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Galois theory of ¢-difference equations™)

MARIUS VAN DER PUT(!)| MARC REVERSAT(?)

ABSTRACT. — Choose ¢ € C with 0 < |¢| < 1. The main theme of
this paper is the study of linear g-difference equations over the field K
of germs of meromorphic functions at 0. A systematic treatment of clas-
sification and moduli is developed. It turns out that a difference module
M over K induces in a functorial way a vector bundle v(M) on the Tate
curve Fg:= (C*/qZ that was known for modules with ”integer slopes,
[Saul, 2]). As a corollary one rediscovers Atiyah’s classification ([At]) of
the indecomposable vector bundles on the complex Tate curve. Linear g-
difference equations are also studied in positive characteristic p in order
to derive Atiyah’s results for elliptic curves for which the j-invariant is
not algebraic over [F,.

REsuME. — Soit ¢ un nombre complexe, 0 < |g| < 1. On procede
pour lessentiel & une étude systématique des équations aux g-différences
sur le corps K des fonctions méromorphes au voisinage de 0 (classifica-
tions, problémes de modules). Cela conduit & associer & tout module aux
différences M un fibré vectoriel v(M) sur la courbe de Tate Eq: = (C*/qZ
(c’était déja connu pour les modules « & pentes entiéres », [Saul, 2]), ce qui
amene a retrouver la classification donnée par Atiyah des fibrés vectoriels
indécomposables sur la courbe de Tate complexe ([At]). Dans le dernier
paragraphe nous étudions les équations linéaires aux g-différences en ca-
ractéristique positive p, nous en déduisons les résultats d’Atiyah pour les
courbes elliptiques dont le j-invariant est transcendant sur IFP.
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Introduction

Choose g € C with 0 < |¢g| < 1. The main theme of this paper is the study
of linear ¢-difference equations over the field K of germs of meromorphic
functions at 0. A more detailed and systematic treatment of classification
and moduli is developed as a continuation of [vdP-S1] (Chapter 12), [vdP-
R] and [vdP]. It turns out that a difference module M over K induces in a
functorial way a vector bundle v(M) on the Tate curve E, := C*/q¢% (this is
done here for all slopes, the case of integral slopes has been treated in [Saul]
and [Sau2]). As a corollary one rediscovers Atiyah’s classification ([At]) of
the indecomposable vector bundles on the complex Tate curve. Linear g¢-
difference equations are also studied in positive characteristic in order to
derive Atiyah’s results for elliptic curves for which the j-invariant is not
algebraic over IF,,.

A universal difference ring and a universal formal difference Galois group
is introduced. For pure difference modules this ring provides an explicit
expression of the difference Galois group. If the difference module has more
than one slope, then part of the difference Galois group has an interpretation
as ‘Stokes matrices’, related to a summation method for divergent solutions.
We do not make any hypothesis on the slopes, when they are integers see
[R-S-Z, Sau2|. The above moduli space is the algebraic tool to compute this
part of the difference Galois group.

It is possible to provide the vector bundle v(M) on E,, corresponding
to a difference module M over K, with a connection V. If M is regular
singular, then V; is essentially determined by the absense of singularities
and ‘unit circle monodromy’. More precisely, the monodromy of the con-
nection (v(M), V) coincides with the action of two topological generators
of the universal regular singular difference Galois group ([vdP-S1, Saul]).
For irregular difference modules, Vj,; will have singularities and there are
various Tannakian choices for M +— (v(M), V). Explicit computations are
difficult, especially for the case of non integer slopes.

The case of modules with integer slopes, has been studied in [R-S-Z].
This answers a question of G.D. Birkhoff and follows ideas of G.D. Birkhoff,
P.E. Guenther, C.R. Adams (see [Bir]).
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1. Classification of g-difference equations

1.1. Some notation and formulas

A difference ring is a commutative R with a given automorphism ¢.
The skew ring of difference operators R[®, ®~!], consists of the finite for-
mal sums ) 7 a,®" with all a, € R. The multiplication is defined by
®r = ¢(r)®. A difference module M is a left R[®, ®~!]-module which is
free and finitely generated as R-module. The action ®,; of ® on M is an
additive bijection satisfying ®as(rm) = ¢(r)®ps(m). Thus we may describe
a difference module as a pair (M, F'), with F' an additive bijective map and
such that F'(fm) = ¢(m)F(m) holds.

As before we choose ¢ € C with 0 < |¢| < 1. Further we fix 7 in
the complex upper half plane with €™ = ¢. The fields K = C({z}) and
K = C((z)) are made into difference fields by the automorphisms ¢ given
by ¢(z) = ¢qz. These automorphisms are extended to the finite extensions

K, and Kn of degreeb n and to the algebraic closures Ko, and Koo of K
and K, by ¢(2*) = ¢*2* where ¢* := 2™ for all A € Q.

The formula ¢(2*) = ¢*2* makes C[z,27!] into a difference ring. A
difference module over this ring will be called a global difference module. As
we will prove later on, any difference module M over K is obtained from
a unique global module Mgopar as a tensor product, i.e., M = K ®cy; .1

Mglobal .

Other difference rings that we will use are C[z'/™, 2=/ and O = O(C*),
the ring of the holomorphic functions on C*.

Closely related to g-difference equations is the complex Tate curve E, :=
(C*/qZ. We write pr : C* — E, for the natural map. Theta functions are re-
lated to both E, and g-difference equations. Put © := 3", ¢"("=1/2(—z)n.
Then

0=d H "zt H(l — ¢"2) for some constant d # 0.
n>0 n=0
The divisor of © on C* is ) .7 [q"]. Further —20(qz) = ©(z) or —2¢(0) =
O. The latter implies % + ¢(%) = %. Moreover, the poles of % form the
set ¢%. Bach pole is simple and has residue 1.

For ¢ € C* one defines 0, := %((c;)). This function has the property:
¢-0.(qz) = 0.(2). Moreover, the differential form w, := d;)” is ¢-invariant
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and defines a differential form on E,. If ¢ ¢ ¢%, then w, has simple poles in

_ . . dz
pr(c™!) and 1 = pr(1) with residues 1 and —1. Further wg = w, — 2.

1.2. Regular singular difference modules

We recall some classical results (a modern proof is given in [vdP-S1]).
The classification of regular singular modules over K and K are similar and
we restrict our attention to g-difference modules M over K. A difference
module over K is called reqular singular if there exists a lattice M° C M
over C{z} (i.e., M? = C{z}e; ®---®C{z}e,, for some K-basis {e1,...,em}
of M) which is invariant under ® and ®~! (or in later terminology, M is pure
of slope 0). Then M can uniquely be written as K ®c V where V is a finite
dimensional vector space over C provided with a linear map A : V — V
such that all its eigenvalues « satisfy |¢| < || < 1. The action of ® on this
tensor product is given by ®(a ® v) = ¢(a) ® A(v), fora € K and v € V.

For a regular singular M we define Mgopa; C M as the set of elements
m such that the C-vector space generated by {®"m| n > 0} has finite
dimension. Equivalently, m € Mgopqs, if and only if there exists a non zero
L € C[®] such that L(m) = 0. Clearly Myopa is a C[z, z7!]-submodule.
More precisely,

LEMMA 1.1. — Mgopal = Clz, 27 Y ®c V and consequently the natural
morphism K ®c(, .-1] Mgiobar — M is an isomorphism.

Proof.— Suppose that m € M (or even m € K ®x M) satisfies
L(m) = 0 with L = &9 + ¢4 @41 + ... + ¢o € C[®] and ¢y # 0. Write
m=3, o o2"®vy. Then L(m) =, 2" ® (¢"? A+ cq_1q™ 4D A1 4
-+ + ¢9)vp. One provides V' with some norm. For large |n|, the linear map
gAY+ cq_1g™ @D A4 ... 4 ¢ is invertible since the norm of either ¢
or ¢"?A? is larger than the norm of the remaining part of the linear map.
Thus Myiobar C Clz,271] @ V. The other inclusion is obvious. O

Remarks 1.2. — (1) The unipotent difference module U,, over K (or
over IA() is Up = K ®@c C™ with &(f ® v) = ¢(f) ® A(v), where A :
C™ — C™ is the unipotent map which has a unique Jordan block. Any
1-dimensional regular singular difference module has the form F(c) := Ke
with ®(e) = ce, ¢ € C* and one may normalize ¢ such that |¢| < |¢| < 1.
From the modules {E(c)}|q<|c|<1 and Uz one constructs every regular sin-
gular module by taking tensor products and direct sums.

(2) Let M be a regular singular module. For any ¢ € C*, Figen(®,c) C M
denotes the generalized eigenspace for the eigenvalue c. In other words,
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Eigen(®, ¢) consists of the elements m € M such that there exists an integer
N > 0 with (® — ¢)¥(m) = 0. From the above one easily concludes that
each Eigen(®,c) has finite dimension. Further V' = @)4<|j<1 Eigen(®, c)
and Mgiopar = @eroBigen(®, c).

1.3. The slope filtration

We describe here the slope filtration and give references for more details
and proofs. It is well known that any difference module M over K contains
a cyclic vector. This means that there exists an element e € M such that the
homomorphism K|[®,®~!] — M, given by Y a,,®" — > a,®"(e), is surjec-
tive (compare Lemma 4.1). Thus M is isomorphic to K[®, ®~!]/K[®, ®~1|L
for some L of the form ®?+ay_1®?~ 1 +. .. 4 aq, with all a; € K and ag # 0.
The difference operator L has a Newton polygon. For completeness we re-
call its definition. Let ord : K — Z U {+o0} denote the order function
on K* extended by ord(0) = 4o0. In R? one considers the convex hull of
U‘Z—i:o{(i7 —ord(a;) + xz2)| £2 < 0}. The finite part of the boundary of this
convex set is the Newton polygon of L.

The module M (over K or over K ) is called pure if this Newton polygon
has only one slope. As in the case of differential operators, one can factorize
L, viewed as an element of K[®, ®~1] according to the slopes in any order
that one chooses. This gives a unique decomposition of K® Kk M as direct
sum Ny @ Ny @ --- @ N, of pure difference modules over K with slopes
A1 < A2 < +-- < Ap. The rule 2" = ¢"2"® and |q| < 1 imply that the
slope factorization Ly - Lo - - - L. of L where L; has slope \; fori=1,...,r

is convergent, i.e., all L; are in K[®, ®~1].

One deduces from this the ascending slope filtration of M by submod-
ules 0 = My € My C My C --- C M, = M such that each M;/M;_; is
pure of slope \; and moreover K ® M;/M;_1 = N;. The slope filtration is
unique. The graded module gr(M) associated to M is &7_,M;/M;_1. We
note that the above facts on slope filtration are already present in the work
of G.D. Birkhoff, P.E. Guenther and C.R. Adams, see [Bir]. A modern proof
is provided in [Sau3]. The difference module M over K is called split if M is
isomorphic to gr(M) (in other words, M is a direct sum of pure modules).
Fix a direct sum A = ®]_; A; of pure modules with slopes A; < -+ < A.. In
section 3 we will construct a fine moduli space for the equivalence classes of
the pairs (M, f), consisting of a difference module over K and an isomor-
phism f: gr(M) — A.
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1.4. Classification of pure modules over K and K

Let I C G be a finite extension of difference fields. Let M be a difference
module over G. Then Res(M) (the restriction of M to F) denotes M,
considered as a difference module over F'. One observes that
dimp Res(M) =[G : F] - dimg M.

Put IA(,L = I?(zl/”) for any integer n > 1. We apply the above restriction
to the extension Kc IA(n in order to construct all irreducible modules over
K. Cousider integers t,n with n > 1 and g.c.d.(t,n) = 1 and ¢ € C* with
lg|'/™ < |¢| < 1. Let E(cz/™) := K,e denote the difference module over K,
given by ®(e) = cz'/"e. Put E := Res(E(cz!/™)).

PROPOSITION 1.3 (THE IRREDUCIBLE MODULES OVER IA(). —
(1) E depends only on t, n, c".
(2) E is irreducible of dimension n and has slope t/n. The algebra of the
K -linear endomorphisms of E, commuting with ®, is C.
(3) For any irreducible difference module I there are unique t,n and ¢ with
n>1, ged.(t,n) =1 and |¢| <|c"| <1, such that I = Res(E(czt/™)).

Proof.— (1) and (2). E has basis e, ®e, -+, " le over K and thus e
is a cyclic vector for . The minimal monic polynomial L € K [®] with
Le =0is L = ®" — ¢!(»=D/2¢nzt Thus E = K[®, & *]/K[®, & 'L and
depends only on ¢, n, ¢". The operator L has slope ¢/n and degree n. If
L has a non trivial decomposition LqLs, then the Newton polygon of L is
the sum of the Newton polygons of L; and Ls. In particular the Newton
polygon of L contains (at least) three points with integral coordinates. Since
g.c.d.(t,n) = 1, this is not the case and hence L and E are irreducible. We
note that every non zero endomorphism (K-linear and commuting with ®)
of E is bijective. Since C is algebraically closed, this implies that the algebra
of the endomorphisms (K-linear and commuting with ®) of E is C.

(3) Let I be an irreducible difference module, then I is pure and has a
slope t/n with n > 1 and g.c.d.(t,n) = 1. Take a cyclic vector and let
L = @+ a;9% 1 + ... 4 aq_1® + aq be its minimal polynomial (with
d=dimz I). Then %(al) > t/n for all i and %(“d) = t/n. It follows that
d is a multiple of n. Now L € K[®, "] C K,[®,®~!] = K, [¥, ¥~1] with
U = dzt/m,

Then L, as operator in ¥, has slope 0. Hence L has a right hand factor of
degree 1 in ¥ (or in ®). This means that we have a morphism of ¢-difference

~

modules over K
I=K[® & /K[®,& 'L — K,[®, & ]/K,[®, & (®—a),
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for a suitable a € K,,. This morphism is injective since I is irreducible.
Counting the dimensions over K, one finds that d = n and that the mor-
phism is bijective. The right hand side is a one-dimensional difference mod-
ule over K, and hence is isomorphic to F(cz!/™) for some ¢ € C* with
lg|'/™ < |c| < 1 (compare [vdP-S1], p. 149-150).

We have to show that an isomorphism between E; := Res(FE(c;2™))
and Fy := Res(FE(c327?)) implies that A\; = \p and ¢} = c§. The first
statement is obvious since J; is the slope of F;. We write Ay = Ay = ¢/n with
n>=1, (t,n) =1. Let F: By — E5 be an isomorphism. Then F' is unique
up to multiplication by a scalar in C*. Both modules have the structure
of a difference module over K Consider the map 2z~ /"o F o zl/" This
is also an isomorphism between the two dlfference modules over K. Hence

—1/n o Foz!/" = ¢F for some ¢ € C*. Clearly ¢" = 1. We change the K
structure of the module E(cyz/™) by applying a suitable automorphism of
K, over K. Now E(cy2"/™) is changed into E(c3z'/™) with ¢5 = (cy for some
¢ with ¢™ = 1. Moreover, we have now 2z~ /"o Foz'/" = F. Thus F(c,2'/™)
and E(c3z'/™) are isomorphic as difference modules over K,,. This implies
c1 = c3 since |q|"™ < |c1],|es| < 1. O

Remarks 1.4. — (1) We note that Proposition 1.3 extends to the case
where the field C is replaced by any field C (of characteristic 0, with ¢ € C*
not a root of unity and C not necessarily equal to its algebraic closure
(). This can be formulated as follows. One extends the action of ¢ on
K := C((2)) to the field [ JC((z'/™)) in the obvious way. This field contains
the algebraic closure K of K. Take a non zero element o € K of degree m
over K and consider the difference module K(«a)e given by ®(e) = ae.
Then K (a)e, viewed as a difference module over K, has dimension m and
is irreducible. It depends only on the Galois orbit of a. Every irreducible
difference module over K is obtained in this way.

(2) Put K, = K(z'/"). The difference module over K obtained by viewing
K, e with ®e = cz!/"¢ as a difference module over K, will also be denoted
by Res(E(cz'/™)).

COROLLARY 1.5. — Proposition 1.3 remains valid zfl/(\' 1s replaced by K .

Proof. — From the slope filtration it follows that an irreducible difference
module over K is pure of some slope t/n. Let K, denote K(z'/™). The
factorization of L as element of K,[¥, U~1] is valid over K,, because L is
in this context a regular singular difference operator. O
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COROLLARY 1.6 (INDECOMPOSABLE MODULES). —
(1) Let M be an indecomposable difference module over K. Then there are
unique integers t, n, m and ¢ € C* with n,m > 1, g.c.d.(t,n) =1, |q| <
|c*| < 1 such that M is isomorphic with Res(E(czt/™)) @z Un.

(2) Let M be an indecomposable pure difference module over K, then there
are unique t, n, m, ¢" as above such that M = Res(E(cz"/™)) @ Up,.

Proof.— (1) If the difference module M over K is indecomposable, then
M is pure. The proof of (2) that we will produce can be copied verbatim to
complete the proof of (1).

(2) Let M/K be pure with slope t/n. We will concentrate on the non trivial
case where n > 1. We consider now K, ® g M. This difference module over
K, has an action of the generator o of the Galois group of K,, /K defined by
ozt/m = Czl/" with ( = e2mi/m One writes K, @x M as K,e ®c V', where
the action of @ is given by ®(e ® v) = 2"/"e ® Av and where A : V — V
is a C-linear map such that all its eigenvalues « satisfy |¢|'/" < |a| < 1.
We note that this presentation of K, ® x M is unique. Moreover, the subset
C[z'/™, 27'/")e ® V consists of the elements f in K, ®x M such that the
C-vector space generated by {(z7*/"®)™f| m € Z} has finite dimension.
The vector space e ® V' consists of the elements f € K,, ®x M such that
there is a monic polynomial L € C[(z~*/"®)] with L(f) = 0 and all the roots
a of L satisfy |¢|'/" < |a| < 1. Since ¢ commutes with ® on K, ®x M one
has that e®V is invariant under o. Hence we can write o(e®@v) = e® B(v),
where B : V — V is a linear map satisfying B™ = 1. The fact that o and
® commute translates into BAB™! = (*A. This induces a decomposition
V=VWeVié- &V, into A-invariant subspaces with the property
B(V;) = Vi11 (where we use the cyclic notation V,, = V).

The submodules of M are in bijection with the submodules of K, ® M
that are invariant under o. The latter are in bijection with the A-invariant
subspaces Wy of V. This bijection associates to Wy the o-invariant sub-
module K e ®c (@?:_olBiWO). In particular, M is indecomposable if and
only if the action of A on V has only one Jordan block. Suppose that
A has this form and let ¢ be the eigenvalue of A on V}, then one has
N 2 Res(E(c2t™)) @k Uy, with m = dim V%, O

We note that there are indecomposable difference modules over K not
described in part (2) of Corollary 1.6.
COROLLARY 1.7. — Let M be a pure difference module over K with slope

% where g.c.d.(t,n) = 1 and n > 1. There exists a difference module N
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over K, such that Res(N) = M. The module N is not unique. A similar
statement holds for pure q-difference modules over K.

DEFINITION 1.8. — Myiopar for a pure module M over K.
Suppose that the slope A of the pure module M over K is an integer. Then
K f®xk M, where K f is the module defined by ® f = z~* f, is pure of slope
0. It follows that M has a unique finite dimensional C-linear subspace W,
such that W is invariant under the operator z~*® and the restriction A €
GL(W) has the property that every eigenvalue ¢ of A satisfies |¢| < |¢] < 1.
Moreover, the canonical K-linear map K ® W — M is a bijection.

For any C-linear operator L on M and any ¢ € C, one writes Eigen(L, c)
for the generalized eigenspace of L for the eigenvalue c. In other words
Eigen(L,c) = U, ker((L — ¢)*, M). With this terminology one has that

W =ea,, ‘q|<‘c|§1Eigen(zf>‘(I>,c) .

One defines Myjopar == Clz, 27 |@W = @.cc- Eigen(z~*®, ¢). This is a free
Clz, 2~ !]-submodule of M, invariant under ® and ®~'. Thus Myepq is a
global difference module. Further, the canonical map K ®c[. .1 Mgiobar —
M is a bijection.

Now we consider a pure difference module M with slope A = t/n, where
n =1, (t,n) = 1. By Corollary 1.7, there exists a module N over K,, such
that M = Res(N). As above, N has a unique finite dimensional C-linear
subspace W invariant under z~*®, such that all eigenvalues ¢ of the re-
striction A of z=*® to W satisfy |q|1/” < |e| < 1. One defines Myopar =
Nyiobai = Clz'/", 2=/ @W. Thus Mgiobal = BeecFigen(z~2®, c). As be-
fore, Mgiobal is a global difference module and the canonical map K ®Clz,2-1]
Mgiobat — M is an isomorphism.

In order to see that the definition of Mgy;per does not depend on the
choice of N one considers the operator (z7*®)" = ¢*27'®" where «
is some rational number. It follows that Mgopa is also equal to @©.cc-
Eigen(27t®" c). This expression is clearly independent of the choice of N.
Thus we can formulate the definition of Myjoper C M for a pure module
over K of slope A =t/n with n > 1, g.c.d.(t,n) =1 by the statement:

The following properties of m € M are equivalent.

(1) m € Mgiopai-

(2) The C-vector space generated by {(z~'®™)*m |s > 0} has finite dimen-
sion.

(3) There exists a L € C[T], L # 0 such that L(z~'®™)(m) = 0.

- 673 -



Marius van der Put, Marc Reversat

The main technical difficulties in this paper arise from pure modules M
with non integer slope A = t/n. There are two methods to handle these. The
first one (Corollary 1.7) is to write M = Res(N) for some difference module
N over K,. The second one, used in the proof of Corollary 1.6, replaces M
by K, ® M provided with the action of the Galois group of K, /K. Both
methods have their good and weak points. Now we develope the second
method in more detail. The main idea is to replace a pure differential module
N over K by M = Ko, @k N with decent data D. Here K, denotes the
algebraic closure of K. With this method one can more easily describe tensor
products of pure modules over K.

1.4.1. Pure difference modules over K., with descent data

K denotes the algebraic closure of K and Gal denotes the Galois group
of Ko /K. Let M be a difference module over K. Descent data D for M
means a map o € Gal — D(o) satistying:
D(0) is a o-linear bijection on M, D(o) commutes with @,
D(01)D(02) = D(o102) and the stabilizer of any m € M, i.e., the group
{0 € Gal | D(o)m = m}, is an open subgroup of Gal.

One associates to a difference module N over K the module M := Ko ®
N with descent data given by D(o)(f @ n) = o(f) @ n for all f € K and
n € N. This induces a functor from the category of the difference modules
over K to the category of the difference modules over K, provided with
descent data.

PROPOSITION 1.9. — N — (K. ®N, D) is an equivalence of Tannakian
categories.

Proof. — The essential thing to prove is that any pair (M, D) is isomor-
phic to (K ® N, D) for some difference module N over K.

Take a basis e1,...,e, of M over K. Let the open subgroup H :=
{0 € Gal | o(e;) = ¢; for all j} have index m in Gal. Then K2 = K,, and
M" = K,,e; + -+ + Kpe,. The cyclic group Gal/H = Gal(K,,/K) acts
on M. This action induces an element of H'(Gal(K,,/K),GL(r, K,)).
By Hilbert 90, this cohomology set is trivial. It follows that M* contains
a basis fi,..., fr over K,,, consisting of Gal-invariant elements. Now IV :=
Kfi® --&Kf, is equal to M and the natural map Ko, @ x N — M is an
isomorphism. Since ® commutes with the action of Gal, one has ®(N) = N.
Thus N is a difference module over K and clearly induces the pair (M, D).
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The tensor product of two pairs (M, D), (Ms,Dy) is defined as
(M ®k.. M2, D1 ® D3). We note that the tensor product D;(c) ® Da(o) of
two o-linear maps makes sense. It is easily seen that the above equivalence
respects tensor products. O

For a pure difference module N over K of slope A, the module M =
Ko, ® N is also pure with slope A and has the form K., ®c V, where V is
a finite dimensional C-vector space provided with an element A € GL(V).
The action of ® on M is given by ®(f ® v) = 2 ¢(f) ® A(v).

The subspace V is not unique. By changing V', the eigenvalues of A are
multiplied by arbitrary, rational powers of g. We normalize A and V as
follows.

Choose a Q-linear subspace L C C such that L & Q = C. One requires
that every eigenvalue c of A has the form e2™#(20(€)+01()7) with aq(c), a;(c) €
R and a;(c) € L.

After this normalization the subspace V' of M is unique. Indeed, V is
the direct sum of the kernels of (z7*® — ¢)* with s >> 0 and ¢ € C* with
ai(c) € L.

We note that the use of this subspace L is somewhat artificial. It can
be avoided at the cost of verifying that formulas that we will produce are
independent of certain choices.

One observes that V is invariant under D(o) for all o € Gal. The group
Gal is identified with Z and the action of Gal is expressed by o(z*) =
e2™iro A For the operators A and D(o), restricted to V, one finds the
equality AD(c) = e?™*? D(5)A. Thus we have associated to a pure differ-
ence module N over K a tuple data(N) := (A, V, A,{D(0)}) with

e A e Q.
e V a vector space over C of finite dimension.

e A e GL(V) with eigenvalues in the subgroup
{c = e?rilao(e)ta1(9)T)|q4(c) € R, ay(c) € L} of C*.

e a homomorphism o € Gal = Z D(o) € GL(V) satistying
AD(0) = e*™ D(0)A.

On the other hand an object (A, V, A,{D(0)}) as above defines a pure
module N over K of slope X in the following way. Consider M := K, ® V'
with ® given by ®(f ® v) = 2*¢(f) ® A(v) and with descent data given by
D(o)(f ®v) = o(f) ® D(c)v. Then N := M,
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Consider a morphism f : Ny — Na, f # 0 between pure modules. Then
Ni, Ns have the same slope A and f induces a morphism from data(N7) to
data(N3), i.e., a linear map F' between the two C-vector spaces equivariant
for the maps of the data. On the other hand, a C-linear map F', equivariant
for the maps of the data, comes from a unique morphism f : N1 — Ns.

Thus N — data(N) is an equivalence between the category of the pure
modules over K and the category of tuples (A, V, A,{D(0)}) defined above.
One observes the following useful properties.

For pure difference modules N; with data(N;) = (A, Vi, A;, {D;(0)}) for
i = 1,2 one has the nice formula
data(N1 ® No) = (A1 + X2, Vi @ Vo, A1 @ A9, {D1(c) ® Da(0)}).

Let the pure modules N have data(N) = (A, V,A,{D(0)}). Then the
dual module N* has data (—\, V*, B,{E(0)}), where V* is the dual of V;
B=(A"YH* and E(c) = (D(o)~1)*.

The ®-equivariant pairing N x N* — K, given by (n,f) — £(n) € K
translates for the data of N and N* into the usual pairing V x V* — C,
given by (v,¢) — £(v) € C. This pairing is equivariant with respect to the
prescribed actions on V' and V*.

2. Vector bundles and ¢-difference modules

We recall that O denotes the algebra of the holomorphic functions on
C* and that a difference module M over O is a left module over the ring
O[®, 71, free of some rank m < oo over O. Further pr : C* — E, := C*/q”
denotes the canonical map. One associates to M the vector bundle v(M) of
rank m on B, given by v(M)(U) = {f € O(pr'U)®o M| ®(f) = f}, where,
for any open V' C C*, O(V) is the algebra of the holomorphic functions on V.

On the other hand, let a vector bundle M of rank m on E, be given. Then
N = pr* M is a vector bundle on C* provided with a natural isomorphism
osN — N, where o4 is the map o4(z) = gz. One knows that A is in
fact a free (or trivial) vector bundle of rank m on C* (see [For], p. 204).
Therefore, M, the collection of the global sections of AV, is a free O-module of
rank m provided with an invertible action ® satisfying ®(fm) = ¢(f)®(m)
for f € O and m € M. It is easily verified that the above describes an
equivalence v of tensor categories.

The equivalence v extends to an equivalence between the left O[®, ®~1]-
modules which are finitely generated as O-module and the coherent sheaves
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on E,. This is an equivalence of Tannakian categories.

By an admissible difference module over O we will mean a left O[®, ®~1]-
module which is a direct limit of left O[®, ®~!]-modules of finite type over
O. The equivalence v extends to a Tannakian equivalence between category
of the admissible difference modules over O and the category of the quasi-
coherent sheaves on L.

LEMMA 2.1. — There are isomorphisms ker(® —1, M) — H°(E,,v(M))
and coker(® —1, M) — H'(E,,v(M)) between these functors defined on the
category of the admissible difference modules M over O.

Proof.— The isomorphism ker(® — 1, M) — H°(E,,v(M)) follows from
the definition of v. Let v~! denote the ‘inverse’ of the functor v. Then M —
ker(® — 1,v71(M)) is canonically isomorphic to M — H°(E,, M). One
observes that an exact sequence 0 — M; — My — M3 — 0 of admissible
difference modules over O induces (by the snake lemma) an exact sequence

0 — ker(® — 1, M;) — ker(® — 1, Ma) — ker(® — 1, M3) —

coker(® — 1, M;) — coker(® — 1, M) — coker(® — 1, M3) — 0 .

From this it easily follows that the first right derived functor of the functor
M +— ker(® — 1, M), on the category of admissible modules over O, is equal
to coker(® — 1, M). Now the second isomorphism of functors follows. O

EXAMPLES 2.2. — (1) Consider M = Oe with ®(e) = e. Then v(M)
is the structure sheaf Op, of E,;. Any element in m € M can be written
uniquely as m = Y 7 a,z"e. Then (& —1)m =3 _,(¢" — 1)a,z"e. One
observes that ker(® — 1, M) = Ce and that coker(® — 1, M) is represented
by Ce. This illustrates Lemma 2.1.

(2) Consider difference module M = Oe with ®e = ce and ¢ € C*, |q| <
le] < 1.If ¢ # 1, then 6.e is a meromorphic section of v(M) with divisor
—pr(c™') 4 pr(1). One concludes that v(M) = Og, (pr(c™') — pr(1)). Thus
one finds all line bundles of degree 0 on E; in this way.

(3) Consider the difference module M := Oe with ®e = (—z)e. There is
a ®-invariant element, namely Oe. This is a global section of v(M). The
cokernel of the morphism Op, — v(M), given by 1 — ©e, is a skyscraper
sheaf with support {1} and stalk C at that point. Indeed, the function ©
has simple zeros at ¢%. One concludes that v(M) = Og,([1]). Using tensor
products one obtains that the line bundle v(M), with M = Oe, ®e = czle,
has degree t. Moreover every line bundle on Ej, is obtained in this way.
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(4) Let M = O/O®O with the ®-action induced by the usual one of O. Then
v(M) is the skyscraper sheaf on E; with support {1} and with stalk C at
that point.

We recall that a split difference module M over K is a direct sum of pure
modules M;. The global module Myopq; over Clz, zfl] associated to M is
by definition the direct sum of the global modules (M;)giopai- A morphism
f: M — N between split modules is easily seen to be the direct sum of
morphisms between the pure components of M and N. In particular f maps
Mglobal to Nglobal-

One associates to a split difference module M the difference module
O®¢z,-~1]Mgiobar and, by Lemma 2.1, a vector bundle on E,. For notational
convenience we write again v(M) for this vector bundle. In this way we
obtain a functor v from the category of the split difference modules over K
to the category of vector bundles on E,. One observes that Hom (M7, M3) —
Hom(v(M),v(Ma)) is C-linear and injective. Moreover, one easily sees that
v preserves tensor products.

THEOREM 2.3. — The functor v from the category of the split difference
modules over K to the category of the vector bundles on E, is bijective on
isomorphy classes of objects. This bijection respects tensor products.

Proof.— We have to show that v induces a bijection between the iso-
morphy classes of the indecomposable objects in the two categories. We
start by proving that for an indecomposable pure difference module M the
corresponding vector bundle v(M) is indecomposable.

From Examples 2.2 one concludes that v provides a bijection between
the isomorphy classes of the difference modules of dimension 1 over K and
the isomorphy classes of all line bundles on Ej.

By Corollary 1.6, an indecomposable pure difference module has the
form M = Res(E(cz'/™)) @ U, with unique n > 1, (t,n) =1, m > 1 and
¢” such that |q| < |¢"| < 1. The vector bundle v(M) has clearly rank nm.
The exterior product A" M is equal to Kf with ®f = sz'™f for some
s € C*. Thus v(M) has degree tm. The case nm = 1 has been treated above
and we suppose now nm > 1.

One can present Mgiopar as (C[zl/”, z‘l/"] Q@ W, with W a C-linear space
of dimension m and ® given by ®(1®w) = cz!/* ®U(w) where U is a unipo-
tent map with minimal polynomial (U —1)™ = 0. Then O ®CLz,2-1] Mgiobal
can be represented as H,, ® W, where H,, consists of the convergent Lau-
rent series in z!/™. Thus H,, consists of the expressions Zggiw ar2"/™ with
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lim| oo lax|"/1*l = 0. One provides W with some norm || ||. The elements
of H, ® W have the form 3,2 _2%/" @ wy, with limy_ [w]|*/* = 0.

Then ® acts on H, ® W by
@(Z K@) = Z ¢t @ U (wy)

Write ¥ = 2~¢®". Then

‘I/(Z R @) = Z 2P @ dg" U™ (wy,), with d = ¢"gt=D/2
For each k, the vector space z¥/" @ W is invariant under ¥ and this operator
has eigenvalues ¢®d on this vector space. One concludes from this that the
subset Mgiopar C H, @ W consists of the elements fe such that there exists a
non zero polynomial L € C[T] with L(¥)(fe) = 0. This has as consequence
that every O-linear endomorphism A of O®cy,,.~1] Mgiopal, commuting with

®, is the O-linear extension of a unique C|z, 27 !|-linear endomorphism B
of Mgiopar commuting with &.

A direct sum decomposition of v(M) induces a O-linear endomorphism
Aof O ®C[z,2-1] Mgiobar commuting with ® and such that A% = A. The cor-
responding B induces a direct sum decomposition of Mgiopal, contradicting
that M is indecomposable. Thus v(M) is indecomposable. A similar rea-
soning proves that for indecomposable My, My the relation v(My) = v(Ma)
implies that M; = M. In this way we have found a collection of inde-
composable vector bundles on E;. That we have found all of them follows
at once from the classification given in [At], Theorem 10. Indeed, Atiyah
constructs a certain indecomposable vector bundle of rank r and degree d,
called E4(r,d). Let h = (r,d). Then every indecomposable vector bundle
of rank r and degree d has the form L ® E(r,d) with L a line bundle of
degree 0. This L is unique up to multiplication with a line bundle N such
that N®"/" is the trivial line bundle. O

The final part of the proof of Theorem 2.3 depends on [At]. We present

now a proof which only uses a simple result of this paper, namely Lemma
11, formulated as follows:
Let W be an indecomposable vector bundle of rank m and degree 0 on an
elliptic curve E, then W = L @ W', with L a line bundle of degree 0 and
such that the indecomposable W' has a sequence of subbundles 0 = W/ C
Wi C - c W), = W' such that each quotient W _,/W/ is isomorphic
to OE

Proof.— V is an indecomposable vector bundle on £, rank nm and
degree tm with n,m > 1, g.c.d.(t,n) = 1. As before we consider pr : C¥ —
E, =C; /qZ. The index z means that we use z as variable on this copy
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of C*. Write M := H°(C*,pr*(V)). It suffices to produce a C[z, 27 !]-su-
bmodule My C M, invariant under ® and ®~!, such that the natural map
O ®¢(z,--1] Mo — M is bijective and K ®c;,.-1) Mo is a pure module.

Let # : C* — C* be given by s — s® = z (or by s = 2'/"). Define

the elliptic curve E by v : C: — E := C*/(¢*/™)%. There is an induced
morphism of a: E — E, of degree n, such that « oy = pro .
The map « is an unramified cyclic covering of degree n. Let ¢ denote a
generator of the automorphism group of this covering. One can take for o
the automorphism of C* — C, given by s +— ¢?™/"s. The last map will
also be called o.

The vector bundle a*V on E has rank nm and degree tnm. Then o*V
is a direct sum of indecomposable vector bundles W1, & --- ® W, on E. Let
Wi, Wa, ..., W, with " < r be all the W; which have the same rank and
degree as Wi. The direct sum Wy & --- @ W, is invariant under the action
of o*. Since V is indecomposable, one has ' = r. Thus all W; have the
same rank and degree. It follows that Og(—t[1g]) ® a*V is the direct sum
of indecomposable vector bundles W/ on E of degree 0 and rank nm/r.

Using Lemma 11 of [At], we conclude that the difference module H :=
HO(C:,v*W)) over O(C?) has a sequence of submodules 0 = Hy C -+ C
H,,/» = H such that each quotient has the form O(C})e with ®e = e. Thus
H has a basis e1, . .., €,/ over O(C}) such that the matrix of ® w.r.t. this
basis is upper triangular and all its diagonal entries are 1. One easily verifies
that a base change turns this matrix into a matrix with constant coefficients.

The difference module over O(C?) associated to Og(t[1g]) has the form
O(C?)e with ®e = cs’e for some constant c. By taking the tensor prod-
uct with this module and direct sums, we conclude that the difference
module N over O(C%), associated to y*a*V = [*pr*V, has a basis for
which the matrices of ® and ®~! have coefficients in C - sZ. In particu-
lar, there is a C[s, s~ !]-module Ny of N, invariant under ® and ®~!, such
that O(C}) ®cs,s-1] No = N. This submodule is, by construction, invari-
ant under the action of o. Therefore the C[z, 27 !]-module My := N§ is
finitely generated and invariant under the actions of ® and ®~!. Moreover
O(C;) ®(C[Z72—1] Mo = NU = M and K ®(C[z,z_1] MO iS pure. D

Remarks 2.4. — Tensor products of pure difference modules over K.
One rediscovers Part III of [At] (for the base field C) by using Theorem 2.3
and some calculations for difference modules. We will give some results.

(1) The indecomposable vector bundle corresponding to U, is called F, in
[At]. The tensor product U, ® U, corresponds to the tensor product of two
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unipotent operators A, B on vector spaces V, W of dimensions a, b, having
each only one Jordan block. One can find a decomposition of the unipotent
operator A® B € GL(V ® W) as a direct sum of Jordan blocks. This will
produce the formulas in [At], Theorem 8 and our method is close to the
remarks [At], p. 438-439.

(2) Consider the module (K, e, ®e = cz1/™e) with (t;,n1) = 1 and n =
dn, with d > 1. We note that c is determined up to an element of p,, X
q%/", where 1 denotes the group of the kth roots of unity. This module
decomposes as the direct sum of the irreducible modules (K, e;, Pe; =
qj/”cztl/”lej) for j =0,...,d—1. A change of ¢ will permute these modules.

(3) M; := (K,,ei, Pe; = cizti/™ie;) for i = 1,2 with (t;,n;) = 1. Let d =

(n1,m2) and n = *72. We note that c; is determined up to an element in

L, x qZ/mi Write t1/n1+te/na = t3/nz with (t3,n3) = 1 and n = kng. Then
M1®M2 is the direct sum of (anj, q’fJ = Cj61622t3/77'3fj) fOI‘j = O7 . ,d—l
and suitable nth roots of unity ¢;. Each term has a further decomposition,
according to (2), if & > 1.

(4) M = (Kne,®e = czt/"e) with (t,n) = 1. The dual M* is equal to
(Kpe*, ®e* = ¢ '27t/"e*). Further M ® M* is the direct sum of the n?
difference modules (Keg s, Pes; = qs/”e%“/”es,t) with 0 < s,t < n. This
corresponds to the direct sum of all line bundles L of order dividing n.

(5) The homomorphism Hom (M, M2) — Hom(v(My),v(Ms)), where My, Mo
are split modules over K, is in general not surjective. Indeed, the category
of the split difference modules over K is Tannakian and the category of the
vector bundles on Ey is not even an abelian category.

THEOREM 2.5. — Let M be a pure difference module over K with slope
A < 0. The maps
(1) coker(® — 1,Mglobal) — coker(® — 1,0 ®C[z,2-1) Mqlobal)
(2) coker(® — 1, Myopar) — coker(® — 1, K ®c[.,.-1) Mgiobat)
are isomorphisms. Moreover, coker(® — 1, Mgiopar) s canonical isomorphic

to HY(E,,v(M)) and has dimension —\ - dimyx M over C.

Before starting the technical proof we study the simplest example:
Myiopar = Clz, 2" e with ®e = 2" te .

An element of O ® Myopqr = Oe has the form )" a,2"e. By Examples 2.2,
v(0 ® Mgiobar) = Og,(—[1]) and by Lemma 2.1, one has ker(® — 1,0 ®
Mgyiopar) = H(Eq, Og,(—[1])) = 0. Consider the equation

(®—-1) Z a,2e = Z(an+1q”+1 —an)ze = Z bnz"e ,
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for a given )" b, 2"e € Oe. There is at most one solution. If there is a solution
then its coefficients satisfy the recurrence a,,+1¢" "' — a, = b, which can
also be written as

an+1q(n+2)(n+1)/2 . anq(n+1)n/2 _ (n+1)n/2 )

=bng
Summation of these recurrences over all n € Z implies _ b, ¢ +D"/2 = 0.

On the other hand, the condition b,g( /2 = ( leads to a formula
an =Y o0, —bgqls+1)s/2=(n+ /2 One easily verifies that this infinite sum
converges, that the series Y a,2"e belongs to Oe and solves the equation.
If, moreover, > b,2"e € Clz,z7 e = Mgiobar, then also " a,z"e lies in

Mgiobai- This proves part (1) of Theorem 2.5 for this example.

Proof.— (1) Let —t/n < 0, with t,n > 1, g.c.d.(t,n) = 1, be the slope of
M. Then Mgiopa; can be written as Clz'/", 2= 1/"|@c W with ® action given
by ®(fow) = 2~/"¢(f)2 A(w) for some A € GL(W). Then O® M yjopa; can
be written as O,, ®c W, where O,, consists of the convergent Laurent series
in z'/". The action of ® is again given by ®(f @ w) = 2~ "/"¢(f) @ A(w).
Consider the equation

(@1 ew) = e (@ A(wp) — ) = Y 2 @y,
kEZ kEZ kEZ

where the given series > 2%/™ @ wy, is either finite or convergent. This yields

recurrence relations for the . Write k = ko + st with kg € {0,1,...,t—1}
and s € Z. The recurrence relations are

q(k°+(s+1)t)/"A($k0+(s+1)t) — Tho+st = Wky+st

for kg € {0,1,...,t =1}, s € Z.

Put m(ko, s) = ko ¢ s(+D! Then the recurrences can be rewritten as
n 2n

m(ko,s+1)As+1(

q Tror(s41)e) — IOV A (@ pat) = 7O A (W 1at) -

Suppose that there exists a convergent solution Y z*/™ @ xy,, then, for each
ko, the sum over all s € Z of the left hand side is 0. Thus a necessary
condition for the existence of a convergent solution is

Z qm(kO’S)As(wko-"—st) =0 for kO = 07 17 s 7t -1.
sEL

This condition is also sufficient for the existence of a convergent solution.
Indeed, the recurrences and the above condition on the coefficients {wg,+st }
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lead to the formula

Thotst = Z —gmkosa)=m(ko.s) ga=s (1Y)

a=s

The possibly infinite sum in this formula converges and one can verify that
the resulting series 2F/" @y, lies in 0,, @W and solves the above equation.

If there are ony finitely many wy # 0 and the above condition is satisfied,
then the unique solution ), 2% ® x;, has only finitely many x;, # 0. From
this observation statement (1) follows.

The proof of (2) is similar. Lemma 2.1 and the above computation yield a
proof of the last statement of the theorem. O

2.6 (CANONICAL REPRESENTATIVES FOR coker(® — 1, Myiopar)). —
Let M be a pure difference module over K with slope —t/n and n,t > 1,
g.c.d.(t,n) = 1. As in the proof of Theorem 2.5, one writes Mgiopar =
C[z'/™, 2~V @ W with ® action given by ®(f ® w) = 27 ¥/"¢(f) @ A(w).
One requires that |g|'/™ < |¢| < 1 for every eigenvalue of A. This makes the
presentation unique.

Define W+ := (C1 + Cz¥/" 4 -+ + C2(*=1/") @ W. We claim that
W — coker(® — 1, Myiopar) is a bijection.

Indeed, write wt € W+t as wt = Zf;é 2" @w;. Then w lies in the image
of ®—1if and only if for all kg € {0,1,...,t—1} one has }° 5 g™ 0wy 4 o
= 0. This implies that w™ = 0. Hence W+ — coker(® — 1, Mgiobar) is

injective. Since both spaces have dimension ¢-dim W, the map is a bijection.

For any C-linear operator T' on M, one writes Eigen(T,c) for the gen-
eralized eigenspace of T for the eigenvalue ¢ € C. Thus Figen(T,c) =
U1 ker((T' = ¢)®, M). With this notation one observes that

W= @|q‘z/n<‘cKlEigen(zt/”CI), c) and Wt= @‘q‘t<|c‘<1Eigen((zt/"<I>)", c).
We write Repr(Mgiopa) or Repr(M) for the vector space W of repre-

sentative of coker(® — 1, M). We note that Repr(M) does not depend on
the choice of the module N over K,, with M = Res(N).

M — Repr(M) has some functorial properties, namely:
A morphism f: My — My between pure modules of the same negative slope
maps Repr(My) to Repr(Ms).

This follows easily from the second description of W ™.
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Let My, My denote pure modules of slopes A1, Ao < 0. Then
Repr(My) ®c Repr(Ms) is mapped to Repr(M; @ My) C My & Ms.

The proof goes as follows. The pure module M3 := M; ® g M5 has slope A\3 =
A1+ 2. Choose an integer n > 1 such that nA;,nAy € Z. Foreach: = 1,2, 3,
the vector space Repr(M;) is equal to ©)g—nx; <|C|<1Eigen((z*/\i@)”, ¢). The
statement that we want to prove follows from (2% ®)" =g~ A(n=1)/2;=nAi pn
and the observation that ¢~ *s™(»=1)/2;=13$" (1, ® wy) equals

qf)\ln(nfl)/2zfn)\1 (I)n(,wl) ® qf)\zn(nfl)/szn)Q‘bn(wz)
for wy € Repr(My), wy € Repr(Ms).

There is a second method, based on subsection 1.4.1, to define a subspace
of representatives for coker(® — 1, N) with N pure of slope A < 0. Let
data(N) = (\,V,A,{D(0)}) and Koc ® N = Koo ®c V. Then

Vt.= Z 2oV
SGQ, 0<s<—A

can be seen to be a vector space of representative for coker(® —1, Koo ® V).
This set of representatives is invariant under the action of Gal and therefore
Repr*(N) := (V1) (depending on the choice of L C C) is a C-subspace
of Ngiobar representing coker(® — 1, N). Again N +— Repr*(N) has the
same functorial properties as M — Repr(M). However the behaviour of
Repr*(N) with respect to tensor products is more transparent.

3. Moduli spaces for ¢-difference equations

For a difference module M over K we consider again the slope filtra-
tion 0 = My C My C --- C M,. One associates to M the graded module
gr(M) := ®]_{M;/M;_;. The aim is to produce a moduli space for the col-
lection of all ¢g-difference modules over K with a fixed gr(M). This problem
is the theme of [R-S-Z]. As Ch. Zhang has remarked, the problem is already
present in a paper of G. Birkhoff and P.E. Guenther, see [Bir]. Here we treat
the general case (i.e., arbitrary, rational slopes).

Fix a split difference module S = P, @ P, @ --- @ P, (with r > 2)
over K such that each P; is pure of slope A; and Ay < Ay < --+ < A,
One considers the pairs (M, f) consisting of a difference module over K
and an isomorphism f : gr(M) — S. Two pairs (M (4), f(i)), i = 1,2 are
called equivalent if there exists an isomorphism f : M(1) — M(2) such
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that gr(M(1)) sf) gr(M(2)) 13§ coincides with f(1). One wants to give
the collection of equivalence classes a structure of algebraic variety over C.
A naive, but useful way is to produce in every equivalence class a unique
representative (M, f). Our aim is to define a moduli functor F and to find
a fine moduli space for F.

Tt is useful to give another formulation for the pairs (M, f). Let U be
the group of the K-linear maps u : S — S such that u respects the filtration
PLCP®P,C---CSofSand moreover gr(u) = id. Let ® = &g denote
the given action on S. For any u € U one defines the ¢-difference module M
by M := S provided with a new ®-action, namely u®. Let F*(C) denote
the set of all actions {u®}. Two actions u;® and us® are equivalent if
there exists an a € U such that u; ®a = aus®. Let F(C) denote the set of
equivalence classes. We note that this coincides with the set of equivalence
classes for the pairs {(M, f)}.

For any C-algebra R (i.e., commutative and with a unit element) one de-
fines U(R) as the set of the R®¢ K-linear maps u from R®¢ S to itself such
u respects the filtration R®c P C R®c (P1 ¢ P2) - C R®¢ S and more-
over gr(u) = id. Further F*(R) denotes the set of all actions {u®} with
u € U(R) on R®¢ S. As before, two actions u; ® and us® are equivalent
if there exists an a € U(R) such that a='u; ®a® ™! = uy. The set of equiv-
alence classes is denoted by F(R). Thus we obtain a covariant functor F
defined on the category of the C-algebras. One can view F as a contravariant
functor on affine schemes over C and extend F to a contravariant functor
from C-schemes to the category of sets. Our aim is to show that F is repre-
sentable by a certain C-algebra, or in other terms by an affine scheme over
C. It will turn out that the scheme representing F is in fact Ag for some N.

ExampLE 3.1. — S = P & P, with pure modules Py, P> of slopes
A1 < Ag.
Any element in U has the form u = 1+ u; 2 with uy 2 : P, — P; a K-linear
map. Further v := a " 'u®a® ! satisfies v1 2 = u12 — a2 + ®(a12). Here
®(a12) denotes the action of ® on the element aq 2 of the pure module
B :=Hompg (P2, P1) = P;® P;. The map B — F(C) yields an isomorphism
coker(® — 1, B) — F(C).

For any C-algebra R, one obtains in the same way one isomorphism
coker(® — 1, R®¢c B) — F(R). In 2.6, one has defined the C-vector space
Repr(B) C Bgiopai C B of representatives for coker(® — 1, B). One intro-
duces the functor F° by F°(R) = R ®¢ Repr(B). One obtains an isomor-
phism of functors F°(R) — F(R).

The finite dimensional C-vector space Repr(DB) is seen as complex alge-

- 685 —



Marius van der Put, Marc Reversat

braic variety. Its algebra of regular functions O(Repr(B)) is the symmetric
algebra of Repr(B)*. Then

Homg_ O(Repr(B)), R) = Homg_ (Repr(B)*, R) = Repr(B)QR.

algebra( vectorspace

Thus F° and F are represented by O(Repr(B)). In terms of schemes, F is

represented by Repr(B), seen as affine space over C. We note that Repr(B)
is in fact the C-vector space Ext!(Py, Pi), where Pj, P, are seen as left
K[®,®~']-modules. The universal family is made explicit in the following
examples.

(1) P, = Ke; for i = 1,2 and ®e; = e;, Pes = 2tep. Then the universal
family is K[zg,...,xi—1]e1 + K[xo,...,2:—1]ea with ® given by Pe; = e
and ey = 2leq + (vg + 112+ -+ + 2412 ey

(2) P = Res(K,ep) with ®e; = 27Wmey, t,n > 1, g.c.d.(t,n) = 1 and
Py = Key with ®e; = e5. The universal family is:
Kplzo,...,xi—1]er + Klxo, ..., 2t—1]ea with ® given by e; = 2z
ey = ey + (xo + 212V + -y 1207/ M)ey.

—t/ne; and

THEOREM 3.2. — Let S = Py & --- @ P, be a direct sum of pure modules
with slopes A1 < -+ < A.. The functor F associated to S is represented by
a free polynomial ring over C in N =37, ,(Aj — A;) - dimg P; - dimg P;
variables. Equivalently, F, seen as a contravariant functor from C-schemes
to sets, is represented by the affine space Ag.

Proof. — We will use induction with respect to r. The case r = 2 is dealt
with in Example 3.1. Take r = 3. Write F; 23 for the functor associated
to P & P, @ P3. Further F; o, F23,F1,3 are the functors associated to
P ® P, Po® P3, Py ® Ps;. There is a morphism of functors T': F1 23 —
F1,2 X Fa 3. An element of F7 2 3(R), represented by a filtration My C My C
M3, is mapped to the pair of equivalence classes ([My; C Ms], [Ma/M; C
Ms/M;)) in Fi2(R) X Fa 3(R). We claim that Fi 23 is a trivial torsor over
G := F1,2x Fo 3 for the algebraic group F 3. In other words, we will produce
an action m, functorial in R,

m: Fi13(R) X Fi23(R) = Fi23(R) ,

such that the map (g, h) — (m(g, h), h) from F; 3(R) x F1 2,3(R) to the fibre
product Fi 2 3(R) Xg(r) F1,2,3(R) is a bijection. We note that this definition
becomes the usual one, after introducing the algebraic group (Fi 3)g over
G, by the formula (F1 3)g(R) = F1,3(R) x G(R) .
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The triviality of the torsor means that there is an isomorphism of func-
tors Fi1,3 X (Fi,2 X Fa3) — Fi,2,3 compatible with T. The last statement
and the case r = 2 imply the theorem for the case r = 3.

We represent, as before, an element of Fj 2 3(R) as an equivalence class
of actions u® on S with u € U(R). Let ~ denote the equivalence relation on
U(R), given by u; ~ ug if there exists an a € U(R) with a ™ tu; ®a® ™! = u,.
Then U(R)/ ~ identifies with F; 2 3(R). Let U’(R) denote the subgroup of
U(R) consisting of the elements u such that u —1is 0 on R Q¢ (P & P»)
and R®c P; is mapped to R®¢ Pi. On U’(R) we introduce the equivalence
relation ~ by uj ~ us is there exists an a € U’'(R) with a = 1u; ®ad®~! = us.
Now U’(R)/ ~ identifies in an obvious way with Fi 3(R).

A small calculation, based on the observation that U’(R) lies in the cen-
ter of U(R), shows that the map U’(R) x U(R) — U(R), given by (v/,u) —
u'u, has the property that uj ~ u) and u; ~ ug imply wju; ~ uhus. Thus
there is an induced action m : (U'(R)/ ~) x (U(R)/ ~) — (U(R)/ ~). One
can verify that m defines a group action, that m has the torsor property
over G(R), and that the construction is functorially in R. Finally, we want
to show that the torsor is trivial. Thus we need to define a functorial isomor-
phism Fi 3(R) x G(R) — Fi,2.3(R). This is done as follows. One considers
the map

Fi3(R) x Fio(R) x F33(R) — ff:z,g(R) (see Example 3.1) ,

1 w12 wigs
given by (u13,u1,2,u23) — | 0 1 wug3z | -®. One easly verifies that
0 0 1

the resulting map
Fia(R) x FTo(R) x F33(R) — Fr23(R),

is bijective and depends functorially on R. Since the maps F7,;(R) — F; j(R)
are isomorphisms functorial in R, we have found a trivialization of the torsor.
This ends the proof for the case r = 3.

Forr=4and S = P, & --- @ Py, one defines in a similar way functors
F1,2,3,4, F2,3.4 etc. With the same methods one proves that the morphism
of functors 1234 — G, where G := F1 2.3 X 7, , F2,3.4, is a trivial torsor for
the algebraic group Fi 4. It is clear how to extend this to any r > 4. (]

Remarks 3.3. — (1) Let S = P, & --- @ P, with corresponding functor
F. The method of the proof of Theorem 3.2 yields maps HKJ- f{jj(R) —
F7T(R), functorial in R. Let F°(R) denote the image of the this map. Then
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JF? is a functor and the obvious morphism F° — F is an isomorphism. In
particular one finds an isomorphism of functors [], < Fi,; — F which is
obtained by trivializing the sequence of torsors involved in F.

(2) The case of Theorem 3.2 where the slopes are integers is present in
a paper of G. Birkhoff and P.E. Guenther, see [Bir], where they present
normal forms for these equations. This case is also treated in [R-S-Z, Sau2,
Sau3].

(3) Each F;; has the natural structure of algebraic group over C and
is in fact equal to Ext!(P;, P;). However, F has no evident structure of
(unipotent) algebraic group. In contrast with this, the obvious injective
map [[,_; F7;(R) — U(R) has as image a subgroup of U(R).

In proving this, one has to consider indices a < b < ¢ and one has to
show that the the obvious map F¢ ,(R) x F{ .(R) to R ® Hom(P,, P,) has
image in 7 .(R). This follows from the statement: Repr(M;) ®@ Repr(Ms)
is mapped to Repr(M; ® Ms) C M1 ® Ms, proved in 2.6.

The functorial isomorphism [];_ ;F7; — F provides the latter with a
structure of unipotent linear algebraic group.

4. Global difference modules

The skew ring D := C[z,2z71|[®,®71] is defined by the relation
dz = gz®. We recall that a global difference module is a left D-module
N, which is as C[z, 27 1]-module, finitely generated and free.

It suffices in fact to assume that N is finitely generated as C|z, z71]-
module. Indeed, let Ny denote the torsion submodule of N and let I C
Cl[z, 271] denote the anihilator ideal of Ny. Then Ny and I are invariant
under the action of ® and ¢. This implies I = (1), Ny = {0} and N is free.

LEMMA 4.1. — Any global difference module has a cyclic vector.

Proof.— We imitate the proof of [vdP-S2|, Proposition 2.9. Let the
global difference module N have rank n over C[z, 2~ ). It suffices to find an
element m € N such that the C[z, 27 !]-module N’ generated by {®*m| s >
0} has rank n. Indeed, this implies that the global difference module N/N’
has rank 0 and is therefore equal to 0. This condition on m translates into
mAPMAP 2 mA--- AP Im # 0 as element of the global difference module
A"N.
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We recall that for any integer d > 1, the global difference module AYN is
defined as the dth exterior product of N as C[z, z7!]-module with ®-action
given by ®(mi A--- Amg) = (Pm1) A--- A (Pmg).

Suppose that we have found an element e € N such that {®%e| s > 0}
generates a C[z, 27 ]-module N’ of rank m < n. Then e A--- A ®™ e #£ 0
and eA---A®™e = (0. Take an element f € N\ N’ and consider € = e+ \z°f
with A € Q and s € Z. We claim that for suitable A and s one has that
E(\,s):=€éA--- AN®P™e # 0. From this claim the lemma follows. One can
write F()\,s) as a sum of terms, which are wedge products of some ®"e
and some ®°f (like e A ®e A P2f A--- A O™ f) with coefficients (A2*)%g® for
a=0,...,m+ 1 and suitable b. If E(),s) = 0 for all A\ and s, then each
of these wedge products is 0. This contradicts e A Pe A --- A P le A P™ f
£0. O

A global module N will be called pure of slope X if C({z}) ®c[,.-1] N
is pure with slope A and C({z7'}) ®c[,.—1] N is pure with slope —A. An
example of a pure global module with slope t/n (and n > 1, g.c.d.(t,n) = 1)
and rank n is C[z'/", 271/"]e with ®e = cz!/"¢ and ¢ € C*.

LEMMA 4.2. — Pure global modules.

(1) A global module N is pure with slope t/n (withn > 1 and g.c.d.(t,n) = 1)
if and only if N = D/DL(z7t®") for a monic L € C[T] with L(0) # 0.

(2) Let L € C[TY] have the form [;_,(T —¢;)™ with distinct cy, ... cs € C*.
Then D/DL(z7t®™) is the direct sum of the indecomposable global modules
D/D(zt®" — ¢;)™i.

(3) Let N be a pure global module of slope t/n and m € N. The operator S
in Clz, 27 Y[®] of minimal degree in ®, satisfying S(m) = 0, has the form
S = P(z7'®"™) with monic P € C[T] and P(0) # 0.

Proof.— (1) Suppose that N is pure with slope t/n and has rank m - n.
Consider a cyclic vector e of N and let L € C[z, 27 !][®] denote a non zero
element of minimal degree (namely m-n) in ® such that Le = 0. Clearly the
constant term L(0) € C[z, 27 !] is different from 0. After multiplication by an
invertible element of C[z, 271], one may suppose that L(0) € C[z] and that
the constant term of L(0) is 1. Now ®~! acts bijectively on N = D/DL.
This implies that L(0) = 1. The Newton polygon of L, considered over
C({z}), contains only terms z*®" with a + bL > 0. The Newton polygon
of L, considered over the field C({z'}) contains only terms 2¢®’ with
a+ bt < 0. Thus L € C[z~*®"] and L(0) = 1. After multiplication by a
constant, we may suppose that L is monic.
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On the other hand, a global module, given as D/DL with L € C[¥] and
L(0) # 0, is clearly a pure global module with slope t/n.

The proof of (2) is straightforward and (3) follows from the observation
that Dm is again a pure global module of slope t/n. O

A global difference module has, in general, no slope filtration! We con-
sider the category of the global modules N that have an ascending slope
filtration, i.e., a sequence of submodules 0 = Ny C N; C --- C N, = N,
such that each quotient N;/N;_; is pure with slope A\; and Ay < -+ < A,

THEOREM 4.3. — The functor T from the category of the global differ-
ence modules with ascending slope filtration to the category of the difference
modules over K, gwen by N — K ®c[,.-1) N, is an equivalence of Tan-
nakian categories.

Remarks 4.4. — For a given module M over K, the global module with
ascending slope filtration N with T(N) = K ® N = M has the property
that C({z7'}) ® N is a difference module over the field C({z7'}) which is
a direct sum of pure modules. Indeed, C({z7!}) ® N has both an ascending
and a descending slope filtration. In other words, N is an algebraic vector
bundle above P! — {0, 00} with a ®-action and a filtration according to the
slopes at z = 0.

One can see Theorem 4.3 as an analogue of a theorem of G. Birkhoff
which states that every differential module over K comes from a connection
on P! which has only singularities at 0 and co. Moreover the singularity at
oo is regular singular.

The proof of Theorem 4.3 is given in the following series of observations

Observations 4.5. — (1) Let N be a global difference module with as-
cending slope filtration 0 = Ng C N; C --- C N, = N such that N;/N,_; is
pure of slope \; = ¢;/n; with n; > 1, g.c.d.(t;,n;) =1 and A\y < -+ < A,

Let m € N. The difference operator L € C|z,271][®] C D, monic and of
minimal degree in @, satisfying L(m) = 0, has the form

L=q"2"Ly(z7"@™) - L (27 @™)
with Ly, ..., L, monic elements of C[T]| and suitable a,b € 7Z.

Proof.— L, is the polynomial of Lemma 4.2, applied to the image of
m in N,/N,_;. If m happens to be an element of N,_;, then L, = 1.
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Lemma 4.2 applied to the image of L, (27t ®")(m) in N,_1/N,_5 produces
L,_;. Induction finishes the proof. One multiplies the above operator with
a suitable term ¢®z’ to obtain a monic operator. O

(2) Using (1) one deduces that any morphism between global difference
modules with ascending slope filtrations respects the filtrations. Further the
full subcategory of the category of all global modules, whose objects are the
global modules with ascending filtration is closed under direct sums, tensor
products, duals, submodules and quotients. In particular, this subcategory
is a Tannakian category.

(3) The indecomposable difference module M := Res(K,e) @k Uy, with
Pe = cz'/™ has a cyclic vector f such that L = (z7t®" — "¢t (»=D/2)m g
a polynomial of minimal degree in ® with L(f) = 0. Clearly, M = T(N)
with N = D/D(z7t®" — c"qt("’l)/z)m and Mgopar coincides, according to
Definition 1.8, with N.

One concludes that for a split difference module M over K there exists
a unique (up to isomorphism) global module N, direct sum of pure global
ones, such that T(N) = M.

(4) Let N be as in (1). The associated graded global module gr(NV) is defined
as 35y Nj/Nj1.

Let a direct sum of pure global modules U = Ry @ - - - ® R, with slopes
A1 < -+ < A be given. As in section 3, one considers the set of equiv-
alence classes of the pairs (N, f) consisting of a global module with an
ascending slope filtration and an isomorphism f : gr(N) — U. Two pairs
(N;, fi) are equivalent if there exists an isomorphism « : N; — Ns such

that gr(N7) 97(g) gr(Ns) 53§ coincides with fi. As in section 3 one
proves that the set of equivalence classes is in a natural way isomorphic
to J;.; coker(® — 1, Hom(R;, R;)).

(5) We use the notation of (4) and put S = T(U) and P; = T(Q;). The
functor T" maps the set of equivalence classes for U = R1 @ - -- @& R, to the
set of equivalence classes for the graded module S = P, & --- ® P, over K,
studied in section 3. From Theorem 2.5 one easily concludes that T" defines
an isomorphism between the two classes of objects.

This implies that the functor T induces a bijection between the isomor-
phy classes of global difference modules with an ascending filtration and the
isomorphy classes of difference modules over K.
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(6) The final part of the proof of Theorem 4.3 consists of verifying that
the map Hom(Ny, N2) — Hom(T'(Ny),T(Nz)) is bijective. Since T clearly
commutes with tensor products we may suppose that N1 = Clz, 2~ !]e with
®e = e. Thus we have to show, for any global module N with ascending
filtration, that ker(®—1, N) — ker(®—1,T(N)) is bijective. The injectivity
is obvious.

Let 0 = Ng C Ny C -+ C N, = N be the slope filtration. Then
0=MyC M C---C M, =M with M; = T(N;) is the slope filtration of
M =T(N).

Let N’ be the C|z, 2~ !]-submodule generated by {m € N| ®(m) = m}.
Then N’ is a pure global submodule of N with slope 0. Define s < r to
be the smallest integer such that N’ C N,. The map «a : Ny — Ng/Ng_1
is not zero on N’. Hence A; = 0. The restriction of o to N’ is injective.
Indeed, according to (1), a non zero element of Ny_; cannot have minimal
polynomial & — 1.

Let M’ denote the K-subspace of M generated by {m € M|®(m) = m}.
Then M’ is a pure submodule of M with slope 0. Thus M’ C M, and
the restriction of T(«) : My — My/Ms_1 to M’ is injective. The im-
age T(a)(M’) contains T(«)(N'). Let M~ C M, denote the preimage
T(a) YT (a)(M’). Then M’ — M~ /M,_; is a bijection and thus M~ is a
direct sum M,_1 ® M’. The global module N~ with ascending filtration and
T-image My ® M’ is clearly Ny_1 ®Clz, 27 ®c V where V is a C-vector
space where ® acts as the identity. Then ker(® — 1, N) = ker(® —1,N~) =
V =ker(® — 1, M~) = ker(® — 1, M). O

Remarks 4.6. — (1) Let N be as in part (1) of Observation 4.5 and
put M = T(N) = K ®c[z,--1] N. The elements m of N = Mspar are
characterized by the condition that the monic polynomial L of minimal
degree in @, satisfying L(m) = 0, has the form

L=q"2Ly(z1®™) ... L (2 d")
with Ly, ..., L, monic elements of C[T] and suitable a,b € Z.

(2) Let N be a pure global module of slope A > 0, then coker(® —1, K @ N)
is zero. Moreover, coker(® —1, N) is a C-vector space of dimension \-rankN
and the natural map coker(® — 1, N) — coker(® — 1,C({z7!}) ® N) is a
bijection.

- 692 -



Galois theory of g-difference equations

5. The Galois group of a ¢-difference module

5.1. Universal Picard-Vessiot extensions

We recall that a difference module M over K is split if M is a direct
sum of pure modules. A split difference module M over K has a Picard-
Vessiot extension PV(M) and the (difference) Galois group is the group
of the automorphisms of PV (M)/K which commute with the action of ¢
on PV (M). The universal Picard-Vessiot extension Univ for the family of
all split modules over K is the direct limit of all PV(M). The universal
difference Galois group G,y is the group of all K-automorphisms of Univ
which commute with the action of ¢ on Univ. The restriction of Gy, to
the subring PV (M) C Univ is the Galois group of M.

We note that the Picard-Vessiot ring of the difference module KoM
over K is simply K @k PV(M ) In particular, M and K ®x M have the
same Galois group. Moreover, K® K Univ is the universal Picard-Vessiot
extension for the collection of all difference modules over K since every
difference module over K is split.

We give the explicit description of Univ, given in [vdP-S1], p.150, in a
slightly changed form. Univ := K[{e(cz*)}, ], with ¢ € C* and A € Q. The

only relations are:

A

e(cr2M)e(cz™?) = e(crea2™ 2, e(1) =1, e(q) =271

The algebraic closure of K embeds in Univ, by identifying z* with e(e=277)
for all A € Q. The ¢-action on Univ is given by

de(cz) = ()1 -e(ez), ¢(0) = €+ 1.

The group Gypiy consists of elements o = (h,s,a) with h : C* — C* a
homomorphism with h(g) = 1, s : Q — C* a homomorphism and a € C.
The action of ¢ is given by

o(e(cz?)) = s(A) - h(c) - e(h(e2™7)) - e(c2?), o(f) =L+ a.

We will produce topological generators (for the Zariski topology) for this
rather complicated group. Define the elements I') A € Gy by

D(e(cz?)) = 2™ . g(e?™A) . e(cz*) and T'(0) = £ + 1
pu

Ale(cz?)) = e7 20 . e(c2?) and A(0) = £ +1,

where ¢ = e2™H@0+a17) with ag,a1 € R.
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For the commutator Com := AT "' A~! one calculates the formulas
Com(e(cz)) = e*™* . e(cz*) and Com(f) = ¢.

To any homomorphism s : Q — C* one associates the element § € G5, by
the formulas
5(e(cz)) = s(\) - e(cz) and 5(0) = ¢ .

We note that (any) § commutes with I' and A. Write D = § with s given
by S()\) — e2mITA

ProroOSITION 5.1. — I', A, D are topological generators for Gyngy-

Proof.— Let H be the group generated by I'y A, D and let Qt(Univ)
denote the total quotient ring of Univ. We recall that Univ is the direct limit
of Picard-Vessiot rings PV (M) of split modules M over K. The group Gyniy
is the projective limit of the automorphism groups Gy of these PV (M). We
have to show that the image of H in GG is Zariski dense. This is equivalent
to the statement that K is the set of the H-invariant elements of the total
quotient ring of PV (M ). Thus the statement of the proposition is equivalent
with the set of the H-invariant elements of Qt(Univ) is K.

(1) If ¢ € K[{e(c)},¥] is invariant under I' and A, then § € K.

Proof of (1). — Write £ = Y7 &¢* and all & € K[{e(c)}] and we may sup-
pose that &, # 0. Now R := {e?™(@0ta17)| g4 ) € R, 0 < ag,a; < 1} is a
set of representatives of C* /¢%. Each &; has uniquely the form > eer ice(c).
One sees that &, is invariant under I' and A. From Te(c) = €271 - ¢(c) and
Ae(c) = e=2m0 . ¢(¢) it follows that &, € K. We may suppose that &, = 1
and we have to prove that m = 0. Suppose that m > 0 and apply T to £.
Comparing the coefficient of £~1 one finds that I'(¢,,, 1)+ = = &pn1. This
is clearly impossible for m > 0 and an element in K[{e(c)}]. We conclude
that m =0 and ¢ € K. a

(2) Let £ € Univf, then € € K.

Proof of (2).— One write { = >, axe(z) with all ay € K[{e(c)},4).
Then D(€) = > axe?™7e(2*). Tt follows that a) = 0 for A # 0. By (1),
EEeEK. O

(3) Let &€ € Qt(Univ)H . Then I := {a € Univ | aé € Univ} is the unit
ideal.

(3) implies £ € Univ and, by (2), £ € K. This finishes the proof of 5.1.
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Proof of (3).— The ideal I is invariant under H. Write any element a € T
as )_ycpaxre(2?) with all ax € K[{e(c)},£]. Then D™ (a) = 3 aye*™ 7" .
e(z*) € I for every m > 0. It follows that all ay € I. Thus I is generated
by an ideal J C K[{e(c)}, ] that is also H-invariant. Let m > 0 be minimal
such that J contains a non zero element of degree m in £. Let J,,, C K[{e(c)}]
denote the ideal of the coefficients of ¢™ of the elements in J with degree
< m. Then J,, is again H-invariant. Consider a non zero element A =
Y ccr @ce(c) € Jp, with all a. € K. From I'A € J,,, and A"A € J,, for
all n > 0 one concludes that each e(¢) with a. # 0 lies in J,,. Hence J,,
is the unit ideal. If o = 0, then the proof of (2) is finished. If m > 0,
then, by construction, J contains an element B of degree m in ¢ and with
leading coefficient 1. Let B’ be another element having these properties.
Then B — B’ = 0 since its degree in ¢ is < m. Thus B is unique and
therefore invariant under I' and A. Using (1), one obtains the contradiction
BcK. d

The proof of Corollary 5.2 is similar to that of Proposition 5.1.

COROLLARY 5.2. — The universal ring Univ,s for the category of reg-
ular singular q-difference modules over K is K|[{e(c)},¢]. The restrictions
Trs, Ars of I') A to the universal ring Univ,s commute and are topological
generators for the group G,s of all automorphisms of the difference ring
Univ,s.

We introduce some Tannakian categories. The first one RegSingx con-
sists of the regular singular difference modules over K.

The second one, called Tuples;, has as objects the tuples (V,T'y, Ay)
where V is a finite dimensional vector space over C and I'y, Ay are com-
muting elements in GL(V') and such that all their eigenvalues have abso-
lute value 1. A morphism (V,Tv,Ay) — (W,Tw,Aw) is a linear map
f:V — W satisfying fol'y =Ty o f and foAy = Ay o f.

The third one, called Unitcirc, consists of the finite dimensional complex
representations p of the group Z? such that every element in the image of
p has all its eigenvalues on the unit circle S* :={z € C| |z| = 1}.

LEMMA 5.3. — There are equivalences of Tannakian categories

RegSingx — Tuples; — Unitcirce .

Proof.— To a regular singular difference module M over K one asso-
ciates its ‘solution space’ V := ker(® — 1,Univ,s ®x M). Then V is a
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complex vector space and the canonical map Univ,s @c V — Univ,s @ g M
is bijective. The group G, acts on V. Let I'y,, Ay denote the actions of
I, A on V. The eigenvalues of I'yy, Ay have absolute value 1, according to
the definition of I" and A. Then we associate to M the tuple (V, 'y, Ay ).

To a tuple (V,T'y, Ay) we associate the representation p : Z2 — GL(V)
with p(1,0) =Ty and p(0,1) = Ay.

It is easily verified that the functors, defined above, are equivalences of
tannakian categories. O

We recal that E, = C*/ ¢% and consider the maps

— 2miu
can:C,""% Cr B E,.
The indices u and z denote the global variables for these spaces. The map
pr is the obvious map. The map can is the universal covering. Its kernel
Z + Zt can be identified with m(E,). Let a,b denote the generators of
m1(Eq) corresponding to 1,7 (or to the two circles R/Z1 and R/Z7 on E).

We identify the group Z?2 (or equivalently the group generated by T,
A,s) with m(Ey), by (1,0) (or I'ys) is mapped to a and (0,1) (or A,s)
is mapped to b. In this way one finds a Tannakian equivalence between
RegSingx and the category of the ‘unit circle’ representations of m1(Ey).

To a connection (M,V) on E, one associates its monodromy repre-
sentation, i.e., a representation of 71 (E,). In this way the category of the
connections on FE, is equivalent to the category of the representations of
m1(E,). Combining this with Lemma 5.3 one obtains

COROLLARY 5.4. — The category of the regular singular difference mod-

ules over K is Tannakian equivalent to a full subcategory of connections on
E,.

In section 6, this equivalence will be made explicit. This result is, in a
different form, present in the work of J. Sauloy, see [R-S-Z].

5.2. Galois groups for split modules over K

Now we extend the above to larger categories. We introduce a category
Tuplesy as follows. The objects are tuples

(ViAVatreq, I'v, Ay), satisfying :

- 696 —



Galois theory of g-difference equations

(a) V is a finite dimensional vector space over C.
(b) V is the direct sum of the subspaces Vy (and thus there are only finitely
many A with Vy # 0).
(¢) Ty, Ay are invertible operators on V respecting the direct sum decom-
position and such that all their eigenvalues are on the unit circle S = {z €
C| |z| = 1}. _
(d) Ty Ay 'A™1 acts on each Vi as multiplication by €27,

A morphism (V,{V,},Tv,Ay) — (W,{Wi},Tw,Aw) is a linear map
f V. — W which respects the direct sum decompositions and satisfies
fol'y =Twof, foAy = Aw o f. The tensor product of two objects
(‘/7 {VA}v Iy, AV) and (Wv {WA}7 Pw, AW) is (Uv {U)\}a L'y, AU)7 given by
U=VaW, U, = le«l“l‘ll«Z:)\Vp‘l ®W#2 and I'y = I'y @ 'y, Ay =
Ay @ Aw. It is easily seen that Tupless is a Tannakian category. Further,
the Galois group of an object (V, {Vi},T'v, Ay ) is the algebraic subgroup of
GL(V) generated by the maps 'y, Ay, Dy, where the last map is defined
by: Dy is multiplication by e>™™* on the direct summands Vy of V.

One defines a functor F from the category of the split g¢-difference
modules over K to the category Tupless as follows. For a module M,
f(M) = (V, {Vx}, Fv, A\/), where
(i) V :=ker(® — 1, Univ @g M).

(ii) Vy := ker(® — 1, Univy @ M), where Univy := K[{e(c)}, ]e(z?).
(iii) Ty, Ay are induced by the action of I'; A on Univ and Univ @k M.
Since ® — 1 commutes with I', A, the latter maps leave V invariant.

The definition of F(f), for a morphism f, is obvious. The verification that
F is a functor between Tannakian categories is straightforward.

PROPOSITION 5.5. — F is an equivalence between the Tannakian cate-
gories of the split difference modules over K and Tupless.

Proof. — One defines a functor G from the category Tupless to the cate-
gory of the split difference modules over K, in the following way. The image
M of an object (V,{Vi},Tv,Ay) is the set of the Gypqp-invariant elements
(or the elements invariant under I'; A, D) of Univ ®¢ V. The action on the
last object is defined by I'(u ® v) = I'(u) ® 'y (v) for u € Univ, v € V and
similarly for A and D. The proof that G is the ‘inverse’ of F is similar to
the proof of Proposition 5.1. O

The (difference) Galois group of a split module M over K coincides with
that of the object F(M). We note that T'upless is equivalent to the category
of all difference modules over K, too.
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EXAMPLE 5.6. — Let M = Res(E(cz!/™)) with n > 1, g.c.d.(t,n) = 1
and ¢ = e?™(@0+a7) with qg,a;7 € R and 0 < ag,a1 < 1. Write M as
Kne with ®e = czt/"e. Then {z//"e| j = 0,...,n — 1} is a basis of M
over K. To obtain a basis for V' = V,/, = ker(® — 1,Univ,/, ® M) one
observes that V is in fact ker(® — 1, Kle(e=2™7/) e(e2™/™)]e(cz!/™) @k
K,e). After identifying z'/" with e(e=277/"), this space takes the form
K, le(e?™/™)]e(czt/™) @ K,e and the ®-action is given by ®(ae(czt/") ®
be) = ¢(a)z=t/"e(czt/™) @ ¢(b)z'/™e. From this expression one finds a basis
{vj] 7=0,...,n—1} of V of the form

n—1

vj = Z ®*{e(e2™/M)e(czt™) @ e} .

s=0
We use the ‘cyclic’ notation vj4, = v;. The actions of I' and A are given
by

Tvj = e*™; 4, and Avj = e~ 2mia0ti/m)y,

The difference Galois group G is topologically generated by I'; A and D (the
latter is here the multiplication by €77t/ ™). One finds the exact sequence
1 - G° - G — (Z/nZ)®> — 0 with G° = G,, = C*id. Further I'* =
e?minarid A" = e2minaojd TAT-'A~! = *™t/"id and G/G° is generated
by the images of I' and A.

5.3. Galois groups for modules over K with two slopes

Let the g-difference module M over K be given by an exact sequence
0— P, —> M — P, — 0, where Py, P, are pure with slopes A\; < Az. The
Picard-Vessiot ring PV (M) of M contains PV (P, & Ps), the Picard-Vessiot
ring of P; @ P5. Thus there is an exact sequence 1 - H — G — G’ — 1,
where G and G’ are the difference Galois groups of M and P; @ P5. The
group G’ has been calculated in subsections 5.1 and 5.2. Further, H is the
difference Galois group of the extension PV (P, @& P;) C PV (M).

Let V1, V5,V denote the solution spaces for Py, Po, M. There is an obvi-
ous exact sequence 0 — Vi — V — V5 — 0. The space V; is invariant under
the action of G on V and the induced action of G on gr(V) = Vi & V;
coincides with G’. Hence H can be identified with a C-vector space of linear
maps from V5 to V;. Indeed, for h € H, the kernel of h — 1 contains V; and
the image of h — 1 lies in V;. In other words, H can be identified with a
linear subspace W of V5 ®¢ Vi, which is the solution space of Py @k P;.

__ For any difference module N over K we write N for the difference module
K ®x N over K. Consider the split exact sequence

0—>ﬁ1—>M\—>ﬁ2—>0.
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The splitting ﬁg — M is unique since the only morphism ]32 — ﬁl of
g-difference modules over K is the zero map. Moreover, the canonical mor-
phism K ® PV(Py & P,) — PV(M) is an isomorphism. The resulting
embedding PV (P, @ P;) C PV(]\/Z) extends in a unique way to an em-
bedding PV (M) C PV(]\/Z). The solution space V' of M can be defined as
ker(®—1, K®xUniv@g M). Similar expressions are valid for Vi, V5, the so-
lution spaces of Py, Py. Write G” for the difference Galois group of PV(Z/W\ )-
The restriction map induces an isomorphism G” — G’. We conclude that
the exact sequences

1-H—-G—-G —-1land0 =V, =V =V, =0

have canonical splittings. Write V' = V; @ V5 for this splitting, then G’
(or G") can be identified with the subgroup of G leaving both Vi and V3
invariant. Thus G is the semi-direct product H x G’. The exact sequence,
defining M is given by an element £ € coker(® — 1, Hom(Ps, P;)). The main
issue is to derive H (or W) from the given £ and to formulate £ in terms of
the solution spaces Vi, Va.

Let N be a pure difference module with slope A < 0 and solution space
V(N). Our first aim is to formulate coker(® — 1, N) in terms of V/(V).

LEMMA 5.7. — Let N be a pure module with slope A < 0. The canonical
map a— 1®a from N to Univ @ N induces an injective map

coker(® — 1, N) — coker(® — 1,Univ @k N)

whose image consists of the elements which are invariant under the universal
group Guniv .

Proof.— It suffices to consider a pure, indecomposable N =
Res(E(dz!/™))®U,,. By writing N as an extension of Res(E(dz!/"))®U,,_,
by Res(E(dz'/™)), one is reduced to verify the lemma for Res(E(dz'/™)).
For notational reasons we write R = L @ Q for some Q-vector space L.
Let C C C* denote the elements ¢ of the form e27i(@0+a17) with ¢, € L.
Then we can write Univ = ®.core@o[lle(cz?). Then Univ @ x N =
©K[lle(cz)) @k N. Each direct summand is invariant under the action
of ® and G,i,. The cokernel of ® — 1 of each direct summand has a cer-
tain Gynip-action. Using the topological generators I'; A, D of this group,
one finds that only the direct summand K [¢] ®x N can produce Gy pip-
invariant elements in the cokernel of ® — 1. A further inspection shows
that this contribution comes from the subspace K ® g N. Thus we find the
required bijection. (I
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We observe that Univ @ N = Univ®c V(N), where the solution space
V(N) of N is defined as ker(® — 1,Univ @ N). The Gypp-invariant part
of coker(® — 1,Univ ®c V(N)), comes from K[{e(c)},lle(z~) @¢c V(N),
where D acts as the identity. We conclude the following.

LEMMA 5.8. — Let N be a pure module with slope A < 0 and solution
space V(N). Then coker(® — 1, N) can be identified with the C-linear sub-
space of

(coker(¢ — 1, K[{e(c)}, fle(2™)) @c V(N),

consisting of the elements invariant under I' and A.

LEMMA 5.9. — Let A < 0. The subspace H(X) :={®4/-r<|¢j<1Ce(cz*)}[(]
of K[{e(c)},€e(z~) has the following properties:
H()\) — coker(¢ — 1, K[{e(c)}, f]le(2=)) is bijective and
H()\) is invariant under the actions of T'; A and D.

Proof. — From Theorem 2.5 it follows that we may, for the calculation of
this cokernel, replace K by Clz, 27 !]. After replacing z by e(¢~!), we have
to compute the coker of ¢ — 1 on the space {@..oCe(cz~*)}[(]. Using 2.6
one finds that H()\) has the first property. An inspection of the actions of
I', A, D yields the second property. O

COROLLARY 5.10. — The canonical map coker(® — 1,N) — (H(A\) ®
V(N))<U"A> (j.e., the elements invariant under the group generated by T
and A) is an isomorphism.

COROLLARY 5.11. — The exact sequences 0 — P, — M — P, — 0
(with Py, Py pure modules with slopes A1 < Ao and solution spaces Vi, Va)
are in bijection with the elements of (H(\; — \2) ® Hom(Va, V7)) <I+4>,

THEOREM 5.12. — Let the difference module M be given by an exact
sequence 0 — P, — M — Py — 0 with Py, P> pure modules with slopes
A1 < Xo. Let V1,V denote the solution spaces of Py, P and write V =
Vi @& Vo for the solution space of M.

Let & € coker(® — 1,Hom(P», Py)) and its image
¢ € (H(M\ — A2) @ Hom(Va, V1)) <UA> which represents the evact sequence.

Define W C Hom(Va, V1) to be the smallest subspace such that
& e HA — o) @c W. Then:

The difference Galois group G C GL(V') of M is the semi-direct product
G = H x G with: G' = {g € Glg(V;) =V, fori = 1,2} is the difference
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Galois group of Py ® P> and H consists of the linear maps of the form id+w
where w s equal to v Vo 5 Vi CV withw e W.

Proof. — Tt suffices to prove the last statement. For any submodule N
of Hom(P;, P;) one considers the exact sequence 0 — N — Hom(Ps, P;) —
N’ — 0. This gives rise to an exact sequence

0 — coker(® —1, N) — coker(® —1,Hom(Ps, P;)) — coker(® —1,N') — 0.

It follows that there exists a smallest submodule Ny such that £ lies in
coker(® — 1, Ny). The solution space V(Np) lies in Hom(Va, V7) and & be-
longs to H(A1 — A2) @ V(Ny) (and is invariant under < I'; A >).

It is clear that H identifies with {id + w| w € Wi} for some W7 C
Hom(V2, V1) which is invariant under the action of the difference Galois
group of Hom(P», P;), acting upon its solution space Hom(V2, V7). In other
words, Wi is invariant under < I') A >. By Tannakian correspondence,
W1 corresponds to a submodule N7 of Hom(Ps, P;). Moreover, ¢ lies in
coker(® — 1, Ny).

One concludes that Ny = Ny and that W = W7y, O

The elements {e(cz™ )™} 1= <jej<1; mz0, With A := A — Xg, form a
C-basis of H(A; — Az). Thus ¢ can be written uniquely as > e(cz™*)¢™
® w(c,m) with all w(e,m) € Hom(Va, V7). Then W is the subspace of
Hom(Va, V1) generated by {w(c,m)}. This observation makes it possible
to compute the difference Galois group for explicit examples.

5.4. Modules over K with more slopes

We describe here the difference Galois group for the general case. The
proof follows straightforward from the case of two slopes. Consider a ¢-
difference module M over K with slope filtration 0 = My C M; C --- C
M, = M. Write gr(M) = P, @ --- & P, where P; is pure of slope \; and
A1 < -+ < Ap. According to Remarks 2.5, part (1), M is given by an
element { = {¢; ;} in [[,; 77;(C) =[], coker(® — 1, Hom(P;, F;)). Using
the unique direct sum decomposition of KeoM=aoK® P; one finds a
canonical decomposition V =V, @& --- @ V. of the solution space V of M,
where V; stands for the solution space of P;. Moreover the difference Galois
group G C GL(V) of M is a semi-direct product G = H x G’. The group G’
is the difference Galois group of Py &- - - @ P, and consists of the g € G that
leave each subspace V; invariant. The normal subgroup H is generated by
subgroups H; ; with ¢ < j. This subgroup H; ; consists of the maps id+w;_;
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with U~}i)j =V 7y i1 2y V; € V with Wy, € Wi)j C HOI’II(‘/],V;) Further
W; ; is the smallest C-linear subspace of Hom(V}, V;) such that the element
§i.j € coker(® — 1, Hom(P}, P;)) is represented by &; ; € H(A\; — \j) @ Wy ;.
According to Remarks 3.3, part (3), H is in fact equal to set of elements
id+ Y, ; i with all w; ; € W; ;. Indeed, w; j o wj, € Wi for i < j <k
and any w;,; € Wi)]‘, Wik € Wj)k.

The Tannakian category of difference modules over K has the following
description in terms of solution spaces. One can attach to a difference mod-
ule M the tuple (V,{Va},Tv,Av,{&\ u}), where (V,{Va},Tv,Ay) is the
tuple associated to the split module gr(M) and &, , is, for each A < p, an el-
ement of H(A—p)®@Hom(V,,, Vi), invariant under the action of < I'y, Ay >.
The category of the above tuples is, in an obvious way, a Tannakian cate-
gory. The data {&,,} come from divergent solutions (i.e., with coefficients
in K ). They can be seen as the equivalent of the Stokes matrices in the
theory of irregular differential equations over C.

6. Realizing g-difference modules over K as connections
on the elliptic curve E = C*/¢”

As in section 2 we associate to any difference module M over K a vector
bundle v(M) on the elliptic curve E,. The aim is to provide v(M) with
a suitable connection. The following theorem gives an explicit version of
Corollary 5.4.

THEOREM 6.1 (REGULAR SINGULAR ¢-DIFFERENCE MODULES). — Let
a,b denote the generators of m(E,), corresponding to the shifts uw — u +
1, w — u+ 7 on the universal covering C, of E4. Let i :< I'ys, Apg >—
m1(Eq) denote the isomorphism given by I'ys — a, Apg — b.

For every regular singular difference module M over K, corresponding
to a representation p of < T'ys, Aps >, there exists a unique ‘unit circle’
connection Vs on v(M), corresponding to a representation p' of m(Ey),
such that p=1iop'.

This induces a Tannakian equivalence between the category of the reqular
singular difference modules over K and a full subcategory of the category of
all ‘unit circle’ connections on E,.

Proof. — We recall that a connection V : M — Qg ® M is called unit
circle if the corresponding representation p’ : m(E,;) — GL(V) has the
property that every eigenvalue of every p’(a) has absolute value 1.
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(1) We start by giving an explicit construction for rank one difference mod-
ules M over K. Write M = Ke with ®e = ce and ¢ € C*. A connection
Vr on v(M) is equivalent with a connection V : Oe — £ @ Oe commuting
with @ (we recall that O is the algebra of holomorphic functions on C*).
One concludes that V(e) = a(c)% ® e, where a : C* — C is a homomor-
phism. The differential equation Ve = a(c)% ® e, considered on C, reads
Ve = 2mia(c)du®e where u is the variable of C and z = €™, The basic so-
lution of this equation is e ~27*%(®)%¢ and e can be interpreted as 6,1 (e>7*).
The shifts « — u + 1 and u — u + 7 multiply this equation with e~27a(c)
and e~2m()7¢c. Write ¢ = €2™(90+017) with ag = ag(c),a1 = ai(c) € R.
The ‘unit circle’ condition implies that a(c) = a;(c) and the basic solution
is multiplied by e =27 and e?7%, Thus we found a unique unit circle con-
nection on v(Ke) and moreover the actions of T'ys, A, coincide with the
action of the fundamental group 7 (E,).

(2) The next case to consider is M = K @ W with ®(f @ w) = ¢(f) ®
A(w) and A € GL(W) is unipotent. Define V: O®@ W — O% @ W by
Vl®w) = 72-% @ (1 ® log(4)(w)). Clearly V commutes with ®. One
can verify that this definition of V induces a regular connection on v(M).
The pullback of this connection to C has the fundamental matrix A%/7.
The shifts u — u+ 1, u — w4 7 multiply this matrix with A7 and A4, in

accordance with the actions of I',s and A,..

The general case is obtained from these two special cases by taking tensor
products and direct sums.

(3) The map Hom(M,N) — Hom((v(M),Var), (v(N),Vn)) is a bijec-
tion since both groups translate into homomorphisms between represen-
tations. 0

Remarks 6.2. — (1) We note that not every unit circle connection on E is
isomorphic to some (v(M), V). E.g., the free vector bundle Oge; ® Oges,
provided with the unit circle connection V given by Ve; = 0, Ves = % ®eq,
is not isomorphic to some (v(M), Var).

(2) Our aim is to extend Theorem 6.1 to the category of all difference
modules over K. The first step is to extend Theorem 6.1 to the category of
the split difference modules. Explicitly, one wants to construct for every split
difference module M a connection Vs on v(M) such that Vy : v(M) —
Q([1]) @ v(M) (i-e., Vs has a regular singularity at 1 € E;). Moreover, one
requires that M +— V) is functorial, commutes with direct sums and tensor
products, and extends the construction in Theorem 6.1 of V), for regular
singular difference modules.
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(3) The pure module M = Ke with e = (—z)e is the first candidate for
a construction of Vs : v(M) — Q([1]) ® v(M). We note that v(M) =
Og,([1])e. Any connection V on this line bundle with at most a regular
singularity at 1 is given by Ve = adf®e for some constant a. The assumption
a = 0 is the natural choice for V ;. Thus V; is the unique extension of the
trivial connection on Op, e, given by Ve = 0 to a connection Vy; : v(M) —
Q([1]) ® v(M). One can describe this connection on Oe by Ve = -2 @ e.
This leads to a formula for Vj; for the difference modules M = Ke with
be = ¢(—2)te, namely
Ve = (ft% +a; %) ® e where ¢ = e2™(@0+0T) and q9.a; € R .

One observes that for difference modules of rank one , the map M —
(v(M), V pr) respects tensor products.

(4) Instead of continuing the method of (3), we will use subsubsection 1.4.1
to give a general construction of V), for split difference modules over K.

THEOREM 6.3. — There exists a functor N — (v(N), V) from the cat-
egory of the split difference modules over K to the category of the con-
nections on Ey with at most a regular singularity at 1 € E,. This func-
tor extends the one defined in Theorem 6.1. Moreover, the functor N —
(v(N), V) commutes with tensor products and is faithful.

Proof. — We use the notation and the results of subsubsection 1.4.1.
(1) Construction of Vs for pure difference modules M over K.

Consider a pure difference module M over K, with slope A\. Then M =
Ko ®c V with ® given by ®(f ®v) = 2*¢(f) ® A(v) where A € GL(V) has
the property that every eigenvalue ¢ of A has the form ¢ = e2m(a0(c)+a1(c)7)
with ag(c) € R and a1(c) € L C R. Let a;(Ass) € End(V) be obtained
from Agg by replacing every eigenvalue ¢ of Ay by a1 (c). We introduce the
notation: O, is the algebra of the convergent Laurent series in the variable
24" and Oy = J O,,. With these notation one defines the connection

1 d
VM:OOO®CV—>6000—Z®be
z

do

V() = A% &0+ L @ (ar(A) + 5o Ton(A) )(0)

The last formula is extended by Vi (f @ v) = df @ v+ fV(v) and by
additivity to a Vs defined on Oy ®¢ V. By construction, Vj; commutes
with the action of ®.
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For two pure difference modules M; = Ko, ®¢c V;, ¢ = 1,2 over K
with ®-actions given by the slopes A1, Ao and A; € GL(V;), i = 1,2, the
pure module M3 = M; Q. Ms has the form K. ®¢ (V1 ® Vi) with -
action given by the slope A; + A9 and Az := A; ® As € GL(V; ® V3). One
observes that the eigenvalues ¢ of Aj satisfy again ai(c) € L C R. Further
(A3)ss = (Al)ss 0y (AQ)ss and al((Al)ss ® (AQ)ss) is equal to (al((Al)ss) &
id) 4 (id ® a1 ((Az)ss)). There is a similar formula for 52— log(A3),,.

2miT

One concludes that Vs, is the tensor product V = Vj;, ® Vay,. The
latter is defined by V(m1 @ ma) = (Vg (m1) @ ma) + (mq ® Va,me) (for
m;i € One @ Vi, i =1,2).

A morphism f : M} — Ms between two difference modules M; = Ko, Q¢
Vi, i = 1,2 with the same slope A and ® given by 4; € GL(V;), i = 1,2
is induced by a C-linear map F' : V; — V5 satisfying F'o A; = As o F.
Therefore f induces a morphism between the two connections Vy,.

(2) Construction of (v(N),V ) for a pure difference module N over K.
The connection Vy : v(N) — Qp, ([1]) ® v(N), that we want to construct,
translates into a connection with the same name

1 dz
VN 1 O ®clz,2-1) Ngtobat — 60? ®C[z,2-1] Nglobal
which commutes with the action of ®.

Put M = K. ®x N. This difference module is equipped with the data of
N,ie., data(N) = (\,V, A, {D(0)}). We note that O, ®cV = Ox®c2,.-1)
Ngiovar and that (Os ®c V)Gl is equal to O @C[z,2-1] Nglobar- The Vi,
constructed above, descends to a Vy for N if and only if Vj; commutes
with the {D(o)}.

The formula D(c)"'AD(c) = > A implies that D(o) 'A,D(c) =
A, and D(0) " A, D(0) = €27 A,,. The eigenspace of A, for the eigen-
value ¢ is mapped by D(o) to the eigenspace for the eigenvalue ce*™ From
a1(ce?™) = ay(c) it follows that D(o) leaves every eigenspace invariant of
a1 (Ass) for the eigenvalues of this map. Thus D(o) commutes with aq(Ass)
and with A,,, too. This implies that Vj; commutes the {D(0)}.

(3) (v(N),V ) for a split difference module N over K.
For N = N; @ ---@® N, with all N; pure of slopes A\; < --- < A, one defines
(v(N), V) := @i (v(Ni), V).

A morphism between split modules over K is the sum of morphisms
between pure modules with the same slope. The latter induces a mor-
phism between the corresponding connections, according to (1). Thus N —

- 705 —



Marius van der Put, Marc Reversat

(v(N), V) is a functor. According to (1) and 1.4.1, this functor preserves
tensor products.

For proving ‘faithful’ it suffices to show that, for a pure module N, the
map ker(®—1,N) — {£ € H°(E,,v(N))| V& = 0} is injective. If the slope
of N is not 0, then the left hand side is 0. If the slope is 0, then by Theorem
6.1, the above map is bijective. O

Remark. — The following example shows that the functor of Theorem
6.3 is not fully faithful. Put N = Ke with ®(e) = (—z)%e and t > 0.
Then v(N) = Opg,(t - [1]) and Vy is induced by d : Op, — Qp,, using
the inclusion Op, C Og,(t - [1]). In this case, ker(® — 1, N) = 0 and {{ €
H°(E,,v(N))| V& =0} has dimension 1.

We want to extend the functor of Theorem 6.3 to the category of all
difference modules over K. We start with an example.

EXAMPLE 6.4. — N = Ke; + Kea with ®e; = (—2)te1, Pes = ez +peq,
teZ,t>0andp e K.

We may suppose p € C[z, z71]. The aim is to produce a connection

1 d
V : Oeq1 + Oey — @O;Z XRo (061 + 062) s

such that V commutes with ® and V induces for the pure module Ke; and
Kes the connections of Theorem 6.3.

Consider the inclusion Oe; +0ey C Of1 +O0fs with fi = O~ teq, fo = es.
Then ®f; = fi and ®f, = fo+pOtfi. We propose Vfi = 0and V fo = w® f1
withw € O%. The condition @V = V& is equivalent to (¢—1)(w) = d(p©?).

The equation is solved as follows. There exists f € O with (¢ —1)(f) =
pO! — ¢ where c is the constant term of p@!. This f is unique up to its
constant term. Now w := d(f) satisfies (¢p—1)(df) = d((¢—1)(f)) = d(pO?).

Thus Ve, = t% ®e; and Vey = O 'w @ ey. Since V commutes with
® this induces a connection V : v(N) — Qg (t[1]) ® v(N) with a pole at
1 € E, of order at most ¢. Moreover V induces on v(Ke;) and v(Kes) the
connections of Theorem 6.3.

In the next example we give a construction of V y for difference modules
N over K with two integer slopes.
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EXAMPLE 6.5. — N = P, & Py with Py, Py global modules with slopes
ty <ty, t =ty —t; € Z and ® given by ®(p1 +p2) = P1p1 +£(Pap2) + Papo
for some C|z, 2z~ ]-linear map £ : Py, — P.

Put Q; = Clz, 27 e ® P, with ®(e) = (—z)%e and ¢t = t5 — ¢; and put
Q> = P5. Then O ® P, is embedded into O ® Q1 by p — O'e ® p. Now &
on O® Q1+ O ® Qs is given by

P(e®@p1+p2) = (—2)'e® P1(p1) + Oe ® £(Paps) + Pa(p2) -

Von O® Q1+ O ® Qs will be given by a formula of the type: V(e ® p1) =
ft%e ® p1 + e ® Vip1, where V,; are the connections for P; imposed by
Theorem 6.3. Further Vps = Vaps + m(p2) where m: O @ Py — O% ® Q1
is a yet unknown O-linear map. Thus m is an element of Od—zZ ®o T with
T =0 ®c[z,.-1) (Py ®Q1). We note that Py ® @ is a pure global module
of slope 0.

Write £ : O ® Py 4 O® P C O® Q1. Thus [ is an element of T'. The

condition ®V = V& is equivalent to ®r(m) —m = Vp(¢), where &7 and
V1 denote the ®-action and the connection for T'.

According to Lemma 6.6, there is a canonical solution m for this equa-
tion. The corresponding V induces a connection Vy : v(N) — Qp, (t[1]) ®
v(N) with a pole at 1 € E, of order at most ¢. Further Vy induces the
connections on v(P;) and v(Py) prescribed by Theorem 6.3.

The action of ® on O ® Q1 + O ® Q2 can be changed into an equivalent
one by adding to ¢ an expression (® — 1)(§) with £ € T. This is compatible
with the construction of Vy, according to part (1) of Lemma 6.6. After
such a change, one may suppose that l maps (2 into @)1. In this situation
the connection on Q1 ® @2 is the one prescribed by Theorem 6.3, according
to part (2) of Lemma 6.6

LEMMA 6.6. — (1) Let P be a pure global module of slope 0. There is
a canonical C-linear map f € O ® P — w(f) € O% ® P satisfying (® —
Dw(f) =V f. Further w(®(f)) = ®(w(f)).
(2) Let (Q1,P1), (Q2, P2) denote two pure global modules of the same slope
and let £ : Qy — Q1 be a Clz,z71]-linear map. Define the pure module
N =Q1®Q2 by (1 + g2) = 1(q1) + P2(g2) + £(P2(g2))-

The connection on O @ N, defined by Theorem 6.3 coincides with the
connection V' given by the formula V(g1 +g2) = Vi(q1) + V2(g2) +w(€)(g2).

Proof.— Write P = C[z,27!] ®c W with ® defined by ®(w) = A(w)
and V(w) = % ® (a1(Ass) + 32 log(Ay))(w). For convenience we suppose

2miT
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that the eigenvalues c of A satisfy [q| < [c| < 1. Write f =) 72" ® fy
and w(f) =3 ,cz 2" % ® w, with all f,,w, € W.

Then /= 322" % & {(n+ 01(Au) + 5o log A (7))

2miT

and (® — Dw(f) =) z"df @ (¢"A —1)(wn) -

n

This produces the equations (¢"A — Dw, = (n + a1(Ass) + 27”7 log Ay) fa-
For n # 0, the map ¢"A — 1 is invertible and there is a unique solution
wy. For the equation (4 — 1)wy = (a1(Ass) + 5= log Ay,) fo we write W as
a direct sum ®W,., where W, is the generalized eigenspace for A and the
eigenvalue c. For ¢ # 1, the restriction of the equation to W, has a unique
solution since A — 1 is invertible on W,. On the space W7, the equation
reads (A — 1)w} = (555 log A,) f3, where w§, f§ denote the components in
Wy of wg and fy. On W3 we have A = A The canonical solution, that we

propose, is given by w§ = Z;’;O(—l)J ot g+)1) (rd.

It is clear that f — w(f) is C-linear. The formula ®(w(f)) = w(®f)
follows from the explicit definition of w(f). The expression ‘canonical’ means
the following. Let a : P, — P> be a morphism between global modules of
slope 0 and let f € O ® P;. Then « applied to w(f) is equal to w(a(f)).

A straightforward calculation shows (2). O

THEOREM 6.7. — There ezists a C-linear functor N — (v(N), V) from
the category of the difference modules N over K with integer slopes to the
category of the connections on E,; with at most a pole at the point 1 € E,.
This functor extends the one of Theorem 6.3, is faithful and commutes with
tensor products.

Proof.— Consider pure global modules P;, j = 1,...,r with integer
slopes A\; < -+ < A,. Let ®; denote the action of ® on P;. Let C[z, 27 ]-
linear maps ¢; ; : P; — P; for ¢ < j, be given. Define the global module
N with ascending slope filtration by N = Py @ --- ® P, and ®(p; + --- +
Dr) = Z§=1(‘I)j(pj) + > i< ti,j®;(pj)). We want to construct a canonical
connection on O ® N commuting with &.

Define Q; := C[z,271]e; @ P; with ®e; = (—2) " Ne, for j =1,.
Let @} be the action of ® on Q] One embeds O ® P; into O ® Qj by
pj — @)‘ Ye; @ pj. Then O @ N = @0 ® P; embeds into O ® @ with
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Q = Bj_,Q;. Let lij: 0®Q; — O®Q; be the map derived from £, ;.
Then ® on O ® @ is given by

T

g+ +ar) = > (®5(q) + DL 25(q))) -

j=1 i<j

With this formula the embedding is ®-equivariant. On O ® @ one wants to
define a connection V of the form

Vig++a) =Y Vilg)+ > > mijg),
j=1 j=1i<j
with O-linear maps m;; : O ® Q; — O% ®o (O ® Q;). The condition
®V = V& translates into (®—1)m, ; = V(; ;) for all i < j. These equations
are solved in the canonical way of Lemma 6.6. The restriction of this V to
O ® N induce a connection Vy : v(N) — Qg, (A — A1)[1]) ® v(N).

The maps ¢; ; in the definition of N are not unique. They can be changed
by adding maps (® — 1)r; ; with r; ; : P; — P,. It is easily seen that Vy
only depends on the equivalence classes of the ¢; ;. Using Lemma 6.6, one
shows that the above defines a C-linear functor.

Let Ny, Ny denote two global difference modules with ascending slope
filtration and with integer slopes. The above constuction embeds O ® N;
into O® M; (for i = 1,2) where O ® M; has only one slope. The connections
on Np, No are the restrictions of the connections on O ® M; prescribed by
Theorem 6.3. The above construction applied to N3 = N; ® Ny embeds
O ® N3 into the tensor product of the pure modules O ® M;. According to
Theorem 6.3, the connection on this tensor product is the tensor product of
the connections on the O ® M;. We conclude that the functor, construction
above, respects tensor products. O

Remarks 6.8. — (1) For general difference modules M over K it is also
possible to define a connection Vy on v(N) with at most a pole at 1 € E,.
However for non integer slopes there seems not be a canonical choice for
V.

(2) In the situation of Example 6.5, the map ¢ : P, — P is responsible for
divergence, ‘Stokes matrices’ and the unipotent part of the difference Galois
group of N. In general, the connection Vy : v(N) — Qg (t[1]) ®v(N) has a
pole of order ¢. The irregularity of the connection Vy locally at 1 € E, will
produce Stokes matrices (in the classical sense) and unipotent elements of
the local analytic differential Galois group which depend on ¢. The precise
relation remains to be investigated.
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(3) Tt is interesting to apply another method to Example 6.4. For any in-
teger ¢ > 0 one defines Gy = Y, .7(¢")""~V/2(—2")". One observes that
(—24)Gy(qz) = Gy4(2) and that the set of the zeros of Gy is u; x ¢%, where
1t is the group of the t-th roots of unity.

Let again N = Kej + Key with ®(e1) = (—2)'e1, ®(ea) = es + pey
with p € C[z, 27 !]. Define now f; = G; 'e; and fo = ey. Then Oe; + Oey
embeds into Of; + Of; and ®(f1) = (=1)!71f; and ®(f2) = fo + pGifi.
The connection V is defined by Vfi = 0, Vfy = w ® fo where w is the
canonical solution of (& — 1)w = (—1)"~1d(pG;). The resulting connection
V has at most simple poles at the image points of u; in Ej.

(4) The variation in (3) on Example 6.4 extends to a functor on the category
of the difference modules over K with integer slopes to the category of the
connections on F, having at most simple poles in the images of Ut>1 L in
E,. This functor is constructed as in the proof of Theorem 6.7 and it has
again the properties: C-linear, faithful and commuting with tensor products.

For this variation on Theorem 6.7 and in connection with Example 6.5,
one observes that ¢ : P, — P; contributes to the poles of V on the image
points of p; in E;. Thus £ contributes to the monodromy group for the
connection V.

7. Positive characteristic

Atiyah’s paper makes some excursions to positive characteristic. Here,
we do the same for ¢-difference equations. We replace the field C by a field C
which is algebraically closed and complete for a non trivial non archimedean
valuation. The case where C has characteristic 0 (i.e., C D Q, for some
prime p) is not very interesting since most of the preceeding results can be
copied from the complex case with the help of some rigid analysis.

In this section we consider an algebraically closed field C of characteristic
p > 0, complete with respect to a non trivial valuation. Further we choose
ageCwith0<|q < 1.

Over K = C({z}), K = C((z)) and C(z) one can define ¢-difference
modules and study their properties. The elliptic curve associated to this is
the Tate curve E, := C*/ ¢%, constructed with the help of rigid analysis.
We note that this curve is special in the sense that its j-invariant is tran-
scendental over I, and in particular F, is ordinary. We make now a quick
investigation of the main results of this paper in this new context.
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LEMMA 7.1. — There exists an explicit pair (F,$) of an algebraically

closed field F' and an automorphism ¢, such that F' > K and ¢ extends the
given automorphism of K. The pair (F,¢) induces automorphisms of the

algebraic closures ofl? and K extending the given ¢.

Proof.— The algebraic closure of K has no explicit description. How-
ever, there is an explicit algebraically closed field F' := C((ZQ)) containing
K. The elements of this field are expressions Z)\EQ ayz* with all ay € C
and such that {\| a) # 0} is a well ordered subset of Q. It is well known
that F' is a maximally complete field with residue field C and value group
Q. In particular, F is algebraically closed. Choose a homomorphism \ — ¢*
from Q to C* with ¢! = ¢q. One defines an automorphism ¢ of F' by the
formula ¢(3_,cq arz) = >AeQ axq*z*. This extends the action of ¢ on
K. The algebraic closures of K and K can be seen as subfields of F. They
are obviously invariant under ¢. This proves the assertion. |

LEMMA 7.2. — Let K C L be an extension of degree m < oo such that ¢
extends to an automorphism of L. Then L = K (zY/™). A similar statement
holds for K replacing K.

Proof.— Write L = C((t)). Then z = at™ + apmp1t™™ + -+ with
am # 0. The action of ¢ on L has therefore the form ¢(t) = g1t + - - - with
qi* = q. Since 0 < |g1| < 1, one can produce an element s € C[[t]] such that
C|[s]] = C][[t]] and ¢(s) = g1s. Thus we may assume that ¢(¢) = ¢1¢. Then

qlamt™ + am+1tm+1 +-)=qz = d(2) = ap¢t™ + am+1q{”+1tm+1 4o

implies that z = a,,t". This proves the statement for the case K.

For the case K, one has to show that L = C{t} contains an element s
with C{s} = C{t} and ¢(s) = s. Write ¢(t) = q1t + ast®> +--- and s =
t+bot? +b3t3+---. Then ¢(s) = g5 leads to a sequence of equations for the
b;. An inspection shows that the convergence of the series ¢t + Zn>2 ant™
implies the convergence of the series ¢t + 2@2 bnt™. O

Most of the preceeding sections remain valid, after a small adaptation,
in the present context. We give now some details.

In section 1, the fields K, and IA(OO should be read here, not as the
algebraic closures but as the fields U, K, with K, := C({z'/"}) and
Ups1 K, with K,, := C((z}/™)). The complex function theory for E, is
replaced by the rigid analytic theory (see for instance [Fr-vdP]) and the
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formulas in subsection 1.1 remain valid. The only part of section 1 that has
no (obvious) translation is subsubsection 1.4.1.

All of section 2 remains valid with the exception of Remarks 2.4. Indeed,
the formulas for the decomposition of tensor products of indecomposable
modules (or for indecomposable vector bundles on E,) are different in pos-
itive characteristic. Especially, the decomposition of U, ® x U, poses a non
trivial combinatorial problem, solved in [At] in the context of vector bundles
on F,.

No changes are needed for the results of sections 3 and 4. However we
will rewrite Section 5 completely by developing a suitable Picard-Vessiot
theory, calculating difference Galois groups and a universal Picard-Vessiot
ring. We take [vdP-S 1,2] as guide for this.

It is not possible to attach, as in Theorem 6.1, to regular singular dif-
ference modules M over K, connections on v(M). Indeed, for the mod-
ule Ke with ®e = ce and ¢ € C*, the connection must have the form
Ve = a(c)dz—z ® e, where a : C* — C is a homomorphism and satisfies
a(q) = 1. However, a(q) = p - a(¢"/?) = 0.

7.1. Picard-Vessiot theory and examples

Consider a field F provided with an automorphism ¢ of infinite order.
The field of constants C' := {f € F| ¢(f) = f} is supposed to be alge-
braically closed. A difference module M is a finite dimensional vector space
over I, provided with a bijective additive map ® : M — M satisfying
O(fm) = ¢(f)®(m). After choosing a basis of M over F, the equation
®(m) = m translates into a matrix difference equation y = A¢(y) with
A € GL,(F).

A Picard-Vessiot ring PV for M (or y = A¢(y)) is a commutative F-
algebra with unit element satisfying

1. An extension of ¢ as automorphism of PV is given.
PV has no ¢-invariant ideals except {0} and PV.
There is a U € GL,(PV) with U = A¢(U).

= W N

PV is generated over F by the entries of U and U~ !.

With the methods of [vdP-S 1,2] one shows the existence and unicity of
PV (up to ¢-isomorphisms). One observes that PV is reduced and has in
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general zero divisors. The field of constants of the total ring of fractions of
PV is again C.

The naive definition of the difference Galois group G of M is: G is the
‘abstract’ group of the F-automorphisms of PV commuting with ¢. This
definition is insufficient in positive characteristic. A more precise definition
is the following. One defines a covariant functor G from the category of the
finitely generated commutative C-algebras R to the category of groups by
G(R) is the group of the automorphisms of R®c PV which are R®¢ F-linear
and commute with the action of ¢. It can be shown that G is represented
by an affine group scheme of finite type over C. The difference Galois group
G is by definition this group scheme.

If the field F' has characteristic zero then G is a reduced linear alge-
braic group. In our case, where F' has characteristic p > 0, the difference
Galois group need not be reduced. In the following examples we calculate
the Picard-Vessiot rings and their difference Galois groups for some typical
equations. For all examples we take F' = K = C((z)) with C as before.
Since the examples are pure modules, one may replace K by K = C({z})
everywhere. For convenience, we calculate for modules M the ‘contravari-
ant solutions’, i.e., ker(® — 1,HomM, PV)) , in stead of the ‘covariant
solutions’, i.e., ker(® — 1, PV ® M) .

Ezample 1.— The extension K C K (z'/7) is the Picard-Vessiot exten-
sion for the difference equation ¢(y) = q'/Py. Tts difference Galois group is
the group u, c. More generally, K (zl/ ™) is the Picard-Vessiot extension of
an equation ¢(y) = ¢"/™y with (t,n) = 1 and its difference Galois group
is pin,c. We recall that p,.c = Spec(CJt]/(t" — 1)), with co-multiplication
given by t — t ® t.

Ezample 2. — Equation ¢(y) = cy with ¢ € C*. Suppose that for all
n > 1 the only solution of ¢(y) = ¢y in K is y = 0, then the Picard-Vessiot
extension is K[Y,Y 1] with ¢(Y) = cY and the difference Galois group is
Gm,c-
Suppose that there exists a non zero y € K such that o(y) = c*y for some
a > 1. Then ¢ has the form (q¢"/™ with ¢ a primitive dth root of unity
and n > 1, (t,n) = 1. We consider the two equations ¢(y) = ¢*/"y and
¢(y) = Cy separately. The first equation is considered in example 1. The
second equation has Picard-Vessiot ring K [y] with equation y? = 1 and
¢(y) = Cy. This ring has obviously zero divisors (if d > 1). Its difference
Galois group is pq.c = Z/Zd over C since d is not divisible by p. The Picard-
Vessiot extension for ¢(y) = cy is a subring of K [2/™][y]. The difference
Galois group is therefore a quotient of the group pn,,c X Z/Zd.
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Ezample 3.— Uy, = K ®@ V with dimV = m, ®(1®v) = 1 ® U(v)
and U € GL(V) the indecomposable unipotent operator. There exists an
element e € V such that e, (U — 1)e, ..., (U —1)™ Le is a basis of V. Hence
Up = K[®, & 1]/K[®, & !]((® — 1)™). Thus we have to find the Picard-
Vessiot ring for the equation (¢ — 1)™(y) = 0.

(a) Suppose that 1 < m < p. The difference ring A; := [?[ﬂ, defined
by ¢ — ¢ = 0 and ¢(¢) = £+ 1, has only trivial ¢-invariant ideals. The
elements (f) for ¢ = 0,...,m — 1 are C-linear independent solutions of
(¢ — 1)™(y) = 0. Since A; is generated over K by £ one finds that A; is
the Picard-Vessiot extension for the equation (¢ — 1)™(y) = 0. Let R be a
C-algebra and o a R®c automorphism of R ®c K[¢], which commute with
¢. Then o is determined by o(¢) and o(£) = ¢ + a where a is any element
in R with a? = a. The difference Galois group is therefore the group Z/Zp
over C. In view of further equations we write £ = #.

(b) Suppose that p < m < p?. The Picard-Vessiot ring for (¢ — 1)™(y)
= 0is Ay = Kl[ly,0], defined by £ — 6, = 0, 5 —ly = 0, ¢p(f1) =
b+ 1, o) = o+ (pzjl). The set of maximal ideals of As is {(¢1 — a,
ly—b)|a,b € F,} = F2. One calculates that ¢ acts transitively on this set and
one concludes that A, has only trivial ¢-invariant ideals. One observes that

-1 =17, ) =rana oo (2 )(0)) =1

The conclusion is that C[¢1, 5] is the kernel of (¢ — 1)?”, acting on A,. This
shows that As is generated by the solutions of (¢ — 1)™y = 0 and thus that
Ay is indeed the Picard-Vessiot ring.

We have to represent the functor G, given by G(R) is the group of the dif-
ference automorphism of R®c A2 over R®@c K. For the calculation of G(R)
we suppose for convenience that Spec(R) is connected. Then a € R, a? = a
implies a € F,,. Further F,[¢1, (5] = {€ € R®c Ag| €2 = ¢ and (¢ — 1)P°¢ =
0}. Thus any o € G(R) induces an automorphism of F,[¢1, f3] commuting
with ¢. On the other hand, any automorphism of F[¢1, {3] commuting with
¢, extends uniquely to an element of G(R).

The algebra F,[¢1, 2] is seen as Fp[p]-module. The element & = (pefl) .

(pz_ll) is a generator and the module can be written as F,[t]/ (t?"), where

t = ¢ — 1. We recall that t”2_1§ = 1. Thus an automorphism o satisfies
o€ = a€ with a € ]Fp[t]/(tpz) and a = 1 mod (¢). On the other hand any a,
as above, produces a unique automorphism. The above group is the cyclic
group of order p?, generated by a = 1 + ¢t mod (tPQ). Thus the difference
Galois group is equal to the group Z/Zp? over C.
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(¢) In a similar way one obtains that the difference ring Ay, := K[fy, - -, 04,
given by the equations ¢ —¢; =0 for i =1,...,k and

(o —1)(4;) = <p€i_11> (]fi_zl) (pgl 1)

fori=2,...,kand (¢—1)¢; = 1, is the Picard-Vessiot ring for (¢—1)"y =0
for m such that p*~! < m < pF. Its difference Galois group is the group
7./p*7Z over C. As in the case k = 2, the difference Galois group is identified
with the group of the automorphisms of Z := F,[¢1, ..., {;] which commute
with ¢. Now Z, as a Fp[¢] = F,lt]-module (with ¢t = ¢ — 1), has £ =

(p"_’“l) (i)"_*ll) e (pe_ll) as cyclic element, and is isomorphic to F[t]/ (tpk). The

automorphisms are given by the elements a € I, [¢]/ (t?"k) with ¢ = 1 mod (¢).
This group is cyclic of order p* and has generator a = 1 + ¢t mod (tpk).

Ezample 4. — M = K(z'/")e, ®e = 2!/"ewithn > 1, (t,n) = (p,n) = 1.
The corresponding scalar equation is ¢™(y) = q""=1/2:ty By definition,
PV contains an invertible element « satisfying the equation. Any other
solution y has the form ga with ¢™(g) = §. Hence PV contains K[y;] with
y =1 and ¢(y1) = (uy1 where (, is a primitive nth root of unity. The
invertible element u := ¢(a)a~! satisfies the equation ¢™(u) = ¢'u. All
solutions of the latter equation have the form z!/™y with ¢"y = y. Thus y
is an invertible element of C[y]. It follows that 2!/ and z'/™ are in PV.
After changing o we may suppose that u = 2t/ This leads to the assertion
that the Picard-Vessiot ring is K(2'/™)[y1,a,a~!] with the rules: y? =
1, ¢(y1) = Cuy1 (with ¢, a primitive nth root of unity); a transcendental
over K and ¢(a) = z/"a. The elements {yia| i = 0,...,n — 1} form a
C-basis of solutions. The inclusion K [22/"][y1] € K[2Y/"][y1, &, a~1] induces
an exact sequence for the difference Galois group, namely

1=Gp—G— pn X pp — 1.

The term pp, X py, is the difference Galois group of the Picard-Vessiot ex-
tension K (2/")[y1] of the equation ¢™(y) = qy.

Ezxzample 5. One considers the difference module M = IA((zl/p)e with ®e =
2t/Pe (and 1 < ¢ < p), seen as difference module of dimension p over
K. A corresponding scalar equation is ¢P(y) = ¢t("=1/2zty The method
of example 4 yields that the Picard-Vessiot extension for M is PV =
K(2YP)[t1, o, a1, satisfying the following rules: £ — ¢; = 0 and ¢(¢;) =
1 + 1, o is transcendental over K and (o) = 2z/Pa. The inclusion
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K(zY/?)[t,] € K(2Y/7)[¢1, &, 1], induces an exact for the difference Galois
group G
1-Gpn —>G—Z/pZ X pp — 1.

The group Z/pZ x i, is the difference Galois group of the Picard-Vessiot
extension K (z'/7)[¢1] of the equation ¢ (y) = qy.

Ezample 6.— M = K (/7" )e with ®e = 2t/ ¢ and (t,p) = 1. A corre-
sponding scalar equation is ¢P" (y) = g"?*=V/2:ty The Picard-Vessiot ring
is I?(zl/pk)[fl,...,Ek,a,ofl] with ¢(a) = 2t/?" o. The difference Galois
group admits an exact sequence

1 -Gy —G—LZ/p"L X e — 1.

7.2. The universal difference ring over K

The above examples and the classification of the indecomposable dif-
ference modules over K lead to_the following description of the univer-
sal Picard-Vessiot ring Univ of K. Let K T denote the union of the fields
K(2'/™) (for all n. > 1). One introduces symbols e(cz*) for ¢ € C*, X € Q
and ¢ for k € Z, k > 1. Then Univ = K*[{¢;}x>1{e(cz*)}]. The only
relations are e(c;2*) - e(c22™2) = e(c1coz™t22); e(g?) = 27 for A € Q
(including e(1) = 1); £ — ¢ = 0 for all k > 1. The action of ¢ on Univ is
given by:

¢ acts on K+ by ¢(3arz?) = S axg 2, e ple(cz))) = e(cz?),
ohv=t+1, (0=l =(3) () (,)2) for k>2.

Univ can also be described as the algebra K [{£) } =1, {e(¢) }eec, {e(z*)}rcql
with the relations: ¢ = £ for all k > 1; e(c1)e(c2) = e(cica); e(l) =
1, e(q) = 271 e(zM)e(2*2) = e(z*1122). The action of ¢ is given by the
above formulas for ¢(¢;) and ¢(e(c)) and e(g=*)o(e(2)) = e(2?).

The universal Picard-Vessiot ring Univ,s for the regular singular differ-
ence equations over K is the subring K[{/x}x>1,{e(c)}ecc]-

The difference Galois group G,s of Univ,s can be identified with Z, x
Hom(C*/¢%, C*). The factor Z, is the difference Galois group of K[{l:}is1)-
The notation Hom(C* /¢%, C*) for the second factor is an ‘abus de langage’.
It hides the non reduced part of the difference Galois group. One writes
E, := C*/q” (with brute force) as a product D x (E;)sors, where D is a
divisible, torsion free group. Since D is a vector space over QQ, the term
Hom(D, C*) defines a reduced affine group scheme. More precisely, D is
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a direct limit of its free finitely generated subgroups and the affine group
Hom(D, C*) is the projective limit of algebraic tori over C.

The group (E,)tors is a product {a € C*|a root of unity} x ¢¢/¢%. This
torsion group is isomorphic to (Q/Z[1/p])* x Q,/Z,. The first factor yields
the reduced affine group scheme which is the projective limit of p, X pp,
taking over all n > 1 not divisible by p. The second factor yields the non
reduced affine group scheme which is the projective limit of the groups ji,x.

The difference Galois group Gypi of Univ admits an exact sequence
1 — Hom(Q, C*) — Guniv — Gps — 1

The term Hom(Q, C*) is the affine group scheme which represents the
Univ,g-linear automorphisms of Univ, commuting with ¢. We note that
the affine group scheme G,,,,;, is not commutative. Unlike the complex case
we do not find explicit topological generators (like T', A, D) for Gypnip. This
is due to the complicated structure of the group C*.

In the above we established a reasonable Picard-Vessiot theory and ex-
plicit calculations for the difference Galois groups of difference modules over
K (or equivalently for split difference modules over K). The explicit deter-
mination of the difference Galois group of (non split) difference modules
over K can be copied from Section 5.
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