∂h

]
,

and

φ = −
√
−1
π

1
R2
αh

(
∂h ∧ ∂R+ ∂R ∧ ∂h

)
.

Comparing ω′
S,α to the expansion of ωS in terms of R = − logF ,

ωS = ω +
√
−1
π

1
R2
∂R ∧ ∂R−

√
−1
π

1
R
∂∂R,

and applying Corollary 8.9, we see that there exists a neighborhood V of
p in Uα such that ω′

S,α is positive and ω′
S,α and ωS are quasi-isometric on

V −Xsing∩V . The term σ approaches 0 as we approach Xsing since 1
Rα

→ 0
and h is bounded away from 0, so σ is dominated by ωα near Xsing. To
study the behavior of φ near Xsing, we further expand, using R = − logF ,
to obtain

φ =
√
−1
π

1
R2
αh

(
∂h ∧ 1

F
∂F +

1
F
∂F ∧ ∂h

)
.

Let ξ be a tangent vector in V −Xsing, for V a small neighborhood of p in
Uα, and set

a = ∂h(ξ) and b =
1
F
∂F (ξ).
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Then
| φ(ξ, ξ) | =

1
πR2

αh
| ab+ ba |

� 2
πR2

αh
| a || b |

� 1
πR2

αh
(| a |2 + | b |2)

=
1

πR2
αh

(
| ∂h(ξ) |2 +

1
F 2

| ∂F (ξ) |2
)
.

Furthermore,
| ∂h(ξ) |2� | ∂h |2| ξ |2,

where | ∂h | and | ξ | denote the norms of ∂h and ξ with respect to the
usual Euclidean metric. Since 1

R2
α
→ 0 as we approach Xsing, there exists a

neighborhood V of p in Uα such that

1
πR2

αh
| ∂h(ξ) |2 � ω(ξ, ξ)

for all tangent vectors ξ on V −Xsing ∩ V .

We wish to show that the second term of | φ(ξ, ξ) | is bounded by a
multiple of ωS(ξ, ξ) near Xsing. Recall from Lemma 8.3 that we can choose
a small enough neighborhood V of p in Uα that ωS is quasi-isometric on
V −Xsing ∩ V to

ω′
S = ω +

√
−1
π

1
R2F 2

∂F ∧ ∂F +
1
R
ω̃

where

ω̃ = kω +
√
−1
2π

∂∂ logF

is positive for some positive integer k, by Theorem 8.6. Hence

ω′
S(ξ, ξ) = ω(ξ, ξ) +

1
πR2F 2

| ∂F (ξ) |2 +
1
R
ω̃(ξ, ξ).

Since ω̃ is positive and R = − logF is positive near Xsing,

ω′
S(ξ, ξ) � 1

πR2F 2
| ∂F (ξ) |2

near p ∈ Xsing.

Comparing with our bound on | φ(ξ, ξ) | and our estimates of the other
terms of ωS,α, we conclude that there is a neighborhood V of p in Uα and a
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constant c > 0 such that ωS(ξ, ξ) � cωS,α(ξ, ξ) for all tangent vectors ξ on
V −Xsing ∩ V .

The proof that CωS,α � ωS locally for some C > 0 is similar. �

9. Ohsawa’s boundedness condition, examples

In this section we discuss a boundedness criterion of Ohsawa’s: that
the gradient of a generating function of the fundamental (1,1)-form of the
metric is locally bounded with respect to the metric. We prove that the
local model for our Saper-type metrics on M satisfies this condition, so
that our Saper-type metrics are locally quasi-isometric to metrics with gen-
erating functions satisfying Ohsawa’s condition (and thus have the same
local L2-cohomology). In view of results of Donnelly-Fefferman [DF], Oh-
sawa [O], and Gromov [Gro] on vanishing of certain L2-cohomology groups,
we hope that this property would allow us to apply Goresky-MacPherson’s
work on the axiomatic characterization of intersection cohomology for the
purpose of identification of the latter (for the middle perversity) with the
L2-cohomology groups for our Saper-type metrics.

Gradient of a C∞ function with respect to a metric. — Let
U be a complex manifold of dimension n and let ω be the fundamental
(1,1)-form of a hermitian metric on U . Let H be a C∞ function on U . The
gradient of H with respect to ω is the vector field gradωH defined by
the property that, for any holomorphic tangent vector ξ on U ,

∂H(ξ) = ξ ·ω gradωH,

where ·ω denotes the inner product with respect to the metric determined
by ω. The gradient vector field is dual to the 1-form ∂H with respect to the
inner products determined by ω on the tangent and cotangent spaces.

Denoting by | · |2ω the norm-squared with respect to ω, we have

| gradωH |2ω= ∂H(gradωH) =| ∂H |2ω .

If ω =
√
−1
2π ∂∂G, where G is a C∞ function on U , we call ω the complex

Hessian of G and we call G a generating function for ω.

Ohsawa’s Condition. — Let U be a complex manifold of dimension n
and let

ω =
√
−1
2π

∂∂G
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be the fundamental (1,1)-form of a hermitian metric on U , where G is a
C∞ function on U . We will say that the generating function G satisfies
Ohsawa’s condition on U if | ∂G |2ω is bounded. Equivalently, the gradient
of G with respect to ω has bounded sup norm with respect to ω.

Theorem 9.1 (Donnelly and Fefferman [DF], [O, Theorem 1.1]).
Let ω be the fundamental (1,1)-form of a hermitian metric on an open set
U . If ω has a generating function which satisfies Ohsawa’s condition on U
and if the metric on U determined by ω is complete, then the L2-cohomology
of U with respect to ω vanishes in all positive dimensions except possibly the
middle dimension, i.e.,

Hr
(2)(U) = 0 if r �= 0, n.

We note that L2-cohomology depends only on the quasi-isometry class
of the metric.

Inner products with respect to the metric determined
by ω. — If the fundamental (1, 1)-form of a hermitian metric is given in
local coordinates (z1, ..., zn) by

ω =
√
−1
2

n∑
i,j=1

hijdzi ∧ dzj ,

the associated metric is given by

ds2 =
n∑

i,j=1

hijdzi ⊗ dzj ,

i.e., the inner product of tangent vectors ∂
∂zi

and ∂
∂zj

is

∂

∂zi
·ω

∂

∂zj
= hij .

Thus, the inner product of any two tangent vectors ξ and η with respect to
the metric determined by ω is

ξ ·ω η = −2
√
−1 ω(ξ ∧ η).
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Example 9.2. — The Euclidean metric on C
n with Kähler (1,1)-form

ωE =
√
−1
2π

n∑
i=1

dzi ∧ dzi

has a generating function G =
∑n

i=1 | zi |
2 which satisfies Ohsawa’s condi-

tion on bounded open sets.

Proof. — LetH be any C∞ function on U . We first calculate the gradient
of H and its norm-squared with respect to ωE . Suppose that

gradEH =
n∑
i=1

ai
∂

∂zi
,

and let ξ be a holomorphic vector, given by

ξ =
n∑
i=1

bi
∂

∂zi
.

Then

∂H(ξ) =
n∑
i=1

∂H

∂zi
bi

and

ξ ·E gradEH = −2
√
−1 ωE(ξ ∧ gradEH) =

1
π

n∑
i=1

biai

so that ai = π ∂H∂zi
and

gradEH = π
n∑
i=1

∂H

∂zi

∂

∂zi
.

It follows that

| ∂H |2E=| gradEH |2E= ∂H(gradEH) = π
n∑
i=1

| ∂H
∂zi

|
2

.

Next we check Ohsawa’s condition. A generating function for ωE is

G =
n∑
i=1

| zi |2.
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The gradient of G with respect to ωE is

gradEG = π
n∑
i=1

zi
∂

∂zi

and the norm-squared of ∂G with respect to ωE is

| ∂G |2E = | gradEG |2E = π
n∑
i=1

| zi |2

which is bounded on bounded open sets. �

Example 9.3. — The Poincaré metric on the punctured unit disc with
Kähler (1, 1)-form

ωP =
√
−1
π

dz ∧ dz
(− log | z |2)2| z |2

has a generating function − log(− log | z |2)2 which satisfies Ohsawa’s con-
dition.

Proof. — We write the given generating function as

G = −2 log(− log | z |2).

The associated 1-form is

∂G =
2

(− log | z |2)z
dz

and we calculate, as in the previous example, that the gradient of G with
respect to ωP is

gradPG = π(− log | z |2)z ∂
∂z
.

The norm-squared of ∂G with respect to ωP is

| ∂G |2P = | gradPG |2P = ∂G(gradPG) = 2π,

which is bounded. �

We will show (Example 9.6) that a generating function for the following
metric satisfies Ohsawa’s condition, using Proposition 9.5.
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Lemma 9.4. — The (1, 1)-form

ωQ =
√
−1
2π

∂∂(− log(− log
n∑
j=1

| zi |2)2)

determines a Kähler metric on V − (0, ..., 0), for V a small enough neigh-
borhood of (0, ..., 0) in C

n.

Proof. — Our generating function is

G = −2 log(− log
n∑
j=1

| zi |2).

Letting R = − log | z |2, where | z |2 =
∑n

j=1 | zi |
2, we calculate that

∂∂G =
(
− 1
R

+
1
R2

)
2

| z |4

(
n∑
i=1

zidzi

)
∧

(
n∑
i=1

zidzi

)
+

2
R| z |2

n∑
i=1

dzi∧dzi.

Suppose that ξ =
∑n

i=1 ai
∂
∂zi

is a holomorphic tangent vector on C
n. Then

∂∂G(ξ∧ξ) =
(
− 1
R

+
1
R2

)
2

| z |4

(
n∑
i=1

ziai

) (
n∑
i=1

ziai

)
+

2
R| z |2

n∑
i=1

| ai |2.

Setting Z =
∑n

i=1 zi
∂
∂zi

, we can rewrite this equation as

∂∂G(ξ ∧ ξ) =
(
− 1
R

+
1
R2

)
2

| z |4 | (ξ · Z) |2 +
2

R| z |2
| ξ |2,

where · denotes the usual dot product with respect the Euclidean metric on
C
n and | ξ |2 is the usual norm-squared of ξ with respect to the Euclidean

metric on C
n.

Using the inequality | (ξ · Z) |2 � | ξ |2| Z |2 and the identity | Z |2 =
| z |2 =

∑n
i=1 | zi |

2, we obtain, for | z |2 near 0,

∂∂G(ξ ∧ ξ) � 2| ξ |2

R2| z |2
=

2| ξ |2

(− log | z |2)2| z |2
.

Hence

| ξ |2Q= −2
√
−1 ωQ(ξ ∧ ξ) =

1
π
∂∂G(ξ ∧ ξ) � 2| ξ |2

πR2| z |2
. (9.1)
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In particular, ωQ is positive on V − (0, ..., 0) for V a small enough neigh-
borhood of (0, ..., 0) in C

n, so ωQ determines a Kähler metric. �

We will use following proposition to show that our generating function
of the metric of Lemma 9.4 satisfies Ohsawa’s condition. We will also apply
it to local models for desingularizing metrics (Example 9.7) and modified
Poincaré metrics (Example 9.8) to show that our generating functions for
these local models do not satisfy Ohsawa’s condition.

Proposition 9.5. — Suppose that ω =
√
−1
2π ∂∂G is the fundamental

(1, 1)-form of a hermitian metric on an open set U in C
n, such that G is of

the form G = g◦F , where F : C
n → R is given by F (z1, ..., zn) =

∑n
i=1 | zi |

2

and g : R → R is C∞. Then the gradient of G with respect to ω is

gradωG =
πg′(F )

Fg′′(F ) + g′(F )

n∑
i=1

zi
∂

∂zi

and the norm-squared of gradωG with respect to ω is

| gradωG |2ω =
πFg′(F )2

Fg′′(F ) + g′(F )
.

In particular, we obtain a criterion for Ohsawa’s boundedness condition in
terms of the real C∞ function g. Let x be a coordinate for R. The generating
function G of ω satisfies Ohsawa’s boundedness condition on U if and only
if the expression

xg′(x)2

xg′′(x) + g′(x)

is bounded on the image of U in R.

Proof . — Let

Z =
n∑
i=1

zi
∂

∂zi

and

η =
(

πg′(F )
Fg′′(F ) + g′(F )

)
Z.

To show that η is the gradient of G with respect to ω, we will show that for
any holomorphic tangent vector ξ on U , ∂G(ξ) = ξ ·ω η, i.e.,

∂G(ξ) =
1
π
∂∂G(ξ ∧ η).
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Expanding the left side, we obtain

∂G(ξ) = g′(F )∂F (ξ)

= g′(F )(ξ · Z),
(9.2)

where ξ · Z denotes the usual dot product in C
n. Similarly, expanding the

right side gives

1
π
∂∂G(ξ ∧ η) =

1
π

(
g′′(F )∂F ∧ ∂F + g′(F )∂∂F

)
(ξ ∧ η)

=
1
π

(g′′(F )(ξ · Z)(Z · η) + g′(F )(ξ · η))

=
(

g′(F )
Fg′′(F ) + g′(F )

)
(g′′(F )(ξ · Z)(Z · Z) + g′(F )(ξ · Z))

=
(

g′(F )
Fg′′(F ) + g′(F )

)
(g′′(F )(ξ · Z)F + g′(F )(ξ · Z))

= g′(F )(ξ · Z).

Hence η = gradωG.

Using equation (9.2) above, we calculate that the norm-squared of the
gradient of G with respect to ω is

| gradωG |2 = ∂G(gradωG)
= g′(F ) gradωG · Z

=
(

πg′(F )2

Fg′′(F ) + g′(F )

)
Z · Z

=
πFg′(F )2

Fg′′(F ) + g′(F )
. �

Example 9.6. — The (1, 1)-form

ωQ =
√
−1
2π

∂∂(− log(− log
n∑
j=1

| zi |2)2)

determines a Kähler metric whose generating function
− log(− log

∑n
j=1 | zi |

2)2 satisfies Ohsawa’s condition on V − (0, ..., 0), for
V a small enough neighborhood of (0, ..., 0) in C

n.

Proof. — The given generating function is of the form G = g ◦ F , where
F =

∑n
i=1 | zi |

2 and
g(x) = −2 log(− log(x)).
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Thus, by Proposition 9.5, the norm-squared of the gradient ofG with respect
to ωQ is

| gradQG |2
Q

= 2π,

and G satisfies Ohsawa’s condition. �

The next example is a local model for our desingularizing metric. Let ω̃
be the (1, 1)-form on C

n − (0, ..., 0) given by

ω̃ =
√
−1
2π

(
n∑
i=1

dzi ∧ dzi + ∂∂ log(
n∑
i=1

| zi |2)
)
.

Let π : C̃
n → C

n be the blow-up of C
n at the origin. The pullback π∗ω̃

of ω̃ extends smoothly to a form ω′ defined on all of C̃
n. The form ω′

is the Kähler form of the restriction to C̃
n of the usual product metric on

C
n×P

n−1, determined by the Euclidean metric on C
n and the Fubini-Study

metric on P
n−1, under the embedding C̃

n ↪→ C
n × P

n−1 (see Lemma 8.1).
Thus ω̃ is a positive (1, 1)-form determining a Kähler metric on C

n− (0, 0).

Example 9.7 (Local model for our desingularizing
metric). — The generating function

G =
n∑
i=1

| zi |2 + log(
n∑
i=1

| zi |2)

of the metric determined by ω̃ =
√
−1
2π ∂∂G on C

n − (0, 0) does not satisfy
Ohsawa’s condition. The norm-squared of the gradient of G with respect to
ω̃ is

| gradω̃G |2ω̃= π

(
n∑
i=1

| zi |2 + 2 +
1∑n

i=1 | zi |
2

)
.

Proof. — Once again, we apply Proposition 9.5, with G = g ◦ F and

g(x) = x+ log(x). �

The metric of the following example is a local model for a complete
metric which is bounded below by a multiple of a desingularizing metric,
rather than by a multiple of the original metric on the spaceM in which our
singular variety X is embedded. It is a simple local model of Poincaré and
modified Poincaré metrics (see [GM1]), which may be constructed by adding
terms of Poincaré-type growth to a desingularizing metric. Our Saper-type
metrics of this paper, in contrast, are constructed by adding a term of
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Poincaré-type growth to the original metric on M , and are locally quasi-
isometric, by Proposition 8.10, to the metric of Example 9.11.

If π : C̃
n → C

n is the blow-up of C
n at the origin and E is the exceptional

divisor, the pullback of the following metric to C̃
n − E is locally quasi-

isometric, near points of E, to the Poincaré metric of Example 9.3 on a
punctured disc, times a Euclidean metric in n − 1 variables (by [GM1],
Proposition 5.4.1(ii) or Corollary 7.2.4).

Example 9.8 (Local example of a Poincaré metric) . — Let
ω = ω̃ + ωQ, where ω̃ is the (1, 1)-form of Example 9.7 and ωQ is the
(1, 1)-form of Example 9.6. The generating function

G =
n∑
i=1

| zi |2 + log(
n∑
i=1

| zi |2) − log(− log
n∑
j=1

| zi |2)2

of the metric determined by ω on C
n − (0, 0) does not satisfy Ohsawa’s

condition.

Proof. — Apply Proposition 9.5 with G = g ◦ F and

g(x) = x+ log x− 2 log(− log(x)).

We calculate that

xg′(x)2

xg′′(x) + g′(x)
=

(1 + x+ 2S)2

x+ 2S2
, (9.3)

where S = − 1
log(x) . Since S → 0 as x→ 0, the expression in line (9.3) is un-

bounded near 0, and thus | gradωG |2 is unbounded near the
origin. �

Lemma 9.9. — Suppose that f : X → Y is a holomorphic map of com-
plex manifolds and ωX and ωY are the positive (1, 1)-forms of hermitian
metrics on X and Y respectively. Let ω be the positive (1, 1)-form of a new
metric on X determined by

ω = ωX + f∗ωY .

Let H and G be C∞ functions on X and Y respectively and let

K = H + f∗G.

Then
| gradK |�| gradXH |X + | gradYG |Y
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where | gradK | denotes the norm with respect to ω of the gradient of K
with respect to ω, and similarly | gradXH |X and | gradYG |Y denote the
norms with respect to ωX and ωY , respectively, of the gradients of H and G
with respect to ωX and ωY respectively.

Proof. — For any tangent vector ξ on X,

ω(ξ ∧ ξ) = ωX(ξ ∧ ξ) + f∗ωY (ξ ∧ ξ)
= ωX(ξ ∧ ξ) + ωY (f∗ξ ∧ f∗ξ),

i.e.,
| ξ |2 =| ξ |2X + | f∗ξ |2Y . (9.4)

If K = H + f∗G, then

∂K(ξ) = ∂H(ξ) + ∂(f∗G)(ξ)
= ∂H(ξ) + f∗(∂G)(ξ)
= ∂H(ξ) + ∂G(f∗ξ).

Hence, by the definition of the gradient,

ω(ξ ∧ gradK) = ωX(ξ ∧ gradXH) + ωY (f∗ξ ∧ gradYG).

Let ξ = gradK, ξX = gradXH, and ξY = gradYG. Then

| ξ |2 = ξ ·X ξX + f∗ξ ·Y ξY
= | ξ ·X ξX + f∗ξ ·Y ξY |
� | ξ ·X ξX | + | f∗ξ ·Y ξY |
� | ξ |X | ξX |X + | f∗ξ |Y | ξY |Y .

By (9.4) above, | ξ |X�| ξ | and | f∗ξ |Y �| ξ |. Thus

| ξ |2 �| ξ || ξX |X + | ξ || ξY |Y

so
| ξ |�| ξX |X + | ξY |Y ,

i.e.
| gradK |�| gradXH |X + | gradYG |Y . �
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Proposition 9.10. — Suppose that f : X → Y is a holomorphic map
of complex manifolds and

ωX =
√
−1
2π

∂∂H and ωY =
√
−1
2π

∂∂G

are the Kähler forms of Kähler metrics on X and Y respectively. Let ω be
the Kähler form of a Kähler metric on X determined by

ω = ωX + f∗ωY .

If the generating functions H and G of ωX and ωY satisfy Ohsawa’s condi-
tion, then so does the generating function H + f∗G of ω.

Proof. — Apply Lemma 9.9 with ω =
√
−1
2π ∂∂K, where K = H +

f∗G. �

Let X be a singular subvariety of a compact Kähler manifold M with
singular locus Xsing. Let I be a coherent sheaf of ideals on M such that
blowing up M along I gives embedded desingularization of X. Let p be a
point in Xsing and let U be an open coordinate neighborhood of p with local
holomorphic coordinates (z1, ..., zn) and such that I is generated on U by
holomorphic functions f1, ..., fr. Set

F =
r∑

j=1

| fi |2.

Let ωE be the Kähler (1, 1)-form

ωE =
√
−1
2π

n∑
i=1

dzi ∧ dzi =
√
−1
2π

∂∂

n∑
i=1

| zi |2

of a Euclidean metric on U .

Proposition 9.11. — The Saper-type metric on U − Xsing ∩ U with
Kähler form given by

ωS = ωE −
√
−1
2π

∂∂ log(logF )2,

has a generating function which satisfies Ohsawa’s condition on U−Xsing∩ U ,
for U a small enough neighborhood of p ∈ Xsing.
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Proof. — Let f be the function

f = (f1, ..., fr) : U → C
r.

Let (w1, ..., wr) be holomorphic coordinates on C
r and let V be a small

enough neighborhood of (0, ..., 0) in C
r such that the (1, 1)-form

ωY =
√
−1
2π

(− log(− log
r∑

j=1

| wi |2)2)

determines a Kähler metric on Y = V − (0, ..., 0) satisfying Ohsawa’s condi-
tion (by Lemma 9.4 and Example 9.6). Choose U as above and small enough
that f maps U into V . Let X = U and ωX = ωE . Now apply Proposition
9.10. �

10. Example

The cuspidal cubic (cf. [GM2] and [BM2]). — Let M = P
2 and let X

be the cuspidal cubic given in homogeneous coordinates by ξ0ξ22 − ξ31 = 0.
In local coordinates x, y in a neighborhood U ∼= C

2 of the singular point, X
is given by

y2 − x3 = 0.

We may obtain embedded resolution of X by three blow-ups of points. We
will show that these three blow-ups are equivalent to a single blow-up along
the ideal sheaf given locally by

I = (x, y)(x2, y)(x3, x2y, y2).

First blow-up π1. — The center C1 for the first blow-up is the point
x = y = 0 and its ideal is IC1 = (x, y). The blow-up U1 = π−1

1 (U) may be
covered by two coordinate charts, which we will call the x- and y-coordinate
charts, according to whether the chart is a complement in U1 of the strict
transform of x = 0 or y = 0. (The exceptional divisor is given by the
vanishing of the x-coordinate in the x-chart and the y-coordinate in the y
chart.) On the x-coordinate chart, π1 is given by

π1(x1, y1) = (x1, x1y1) = (x, y)

and the exceptional divisor E1 is given by x1 = 0. The inverse image π−1
1 (X)

is given by x2
1y

2
1−x3

1 = 0. The strict transform X1 of X is obtained from the
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inverse image by removing all copies of E1, i.e. by dividing by the highest
possible power of x1, which gives

y21 − x1 = 0.

Although X1 is smooth, it does not have normal crossings with the divisor
E1 at the point x1 = y1 = 0, so we must blow up again at this point. Before
doing so, we note that in the y-coordinate chart, the strict transform X1 is
smooth and has normal crossings with E1, so there is no need to blow up
further at any points in that chart.

Second blow-up π2. — The center C2 for the second blow-up is the
point x1 = y1 = 0 in the x-coordinate chart of U1, and its ideal is IC2 =
(x1, y1). In the x-coordinate chart of π2 we have normal crossings, so there is
no need to blow up further at any points in that chart. In local coordinates
(x2, y2) for the y-coordinate chart of π2, we have

π2(x2, y2) = (x2y2, y2) = (x1, y1)

and IE2 = (y2). The strict transform X2 of X1 is given by

y2 − x2 = 0

and the strict transform Ẽ1 of E1 by x2 = 0. The total exceptional divisor
of the first two blow-ups, which is the union of E2 and Ẽ1, does not have
normal crossings with X2 so we blow up again.

Third blow-up π3. — The center C3 for the third blow-up is the point
x2 = y2 = 0 with ideal IC2 = (x2, y2). After this third blow-up, the strict
transform of X and all three components of the total exceptional divisor
have normal crossings.

Construction of I. — We will construct I as a product I = I1I2I3

of ideals corresponding to the centers of the blow-ups. We begin by choosing
I1 = IC1 = (x, y).

To obtain I2, we start with IC2 and multiply by a high enough power
of IE1 such that taking the direct image under π1 and then the inverse
image does not change the ideal. We define I2 to be the direct image of the
resulting product under the map π1.

Locally, in the x-coordinate chart of π1, IC2 is given by (x1, y1) and IE1

by (x1), where x1 = x and y1 = y
x . Thus IC2 is not the inverse image of an

ideal sheaf, but IC2IE1 is, since

π−1
1 (x2, y) = IC2IE1 .
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The direct image π1∗(IC2IE1) is the largest ideal sheaf whose inverse image
is contained in IC2IE1 , so π1∗(IC2IE1) contains (x2, y). It is easily checked
that x2 and y generate π1∗(IC2IE1), since they are the only monomials
whose pullbacks are sections of IC2IE1 . Thus

I2 = π1∗(IC2IE1) = (x2, y).

Similarly, to obtain I3 we start with IC3 , given locally by (x2, y2), and
recall that x2 = x1

y1
and y2 = y1. Hence IC3IE2 is the inverse image of an

ideal sheaf J given locally on U1 by (x1, y
2
1), and J I2

E1
is the inverse image

of the ideal sheaf (x3, y2). Since π−1
2 (IE1) = IẼ1

IE2 , it follows that

π−1
2 π−1

1 (x3, y2) = IC3I2
Ẽ1

I3
E2
.

In local coordinates, π−1
2 π−1

1 (x3, y2) = (x2, y2)(x2
2)(y

3
2). We define I3 to

be the direct image π1∗π2∗(IC3I2
Ẽ1

I3
E2

), and note that I3 contains (x3, y2),
since I3 is the largest ideal sheaf whose inverse image is contained in
IC3I2

Ẽ1
I3
E2

. To find any remaining generators of I3, we test monomials not
generated by x3 or y2 to see which pull back to sections of IC3I2

Ẽ1
I3
E2

. It
is easily checked that x, y, x2, and xy are not in I3, but x2y is in I3 since
x2y = x3

1y1 = x3
2y

4
2 . Thus

I3 = π1∗π2∗(IC3I2
Ẽ1

I3
E2

) = (x3, x2y, y2).

We define the ideal I to be the product of I1, I2, and I3

I = (x, y)(x2, y)(x3, x2y, y2).

Blowing up along I is equivalent to blowing up sequentially along the centers
C1, C2, and C3.

The method used in this example has been generalized to any locally
toric complex analytic variety (see[GM2] and [BM2]).
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