Mathématiques

Jonathan Pila
The density of rational points on a pfaff curve
Tome XVI, n ${ }^{\circ} 3$ (2007), p. 635-645.
http://afst.cedram.org/item?id=AFST_2007_6_16_3_635_0
© Université Paul Sabatier, Toulouse, 2007, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

The density of rational points on a pfaff curve ${ }^{(*)}$

Jonathan Pila ${ }^{(1)}$

Abstract

This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.

Résumé. - Cet article est concerné par la densité de points rationnels sur le graphe d'une fonction pfaffienne non-algébrique.

1. Introduction

In two recent papers [8, 9] I have considered the density of rational points on a pfaff curve (see definitions 1.1 and 1.2 below). Here I show that an elaboration of the method of [8] suffices to establish a conjecture stated (and proved under additional assumptions) in [9].

1.1. Definition

Let $H: \mathbb{Q} \rightarrow \mathbb{R}$ be the usual height function, $H(a / b)=\max (|a|, b)$ for $a, b \in \mathbb{Z}$ with $b>0$ and $(a, b)=1$. Define $H: \mathbb{Q}^{n} \rightarrow \mathbb{R}$ by $H\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ $=\max _{1 \leqslant j \leqslant n}\left(H\left(\alpha_{j}\right)\right)$. For a set $X \subset \mathbb{R}^{n}$ define $X(\mathbb{Q})=X \cap \mathbb{Q}^{n}$ and, for $H \geqslant 1$, put

$$
X(\mathbb{Q}, H)=\{P \in X(\mathbb{Q}): H(P) \leqslant H\} .
$$

The density function of X is the function

$$
N(X, H)=\# X(\mathbb{Q}, H)
$$

This is not the usual projective height, although this makes no difference to the results here. The class of pfaffian functions was introduced by Khovanskii [5]. The following definition is from [3].

[^0]
1.2. Definition ([3, 2.1])

Let $U \subset \mathbb{R}^{n}$ be an open domain. A pfaffian chain of order $r \geqslant 0$ and degree $\alpha \geqslant 1$ in U is a sequence of real analytic functions f_{1}, \ldots, f_{r} in U satisfying differential equations

$$
d f_{j}=\sum_{i=1}^{n} g_{i j}\left(\mathbf{x}, f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{j}(\mathbf{x})\right) d x_{i}
$$

for $j=1, \ldots, r$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $g_{i j} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right]$ of degree $\leqslant \alpha$. A function f on U is called a pfaffian function of order r and degree (α, β) if $f(\mathbf{x})=P\left(\mathbf{x}, f_{1}(\mathbf{x}), \ldots, f_{r}(\mathbf{x})\right)$, where P is a polynomial of degree at most $\beta \geqslant 1$. In this paper mainly $n=1$, so $\mathbf{x}=x$.

A pfaff curve X is the graph of a pfaffian function f on some connected subset of its domain. The order and degree of X will be taken to be the order and degree of f.

The usual elementary functions $e^{x}, \log x$ (but not $\sin x$ on all \mathbb{R}), algebraic functions, and sums, products and compositions of these are pfaffian functions, such as e.g. $e^{-1 / x}, e^{e^{x}}$, etc: see [5, 3]. Note that, for non-algebraic $X, X(\mathbb{Q})$ can be infinite (e.g. 2^{x}), or of unknown size (e.g. $e^{e^{x}}$).

Suppose X is a pfaff curve that is not semialgebraic. Since the structure generated by pfaffian functions is o-minimal (see $[2,13]$), an estimate of the form

$$
N(X, H) \leqslant c(X, \epsilon) H^{\epsilon}
$$

for all positive ϵ (and, with suitable hypotheses, in all dimensions) follows from [10].

I showed in [8] that there is an explicit function $c(r, \alpha, \beta)$ with the following property. Suppose X is a nonalgebraic pfaff curve of order r and degree (α, β). Let $H \geqslant c(r, \alpha, \beta)$. Then

$$
N(X, H) \leqslant \exp (5 \sqrt{\log H})
$$

As noted in [6, 7.5], no such quantification of the $c(X, \epsilon) H^{\epsilon}$ bound can hold for bounded subanalytic sets, and so the estimate cannot be improved for a general o-minimal structure. But much better bounds could be anticipated for sets defined by pfaffian functions, as conjectured in [10].

1.3. Theorem

Let $X \subset \mathbb{R}^{2}$ be a pfaff curve, and suppose that X is not semialgebraic. There are constants $c(r, \alpha, \beta), \gamma(r)>0$ such that (for $H \geqslant e$)

$$
N(X, H) \leqslant c(\log H)^{\gamma} .
$$

Indeed, if X is the graph of a pfaffian function f of order r and degree (α, β) on an interval $I \subset \mathbb{R}$ then the above holds with $\gamma=5(r+2)$ and suitable $c(r, \alpha, \beta)$.

In fact the result may be strengthened (with suitable γ) to apply to a plane pfaffian curve $X \subset \mathbb{R}^{2}$ defined as the set of zeros of a pfaffian function $F(x, y)$, where F is defined e.g. on $U=I \times J$ where $I, J \subset \mathbb{R}$ are open intervals. Such X may contain semialgebraic subsets of positive dimension, which must be excluded: see 1.4 and 1.5 below. This extension is sketched after the proof of 1.3 in $\S 4$. I thank the referee for suggesting that such an extension be considered.

Theorem 1.3 affirms a conjecture made in [9, 1.3]. That conjecture was an extrapolation of part of the one-dimensional case of a conjecture in [10, 1.5]. It is natural to frame the following generalization.

1.4. Definition ([10, §1; 7, §1])

Let $X \subset \mathbb{R}^{n}$. The algebraic part of X, denoted $X^{\text {alg }}$, is the union of all connected semialgebraic subsets of X of positive dimension. The transcendental part of X is the complement $X-X^{\text {alg }}$.

1.5. Conjecture

Let $\mathbb{R}_{\text {Pfaff }}$ be the structure generated by pfaffian sets $([13, \S 0])$. Let X be definable in $\mathbb{R}_{\text {Pfaff }}$. Then there exist constants $c(X), \gamma(X)$ such that (for $H \geqslant e$)

$$
N\left(X-X^{\mathrm{alg}}, H\right) \leqslant c(\log H)^{\gamma} .
$$

In [9] I obtained the conclusion of Theorem 1.3 under an additional hypothesis on the curve X and further conjectured that in fact this additional hypothesis always holds: This conjecture remains of interest as it might yield a better dependence of γ on r, and may moreover be more susceptible of extension to higher dimensions.

2. Preliminaries

2.1. Definition

Let I be an interval (which may be closed, open or half-open; bounded or unbounded), $k \in \mathbb{N}=\{0,1,2, \ldots\}, L>0$ and $f: I \rightarrow \mathbb{R}$ a function with k continuous derivatives on I. Set $T_{L, 0}(f)=1$ and, for positive k,

$$
T_{L, k}(f)=\max _{1 \leqslant i \leqslant k}\left(1, \sup _{x \in I}\left(\frac{\left|f^{(i)}(x)\right| L^{i-1}}{i!}\right)^{1 / i}\right)
$$

(so possibly $T_{L, k}(f)=\infty$ if a derivative of order $i, 1 \leqslant i \leqslant k$, is unbounded, and then the conclusion of the following proposition is empty.) Set further

$$
\tau_{L, k}=\left(\prod_{i=0}^{k-1} T_{L, i}(f)^{i}\right)^{2 /(k(k-1))}
$$

2.2. Proposition

Let $d \geqslant 1, D=(d+1)(d+2) / 2, H \geqslant 1, L \geqslant 1 / H^{3}$. Let I be an interval of length $\ell(I) \leqslant L$. Let f be a function possessing $D-1$ continuous derivatives on I, with $\left|f^{\prime}\right| \leqslant 1$ and with graph X. Then $X(\mathbb{Q}, H)$ is contained in the union of at most

$$
6 T_{L, D-1}(f) L^{8 /(3(d+3))} H^{8 /(d+3)}
$$

real algebraic curves of degree $\leqslant d$.
Proof. - This is [7, Corollary 2.5].

It is shown in [9] that the conclusion holds with $\tau_{L, D}$ in place of $T_{L, D-1}$. This is an improvement if the derivatives of f grow super-geometrically, but is not required here.

3. Non-oscillating functions

The following elementary lemma is a trivial variant of [1, Lemma 7]. For related, sharper formulations and relations to theory of analytic functions see Pólya [11], the references therein and commentary (in the collected papers).

> The density of rational points on a pfaff curve

3.1. Proposition

Let $k \in \mathbb{N}, L>0, T \geqslant 1$ and let I be an interval with $\ell(I) \leqslant L$. Suppose $g: I \rightarrow \mathbb{R}$ has k continuous derivatives on I. Suppose that $\left|g^{\prime}\right| \leqslant 1$ throughout I and that
(a) $\left|g^{(i)}(x)\right| \leqslant i!T^{i} L^{1-i}$, all $1 \leqslant i \leqslant k-1, t \in I$, and
(b) $\left|g^{(k)}(x)\right| \geqslant k!T^{k} L^{1-k}$ all $t \in I$.

Then $\ell(I) \leqslant 2 L / T$.

Proof. - Let $a, b \in I$. By Taylor's formula, for a suitable intermediate point ξ,

$$
g(b)-g(a)=\sum_{i=1}^{k-1} \frac{g^{(i)}(a)}{i!}(b-a)^{i}+\frac{g^{(k)}(\xi)}{k!}(b-a)^{k} .
$$

Therefore
$L\left(\frac{(b-a) T}{L}\right)^{k} \leqslant(b-a)^{k} T^{k} L^{1-k} \leqslant \sum_{i=1}^{k-1}(b-a)^{i} T^{i} L^{1-i}+L \leqslant L \sum_{i=0}^{k-1}\left(\frac{(b-a) T}{L}\right)^{i}$.
Thus, if $q=(b-a) T / L$, then $q^{k} \leqslant \sum_{i=0}^{k-1} q^{i}$, whence $q \leqslant 2$, completing the proof.

The following proposition contains the new feature of this paper. It is a more careful version of the recursion argument $[8,2.1]$.

3.2. Proposition

Let $d \geqslant 1, D=(d+1)(d+2) / 2, H \geqslant e, L>1 / H^{2}$ and I an interval of length $\ell(I) \leqslant L$. Let $f: I \rightarrow \mathbb{R}$ have D continuous derivatives, with $\left|f^{\prime}\right| \leqslant 1$ and $f^{(j)}$ either non-vanishing in the interior of I or identically zero for $j=1,2, \ldots, D$. Let X be the graph of f. Then $X(\mathbb{Q}, H)$ is contained in at most

$$
66 D \log \left(e L H^{2}\right)\left(L H^{3}\right)^{8 /(3(d+3))}
$$

real algebraic curves of degree $\leqslant d$.
Proof.- Under the hypotheses I is a finite interval. Let a, b, with $a<b$ be its boundary points, which may or may not belong to I. If J
is a subinterval of I, and $\left.X\right|_{J}$ is the graph of the restriction of f to J, write $G(f, J)$ for the minimal number of algebraic curves of degree $\leqslant d$ required to contain $\left.X\right|_{J}(\mathbb{Q}, H)$.

Let $T \geqslant 2 D$.
By the hypotheses, any equation of the from $\left|f^{(\kappa)}(x)\right|=K$, where $0 \leqslant \kappa \leqslant D-1$ and $K \in \mathbb{R}$ has at most one solution $x \in I$, unless it is satisfied indentically. Thus the equation $\left|f^{(2)}(x)\right|=2 T L^{-1}$ has at most one solution unless it is satisfied identically. In the case that there is a unique solution $x=c$, it follows from the monotonicity of $\left|f^{(2)}\right|$ that $\left|f^{(2)}\right| \geqslant 2 T L^{-1}$ on either (a, c) or (c, b) and by 3.1, this interval has length at most $2 L / T$. On the remaining interval (c, b) or (a, c), the inequality $\left|f^{(2)}\right| \leqslant 2 T L^{-1}$ holds.

Continue to split I at those points (if they exist) where $\left|f^{(\kappa)}(x)\right|=$ $\kappa!T^{\kappa} L^{1-\kappa}$, for $\kappa=3, \ldots, D-1$. This yields an interval $I_{0}=(s, t)$, possibly empty, in which $\left|f^{(\kappa)}(x)\right| \leqslant \kappa!T^{\kappa} L^{1-\kappa}$ for all $\kappa=1,2, \ldots D-1$, while the remaining intervals $J_{1}^{L}=(a, s)$ and $J_{1}^{R}=(t, b)$ (which may also be empty) comprise at most D subintervals each of length $\leqslant 2 L / T$, and hence have length $\leqslant 2 D L / T$.

The bounds for f and its derivatives on I_{0} imply that

$$
T_{L, D-1}(f) \leqslant T
$$

on I_{0} and hence, by 2.2 ,

$$
G\left(f, I_{0}\right) \leqslant 6 T L^{8 /(3(d+3))} H^{8 /(d+3)}
$$

Put $\lambda=2 D / T$, so that $\lambda \leqslant 1$ by the hypotheses. Then

$$
G(f, I) \leqslant 6 T L^{8 /(3(d+3))} H^{8 /(d+3)}+G\left(f, J_{1}^{L}\right)+G\left(f, J_{1}^{R}\right)
$$

where $\ell\left(J_{1}^{L}\right), \ell\left(J_{2}^{L}\right) \leqslant \lambda L$.
Now repeat the subdivision process for each of J_{1}^{L}, J_{1}^{R} with λL in place of L and the same T. Since $\lambda \leqslant 1$, the new subdivision values $\kappa!T^{\kappa}(\lambda L)^{1-\kappa}$ exceed the previous ones for each κ; the subinterval on which $\left|f^{(\kappa)}(x)\right| \geqslant$ $\kappa!T^{\kappa}(\lambda L)^{1-\kappa}$, if non-empty, must have the form (a, u) for J_{1}^{L}, or (v, b) for J_{1}^{R}. This process yields two subintervals I_{1}^{L}, I_{1}^{R} on which $\left|f^{(\kappa)}(x)\right| \leqslant$ $\kappa!T^{\kappa}(\lambda L)^{1-\kappa}$ for all κ, and two subintervals $J_{2}^{L}=(a, u), J_{2}^{R}=(v, b)$ of length at most $\lambda^{2} L$ so that now (provided $\lambda L \geqslant 1 / H^{3}$)

$$
\begin{gathered}
G(f, I) \leqslant 6 T L^{8 /(3(d+3))} H^{8 /(d+3)}+2.6 T(\lambda L)^{8 /(3(d+3))} H^{8 /(d+3)} \\
+G\left(f, J_{2}^{L}\right)+G\left(f, J_{2}^{R}\right) \\
-640-
\end{gathered}
$$

Continuing in this way yields, after n iterations, provided $\lambda^{n-1} L \geqslant$ $1 / H^{3}$, and putting $\sigma=8 /(3(d+3))$,
$G(f, I) \leqslant 6 T L^{\sigma} H^{8 /(d+3)}\left(1+2 \lambda^{\sigma}+\ldots+2 \lambda^{(n-1) \sigma}\right)+G\left(f, J_{n}^{L}\right)+G\left(f, J_{n}^{R}\right)$
where $\ell\left(J_{n}^{L}\right), \ell\left(J_{n}^{R}\right) \leqslant \lambda^{n} L$. Since $\lambda \leqslant 1,1+2 \lambda^{\sigma}+\ldots+2 \lambda^{(n-1) \sigma} \leqslant 2 n-1$ so that, provided $\lambda^{n} L H^{3} \geqslant 1$,

$$
G(f, I) \leqslant 6(2 n-1) T L^{\sigma} H^{8 /(d+3)}+G\left(f, J_{n}^{L}\right)+G\left(f, J_{n}^{R}\right)
$$

Take n so that

$$
\frac{\lambda}{L H^{2}} \leqslant \lambda^{n}<\frac{1}{L H^{2}} .
$$

Then J_{n}^{L}, J_{n}^{R}, having length $<1 / H^{2}$, contain at most one rational point of height $\leqslant H$, so that $G\left(f, J_{n}^{L}\right)+G\left(f, J_{n}^{R}\right) \leqslant 2$, while

$$
n \leqslant \log \left(L H^{2} / \lambda\right) / \log (1 / \lambda)
$$

Thus taking $\lambda=1 / e$, i.e. $T=2 e D$,

$$
\begin{aligned}
G(f, I) & \leqslant 12 e D\left(2 \log \left(e L H^{2}\right)-1\right) L^{\sigma} H^{8 /(d+3)}+2 \\
& \leqslant 66 D \log \left(e L H^{2}\right)\left(L H^{3}\right)^{8 /(3(d+3))}
\end{aligned}
$$

as required.

3.3. Corollary

Under the conditions of 3.2, if also $L \leqslant 2 H$ and $H \geqslant e$ then $X(\mathbb{Q}, H)$ is contained in at most

$$
660 D H^{32 /(3(d+3))} \log H
$$

algebraic curves of degree $\leqslant d$.

> Proof.- Observe that $\log \left(e L H^{2}\right) \leqslant \log (2 e)+3 \log H \leqslant 5 \log H$, and $\left(L H^{3}\right)^{8 /(3(d+3))} \leqslant 2 H^{32 /(3(d+3))} . \quad \square$

4. Proof of theorem 1.3

If f is a pfaffian function, then its derivatives are also pfaffian, and the number of zeros of a derivative (if it is not identically zero) may be bounded uniformly in the order and degree of f, and the order of derivative.

The intersection multiplicity of the graph X of a pfaffian function and an algebraic curve is (if non-degenerate) also explicitly bounded.

The following explicit bounds are drawn from [3]. With these bounds and Corollary 3.3 , the proof of 1.3 is easily concluded.

4.1. Proposition

Let f_{1}, \ldots, f_{r} be a pfaffian chain of order $r \geqslant 1$ and degree α on an open interval $I \subset \mathbb{R}$, and f a pfaffian function on I having this chain and degree (α, β).
(a) Let $k \in \mathbb{N}$. Then $f^{(k)}$ is a pfaffian function with the same chain as f (so of order r) and degree $(\alpha, \beta+k(\alpha-1)$).
(b) If f is not identically zero, it has at most $2^{r(r-1) / 2+1} \beta(\alpha+\beta)^{r}$ zeros. Suppose further that f is non-algebraic.
(c) Let $P(x, y)$ be a polynomial of degree d. Then the number of zeros of $P(x, f(x))=0$ in I is at most

$$
2^{r(r-1) / 2+1} d \beta(\alpha+d \beta)^{r} .
$$

(d) Let $J \subset I$ be an open interval on which $f^{\prime} \neq 0$ and $k \geqslant 1$. Then on $f(J)$ there is an inverse function g of f. Then g is not algebraic and the number of zeros of $g^{(k)}$ on $f(J)$ is at most

$$
2^{r(r-1) / 2+1}(k-1)(\beta+k(\alpha-1))(\alpha+(k-1)(\beta+k(\alpha-1)))^{r}
$$

Proof. - Part (a) is by [3, 2.5].
Part (b) follows from [3, 3.3], which states in particular that the set of zeros of a pfaffian function f of order r and degree (α, β) on an interval I has at most $2^{r(r-1) / 2+1} \beta(\alpha+\beta)^{r}$ connected components.

Part (c). Since $P(x, f(x))$ is a pfaffian function of order $r \geqslant 1$ and degree $(\alpha, d \beta)$, the conclusion follows from (b).

Part (d). By differentiating the relation $g(f(x))=x$ and simple induction, for $k \geqslant 1$,

$$
g^{(k)}(y)=\frac{Q_{k}\left(f^{(1)}, f^{(2)}, \ldots, f^{(k)}\right)}{\left(f^{\prime}(x)\right)^{2 k-1}}
$$

where $Q_{k}\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ is a polynomial of degree $\gamma_{k}=k-1$. Since $f^{(j)}$ are pfaffian functions with the same chain, the function $Q_{k}\left(f^{(1)}, f^{(2)}, \ldots, f^{(k)}\right)$ is a pfaffian function of order r and degree $\left(\alpha, \gamma_{k}(\beta+k(\alpha-1))\right)$. The statement now follows from (b).

4.2. Proof of 1.3

Suppose f is defined on an interval I. Divide I into at most

$$
2 \cdot 2^{r(r-1) / 2+1}(\beta+\alpha-1)(\alpha+\beta+\alpha-1)^{r}+1 \leqslant 2^{2+r(r-1) / 2}(2 \alpha+\beta)^{r+1}
$$

subintervals on which $f^{\prime} \leqslant-1,-1 \leqslant f^{\prime} \leqslant 1$ or $f^{\prime} \geqslant 1$, and then divide further into subintervals on which the inverse g of f has nonvanishing derivatives up to order D in the first and third case, or f has nonvanishing derivatives up to order D in the second case. For $k \leqslant D$, the number of zeros of $f^{(k)}$ or $g^{(k)}$ on an interval is, by $4.1(\mathrm{~b})$ or (c), at most $c_{0}(r, \alpha, \beta) D^{2 r+2}$ for some explicit function $c_{0}(r, \alpha, \beta)$. The total number of intervals is therefore at most

$$
c_{1}(r, \alpha, \beta) D^{2 r+3}
$$

for some explicit function $c_{1}(r, \alpha, \beta)$.
Intersecting with the interval $[-H, H]$ of the appropriate axis (which contains all points of height $\leqslant H$), the relevant intervals are of length $\leqslant 2 H$. By 3.3, in each such interval the points of $X(\mathbb{Q}, H)$ lie on at most

$$
660 D H^{32 /(3(d+3))} \log H
$$

real algebraic curves of degree $\leqslant d$. The number of points in the intersection of X with a curve of degree d is at most

$$
2^{r(r-1) / 2+1} d \beta(\alpha+d \beta)^{r}=c_{2}(r, \alpha, \beta) d^{r+1}
$$

Combining these estimates yields

$$
N(X, H) \leqslant c_{3}(r, \alpha, \beta) d^{5 r+9} H^{32 /(3(d+3))} \log H
$$

Taking $d=[\log H]$, where [.] is the integer part, completes the proof.

Suppose that $F(x, y)$ is a pfaffian function of order r and degree (α, β) defined on $U=I \times J$ where $I, J \subset \mathbb{R}$ are open intervals. I sketch how to extend the conclusion of Theorem 1.3 to the (transcendental part of the) zero set $X \subset U$ of F.

The set X consists of at most $c_{4}(r, \alpha, \beta)$ isolated points and at most $c_{5}(r, \alpha, \beta)$ graphs $y=f(x)$ or $x=g(y)$ of real analytic functions f, g defined on open intervals and satisfying $F(x, f(x))=0, F(g(y), y)=0$, with $F_{y}(x, f(x)), F_{x}(g(y), y) \neq 0$ (respectively), and with further derivatives f^{\prime}, g^{\prime} bounded in absolute value by 1 . It thus suffices to consider X to be such a graph, which may be assumed to be non-algebraic.

To proceed with the proof following the proof of 1.3 , we need only show that the number of zeros of $f^{(k)}$ is suitably bounded (i.e. by a polynomial function of k), and that the number of zeros of an equation $P(x, f(x))=0$ is suitably bounded (i.e. polynomially in the degree of P). The zeros of $P(x, f(x))$ are isolated and contained in the common zeros of $F(x, y)=$ $0, P(x, y)=0$. The number of connected components of this set is at most $c_{6}(r, \alpha, \beta) d^{2 r+2}$ by $[3,3.3]$.

By differentiating the relation $F(x, f(x))=0$ we may write

$$
f^{(k)}=\frac{H_{k}}{F_{y}(x, f(x))^{a_{k}}}
$$

where H_{k} is a polynomial in partial derivatives of F. If H_{k} consists of terms of the form $\phi_{1} \phi_{2} \ldots \phi_{m}$, where ϕ_{i} is a partial derivative of F of order δ_{i}, we will say that the weight of this term is $\sum \delta_{i}$, and the weight h_{k} of H_{k} is the maximum weight of its terms. A straightforward induction (very similar to the one in [1, Lemma 5]) shows that $a_{k}=2 k-1, h_{k}=3 k-2$. The zeros of $f^{(k)}$ are isolated, since f is non-algebraic. They are contained in the common zero set of $F=0, H_{k}=0$. The number of connected components of this set is at most $c_{7}(r, \alpha, \beta) k^{2 r+2}$, again by $[3,3.3]$.

4.3. Final remarks

1. I know of no example in which $N(X, H)$ grows faster than $\log H$; For $X: y=2^{x}$, clearly $N(X, H) \gg \log H$.
2. The curves $y=x^{\mu}, \mu \in \mathbb{R}, x>0$ are pfaffian (with $r=2$) and nonalgebraic provided $\mu \notin \mathbb{Q}$. Thus theorem 1.3 directly implies a very weak form of the "six exponentials" theorem ([12]).
3. Theoerem 1.3 holds for curves $X: y=f(x)$ for which f admits appropriate control over the zeros of derivatives (i.e. the number of zeros of $f^{(k)}$ grows polynomially with k) and over the number of solutions of $P(x, f(x))=0$ (i.e. a bound that depends only on the degree of P and is polynomial d). For examples that do not lie in any o-minimal structure see [4].

Bibliography

[1] Bombieri (E) and Pila (J.). - The number of integral points on arcs and ovals, Duke Math. J. 59, p. 337-357 (1989).
[2] VAN DEN Dries (L.). - Tame topology and o-minimal structures, LMS Lecture Note Series 248, CUP, Cambridge, (1998).
[3] Gabrielov (A.) and Vorobjov (N.). - Complexity of computations with pfaffian and noetherian functions, in Normal Forms, Bifurcations and Finiteness problems in Differential Equations, Kluwer, (2004).
[4] Gwozdziewicz (J.), Kurdyka (K.), Parusinski (A.). - On the number of solutions of an algebraic equation on the curve $y=e^{x}+\sin x, x>0$, and a consequence for o-minimal structures, Proc. Amer. Math. Soc. 127, p. 1057-1064 (1999).
[5] Khovanskil (A. G.). - Fewnomials, Translations of Mathematical Monographs 88, AMS, Providence, (1991).
[6] Pila (J.). - Integer points on the dilation of a subanalytic surface, Quart. J. Math. 55, p. 207-223 (2004).
[7] Pila (J.). - Rational points on a subanalytic surface, Ann. Inst. Fourier 55, p. 1501-1516 (2005).
[8] Pila (J.). - Note on the rational points of a pfaff curve, Proc. Edin. Math. Soc., 49 (2006), 391-397.
[9] Pila (J.). - Mild parameterization and the rational points of a pfaff curve, Commentari Mathematici Universitatis Sancti Pauli, 55 (2006), 1-8.
[10] Pila (J.) and Wilkie (A. J.). - The rational points of a definable set, Duke Math. J., 133 (2006), 591-616.
[11] Pólya (G.). - On the zeros of the derivative of a function and its analytic character, Bull. Amer. Math. Soc. 49, 178-191 (1943). Also Collected Papers: Volume II, MIT Press, Cambridge Mass., p. 394-407 (1974).
[12] Waldschmidt (M.). - Diophantine approximation on linear algebraic groups, Grund. Math. Wissen. 326, Springer, Berlin, (2000).
[13] Wilkie (A. J.). - A theorem of the complement and some new o-minimal structures, Selecta Math. (N. S.) 5, p. 397-421 (1999).

[^0]: (*) Reçu le 20 octobre 2005, accepté le 9 février 2006
 (1) School of Mathematics, University of Bristol, Bristol, BS8 1TW (UK). j.pila@bristol.ac.uk

