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Orbit Structure of certain R2-actions on solid torus

C. Maquera(1), L. F. Martins(2)

ABSTRACT. — In this paper we describe the orbit structure of C2-actions
of R2 on the solid torus S1 × D2 having S1 × {0} and S1 × ∂D2 as
the only compact orbits, and S1 × {0} as singular set.

RÉSUMÉ. — Nous décrivons la structure des orbites des actions de class C2

de R2 sur le tore solide S1×D2 ayant uniquement S1×{0} et S1×∂D2

comme orbites compacts, et S1 × {0} comme ensemble singulier.

1. Introduction

Singular foliations can be defined in different ways and have been studied
by several authors (cf. [5], [13], [14]). For a recent account of the theory we
refer the reader to [4] and [9]. Singular foliations defined by orbits of an
action of a Lie group are in the category of foliations given by Stefan [13] and
Sussmann [14], and appear in control theory. The geometric description and
characterization of locally free C2-actions ϕ of R2 on a compact orientable
3-dimensional manifold N , that is, when all the orbits are of codimension 1
in N , are given in [1], [6] and [10]. To the best of our knowledge, the case
when ϕ is not locally free has not been dealt with previously. The aim of
this paper is to initiate this study.
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Recently, Camacho and Scárdua ([4]) considered the effect of the pres-
ence of singularities of Morse type in a codimension one oriented smooth
foliation defined on a closed, connected and oriented three-manifold N . They
showed that if such foliation has more centres than saddles and without sad-
dle connections, then N is diffeomorphic to the three-sphere. (See [12] for
a generalization of this result.) So we can ask the following natural ques-
tion : “What can be said about closed 3-dimensional manifolds supporting
an action of R2 with only a finite number of singular orbits which are home-
omorphic to a circle?” Rosenberg-Roussarie-Weil showed in [10] that every
closed 3-manifold that admits a locally free action of R2 is a bundle over
S1 with fibre T 2. For this they proved the following result (Fundamental
Lemma) : Let N be a compact, connected 3-manifold with boundary. If N
admits a locally free C2-action of R2 having the boundary of N as an orbit
then N is homeomorphic to T 2 × [0, 1] .

In order to answer the above question, it may be necessary to have an
analogous result to the Fundamental Lemma in [10]. So, it is natural to first
investigate the orbit structure of C2-actions of R2 on the solid torus having
only a finite number of singular orbits which are homeomorphic to a circle.
In this paper we will restrict ourselves to a family of C2-actions ϕ of R2

on the solid torus N = S1 ×D2 having O0 = S1 ×{0} and O = S1 ×∂D2

as the only compact orbits and with singular set Sing(ϕ) = S1 × {0}. We
will denote the set of all the above actions by A, Op the ϕ-orbit of p ,
Gp the isotropy group of p, G0 and G the isotropy groups of O0 and O,
respectively (which are isomorphics to Z×R and Z×Z, resp.) and Fϕ the
singular foliation in N induced by ϕ . The possible ϕ-orbits in N \(O∪O0)
are homeomorphic to a cylinder or a plane, and we shall say an S1×R-orbit
or an R2-orbit, respectively.

In order to describe the asymptotic behavior of orbits, the topological
concept of limit set of Op (see Definition 2.7), denoted by limOp , is es-
sential. We show in Theorem 2.8 that O0 ⊂ limOp for each p ∈ N \ O .
This result is fundamental for obtaining all other results. For its proof we
first show that O and O0 are the only minimal sets of ϕ . Consequently, the
set C of points p ∈ N such that Op is an S1 ×R-orbit, is a disjoint union
of C0 = { p ∈ C ; Gp ⊂ G0

0 } and C1 = { p ∈ C ; Gp ∩ G0
0 = {0}}, where

G0
0 is the connected component of G0 that contains the origin (0, 0) ∈ R2,

the neutral element of the group (see Remark 2.9).

In this paper we give a complete geometric description of the orbit struc-
ture of ϕ ∈ A in the complement of SΓ (the solid k-tube of ϕ at O0

associated to k-tube Γ, see Definition 3.9). More precisely :
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Theorem A. — If ϕ ∈ A, then there exists an ϕ-invariant neigh-
bourhood U of O, homeomorphic to T 2 × (0, 1], such that the frontier
Γ = Front(U) of U is a k-tube of ϕ at O0, for some integer k � 0, and
all the orbits inside U \ O have the same topological type. Furthermore,
precisely one of the following cases occurs for each p ∈ U \ O :

(1) Op is an S1 × R-orbit in C0 , C1 = ∅ and limOp = O0 ∪ O. In
particular, U = N \ O0 ,

(2) Op is an S1 × R-orbit in C1 , C0 = ∅ and limOp = Γ ∪ O ,

(3) Op is an R2-orbit dense in U ∪ Γ, and limOp = U ∪ Γ.

In case (1) of Theorem A, k = 0 and Γ = O0 = SΓ. When k > 0, the
orbit structure of ϕ in the interior of SΓ appears to be very complicated,
although in this case the above theorem states that C0 = ∅.

For the rest of the paper we take D2 = {(x1, x2) ∈ R2;x2
1 + x2

2 � 1},
S1 = R/Z, and in N = S1 ×D2, we will consider coordinates (θ, x) where
θ ∈ S1 and x = (x1, x2) ∈ D2. Given ϕ ∈ A, the intersections of the
ϕ-orbits with the disks Dθ = {θ} × D2, θ ∈ S1 (the traces of the ϕ-
orbits on Dθ) clearly yield good information about the geometric behavior
of the ϕ-orbits. With an adaptation of Haefliger’s techniques for regular
foliations ([7]), we obtain information about these traces. More precisely,
we prove in Proposition 3.2 the existence of a closed embedded 2-disk Σ
in N with ∂Σ ⊂ O and in general position with respect to the foliation
Fϕ . Furthermore, the induced foliation on Σ is given by a vector field
Zϕ ∈ X2(Σ) . We have thus proved the following theorem :

Theorem A′. — If ϕ ∈ A, then there exists an Zϕ-invariant neigh-
bourhood V of ∂Σ in Σ, homeomorphic to S1 × (0, 1], such that Γ =
Front(V), the frontier of V in Σ, is a k-petal of Zϕ at O0 ∩Σ for some
integer k � 0, and all orbits inside V \∂Σ have the same topological type.
Furthermore, precisely one of the following cases occurs for each p ∈ V \∂Σ :

(1) Op(Zϕ) is periodic and V = Σ \ (O0 ∩ Σ),

(2) Op(Zϕ) is homeomorphic to R and α(p) ∪ ω(p) = ∂Σ ∪ Γ .

The concept of k-petal is analogous to that of k-tube (see Definition
3.8). In case (1) of Theorem A′, k = 0 and this means that if a trace of
one ϕ-orbit on V \ ∂Σ is homeomorphic to S1, then all the other traces
on Σ \ (O0 ∩Σ) are also homeomorphic to S1 (Figure 1 (a)). On the other
hand (in case (2)), given p ∈ V , if Op(Zϕ) is homeomorphic to R then the
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Figures 1 (b) and (c) describe possibilities for the traces of ϕ on Σ (in (b)
we have a 0-petal and in (c) a 3-petal).

(a) (c)(b)

Figure 1. — Possibilities for the traces of the ϕ-orbits on Σ

Theorems A and A′ are related as follows. Theorem A (1) is satisfied if
and only if Theorem A′ (1) is true, and either (2) or (3) in Theorem A is
true if and only if (2) in Theorem A′ is true. We shall prove Theorems A
and A′ simultaneously.

The paper is organized as follows. In the next section we study the orbit
structure of actions in A in neighbourhoods of compact orbits and obtain
topological and asymptotic properties of orbits in C0 and C1 . In Section
3 we introduce the concept of general position, show the existence of an
embedded 2-disk Σ in N which is in general position with respect to the
foliation defined by ϕ, and give the proofs of Theorems A and A′.

The results of our investigation can be used to study 3-manifolds that
admit a Heegaard splitting of genus one, since these are obtained by gluing
two copies of S1 × D2 by a diffeomorphism of ∂(S1 × D2).

This paper is part of the second author’s Ph.D. thesis, written under
supervision of J. L. Arraut at the University of São Paulo in São Carlos.

2. Properties of actions in A

In this section we shall first study the orbit structure of ϕ ∈ A in neigh-
bourhoods of compact orbits. We shall prove in Proposition 2.1 that, in
neighbourhoods of O and O0 , Fϕ is topologically equivalent to one sus-
pension of a vector field (defined below in Section 2.1). This is a fundamental
result for the proof of the main theorems. Next, we shall obtain topological
and asymptotic properties of ϕ-orbits (Theorem 2.8 and Proposition 2.10).
Finally, in Theorem 2.14, we shall establish information about the genera-
tors of cylindrical ϕ-orbits with relation to O0 . Some of the results of this
section are proved using infinitesimal generators adapted to ϕ at O0 and
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O . These generators are defined using the concept of “charts adapted to
the compact orbits”, which is a fundamental tool in this paper.

For each w ∈ R2\{0}, ϕ induces a C2-flow (ϕt
w)t∈R given by ϕt

w(p) =
ϕ(tw, p) and its corresponding C1-vector field Xw is defined by Xw(p) =
D1ϕ(0, p) · w. If {w1, w2} is a basis of R2, then {Xw1 , Xw2}, called a
set of infinitesimal generators of ϕ, determines completely the action ϕ .
Moreover, the Lie bracket [Xw1 , Xw2 ] = 0.

For the rest of the paper p0 = (θ0, x0) ∈ O, q0 = (θ0, 0) ∈ O0 and
S1 = ∂Dθ0 , where Dθ0 = {θ0} × D2 ⊂ N, for some fixed θ0 ∈ S1.

2.1. The orbit structure in neighbourhoods of O0 and O

Here we will study the orbit structure of ϕ ∈ A in neighbourhoods of
compact orbits. A classical result in foliation theory states that the leaf
structure of a foliation in the neighbourhood of a compact leaf is determined
by the holonomy of this leaf (see [3]). We shall determine the holonomy of O
and from this we obtain information about the ϕ-orbits in a neighbourhood
of O. When we refer to the holonomy of O we mean the holonomy group of
O as a leaf of Fϕ on N \O0 (cf. [3], Chapter 4, Section 1, for a definition).

Let S be a smooth compact surface. The set of Cr vector fields on S
will be denoted by Xr(S), r � 1 . Let X ∈ Xr(S) with a finite number of
singularities, all contained in the interior of S when ∂S �= ∅. Suppose that
f ∈ Diffr(S) preserves the orbits of X. Let M be the manifold obtained
from R × S by identifying (z, p) with (z − 1, f(p)). The suspension of f
defines a Cr foliation F(X, f) of M, which is the image of the foliation
of R × S, whose leaves are R×Op(X) by the quotient map. The foliation
F(X, f) is called the suspension of X by f.

Proposition 2.1. — If ϕ ∈ A, then there exist neighbourhoods W0 of
O0 , W1 of O and, for i = 0, 1, a C2 diffeomorphism fi : Ai → Ui and
Yi ∈ X1(Ai), where A0 , U0 and A1 , U1 are neighbourhoods in Dθ0 of q0

and ∂Dθ0 , respectively, such that fi preserves the orbits of Yi and Fϕ|Wi

is topologically equivalent to the suspension of Yi by fi .

The proof of Proposition 2.1 follows from Lemmas 2.2 and 2.4 below,
using the concept of “charts adapted to the compact orbits” that we now
shall introduce. This concept is a fundamental tool and will be referred to
very often in the sequel.

Let ϕ ∈ A , and let H be a 1-dimensional subspace of R2 such that
R2 = H⊕G0

0 . Let {w1, w2} be a basis of R2 such that w1 and w2 generate
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the subgroups G0∩H and G0
0, respectively. Note that {Xi = Xwi

; i = 1, 2}
is a set of infinitesimal generators of ϕ such that O0 is a periodic orbit of
X1 of period one, and X2(q) = 0 for every q ∈ O0 . We say that {X1 , X2}
is a set of infinitesimal generators adapted to ϕ at O0 .

Let I3(ε) = {(θ, x) ∈ N ; |θ−θ0| < ε and |x| < ε} and h : V → I3(ε) be
a chart of N at q0 such that if (θ, x1, x2) ∈ I3(ε), then the vector fields
Xi in this chart, i = 1, 2, can be written as

X1(θ, x1, x2) =
∂

∂θ
,

X2(θ, x1, x2) = a(x1, x2)
∂

∂θ
+ b(x1, x2)

∂

∂x1
+ c(x1, x2)

∂

∂x2
.

(2.1)

The above chart is called adapted to O0 at q0 . The vector field

Y0(x1, x2) = b(x1, x2)
∂

∂x1
+ c(x1, x2)

∂

∂x2
(2.2)

defined on A0(ε) = {(θ0, x) ∈ N ; |x| < ε} has only q0 as singularity.

Note that {X1, Y0} defines a local R2-action ϕ̂ on I3(ε) and O(θ,x)(ϕ̂)
= O(θ,x)(h ◦ ϕ ◦ h−1) for each (θ, x) ∈ I3(ε).

Let U0 be a neighbourhood of q0 in Dθ0 such that the Poincaré
diffeomorphism of X1 at q0 , f0 : A0(ε) → U0 , is well defined. Note
that f0 is of class C2. For ε > 0 sufficiently small, let τ : A0(ε) →
[0, 1+ ε) be the time of the first return map. Let W0 denote the interior of
∪q∈cl(A0(ε)){Xt

1(q); 0 � t � τ(q)}, where cl(B) denotes the closure in N of
a set B.

As an immediate consequence we obtain the following result which is
one part of Proposition 2.1 :

Lemma 2.2. — There exist ε > 0 and a neighbourhood W0 of O0 such
that f0 : A0(ε) → U0 preserves the orbits of Y0 , and Fϕ|W0 is topologically
equivalent to the suspension of Y0 by f0 .

In order to complete the proof of Proposition 2.1, we shall determine the
holonomy of O , which is stated in Lemma 2.3. First we need to introduce
another set of infinitesimal generators.

Suppose now that {w1, w2} is a basis of R2 such that w1 and w2

generate the isotropy group G of O. Write Xi = Xwi , i = 1, 2. Note that
if q ∈ O, then for i ∈ {1, 2} the orbit of Xi by q is periodic of period one.
Without loss of generality, we can assume that for each θ ∈ S1, {θ}× ∂D2
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is an orbit of X1 and for each x ∈ ∂D2, S1 × {x} is an orbit of X2 . We
shall say that {X1, X2} is a set of infinitesimal generators adapted to ϕ
at O .

Now we consider in N another coordinate system (θ, x) where θ ∈ S1

and x ∈ D2 is given in polar coordinates (φ, r). Let Si , i = 1, 2, be
the circle orbit of Xi through p0 , that is, S1 = {θ0} × ∂D2 and S2 =
S1 × {x0}. For ε ∈ (0, 1) let A1(ε) = {(θ0, φ, r) ∈ N ; r > 1 − ε} and
A2(ε) = {(θ, φ0, r) ∈ N ; r > 1 − ε}, where x0 = (φ0, 1). For simplicity
of notation we write (φ, r) and (θ, r) instead of (θ0, φ, r) and (θ, φ0, r),
respectively. Since S1 (S2) is transverse to the orbits of X2 (X1), there
exists ε > 0 such that A1(ε) and A2(ε) are transverse to the orbits of X2

and X1 , respectively. Consequently, A1(ε), A2(ε) and Jε = A1(ε)∩A2(ε)
are transverse to the orbits of ϕ. Let δ > 0, I(δ) = (−δ, δ) , and for i = 1, 2
we consider the C2-maps hi : Ai(ε)×I(δ) → N defined by h1(q, t) = Xt

2(q)
and h2(q, t) = Xt

1(q). There exists δ > 0 such that hi|Ai(ε)×I(δ) is a
diffeomorphism onto its image Vi . Moreover, in the coordinates (h−1

1 , V1) ,
the infinitesimal generators of ϕ are of the form

X1(φ, r, t) = a1(φ, r)
∂

∂t
+ b1(φ, r)

∂

∂φ
+ c1(φ, r)

∂

∂r
,

X2(φ, r, t) =
∂

∂t
,

(2.3)

and in the coordinates (h−1
2 , V2) the infinitesimal generators of ϕ are of

the form

X1(θ, r, t) =
∂

∂t
,

X2(θ, r, t) = a2(θ, r)
∂

∂t
+ b2(θ, r)

∂

∂θ
+ c2(θ, r)

∂

∂r
.

(2.4)

The maps hi are called a cylindrical coordinate system adapted to O at
Si , i = 1, 2. The vector fields

X̂1 = b1(φ, r)
∂

∂φ
+ c1(φ, r)

∂

∂r
and X̂2 = b2(θ, r)

∂

∂θ
+ c2(θ, r)

∂

∂r
(2.5)

define a local flow on A1(ε) and A2(ε), respectively. Furthermore, Si ⊂
Ai(ε) is an orbit of X̂i , i = 1, 2.

Note that p0 ∈ Jε and the map αi : [0, 1] → Ai(ε) given by αi(τ) =
X̂τ
i (p0) is a parametrization of Si , i = 1, 2. Let Pi : (Jε, p0) → (Jε, p0)

be the Poincaré map of αi , i = 1, 2, and

Hol : π1(O, p0) ∼= Z2 → Diff2(Jε, p0) (2.6)
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the holonomy of O as a leaf of the foliation Fϕ . Then Pi = Hol([αi]),
i = 1, 2.

Note also that {X̂1 , X2} and {X1 , X̂2} define two local R2-actions ϕ̂1

and ϕ̂2 on A1(ε)× I(δ) and A2(ε)× I(δ), respectively, where X̂1 and X̂2

are given in Equation 2.5. Moreover,

O(φ,r,t)(ϕ̂1) = O(φ,r,t)(h1 ◦ϕ ◦ h−1
1 ) and O(θ,r,t)(ϕ̂2) = O(θ,r,t)(h2 ◦ϕ ◦ h−1

2 ).

The following result is a particular case of Lemma 2.4 in [2]. The condi-
tion of C2 differentiability is necessary.

Lemma 2.3. — There exists ε ∈ (0, 1) such that for each i ∈ {1, 2} one
and only one of the following cases holds :

(a) Pi|Jε = id; that is, every X̂i-orbit near Si is periodic,

(b) either Pi|Jε or (Pi|Jε)
−1 is a topological contraction, i.e. every X̂i-

orbit near Si spirals towards Si .

Furthermore, if P1 (resp. P2) satisfies (a), then P2 (resp. P1) satisfies (b).

We conclude from the above lemma that, in a neighbourhood of S1 , the
orbits of X̂1 are as depicted in one of the figures below, more precisely,
they are all homeomorphic to S1 or all homeomorphic to R .

(a) (b)

Figure 2. — The possibilities for the orbits of X̂1 on a neighbourhood of S1

We now can conclude the proof of Proposition 2.1 taking Y1 = X̂1 in
following lemma :

Lemma 2.4. — There exist ε > 0, a neighbourhood W1 of O, a neigh-
bourhood U1 in Dθ0 of S1 and a C2-diffeomorphism f1 : A1(ε) → U1

that preserves the orbits of X̂1 such that Fϕ|W1 is topologically equivalent
to the suspension of X̂1 by f1 .
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Proof. — Since X1
2 (S1) = S1 , there exists ε > 0 such that X1

2 (A1(ε)) ⊂
V1 . Consequently, the time of first return map τ : A1(ε) → [0, 1 + δ) is a
C2 map. If U1 = ∪q∈A1(ε)X

τ(q)
2 (q), then the C2 map f1 : A1(ε) → U1,

defined by f1(q) = X
τ(q)
2 (q) , is a diffeomorphism that preserves the orbits

of X̂1 . Let W1 be the interior of ∪q∈cl(A1(ε)){Xt
2(q); 0 � t � τ(q)}. By

taking a smaller ε if necessary, f1 and X̂1 induce a local diffeomorphism
of Jε , which coincides with P2 . Therefore, the holonomy of O as a leaf of
the foliation obtained by the suspension of X̂1 by f1 is the same holonomy
of O as a leaf of Fϕ , which is given by Lemma 2.3. Thus, Fϕ|W1 is
topologically equivalent to the suspension of X̂1 by f1 . �

Lemma 2.3 yields a natural decomposition of the family A into a disjoint
union :

A = AS1 ∪ Ac
R ∪ Ap

R
,

where AS1 = {ϕ ∈ A;P1|Jε
= id}, Ac

R = {ϕ ∈ A;P2|Jε
= id} and Ap

R
=

{ϕ ∈ A;P1|Jε , P2|Jε �= id}. Note that if ϕ ∈ AS1 (resp. ϕ ∈ Ac
R ∪ Ap

R
)

then, for each fixed disk Dθ , the traces of ϕ-orbits in a neighbourhood of
S1 in Dθ are as in Figure 2 (a) (resp. Figure 2 (b)). So we obtain :

Proposition 2.5. — If ϕ ∈ A, then there exists a ϕ-invariant neigh-
bourhood U of O such that all ϕ-orbits inside U \O have the same topo-
logical type and precisely one of the following possibilities occurs for each
p ∈ U \ O :

(1) Op is an S1 × R-orbit, cl(Op) \ Op has two connected components,
with O being one of them, and ϕ ∈ AS1 ∪ Ac

R ,

(2) Op is an R2-orbit which is dense in U, and ϕ ∈ Ap
R

.

For the proof of this proposition we will need the following result. For
the rest of the paper A0(ε) and A1(ε) will denote the sets given in Lemmas
2.2 and 2.4, respectively.

Lemma 2.6. — Let ϕ ∈ Ac
R ∪ Ap

R
. Then there exists an orientation

preserving C2 diffeomorphism f : S1 → S1 such that for each m ∈ N

either Fix(fm) = ∅ or Fix(fm) = S1.

Proof. — Since ϕ ∈ Ac
R ∪ Ap

R
, there exists a C2 embedding F : S1 →

A1(ε) such that S = F (S1) is transverse to X̂1 . Then the diffeomorphism
f1 , as in Lemma 2.4, induces a C2 diffeomorphism f : S1 → S1 defined
by f(q) = F−1(S ∩ Of1◦F (q)(X̂1)). If q ∈ S1 is a fixed point of fm, then
fm1 (F (q)) ∈ OF (q)(X̂1) with F (q) �= p0 . Without loss of generality we can
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assume that F (q) ∈ Jε . Hence Pm
2 (F (q)) = F (q), and it follows from

Lemma 2.3 that Pm
2 = id, that is, fm = id. Therefore f : S1 → S1

preserves orientation (otherwise it would have exactly two fixed points, see
[8, Exercise 11.2.4]). �

Proof of Proposition 2.5. — Let U0 denote the union of ϕ-orbits by
points of Jε \ {p0} . The holonomy of the orbit O, given in Lemma 2.3,
guarantees that the ϕ-orbits of points in U0 either are all homeomorphic
to S1 × R , or all homeomorphic to R2. We take U = U0 ∪ O. If every
orbit inside U0 is homeomorphic to S1 × R, then part (1) of the propo-
sition follows from Lemma 2.4. Assume now that every orbit inside U0 is
homeomorphic to R2. In this case ϕ ∈ Ap

R
. Let f ∈ Diff2

+(S1) be the dif-
feomorphism given in Lemma 2.6 and τ(f) its rotation number. We claim
that τ(f) ∈ R\Q. Otherwise, if τ(f) ∈ Q, then f has at least one periodic
point. It follows from Lemma 2.6 that fm = id for some m ∈ N. This im-
plies that Pm

2 = id, contradicting the fact that P2 satisfies (b) of Lemma
2.3. Therefore τ(f) ∈ R\Q. Since f is of class C2, by Denjoy’s Theorem
[8, Theorem 12.1.1] f is topologically conjugate to the rotation in S1 given
by Rτ(f)(θ) = θ + τ(f). Therefore, the set {fn(q)}n∈Z+

is dense in S1 for
each q ∈ S1. Consequently, every orbit inside U0 is dense in U0 . �

2.2. Asymptotic properties

We now proceed to study the asymptotic behaviour of ϕ-orbits. We shall
show that O0 is in the closure of every ϕ-orbit in N \ O , which is funda-
mental for the proof of the main results.

Definition 2.7. — The limit set of Op is the ϕ-invariant compact set
given by limOp = ∩∞

i=1cl(Op \ Ki), where Ki is a compact subset of Op ,
Ki ⊂ Ki+1 , and Op = ∪∞

i=1Ki .

It is not difficult to show that cl(Op) = Op ∪ limOp . The notions of
minimal and exceptional minimal sets that we use here are the standard
ones (see [3], Chapter 3, Section 4). We now obtain:

Theorem 2.8. — If ϕ ∈ A, then:

(i) O and O0 are the only minimal sets of ϕ,

(ii) O0 ⊂ limOp for each p ∈ N \ O. Consequently Gp ⊂ G0 .

Proof. — (i) Suppose that µ is a minimal set of ϕ such that µ �=
O and µ �= O0. Then µ is also a minimal set of the action ϕ′ of R2

on N ′ = N \ (O ∪ O0) given by ϕ′ = ϕ|R2×N ′ . Consequently, as ϕ′ has

– 622 –



Orbit Structure of certain R2-actions on solid torus

no exceptional minimal sets (see [11, Theorem 8]), either µ = Op for some
p ∈ N ′, or µ = N ′. If µ = Op , then Op is a compact orbit of ϕ , contra-
dicting the fact that ϕ ∈ A. If µ = N ′, then cl(µ), the closure of µ in N,
contains O and O0 . This contradicts the fact that µ is a minimal set of
ϕ . This completes the proof of (i).

(ii) Suppose that (ii) is not true, i.e. there exists p ∈ N \ O such that
O0 �⊂ limOp . Since cl(Op) = Op∪limOp , we have O0 �⊂ cl(Op). Therefore,
as the ϕ-invariant compact set cl(Op) contains a minimal set µ which by
(i) coincides with O, we have O ⊂ cl(Op). If Op is an S1 × R-orbit,
then by item (1) of Proposition 2.5, there exists a connected component
∆ of cl(Op) \ Op such that O ∩ ∆ = ∅. Let µ′ ⊂ ∆ be a minimal set
of ϕ. By (i), µ′ = O0, which contradicts the fact that ∆ ∩ O0 = ∅. This
contradiction shows, in this case, that O0 ⊂ cl(Op). Finally, assume that
Op is an R2-orbit. Then the neighbourhood U of O, as in Proposition
2.5(2), satisfies cl(Op) ∩ U = U, and Front(U) satisfies Front(U) ∩ O0 =
∅ = Front(U) ∩ O. So, Front(U) contains a minimal set which is neither
O0 nor O, contradicting (i). This concludes the proof of (ii). �

Remark 2.9. — For each ϕ ∈ A, let C be the set of points p ∈ N such
that Op is an S1 ×R-orbit. Since Gp ⊂ G0 , it follows that C is a disjoint
union of the sets C0 and C1 , with :

C0 = { p ∈ C ; Gp ⊂ G0
0 } and C1 = { p ∈ C ; Gp ∩ G0

0 = {0}}.

We shall see in the next subsection that if ϕ has an S1 × R-orbit in
C0 , then all the other ϕ-orbits in N \ (O0 ∪ O) are S1 × R-orbits in C0 ,
i.e., if C0 �= ∅, then C1 = ∅, moreover, C0 = N \ (O0 ∪ O) . We shall also
elucidate the orbit structure in C0 and in C1 . First, we obtain :

Proposition 2.10. — If ϕ ∈ A, then limOq = O0 ∪ O for every
q ∈ C0 .

In the proof of this proposition we shall use the following lemma. Let
ϕ ∈ A, q ∈ C0 and {w1, w2} a basis of R2 such that the vector fields
{X1 = Xw1 , X2 = Xw2} are infinitesimal generators adapted to ϕ at O0

with w2 a generator of Gq .

Lemma 2.11. — Given p ∈ O0 and a neighbourhood Vp of p, there
exists a neighbourhood Up ⊂ Vp of p such that Oq′(X2) ⊂ Vp for all
q′ ∈ Oq ∩ Up .

Proof. — Since the orbits of X2 by points of Oq are periodic of period
1, it is sufficient to show that there exists a neighbourhood Up of p such
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that Xt
2(Up) ⊂ Vp , for all t ∈ [0, 1]. Since Xt

2(p) = p , t ∈ [0, 1], then
there exists a neighbourhood Up,t of p and an open interval It ⊂ [0, 1]
that contains t such that Xs

1(Up,t) ⊂ Vp , for all s ∈ It . There exists a
finite sub-family {Iti ; i = 1, . . . , k} of {It ; t ∈ [0, 1]} that covers [0, 1].
The statement now follows by taking Up = ∩k

i=1Up,ti . �

Proof of Proposition 2.10. — Let q ∈ C0 . Since Gq ⊂ G0
0 , we take

{X1 , X2} as infinitesimal generators adapted to ϕ at O0 such that w2

generates Gq , and (h, Vq0) a chart adapted to O0 at q0 . By Lemma 2.11,
there exists a neighbourhood Uq0 of q0 such that Oq′(X2) ⊂ Vq0 for every
q′ ∈ Oq ∩ Uq0 . We first show that limOq (which in this case is equal to
cl(Oq) \ Oq) has two connected components ∆0 and ∆ with O0 ⊂ ∆0 .

By Lemma 2.2, F|ϕ is the suspension, in a neighbourhood of O0, of Y0

by the Poincaré diffeomorphism f0 : A0(ε) → U0 of X1 at q0.

Let ε > 0 such that A0(ε) ⊂ Uq0 and U0 ⊂ Uq0 . Since O0 ⊂ cl(Oq),
there exists q′ ∈ Oq ∩A0(ε) such that Oq′(X2) ⊂ Vq0 and Of0(q′)(X2) ⊂
Vq0 . Consequently, the Y0-orbits γ1 and γ2 by q′ and f0(q′), respectively,
are periodic, contained in A0(ε) and satisfy f0(γ1) = γ2 . Furthermore,
γ1 �= γ2, otherwise Oq′ would be a compact ϕ-orbit. We can assume that
γ2 is contained in the interior of γ1 in A0(ε). Let A ⊂ A0(ε) be the ring
limited by γ1 and γ2 and B ⊂ Oq the closed cylinder whose boundary is
γ1 ∪ γ2 . Then T = A∪B is an embedded topological torus containing O0

in its interior and such that N \ T has two connected components N0 and
N1, with O0 ⊂ N0 , see Figure 3.

O0
B

γ
1

γ
2

A
q0

Figure 3

If O+ = {Xt
1(γ1); t > 0} and O− = {Xt

1(γ1); t < 0}, then Oq =
O− ∪ γ1 ∪ O+. Since X1 is transverse to A0(ε) ⊃ A, then O+ ⊂ N0 and
O− ⊂ N1 . Consequently, cl(Oq) \ Oq has two connected components, ∆0

and ∆. Since O0 ⊂ cl(Oq), we can assume that O0 ⊂ ∆0 .

– 624 –



Orbit Structure of certain R2-actions on solid torus

Finally, we show that ∆ = O and ∆0 = O0 . We have O ⊂ ∆, oth-
erwise ϕ has a minimal set µ ⊂ ∆ , with µ �= O0 and O, contradicting
Theorem 2.8(i). It follows then from Proposition 2.5(1) that ∆ = O. We
consider a sequence {γk}k∈N, where γk = f0(γk−1) is a closed orbit of
Y0 . If int(γk) denotes the interior of the open 2-disk in A0(ε) which γk
bounds, then γk ⊂ int(γk−1). We claim that ∩k∈Nint(γk) = {q0}, other-
wise ∩k∈Nint(γk) is an open 2-disk in A0(ε) whose boundary γ is a closed
orbit of Y0 such that f0(γ) = γ, and thus the ϕ-orbit that contains γ
would be homeomorphic to T 2. Therefore, ∩k∈Nint(γk) = {q0}. Since ϕ is
given by a suspension in a neighbourhood of O0, it follows that ∆0 = O0 ,
which concludes the proof. �

Remark 2.12. — Proposition 2.10 is not necessarily true when q ∈ C1 .
For example, the closure of an S1 × R-orbit in a k-tube of ϕ at O0 (see
Definition 3.9) does not contain O.

2.3. C0 versus C1

Let us now study properties that distinguish the ϕ-orbits in C0 from
those in C1 . Firstly we need the following result from [3] (see Chapter 8,
Section 3).

Lemma 2.13. — Let ϕ : G × M → M be a locally free action of a
simply connected Lie group G on M, a C∞ manifold with dim(M) =
dim(G) + 1 � 3. If O is an orbit of ϕ and i : O → M is the canonical
immersion, then i∗ : π1(O) → π1(M) is injective, i.e. if γ is a closed curve
in O homotopic to a constant in M , then γ is homotopic to a constant
in O.

Theorem 2.14. — Suppose that Oq is an S1 × R-orbit of ϕ ∈ A and
let γ ⊂ Oq be a simple closed curve which is not homotopic to a constant
in Oq . Then :

(a) Oq ⊂ C0 if and only if γ is homotopic to a constant in N,

(b) if ϕ ∈ AS1 , then C = C0 = N \ (O0 ∪ O),

(c) Oq ⊂ C0 if and only if ϕ ∈ AS1 ,

(d) if Oq⊂C0, then γ bounds a closed 2-disk D⊂N such that O0∩D �= ∅,

(e) Oq ⊂ C1 if and only if γ is not homotopic to a constant in N,

(f) Oq ⊂ C1 if and only if ϕ ∈ Ac
R ∪ Ap

R
.
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In Figure 4 we have examples of S1 × R-orbits. Following the theorem
above, the first one is an S1 × R-orbit in C0 and the two last are in C1 .
Therefore, if Oq is an ϕ-orbit whose traces on Dθ in a neighbourhood of
S1 are as in Figure 2 (a), then Oq is an S1 ×R-orbit in C0 . On the other
hand, if its traces are as in Figure 2 (b) and Oq is an S1 × R-orbit, then
Oq is in C1 .

Oq

O0

O0

Oq

O0

Oq

Figure 4. — Examples of S1 × R-orbits in C0 and C1

Proof of Theorem 2.14. — (a) Let {X1 , X2} be infinitesimal generators
adapted to ϕ at O0 . If Oq ⊂ C0 , then we take w2 as the generator of Gq .
Let p ∈ O0 and Vp a neighbourhood of p. By Theorem 2.8 and Lemma
2.11, there exist a neighbourhood Up of p and a point q′ ∈ Up ∩ Oq such
that Oq′(X2) ⊂ Vp . We can take Vp sufficiently small such that Oq′(X2)
bounds a closed 2-disk inside Vp , i.e. Oq′(X2) is homotopic to a constant
in N . Since γ is simple, then Oq′(X2) and γ (or −γ ) are homotopic in
Oq , and therefore γ is homotopic to a constant in N . Conversely, suppose
that γ is null homotopic in N and Oq ⊂ C1 . Since R2 = H ⊕ G0

0 , we
can assume that H is generated by Gq . Let f0 : A0(ε) → U0 be the
Poincaré diffeomorphism of X1 at q0 ∈ O0 . Let V (ε) = S1 × Dε where
Dε = {(x1, x2) ∈ D2;x2

1 + x2
2 < ε} and π : V (ε) → S1 be given by

π(θ, x) = θ. There exists ε > 0 such that π−1(θ) is transverse to X1 , for
each θ ∈ S1. Since O0 ⊂ cl(Oq), there exist p ∈ Oq∩A0(ε) and n ∈ Z such
that Op(X1) ⊂ V (ε) is periodic of period n, i.e. fn0 (p) = p. Then π−1(θ0)∩
Op(X1) has exactly n elements, and consequently every π−1(θ), θ ∈ S1,
contains exactly n points of Op(X1). In particular, π(Op(X1)) = O0, and
thus Op(X1) is not homotopic to a constant in N . This is not possible
since Op(X1) is homotopic to γ (or −γ ) in Oq , which by hypothesis is
homotopic to a constant in N. This contradiction shows that Oq ⊂ C0 and
completes the proof of (a).

(b) If ϕ ∈ AS1 , by Proposition 2.5 and item (a), there exists a ϕ-
invariant neighbourhood U of O such that U \ O ⊂ C0 . It follows from
Proposition 2.10 that U = N \ O0.

(c) We assume that q ∈ C0 and ϕ �∈ AS1 . By Proposition 2.10,
O ⊂ cl(Oq) , and consequently it follows from Proposition 2.5 that ϕ ∈ Ac

R .
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Since P2 = id, there exists a simple closed curve γ ⊂ Oq which is neither
homotopic to a constant in Oq , nor homotopic to a constant in N , con-
tradicting item (a). This shows that ϕ ∈ AS1 . Conversely, if ϕ ∈ AS1 , it
follows from (b), that Oq ⊂ C0 .

(d) Let q ∈ C0 and ϕ′ be the action of R2 on N ′ = N\(O0∪O) defined
by ϕ′(g, p) = ϕ(g, p). By item (a), γ bounds a closed 2-disk D ⊂ N. If
O0 ∩ D = ∅, by Lemma 2.13, γ is homotopic to a constant in Oq, since
Oq is also a ϕ′-orbit.

(e)-(f) Since C = C0 ∪ C1 with C0 ∩ C1 = ∅, it follows that (e) (resp.
(f)) is equivalent to (a) (resp. (c)). �

3. Proof of the main results

In this section we simultaneously prove Theorems A and A′. We first
show the existence of Σ, a 2-disk embedded in N, in general position with
respect to Fϕ such that the foliation in Σ induced by ϕ-orbits is orientable
(Proposition 3.2). More precisely, let ϕ ∈ A and F0 be the restriction of
Fϕ to N \O0 . An embedding g : D2 → N with g(0) ∈ O0 is said to be in
general position with respect to Fϕ if g is transverse to Fϕ at g(0) and,
for every distinguished map f of F0 , the map (f ◦ g)|D2\{0} is locally of
Morse type. The submanifold g(D2) is said to be in general position with
respect to Fϕ .

Remark 3.1. — If g : D2 → N with g(0) ∈ O0 is in general position
with respect to Fϕ , then g induces a foliation F∗ in g(D2) whose leaves
are the connected components of the intersection of the leaves of Fϕ with
g(D2). Furthermore, F∗ has a finite number of singularities that are centres
or saddles, except maybe for g(0). The singularities of F∗ are the points
where g(D2) is tangent to a leaf of Fϕ .

Proposition 3.2. — If ϕ ∈ A, then there exists Σ, a closed 2-disk
embedded in N , in general position with respect to Fϕ , such that ∂Σ ⊂ O
and the foliation F∗ in Σ induced by Fϕ is given by a vector field Zϕ ∈
X2(Σ).

Proof. — Let j : D2 → N be the inclusion such that j(D2) = Dθ0 =
{θ0} × D2 , for some θ0 ∈ S1. Given ε > 0 and an integer r � 2, with
an adaptation of Haefliger’s techniques [7], we obtain a C∞-embedding
g : D2 → N in general position with respect to Fϕ such that g is ε-close
to j in the Cr-topology and coincides with j in neighbourhoods of ∂D2

and 0.
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The foliation F∗, in a neighbourhood of q0 = (θ0, 0), is given by the
vector field Y0 , as in the Equation 2.2. Thus, by Remark 3.1, F∗ is C2

locally orientable, and consequently by [3], Chapter 6, Section 4, F∗ is C2

orientable. Set Σ = g(D2). It follows that the foliation F∗ is given by a
vector field Zϕ ∈ X2(Σ). �

Remark 3.3. — There exists ε > 0 such that A0(ε) and A1(ε) are con-
tained in Σ. We can take Zϕ such that Zϕ|A0(ε) = Y0 and Zϕ|A1(ε) = X̂1 ,

where Y0 and X̂1 are the vector fields given in Equations (2.2) and (2.5),
respectively. Furthermore, by a small isotopy of Σ in a neighbourhood of
each singularity different from q0 , we may assume that no two singularities
of Zϕ in Σ \ {q0} are on the same leaf of Fϕ. Thus we can assume that
there is no connection between two different saddles of Zϕ in Σ \ {q0}.

As an immediate consequence of Theorem 2.14(a), we have :

Corollary 3.4. — If Zϕ ∈ X2(Σ) is a vector field induced by ϕ ∈ A
and γ is a closed orbit of Zϕ such that the interior of the open 2-disk in
Σ which γ bounds contains q0 , then the ϕ-orbit that contains γ is an
S1 × R-orbit that is contained in C0 .

For the proof of Theorems A and A′ we need a result that shows that
the vector fields as shown in Figure 5 are not induced by the action of any
ϕ ∈ A .

0
00

q q q

Figure 5. — Impossible configurations for induced vector fields by ϕ ∈ A

A limit cycle Γ of Zϕ is a non-empty limit set α(γ) or ω(γ), of some
orbit γ of Zϕ such that γ ∩ Γ = ∅, and which does not consist of a
singular point. By the Poincaré-Bendixson Theorem, if q0 �∈ Γ, then Γ is
either a periodic orbit or a graph of Zϕ . In the last case, by taking Zϕ as in
Remark 3.3, Γ is the union of a saddle p with one or two self-connections of
p. Since Γ is connected, if Γ �= ∂Σ, then Σ \Γ has at least two connected
components, a neighbourhood of ∂Σ being one of them.
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Proposition 3.5. — Let ϕ ∈ Ac
R ∪ Ap

R
and Γ �= S1 be a limit cycle

of Zϕ . Then q0 ∈ Γ and Γ \ Sing(Zϕ) has a finite number of connected
components, each one of them contains q0 in its closure.

Proof. — We start by showing that q0 ∈ Γ. Let OΓ be the ϕ-orbit
containing Γ, and q ∈ Γ a regular point of Zϕ . Since Γ is a limit cycle,
the holonomy transformation of OΓ at q associated to Γ is not trivial.
Consequently, Γ is not homotopic to a constant in OΓ . If q0 �∈ Γ, we claim
that q0 ∈ R(Γ), where R(Γ) is the union of the connected components of
Σ \ Γ that do not contain ∂Σ. Indeed, if q0 �∈ R(Γ), then Γ is homotopic
to a constant in Σ \ {q0}, and hence, homotopic to a constant in N \ (O0 ∪
O). Consequently, by Lemma 2.13, Γ is null homotopic in OΓ . But this
contradicts the fact that Γ is a limit cycle of Zϕ . Therefore, q0 ∈ R(Γ). By
taking Zϕ as in Remark 3.3, Γ is either a simple closed curve or the union
of two simple closed curves Γ1 and Γ2 with Γ1 ∩Γ2 = {q} = Sing(Zϕ)∩Γ.
Since q0 ∈ R(Γ), it follows that either Γ or Γi, for some i = 1, 2, is not
homotopic to a constant in OΓ. However these are homotopic to a constant
in N. Thus, OΓ is an S1 × R-orbit, and by Theorem 2.14(a), OΓ ⊂ C0 .
Hence, by item (c) of Theorem 2.14, ϕ ∈ AS1 . This contradiction proves
that q0 ∈ Γ.

Finally, by the Poincaré-Bendixson Theorem, Γ \ Sing(Zϕ) has a finite
number of connected components. Let s ⊂ Γ be a separatrix of p ∈ Γ ∩
Sing(Zϕ). We show that cl(s) = s∪{p, q0}. If this is not the case, since Zϕ

has no connection between two different saddles in Σ\{q0}, then γ = s∪{p}
is a simple closed curve which bounds a closed 2-disk D ⊂ N such that
q0 �∈ int(D). Then, γ is homotopic to a constant in N \ (O0 ∪O), and by
Lemma 2.13, γ is homotopic to a constant in OΓ . Again, this contradicts
the fact that Γ ⊃ γ is a limit cycle, and completes the proof. �

Remark 3.6. — Note that if Zϕ ∈ X2(Σ) has no limit cycle, then q0 is
the only singularity of Zϕ .

We also need the following lemma and some definitions. Let {w1, w2}
be a basis of R2 such that the vector fields {X1 = Xw1 , X2 = Xw2} are
infinitesimal generators adapted to ϕ at O.

Lemma 3.7. — If ϕ ∈ AS1 ∪ Ac
R , then there exist a neighbourhood V

of O and, for each i ∈ {1, 2}, a C2 function ui : V → R2 such that
ui(p0) = wi and for each q ∈ V, ui(q) generates Gq , i = 1, 2.

Proof. — Let I2(ε) = {(x1, x2) ∈ R2; |x1|, |x2| < ε} and h : Vp0 →
I2(ε) × (−ε, 0] be a chart at p0 with h(p0) = 0, such that, if (x1, x2, x3)
are the coordinates of I2(ε)×(−ε, 0], then h∗Xk = ∂/∂xk for k = 1, 2. Let
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Dk = Dk(ε) = {(x1, x2, x3) ∈ I2(ε) × (−ε, 0];xk = 0} and Σk = Σk(ε) =
h−1(Dk) for k = 1, 2. The function τk : Vp0 → (−ε, ε) given by τk(q) =
−xk(q), where h(q) = (x1(q), x2(q), x3(q)), is such that X

τk(q)
k (q) ∈ Σk ,

for k = 1, 2. Since X1
k(p0) = p0, k = 1, 2, it follows that there exists

0 < δ < ε such that X1
k(Σk(δ)) ⊂ Vp0 , k = 1, 2. Let Σp0 = Σp0(δ) =

Σ1(δ)∩Σ2(δ). Then Σp0 is a transverse section to O at p0 . Consider the
functions ui : Σp0 → R2 given by

u1(q) = (1 + τ1(X1
1 (q)))w1 + τ2(X1

1 (q))w2, if i = 1,
u2(q) = τ1(X1

2 (q))w1 + (1 + τ2(X1
2 (q)))w2, if i = 2. (3.7)

It can be shown that every orbit of Xui(q) inside Oq , q ∈ Σp0 , is periodic of
period one and ui(p0) = wi , i = 1, 2. We can therefore extend the functions
ui to the open set V = ∪q∈Σp0

(Oq ∩Vp0) by defining ui(q) = ui(Σp0 ∩Oq).
�

Definition 3.8. — Let Z be a vector field on R2, p a singularity of
Z, k � 0 an integer and Γ = ∪k

i=0γi , where γ0 = p and γi , i = 1, . . . , k,
is a regular orbit of Z. We then say that Γ is a k-petal of Z at p if
cl(γi) \ γi = {p} and cl(γi) is the frontier of an open 2-disk Di such that
Di ∩ Dj = ∅ for j = 1, . . . , k with j �= i.

p

Figure 6. — A 3-petal at p

Definition 3.9. — Let ϕ ∈ A, k � 0 an integer and Γ = ∪k
i=0Oi ,

where Oi , i = 1, . . . , k, is an S1 × R-orbit. One says that Γ is a k-tube
of ϕ at O0 if cl(Oi) \ Oi = O0 and cl(Oi) is the frontier of an open
solid torus Ti such that Ti ∩ Tj = ∅ for j = 1, . . . , k with j �= i. The
set SΓ = ∪k

i=1cl(Ti) is said to be a solid k-tube of ϕ at O0 associated to
k-tube Γ.

Remark 3.10. — The second figure of Figure 4 gives an example of a
1-tube. Note that every S1 × R-orbit in a k-tube is contained in C1 .

3.1. Proof of Theorems A and A′

We consider the following two cases separately. Let {w1, w2} be a basis
of R2 such that the vector fields {X1 = Xw1 , X2 = Xw2} are infinitesimal
generators adapted to ϕ at O.
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(i) The case when ϕ ∈ AS1

We shall show that there exists a closed 2-disk Σ embedding in N trans-
verse to Fϕ such that the induced vector field Zϕ satisfies Theorem A′(1).
Theorem A(1) follows then by Corollary 3.4 and Proposition 2.10.

By Theorem 2.14, Oq ⊂ C0 for each q ∈ N \ (O0 ∪ O). Let U be
the ϕ-invariant neighbourhood of O as in Proposition 2.5 and assume it
contains the neighbourhood V given in Lemma 3.7. Since O ⊂ cl(Oq), q ∈
U, then Gq ⊂ G. Consequently, it follows by Lemma 3.7 that for each
q ∈ U \ O , Gq is generated by w1. Let A = ∪q∈JOq(X1), where J is a
segment in Jε with end points p0 and p1 . It is not hard to show that A
is homeomorphic to S1 × [0, 1] and transverse to X2 , and consequently A
is transverse to Fϕ . Given a neighbourhood V0 of q0 , by Lemma 2.11,
there exists a neighbourhood U0 of q0 such that Oq(X1) ⊂ V0, for each
q ∈ U0 ∩ Op1 . Since O0 ⊂ cl(Op1), there exists t ∈ R such that Xt

2(p1) ∈
U0 and, consequently, OXt

2(p1)(X1) = Xt
2(Op1(X1)) ⊂ V0. The ring A2 =

Xt
2(A) is the union of closed orbits of X1 , transverse to Fϕ , with ∂A2 =

OXt
2(p0)(X1) ∪ OXt

2(p1)(X1). We consider V0 as the domain of a chart
adapted to ϕ at q0 . Then there exists a closed 2-disk D ⊂ V0 transverse to
Fϕ such that ∂D = OXt

2(p1)(X1). Let X ∈ X2(D) be the vector field whose
orbits are the connected components of the intersection of D with the ϕ-
orbits. We claim that every orbit of X inside D\O0 is periodic. Otherwise,
there exists q ∈ D such that ωX(q) = γ (or αX(q) = γ), where γ ⊂ D
is a closed orbit of X and q �∈ γ. Then Oγ , the ϕ-orbit containing γ, is
contained in cl(Oq) and is different from O0 and O. But this contradicts
Proposition 2.10. Therefore all the orbits of X in D \ O0 are periodic.
Let D̃ = A2 ∪ D, f : D2 → D̃ ⊂ N a homeomorphism, and D0 be a
neighbourhood of f−1(∂D) in D2. We take a C∞ embedding g : D2 → N ,
arbitrarily close to f in the C0-topology, such that g|(D2\D0) = f |(D2\D0)

and transverse to Fϕ . Then, the foliation F∗ in Σ = g(D2) , induced by
Fϕ , is given by a vector field Zϕ ∈ X2(Σ) whose orbits in Σ \ (O0 ∩ Σ)
are all periodic.

(ii) The case when ϕ ∈ Ac
R ∪ Ap

R

In this case we take Zϕ as in Remark 3.3. Let V be the union of Zϕ-orbits
by points of A1(ε) . Then V is homeomorphic to S1×(0, 1] and every orbit
of Zϕ inside V \S1 is homeomorphic to R. Hence, the frontier Γ of V in
Σ, either coincides with {q0} or is a limit cycle of Zϕ .
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Figure 7. — The ϕ-orbit that contain l intersects the region D

We suppose that Γ is a limit cycle of Zϕ . By Lemma 2.4, there exist
a neighbourhood W1 of O, a neighbourhood U1 of S1 in Dθ0 , and a
C2 diffeomorphism f1 : A1(ε) → U1 that preserves orbits of X̂1 , such
that Fϕ|W1 is the suspension of X̂1 = Zϕ|A1(ε) by f1 . Then, as V is
invariant by Zϕ , we obtain an extension F1 : V → V of f1, that is given
by F1(q) = Zt

ϕ(f1(Z−t
ϕ (q))), where t ∈ R is such that Z−t

ϕ (q) ∈ S with
S ⊂ A1(ε) a circle transverse to Zϕ . Note that, by definition, F1 preserves
the orbits of Zϕ , and thus Fϕ|U is the suspension of Zϕ|V by F1 , where
U is as in Proposition 2.5. Therefore, V = U ∩Σ. We claim that Γ is a k-
petal, i.e. Γ∩Sing(Zϕ) = {q0}. Suppose that there exists q ∈ Γ∩Sing(Zϕ)
with q �= q0 . Since Γ is a limit cycle, q is necessarily a saddle. Hence,
as Σ is in general position with respect to Fϕ , every ϕ-orbit by points
in V has points in Σ \ cl(V ), see Figure 7. But this contradicts the fact
that V = U ∩ Σ. This contradiction and Proposition 3.5 show that Γ is a
k-petal of Zϕ at q0 , and consequently Front(U) is a k-tube of ϕ at O0 .
Theorem A (2) and (3) then follow from Theorem 2.14. �
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