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The density of rational points on a pfaff curve(∗)

Jonathan Pila (1)

ABSTRACT. — This paper is concerned with the density of rational points
on the graph of a non-algebraic pfaffian function.

RÉSUMÉ. — Cet article est concerné par la densité de points rationnels
sur le graphe d’une fonction pfaffienne non-algébrique.

1. Introduction

In two recent papers [8, 9] I have considered the density of rational
points on a pfaff curve (see definitions 1.1 and 1.2 below). Here I show that
an elaboration of the method of [8] suffices to establish a conjecture stated
(and proved under additional assumptions) in [9].

1.1. Definition

Let H : Q → R be the usual height function, H(a/b) = max(|a|, b) for
a, b ∈ Z with b > 0 and (a, b) = 1. Define H : Q

n → R by H(α1, α2, . . . , αn)
= max1�j�n(H(αj)). For a set X ⊂ R

n define X(Q) = X ∩ Q
n and, for

H � 1, put
X(Q, H) = {P ∈ X(Q) : H(P ) � H}.

The density function of X is the function

N(X,H) = #X(Q, H).

This is not the usual projective height, although this makes no differ-
ence to the results here. The class of pfaffian functions was introduced by
Khovanskii [5]. The following definition is from [3].
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1.2. Definition ([3, 2.1])

Let U ⊂ R
n be an open domain. A pfaffian chain of order r � 0 and

degree α � 1 in U is a sequence of real analytic functions f1, . . . , fr in U
satisfying differential equations

dfj =
n∑

i=1

gij(x, f1(x), f2(x), . . . , fj(x))dxi

for j = 1, . . . , r, where x = (x1, . . . , xn) and gij ∈ R[x1, . . . , xn, y1, . . . , yr]
of degree � α. A function f on U is called a pfaffian function of order r and
degree (α, β) if f(x) = P (x, f1(x), . . . , fr(x)), where P is a polynomial of
degree at most β � 1. In this paper mainly n = 1, so x = x.

A pfaff curve X is the graph of a pfaffian function f on some connected
subset of its domain. The order and degree of X will be taken to be the
order and degree of f .

The usual elementary functions ex, log x (but not sinx on all R), alge-
braic functions, and sums, products and compositions of these are pfaffian
functions, such as e.g. e−1/x, eex

, etc: see [5, 3]. Note that, for non-algebraic
X, X(Q) can be infinite (e.g. 2x), or of unknown size (e.g. eex

).

Suppose X is a pfaff curve that is not semialgebraic. Since the structure
generated by pfaffian functions is o-minimal (see [2, 13]), an estimate of the
form

N(X,H) � c(X, ε)Hε

for all positive ε (and, with suitable hypotheses, in all dimensions) follows
from [10].

I showed in [8] that there is an explicit function c(r, α, β) with the fol-
lowing property. Suppose X is a nonalgebraic pfaff curve of order r and
degree (α, β). Let H � c(r, α, β). Then

N(X,H) � exp
(
5
√

log H
)
.

As noted in [6, 7.5], no such quantification of the c(X, ε)Hε bound can hold
for bounded subanalytic sets, and so the estimate cannot be improved for a
general o-minimal structure. But much better bounds could be anticipated
for sets defined by pfaffian functions, as conjectured in [10].
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1.3. Theorem

Let X ⊂ R
2 be a pfaff curve, and suppose that X is not semialgebraic.

There are constants c(r, α, β), γ(r) > 0 such that (for H � e)

N(X,H) � c(log H)γ .

Indeed, if X is the graph of a pfaffian function f of order r and degree (α, β)
on an interval I ⊂ R then the above holds with γ = 5(r + 2) and suitable
c(r, α, β).

In fact the result may be strengthened (with suitable γ) to apply to
a plane pfaffian curve X ⊂ R

2 defined as the set of zeros of a pfaffian
function F (x, y), where F is defined e.g. on U = I × J where I, J ⊂ R

are open intervals. Such X may contain semialgebraic subsets of positive
dimension, which must be excluded: see 1.4 and 1.5 below. This extension
is sketched after the proof of 1.3 in §4. I thank the referee for suggesting
that such an extension be considered.

Theorem 1.3 affirms a conjecture made in [9, 1.3]. That conjecture was
an extrapolation of part of the one-dimensional case of a conjecture in [10,
1.5]. It is natural to frame the following generalization.

1.4. Definition ([10, §1; 7, §1])

Let X ⊂ R
n. The algebraic part of X, denoted Xalg, is the union of all

connected semialgebraic subsets of X of positive dimension. The transcen-
dental part of X is the complement X − Xalg.

1.5. Conjecture

Let RPfaff be the structure generated by pfaffian sets ([13, §0]). Let X
be definable in RPfaff . Then there exist constants c(X), γ(X) such that (for
H � e)

N(X − Xalg, H) � c(log H)γ .

In [9] I obtained the conclusion of Theorem 1.3 under an additional hy-
pothesis on the curve X and further conjectured that in fact this additional
hypothesis always holds: This conjecture remains of interest as it might
yield a better dependence of γ on r, and may moreover be more susceptible
of extension to higher dimensions.

– 637 –



J. Pila

2. Preliminaries

2.1. Definition

Let I be an interval (which may be closed, open or half-open; bounded
or unbounded), k ∈ N = {0, 1, 2, . . .}, L > 0 and f : I → R a function with
k continuous derivatives on I. Set TL,0(f) = 1 and, for positive k,

TL,k(f) = max
1�i�k

(
1, sup

x∈I

(
|f (i)(x)|Li−1

i!

)1/i)
.

(so possibly TL,k(f) = ∞ if a derivative of order i, 1 � i � k, is unbounded,
and then the conclusion of the following proposition is empty.) Set further

τL,k =
( k−1∏

i=0

TL,i(f)i

)2/(k(k−1))

.

2.2. Proposition

Let d � 1, D = (d+1)(d+2)/2, H � 1, L � 1/H3. Let I be an interval of
length #(I) � L. Let f be a function possessing D−1 continuous derivatives
on I, with |f ′| � 1 and with graph X. Then X(Q, H) is contained in the
union of at most

6TL,D−1(f)L8/(3(d+3))H8/(d+3)

real algebraic curves of degree � d.

Proof. — This is [7, Corollary 2.5]. �

It is shown in [9] that the conclusion holds with τL,D in place of TL,D−1.
This is an improvement if the derivatives of f grow super-geometrically, but
is not required here.

3. Non-oscillating functions

The following elementary lemma is a trivial variant of [1, Lemma 7].
For related, sharper formulations and relations to theory of analytic func-
tions see Pólya [11], the references therein and commentary (in the collected
papers).
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3.1. Proposition

Let k ∈ N, L > 0, T � 1 and let I be an interval with #(I) � L. Sup-
pose g : I → R has k continuous derivatives on I. Suppose that |g′| � 1
throughout I and that

(a) |g(i)(x)| � i!T iL1−i, all 1 � i � k − 1, t ∈ I, and

(b) |g(k)(x)| � k!T kL1−k all t ∈ I.

Then #(I) � 2L/T .

Proof. — Let a, b ∈ I. By Taylor’s formula, for a suitable intermediate point
ξ,

g(b) − g(a) =
k−1∑
i=1

g(i)(a)
i!

(b − a)i +
g(k)(ξ)

k!
(b − a)k.

Therefore

L

(
(b − a)T

L

)k

�(b−a)kT kL1−k �
k−1∑
i=1

(b−a)iT iL1−i+L� L

k−1∑
i=0

(
(b − a)T

L

)i

.

Thus, if q = (b − a)T/L, then qk �
∑k−1

i=0 qi, whence q � 2, completing the
proof. �

The following proposition contains the new feature of this paper. It is a
more careful version of the recursion argument [8, 2.1].

3.2. Proposition

Let d � 1, D = (d + 1)(d + 2)/2, H � e, L > 1/H2 and I an interval of
length #(I) � L. Let f : I → R have D continuous derivatives, with |f ′| � 1
and f (j) either non-vanishing in the interior of I or identically zero for
j = 1, 2, . . . , D. Let X be the graph of f . Then X(Q, H) is contained in at
most

66D log(eLH2)
(
LH3

)8/(3(d+3))

real algebraic curves of degree � d.

Proof. — Under the hypotheses I is a finite interval. Let a, b, with
a < b be its boundary points, which may or may not belong to I. If J
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is a subinterval of I, and X|J is the graph of the restriction of f to J , write
G(f, J) for the minimal number of algebraic curves of degree � d required
to contain X|J(Q, H).

Let T � 2D.

By the hypotheses, any equation of the from |f (κ)(x)| = K, where
0 � κ � D − 1 and K ∈ R has at most one solution x ∈ I, unless it is
satisfied indentically. Thus the equation |f (2)(x)| = 2TL−1 has at most one
solution unless it is satisfied identically. In the case that there is a unique
solution x = c, it follows from the monotonicity of |f (2)| that |f (2)| � 2TL−1

on either (a, c) or (c, b) and by 3.1, this interval has length at most 2L/T . On
the remaining interval (c, b) or (a, c), the inequality |f (2)| � 2TL−1 holds.

Continue to split I at those points (if they exist) where |f (κ)(x)| =
κ!TκL1−κ, for κ = 3, . . . , D − 1. This yields an interval I0 = (s, t), possibly
empty, in which |f (κ)(x)| � κ!TκL1−κ for all κ = 1, 2, . . . D − 1, while the
remaining intervals JL

1 = (a, s) and JR
1 = (t, b) (which may also be empty)

comprise at most D subintervals each of length � 2L/T , and hence have
length � 2DL/T .

The bounds for f and its derivatives on I0 imply that

TL,D−1(f) � T

on I0 and hence, by 2.2,

G(f, I0) � 6TL8/(3(d+3))H8/(d+3).

Put λ = 2D/T , so that λ � 1 by the hypotheses. Then

G(f, I) � 6TL8/(3(d+3))H8/(d+3) + G(f, JL
1 ) + G(f, JR

1 )

where #(JL
1 ), #(JL

2 ) � λL.

Now repeat the subdivision process for each of JL
1 , JR

1 with λL in place
of L and the same T . Since λ � 1, the new subdivision values κ!Tκ(λL)1−κ

exceed the previous ones for each κ; the subinterval on which |f (κ)(x)| �
κ!Tκ(λL)1−κ, if non-empty, must have the form (a, u) for JL

1 , or (v, b)
for JR

1 . This process yields two subintervals IL
1 , IR

1 on which |f (κ)(x)| �
κ!Tκ(λL)1−κ for all κ, and two subintervals JL

2 = (a, u), JR
2 = (v, b) of

length at most λ2L so that now (provided λL � 1/H3)

G(f, I) � 6TL8/(3(d+3))H8/(d+3) + 2.6T (λL)8/(3(d+3))H8/(d+3)

+G(f, JL
2 ) + G(f, JR

2 ).

– 640 –



The density of rational points on a pfaff curve

Continuing in this way yields, after n iterations, provided λn−1L �
1/H3, and putting σ = 8/(3(d + 3)),

G(f, I) � 6TLσH8/(d+3)

(
1 + 2λσ + . . . + 2λ(n−1)σ

)
+ G(f, JL

n ) + G(f, JR
n )

where #(JL
n ), #(JR

n ) � λnL. Since λ � 1, 1 + 2λσ + . . . + 2λ(n−1)σ � 2n − 1
so that, provided λnLH3 � 1,

G(f, I) � 6 (2n − 1)TLσH8/(d+3) + G(f, JL
n ) + G(f, JR

n ).

Take n so that
λ

LH2
� λn <

1
LH2

.

Then JL
n , JR

n , having length < 1/H2, contain at most one rational point of
height � H, so that G(f, JL

n ) + G(f, JR
n ) � 2, while

n � log(LH2/λ)/ log(1/λ).

Thus taking λ = 1/e, i.e. T = 2eD,

G(f, I) � 12eD
(
2 log(eLH2) − 1

)
LσH8/(d+3) + 2

� 66D log(eLH2)
(
LH3

)8/(3(d+3))

as required. �

3.3. Corollary

Under the conditions of 3.2, if also L � 2H and H � e then X(Q, H)
is contained in at most

660D H32/(3(d+3)) log H

algebraic curves of degree � d. �

Proof. — Observe that log(eLH2) � log(2e) + 3 log H � 5 log H, and
(LH3)8/(3(d+3)) � 2H32/(3(d+3)). �

4. Proof of theorem 1.3

If f is a pfaffian function, then its derivatives are also pfaffian, and
the number of zeros of a derivative (if it is not identically zero) may be
bounded uniformly in the order and degree of f , and the order of derivative.
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The intersection multiplicity of the graph X of a pfaffian function and an
algebraic curve is (if non-degenerate) also explicitly bounded.

The following explicit bounds are drawn from [3]. With these bounds
and Corollary 3.3, the proof of 1.3 is easily concluded.

4.1. Proposition

Let f1, . . . , fr be a pfaffian chain of order r � 1 and degree α on an open
interval I ⊂ R, and f a pfaffian function on I having this chain and degree
(α, β).

(a) Let k ∈ N. Then f (k) is a pfaffian function with the same chain as
f (so of order r) and degree

(
α, β + k(α − 1)

)
.

(b) If f is not identically zero, it has at most 2r(r−1)/2+1β(α+β)r zeros.

Suppose further that f is non-algebraic.

(c) Let P (x, y) be a polynomial of degree d. Then the number of zeros of
P (x, f(x)) = 0 in I is at most

2r(r−1)/2+1 dβ
(
α + dβ

)r
.

(d) Let J ⊂ I be an open interval on which f ′ �= 0 and k � 1. Then on
f(J) there is an inverse function g of f . Then g is not algebraic and the
number of zeros of g(k) on f(J) is at most

2r(r−1)/2+1 (k − 1)(β + k(α − 1))
(
α + (k − 1)(β + k(α − 1))

)r

.

Proof. — Part (a) is by [3, 2.5].

Part (b) follows from [3, 3.3], which states in particular that the set of
zeros of a pfaffian function f of order r and degree (α, β) on an interval I
has at most 2r(r−1)/2+1β(α + β)r connected components.

Part (c). Since P (x, f(x)) is a pfaffian function of order r � 1 and degree
(α, dβ), the conclusion follows from (b).

Part (d). By differentiating the relation g(f(x)) = x and simple induc-
tion, for k � 1,

g(k)(y) =
Qk(f (1), f (2), . . . , f (k))

(f ′(x))2k−1
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where Qk(z1, z2, . . . , zk) is a polynomial of degree γk = k− 1. Since f (j) are
pfaffian functions with the same chain, the function Qk(f (1), f (2), . . . , f (k))
is a pfaffian function of order r and degree (α, γk(β + k(α− 1))). The state-
ment now follows from (b). �

4.2. Proof of 1.3

Suppose f is defined on an interval I. Divide I into at most

2 · 2r(r−1)/2+1(β + α − 1)(α + β + α − 1)r + 1 � 22+r(r−1)/2
(
2α + β

)r+1

subintervals on which f ′ � −1, −1 � f ′ � 1 or f ′ � 1, and then di-
vide further into subintervals on which the inverse g of f has nonvanishing
derivatives up to order D in the first and third case, or f has nonvanishing
derivatives up to order D in the second case. For k � D, the number of zeros
of f (k) or g(k) on an interval is, by 4.1 (b) or (c), at most c0(r, α, β)D2r+2 for
some explicit function c0(r, α, β). The total number of intervals is therefore
at most

c1(r, α, β)D2r+3

for some explicit function c1(r, α, β).

Intersecting with the interval [−H,H] of the appropriate axis (which
contains all points of height � H), the relevant intervals are of length � 2H.
By 3.3, in each such interval the points of X(Q, H) lie on at most

660D H32/(3(d+3)) log H

real algebraic curves of degree � d. The number of points in the intersection
of X with a curve of degree d is at most

2r(r−1)/2+1 dβ (α + dβ)r = c2(r, α, β)dr+1.

Combining these estimates yields

N(X,H) � c3(r, α, β) d5r+9 H32/(3(d+3)) log H.

Taking d = [log H], where [.] is the integer part, completes the proof. �

Suppose that F (x, y) is a pfaffian function of order r and degree (α, β)
defined on U = I × J where I, J ⊂ R are open intervals. I sketch how to
extend the conclusion of Theorem 1.3 to the (transcendental part of the)
zero set X ⊂ U of F .
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The set X consists of at most c4(r, α, β) isolated points and at most
c5(r, α, β) graphs y = f(x) or x = g(y) of real analytic functions f, g de-
fined on open intervals and satisfying F (x, f(x)) = 0, F (g(y), y) = 0, with
Fy(x, f(x)), Fx(g(y), y) �= 0 (respectively), and with further derivatives f ′, g′

bounded in absolute value by 1. It thus suffices to consider X to be such a
graph, which may be assumed to be non-algebraic.

To proceed with the proof following the proof of 1.3, we need only show
that the number of zeros of f (k) is suitably bounded (i.e. by a polynomial
function of k), and that the number of zeros of an equation P (x, f(x)) = 0
is suitably bounded (i.e. polynomially in the degree of P ). The zeros of
P (x, f(x)) are isolated and contained in the common zeros of F (x, y) =
0, P (x, y) = 0. The number of connected components of this set is at most
c6(r, α, β)d2r+2 by [3, 3.3].

By differentiating the relation F (x, f(x)) = 0 we may write

f (k) =
Hk

Fy(x, f(x))ak

where Hk is a polynomial in partial derivatives of F . If Hk consists of terms
of the form φ1φ2 . . . φm, where φi is a partial derivative of F of order δi, we
will say that the weight of this term is

∑
δi, and the weight hk of Hk is the

maximum weight of its terms. A straightforward induction (very similar to
the one in [1, Lemma 5]) shows that ak = 2k − 1, hk = 3k − 2. The zeros of
f (k) are isolated, since f is non-algebraic. They are contained in the common
zero set of F = 0, Hk = 0. The number of connected components of this set
is at most c7(r, α, β)k2r+2, again by [3, 3.3].

4.3. Final remarks

1. I know of no example in which N(X,H) grows faster than log H; For
X : y = 2x, clearly N(X,H) >> log H.

2. The curves y = xµ, µ ∈ R, x > 0 are pfaffian (with r = 2) and non-
algebraic provided µ /∈ Q. Thus theorem 1.3 directly implies a very weak
form of the “six exponentials” theorem ([12]).

3. Theoerem 1.3 holds for curves X : y = f(x) for which f admits
appropriate control over the zeros of derivatives (i.e. the number of zeros
of f (k) grows polynomially with k) and over the number of solutions of
P (x, f(x)) = 0 (i.e. a bound that depends only on the degree of P and is
polynomial d). For examples that do not lie in any o-minimal structure see
[4].
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