Mathématiques

F. Cukierman, J. V. Pereira, I. Vainsencher
 Stability of foliations induced by rational maps

Tome XVIII, $\mathrm{n}^{\mathrm{o}} 4$ (2009), p. 685-715.
http://afst.cedram.org/item?id=AFST_2009_6_18_4_685_0
© Université Paul Sabatier, Toulouse, 2009, tous droits réservés.
L'accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

Stability of foliations induced by rational maps

F. Cukierman ${ }^{(1)}$, J. V. Pereira ${ }^{(2)}$, I. Vainsencher ${ }^{(3)}$

Abstract

RÉSUMÉ. - Nous montrons que les feuilletages holomorphes induits par les applications rationnelles quasi-homogènes remplissent les composantes irréductibles de l'espace $\mathcal{F}_{q}(r, d)$ des feuilletages de codimension q et degré d de l'espace projectif \mathbb{P}^{r} pour tout $1 \leqslant q \leqslant r-2$. Nous étudions la géométrie de telles composantes irréductibles. Nous montrons que ce sont des variétés rationnelles et calculons leur degré dans plusieurs cas.

Abstract

We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space $\mathcal{F}_{q}(r, d)$ of singular foliations of codimension q and degree d on the complex projective space \mathbb{P}^{r}, when $1 \leqslant q \leqslant r-2$. We study the geometry of these irreducible components. In particular we prove that they are all rational varieties and we compute their projective degrees in several cases.

(*) Reçu le 22/02/08, accepté le 27/06/08
The authors were partially supported by CAPES-SPU. The second author is supported by Instituto Unibanco and CNPQ.
${ }^{(1)}$ Depto. Matemática, FCEN-UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina fcukier@dm.uba.ar
(2) IMPA, Estrada Dona Castorina 110, 22 460-320 Rio de Janeiro, Brasil jvp@impa.br
(3) Depto. Matemática, UFMG, Av. Antonio Carlos 6627, 31 270-901 Belo Horizonte, Brasil
israel@mat.ufmg.br

Contents

1 Introduction 687
1.1 The space of codimension one holomorphic foliations on \mathbb{P}^{r} 687
1.2 Stability of quasi-homogeneous pencils 687
1.3 Infinitesimal stability of quasi-homogeneous pencils 688
1.4 Foliations on \mathbb{P}^{r} of higher codimension 688
1.5 Infinitesimal stability of quasi-homogeneous rational maps 689
1.6 Geometry of the rational components 690
2 Infinitesimal stability of quasi-homogeneous pencils 690
2.1 The Zariski tangent space of \mathcal{F} 691
2.2 Proof of Theorem 1.1 694
3 Stability of quasi-homogeneous rational maps 695
3.1 Lemmata 696
3.2 Surjectivity of the derivative and proof of Theorem 1.2 698
4 Geometry of the parametrization 700
4.1 Base locus 700
4.2 Weighted homogeneous polynomials 701
4.3 The fibers of ρ 703
4.4 A natural factorization and proof of Theorem 1.3 705
5 Degree calculations 706
5.1 Input from intersection theory 706
5.2 Linear projections of grassmannians 707
5.3 Correction due to base locus 708
5.4 Case (2,2,2) 708
5.5 Bundles of projective spaces 708
$5.6 k=2$ and $d_{0}=1$ 712
References 714

1. Introduction

1.1. The space of codimension one holomorphic foliations on \mathbb{P}^{r}

Let us consider a differential 1-form in \mathbb{C}^{r+1}

$$
\omega=\sum_{i=0}^{r} a_{i} d x_{i}
$$

where the a_{i} are homogeneous polynomials of degree $d+1$ in variables x_{0}, \ldots, x_{r}, with complex coefficients. Assume that $\sum_{i=0}^{r} a_{i} x_{i}=0$, so that ω descends to the complex projective space \mathbb{P}^{r} and defines a global section of the twisted sheaf of 1 -forms $\Omega_{\mathbb{P}^{r}}^{1}(d+2)$.

The space of codimension one foliations of degree d on \mathbb{P}^{r} is the algebraic subset of $\mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega_{\mathbb{P}^{r}}^{1}(d+2)\right)\right)$ consisting of the 1 -forms ω that satisfy the Frobenius integrability condition and have zero set of codimension at least two, i.e.,
$\mathcal{F}(r, d)=\left\{\omega \in \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega_{\mathbb{P}^{r}}^{1}(d+2)\right)\right) \mid \omega \wedge d \omega=0\right.$ and codim $\left.\operatorname{sing}(\omega) \geqslant 2\right\}$.

For the study of the irreducible components of $\mathcal{F}(r, d)$ we refer to e. g. [2] and [11].

1.2. Stability of quasi-homogeneous pencils

One of the first results on the subject is due to Gómez-Mont and Lins Neto [7] who proved that there are irreducible components $\mathcal{R}(r, d, d) \subset$ $\mathcal{F}(r, 2 d-2), r \geqslant 3$, whose generic element is a foliation tangent to a Lefschetz pencil of degree d hypersurfaces. Their proof explores the topology of the underlying real foliation and relies on the stability of the Kupka components of the singular set and on Reeb's Leaf Stability Theorem. Using similar methods they recognized for $r \geqslant 4$ other irreducible components $\mathcal{R}\left(r, d_{0}, d_{1}\right) \subset \mathcal{F}\left(r, d_{0}+d_{1}-2\right)$ with generic member tangent to a quasihomogeneous pencil $\left\langle\lambda F^{p_{0}}-\mu G^{p_{1}}\right\rangle$ with p_{0} and p_{1} relatively prime natural numbers satisfying $p_{0} d_{0}=p_{1} d_{1}, d_{i}=\operatorname{deg} F_{i}$. Later Calvo-Andrade [1] extended Gómez-Mont-Lins Neto result about quasi-homogeneous pencils to dimension three. His proof has an extra dynamical ingredient -the stability of leaves carrying non-trivial holonomy.

In fact in both of the above mentioned papers the authors do not restrict to \mathbb{P}^{r} and prove their results for foliations on an arbitrary projective manifold M with $\operatorname{dim} M \geqslant 3$ and $\mathrm{H}^{1}(M, \mathbb{C})=0$. Alternative proofs of the above results may be found in $[14,16]$.

1.3. Infinitesimal stability of quasi-homogeneous pencils

Although full of geometric insights the above mentioned works do not seem to shed any light on the scheme structure or the geometry of $\mathcal{R}\left(r, d_{0}, d_{1}\right)$. The present article stems from an attempt to understand these problems.

Using infinitesimal techniques, as in [4], we describe the Zariski tangent space of $\mathcal{R}\left(r, d_{0}, d_{1}\right)$ at a generic point and arrive at a proof that $\mathcal{R}\left(r, d_{0}, d_{1}\right)$ -with the natural scheme structure given by the Frobenius integrability condition- is generically reduced. More precisely if $\mathcal{R}\left(r, d_{0}, d_{1}\right)$ denotes the closure of the image of the rational map

$$
\begin{aligned}
\rho: \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(d_{0}\right)\right)\right) \times \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(d_{1}\right)\right)\right) & -->\mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}\left(d_{0}+d_{1}\right)\right)\right) \\
\left(F_{0}, F_{1}\right) & \longmapsto d_{0} F_{0} d F_{1}-d_{1} F_{1} d F_{0} .
\end{aligned}
$$

then our first result reads as follows.

Theorem 1.1. - If $r \geqslant 3$ then $\mathcal{R}\left(r, d_{0}, d_{1}\right)$ is an irreducible and generically reduced component of $\mathcal{F}\left(r, d_{0}+d_{1}-2\right)$.

As explained above the only novelty in Theorem 1.1, besides the method of its proof, is what concerns the scheme structure over a generic point. For a more precise statement see Theorem 2.1 in $\S 2$.

The main content of this article is the generalization of Theorem 1.1 to foliations of higher codimension.

1.4. Foliations on \mathbb{P}^{r} of higher codimension

Let ω be a homogeneous q-form on \mathbb{C}^{r+1} with coefficients of degree $d+1$ that is annihilated by Euler's vector field. As before ω can be interpreted as a section of the sheaf of twisted differential q-forms $\Omega_{\mathbb{P}^{r}}^{q}(d+q+1)$.

We recall from [13] (see also [4]) that ω defines a degree d holomorphic foliation of codimension q on \mathbb{P}^{r} if it satisfies both Plücker's decomposability condition

$$
\begin{equation*}
\left(i_{v} \omega\right) \wedge \omega=0 \quad \text { for every } v \in \bigwedge^{q-1} \mathbb{C}^{r+1} \tag{1.1}
\end{equation*}
$$

and the integrability condition

$$
\begin{equation*}
\left(i_{v} \omega\right) \wedge d \omega=0 \quad \text { for every } v \in \bigwedge^{q-1} \mathbb{C}^{r+1} \tag{1.2}
\end{equation*}
$$

It is therefore natural to set $\mathcal{F}_{q}(r, d)$, the space of codimension q holomorphic foliations of degree d on \mathbb{P}^{r}, as
$\left\{\omega \in \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega_{\mathbb{P}^{r}}^{q}(d+q+1)\right)\right) \mid \omega\right.$ satisfies $(1.1),(1.2)$ and $\left.\operatorname{codim} \operatorname{sing}(\omega) \geqslant 2\right\}$.

1.5. Infinitesimal stability of quasi-homogeneous rational maps

If one interprets the elements of $\mathcal{R}\left(r, d_{0}, d_{1}\right)$ as foliations tangent to the fibers of rational maps

$$
\begin{array}{rll}
\mathbb{P}^{r} & --> & \mathbb{P}^{1} \\
x & \longmapsto\left(F^{p_{0}}: G^{p_{1}}\right)
\end{array}
$$

then a possible counterpart in the higher codimension case are the foliations tangent to dominant rational maps $\mathbb{P}^{r}-\rightarrow \mathbb{P}^{q}$.

When $q=r-1$ there is no hope to establish a stability result even for a generic rational map. Indeed, under this constraint both Plücker's condition and the integrability condition are vacuous. Thus $\mathcal{F}_{r-1}(r, d)$ can be identified with an open subset of $\mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega_{\mathbb{P}^{r}}^{r-1}(d+r)\right)\right)=\mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, T \mathbb{P}^{r}(d-1)\right)\right)$. It is well known that for $d \geqslant 2$ a generic element of this space has no algebraic leaves, see for instance [3].

For $1 \leqslant q \leqslant r-2$ fix integers d_{0}, \ldots, d_{q} and consider homogeneous polynomials F_{i} of degree d_{i} for $i=0, \ldots, q$. Assume that the q-form

$$
\begin{equation*}
\omega=i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right) \tag{1.3}
\end{equation*}
$$

is non-zero. It is easy to check that ω satisfies both (1.1) and (1.2) since $i_{v} \omega=\sum a_{i j} i_{R}\left(d F_{i} \wedge d F_{j}\right)$, where the $a_{i j}$ are homogeneous polynomials. Moreover, it defines a foliation tangent to the fibers of the map

$$
\begin{array}{rll}
\mathbb{P}^{r} & --> & \mathbb{P}^{q} \\
x & \longmapsto & \left(F_{0}^{e_{0}}: \ldots: F_{q}^{e_{q}}\right)
\end{array}
$$

with $e_{i}=\operatorname{lcm}\left(d_{0}, \ldots, d_{q}\right) / d_{i}$. We set

$$
d=\sum d_{i}-q-1
$$

and denote by

$$
\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right) \subset \mathcal{F}_{q}(r, d)
$$

the closure of the set of foliations that can be written in the form (1.3). It is the closure of the image of the rational map

$$
\begin{array}{rlc}
\rho: \prod_{i} \mathbb{P}\left(\mathrm{H}^{0}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(d_{i}\right)\right)\right) & --> & \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}(d+q+1)\right)\right) \\
\left(F_{i}\right) & \longmapsto & i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right) .
\end{array}
$$

Notice that for $q=1$ we recover the definition of $\mathcal{R}\left(r, d_{0}, d_{1}\right)$.

Theorem 1.2. - If $r \geqslant 4$ and $1 \leqslant q \leqslant r-2$ then $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ is an irreducible and generically reduced component of $\mathcal{F}_{q}\left(r, \sum d_{i}-q-1\right)$.

As far as we know there is no information in the literature concerning the geometry of the irreducible components of $\mathcal{F}_{q}(r, d)$ so far.

1.6. Geometry of the rational components

In Section 3 we initiate this study through an investigation of the parametrization ρ. Besides computing the dimension of $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$, we prove the following.

Theorem 1.3. - The irreducible components $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ are rational varieties.

By its definition, $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ is unirational. The proof of rationality relies on the construction of a variety X that sits as an open set in the total space of a tower of Grassmann bundles, together with a birational morphism $p: X \rightarrow \mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$.

In general we do not know how to naturally compactify X to a projective variety where p extends to a morphism. Albeit, in a number of cases we are able to do that and obtain, with the aid of Schubert Calculus, formulas for the degree of the projective subvarities

$$
\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right) \subset \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+q+1)\right)\right)
$$

For example the first few values for the degree of $\mathcal{R}(r, 2,2,2)$ are listed below.

r	Degree
3	$\mathbf{1 3 2 4 2 2 0}$
4	$\mathbf{2 8 6 0 9 2 3 4 5 8 0 8 0}$
5	$\mathbf{2 4 3 6 6 1 9 7 2 9 8 0 4 7 7 7 3 6 2 6 3}$
6	$\mathbf{7 2 8 4 4 0 7 3 3 7 0 5 1 0 7 8 3 1 7 8 9 5 1 7 2 4 5 8 5 8}$
7	$\mathbf{7 0 4 6 1 3 0 9 6 5 1 3 5 8 5 1 2 3 5 8 5 3 9 8 4 0 8 6 9 6 2 3 1 8 9 9 1 7 6 1 8 3}$

Several other cases are treated in Section 5.

2. Infinitesimal stability of quasi-homogeneous pencils

In this first section we present our proof of Theorem 1.1. All the arguments will be reworked later in greater generality. We felt the exposition of this particular case of Theorem 1.2 would improve the clarity of the paper.

For simplicity, let us denote by

$$
\begin{equation*}
\mathbf{S}_{e}=\mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(e)\right) \tag{2.1}
\end{equation*}
$$

the vector space of homogeneous polynomials of degree e in $r+1$ variables, and

$$
\mathcal{F}=\mathcal{F}(r, d)
$$

so that our rational map ρ is

$$
\begin{equation*}
\rho: \mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \mathbb{P}\left(\mathbf{S}_{d_{1}}\right)-->\mathcal{F} \subset \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}(d+2)\right)\right) . \tag{2.2}
\end{equation*}
$$

If p_{0} and p_{1} denote the unique coprime natural numbers such that $p_{0} d_{0}=$ $p_{1} d_{1}$ then

$$
\rho\left(F_{0}, F_{1}\right)=d_{0} F_{0} d F_{1}-d_{1} F_{1} d F_{0}=p_{1} F_{0} d F_{1}-p_{0} F_{1} d F_{0}
$$

where the last equality of differential forms is up to multiplicative constant.
We remark that

$$
d\left(\frac{F_{0}^{p_{0}}}{F_{1}^{p_{1}}}\right)=\frac{F_{0}^{p_{0}-1}}{F_{1}^{p_{1}+1}}\left(p_{1} F_{0} d F_{1}-p_{0} F_{1} d F_{0}\right)
$$

Therefore, the closure of the leaves of the singular foliation defined by the integrable 1-form $\rho\left(F_{0}, F_{1}\right)$ are irreducible components of the members of the pencil of hypersurfaces of degree $p_{0} d_{0}=p_{1} d_{1}$ generated by $F_{0}^{p_{0}}$ and $F_{1}^{p_{1}}$.

2.1. The Zariski tangent space of \mathcal{F}

For a scheme X and a point $x \in X$ we denote by $T_{x} X$ the Zariski tangent space of X at x. If $\mathbb{P}(V)$ is the projective space associated to a \mathbb{C}-vector space V and denoting $\pi: V-\{0\} \rightarrow \mathbb{P}(V)$ the canonical projection, for each $v \in V$ we have a natural identification

$$
T_{\pi(v)} \mathbb{P}(V)=V /(v)
$$

where (v) denotes de one-dimensional subspace generated by v. With slight abuse of notations, the Zariski tangent space $T_{\omega} \mathcal{F}$ of \mathcal{F} at a point ω is represented by the forms $\eta \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}(d+2)\right) /(\omega)$ such that

$$
(\omega+\epsilon \eta) \wedge(d \omega+\epsilon d \eta)=0 \bmod \epsilon^{2}
$$

that is, such that

$$
\omega \wedge d \eta+\eta \wedge d \omega=0 \quad \text { or, equivalently } \quad d \omega \wedge d \eta=0
$$

where the equivalence is implied by the following variant of Euler's formula for homogeneous polynomials.

Lemma 2.1. - If η is a homogeneous q-form with degree d coefficients then

$$
i_{R} d \eta+d\left(i_{R} \eta\right)=(q+d) \eta
$$

where R is the radial or Euler vector field and i_{R} denotes the interior product or contraction with R.

Proof. - See [11, Lemme 1.2, pp. 3].
Therefore to determine $T_{\omega} \mathcal{F}$ is equivalent to solve $d \omega \wedge d \eta=0$. Notice that in the situation under scrutiny $d \omega=\left(d_{0}+d_{1}\right) d F_{0} \wedge d F_{1}$. The first step towards the general η satisfying $d \omega \wedge d \eta=0$ is given by Saito's generalization of DeRham's division Lemma. In Lemma 2.2 we state variants of both DeRham's and Saito's Lemmas fine tuned up for our purposes.

Lemma $2.2([15]) .-\operatorname{Let} F_{0}, \ldots, F_{q}$ be homogeneous polynomial functions on \mathbb{C}^{r+1} and let $\Theta \in \Omega^{q+1}\left(\mathbb{C}^{r+1}\right)$ be the $(q+1)$-form given by

$$
\Theta=d F_{0} \wedge \ldots \wedge d F_{q}
$$

(a) Suppose that $q<r$ and codimsing $(\Theta) \geqslant 2$. If $\eta \in \Omega^{1}\left(\mathbb{C}^{r+1}\right)$ is a homogeneous polynomial 1 -form such that $\Theta \wedge \eta=0$ then there exist homogeneous polynomials a_{0}, \ldots, a_{q} such that

$$
\eta=\sum_{i=0}^{q} a_{i} d F_{i}
$$

(b) Suppose that $q<r-1$ and codim $\operatorname{sing}(\Theta) \geqslant 3$. If $\eta \in \Omega^{2}\left(\mathbb{C}^{r+1}\right)$ is a homogeneous polynomial 2-form such that $\Theta \wedge \eta=0$ then there exist homogeneous polynomial 1-forms $\alpha_{0}, \ldots, \alpha_{q}$ such that

$$
\eta=\sum_{i=0}^{q} \alpha_{i} \wedge d F_{i}
$$

Remark 2.3. - The hypothesis $q<r$ in (a) and $q<r-1$ in (b) are not really necessary. For instance in item (b) the singular set $\operatorname{sing}(\Theta)$ equals the locus where the $(q+1) \times(r+1)$ Jacobian matrix $\left(\partial F_{i} / \partial x_{j}\right)$ has rank $\leqslant q$. Hence $\operatorname{sing}(\Theta)$ is empty or has codimension at most $r+1-q$. When $q \geqslant$ $r-1$ it follows that codim $\operatorname{sing}(\Theta) \geqslant 3$ implies that Θ has no singularities. We conclude that F_{0}, \ldots, F_{q} are linearly independent linear forms and the conclusion trivially holds true in this case.

In face of Lemma 2.2 it is natural to define the open subset

$$
\begin{equation*}
\mathcal{U}=\left\{\omega \in \mathcal{R}\left(r, d_{0}, d_{1}\right) \mid \text { codim } \operatorname{sing}(d \omega) \geqslant 3 \text { and codim } \operatorname{sing}(\omega) \geqslant 2\right\} \tag{2.3}
\end{equation*}
$$

The next result will imply the infinitesimal stability of quasi-homogeneous pencils corresponding to points of \mathcal{U}. It is a simple particular case of Proposition 3.3. The iteration argument in the proof is generalized in Lemma 3.2. We feel it is worthwhile to write it here for the sake of clarity.

Proposition 2.4. - Let $\left(F_{0}, F_{1}\right) \in \mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \mathbb{P}\left(\mathbf{S}_{d_{1}}\right)$ be such that $\rho\left(F_{0}, F_{1}\right)=\omega \in \mathcal{U}$. Then the derivative

$$
d \rho\left(F_{0}, F_{1}\right): T_{\left(F_{0}, F_{1}\right)}\left(\mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \mathbb{P}\left(\mathbf{S}_{d_{1}}\right)\right) \rightarrow T_{\omega} \mathcal{F}
$$

is surjective. In other words, ρ is a submersion over \mathcal{U}.
Proof. - It is convenient to write

$$
\rho\left(F_{0}, F_{1}\right)=d_{0} F_{0} d F_{1}-d_{1} F_{1} d F_{0}=i_{R}\left(d F_{0} \wedge d F_{1}\right) .
$$

Then, the derivative of ρ at the point $\left(F_{0}, F_{1}\right)$

$$
d \rho\left(F_{0}, F_{1}\right): \mathbf{S}_{d_{0}} /\left(F_{0}\right) \times \mathbf{S}_{d_{1}} /\left(F_{1}\right) \rightarrow T_{\omega} \mathcal{F}
$$

is calculated as

$$
d \rho\left(F_{0}, F_{1}\right)\left(F_{0}^{\prime}, F_{1}^{\prime}\right)=i_{R}\left(d F_{0}^{\prime} \wedge d F_{1}+d F_{0} \wedge d F_{1}^{\prime}\right)
$$

Let $\eta \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}(d+2)\right)$ represent an element of $T_{\omega} \mathcal{F}$, that is, $d \omega \wedge d \eta=$ 0 . We shall prove that η belongs to the image of $d \rho\left(F_{0}, F_{1}\right)$, i.e.,

$$
\eta=i_{R}\left(d F_{0}^{\prime} \wedge d F_{1}+d F_{0} \wedge d F_{1}^{\prime}\right)
$$

for some $F_{0}^{\prime} \in \mathbf{S}_{d_{0}}$ and $F_{1}^{\prime} \in \mathbf{S}_{d_{1}}$.
Since $d \omega=d F_{0} \wedge d F_{1}$, applying the division Lemma 2.2 to $d \eta$ it follows that there exist homogeneous 1 -forms α and β such that

$$
d \eta=\alpha \wedge d F_{0}+\beta \wedge d F_{1}
$$

Notice that $d \eta$ is a 2-form with coefficients homogeneous polynomials of degree $d=d_{0}+d_{1}-2$. Hence the coefficients of α (resp. β) are homogeneous of degree $d_{1}-1$ (resp. $d_{0}-1$). Applying exterior derivative we find

$$
d \alpha \wedge d F_{0}+d \beta \wedge d F_{1}=0
$$

Multiplying by $d F_{1}$ we get $d \alpha \wedge d F_{0} \wedge d F_{1}=0$. From lemma 2.2 applied to $d \alpha$ we deduce

$$
d \alpha=\alpha^{\prime} \wedge d F_{0}+\alpha^{\prime \prime} \wedge d F_{1}
$$

where α^{\prime} and $\alpha^{\prime \prime}$ are 1 -forms with coefficients homogeneous polynomials of respective degrees $d_{1}-2-\left(d_{0}-1\right)=d_{1}-d_{0}-1$ and $d_{1}-2-\left(d_{1}-1\right)=-1$. Hence $\alpha^{\prime \prime}=0$. Similarly,

$$
d \beta=\beta^{\prime} \wedge d F_{0}+\beta^{\prime \prime} \wedge d F_{1}
$$

where β^{\prime} and $\beta^{\prime \prime}$ are 1-forms with coefficients homogeneous polynomials of respective degrees $d_{0}-2-\left(d_{0}-1\right)=-1$ and $d_{0}-2-\left(d_{1}-1\right)=d_{0}-d_{1}-1$. Hence $\beta^{\prime}=0$.

Suppose that $d_{0}=d_{1}$. By the considerations above regarding degrees, $\alpha^{\prime}=\beta^{\prime \prime}=0$. Thus α and β are closed 1-forms. Therefore $\alpha=-d F_{1}^{\prime}$ and $\beta=d F_{0}^{\prime}$ where F_{i}^{\prime} is some homogeneous polynomial of degree d_{i}. It follows that $d \eta=d F_{0}^{\prime} \wedge d F_{1}+d F_{0} \wedge d F_{1}^{\prime}$ and since $i_{R}(d \eta)=(d+1) \eta$ we obtain that η is a scalar multiple of $i_{R}\left(d F_{0}^{\prime} \wedge d F_{1}+d F_{0} \wedge d F_{1}^{\prime}\right)$. Therefore the Proposition is proved in the case $d_{0}=d_{1}$.

Now suppose $d_{0} \neq d_{1}$, say $d_{0}>d_{1}$. Then $d_{1}-d_{0}-1<0$. Hence $d \alpha=0$ and $d \beta=\beta^{\prime \prime} \wedge d F_{1}$. Repeating the argument of the previous case we obtain a sequence of 1 -forms $\beta_{i}, i \in \mathbb{N}$, such that

$$
d \beta_{i}=\beta_{i+1} \wedge d F_{1}
$$

Comparing degrees it follows that, for $k \gg 0, \beta_{k}=0$. Thus $d \beta_{k-1}=0$ and there exists a homogeneous polynomial b_{k-1} such that $\beta_{k-1}=d b_{k-1}$. Then $d \beta_{k-2}=d b_{k-1} \wedge d F_{1}$ and hence $\beta_{k-2}=b_{k-1} d F_{1}+d b_{k-2}$ for a suitable homogeneous polynomial b_{k-2}. Then $d \beta_{k-3}=\beta_{k-2} \wedge d F_{1}=d b_{k-2} \wedge d F_{1}$. Hence there exists b_{k-3} such that $\beta_{k-3}=b_{k-2} d F_{1}+d b_{k-3}$. Iterating this, we conclude that $\beta=\beta_{0}=b_{1} d F_{1}+d b_{0}$ and therefore

$$
d \eta=d F_{1}^{\prime} \wedge d F_{0}+d F_{0}^{\prime} \wedge d F_{1}
$$

where $d F_{1}^{\prime}=\alpha$ and $d F_{0}^{\prime}=d b_{0}$, as wanted.

2.2. Proof of Theorem 1.1

As a matter of fact we prove the following slightly more precise statement.

THEOREM 2.1. - If $r \geqslant 3$ then $\mathcal{R}\left(r, d_{0}, d_{1}\right)$ is an irreducible component of $\mathcal{F}(r, d)$. Moreover, $\mathcal{F}(r, d)$ is smooth and reduced at the points of \mathcal{U}.

Proof. - Write as before $\rho: P--\mathcal{F}$, where $P=\mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \mathbb{P}\left(\mathbf{S}_{d_{1}}\right)$, $\mathcal{F}=\mathcal{F}(r, d)$ and $\mathcal{R}=\mathcal{R}\left(r, d_{0}, d_{1}\right)$ is the closure of the image of ρ. Put $F=\left(F_{0}, F_{1}\right) \in P$. Proposition 2.4 implies that for $\omega=\rho(F)$, the derivative

$$
d \rho(F): T_{F} P \rightarrow T \mathcal{F}_{\omega}
$$

is surjective and also factors through $T_{\omega} \mathcal{R} \subseteq T_{\omega} \mathcal{F}$. Then $T_{\omega} \mathcal{R}=T_{\omega} \mathcal{F}$. It follows that \mathcal{R} is an irreducible component of \mathcal{F} and \mathcal{F} is reduced at the generic point of \mathcal{R}.

3. Stability of quasi-homogeneous rational maps

In this section we exhibit some previously unknown irreducible components $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ of $\mathcal{F}_{q}(r, d)$, generalizing the case $q=1$ of the previous section.

A point of $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ will be a twisted q-form $\omega \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+\right.$ $q+1)$) of type

$$
\begin{equation*}
\omega=i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)=\sum_{0 \leqslant j \leqslant q}(-1)^{j} d_{j} F_{j} d F_{0} \wedge \ldots \wedge \widehat{d F_{j}} \wedge \ldots \wedge d F_{q} \tag{3.1}
\end{equation*}
$$

where $F_{j} \in \mathbf{S}_{d_{j}}$ is a homogeneous polynomial of degree d_{j} in $r+1$ variables, and

$$
\begin{equation*}
d_{0}+\ldots+d_{q}=d+q+1 \tag{3.2}
\end{equation*}
$$

We call ω a rational q-form in \mathbb{P}^{r} of type $\left(d_{0}, \ldots, d_{q}\right)$.
More precisely, $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ is defined as the closure of the image of the rational map

$$
\begin{equation*}
\rho: \mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \ldots \times \mathbb{P}\left(\mathbf{S}_{d_{q}}\right)-->\mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+q+1)\right)\right) \tag{3.3}
\end{equation*}
$$

induced by the multilinear map

$$
\mu: \mathbf{S}_{d_{0}} \times \ldots \times \mathbf{S}_{d_{q}} \rightarrow \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+q+1)\right)
$$

such that $\mu\left(F_{0}, \ldots, F_{q}\right)=i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)$. The base locus of ρ is described in (4.1) below.

As in the previous section, we define the open subset

$$
\begin{equation*}
\mathcal{U}=\left\{\omega \in \mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right) \mid \text { codim } \operatorname{sing}(d \omega) \geqslant 3 \text { and codim } \operatorname{sing}(\omega) \geqslant 2\right\} \tag{3.4}
\end{equation*}
$$

With notation as above, our main purpose in this section is to prove the following Theorem 3.1, which is a more precise version of Theorem 1.2 of the Introduction.

Theorem 3.1. - Suppose $r \geqslant 3$ and $1 \leqslant q \leqslant r-2$. Then $\mathcal{R}\left(r, d_{0}, \ldots, d_{q}\right)$ is an irreducible component of $\mathcal{F}_{q}(r, d)$. Moreover, $\mathcal{F}_{q}(r, d)$ is smooth and reduced at the points of \mathcal{U}.

The strategy is the same as the one used to prove Theorem 2.1. Let us denote by $\mathcal{F}=\mathcal{F}_{q}(r, d)$. The scheme \mathcal{F} is defined by the quadratic equations

$$
\begin{equation*}
i\left(v_{J}\right) \omega \wedge \omega=0 \text { and } i\left(v_{J}\right) \omega \wedge d \omega=0 \tag{3.5}
\end{equation*}
$$

for all $J \subset\{0, \ldots, r\}$ of cardinality $q-1$.
The tangent space $T_{\omega} \mathcal{F}$ of \mathcal{F} at a point ω is represented by the forms $\omega^{\prime} \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+q+1)\right) /(\omega)$ such that $\omega_{\epsilon}=\omega+\epsilon \omega^{\prime}$ satisfies the conditions (3.5) modulo ϵ^{2}, that is

$$
i\left(v_{J}\right) \omega_{\epsilon} \wedge \omega_{\epsilon}=0 \text { and } i\left(v_{J}\right) \omega_{\epsilon} \wedge d \omega_{\epsilon}=0
$$

modulo ϵ^{2}, for all $J \subset\{0, \ldots, r\}$ of cardinality $q-1$. Expanding, one obtains

$$
\begin{equation*}
i\left(v_{J}\right) \omega^{\prime} \wedge \omega+i\left(v_{J}\right) \omega \wedge \omega^{\prime}=0 \text { and } i\left(v_{J}\right) \omega^{\prime} \wedge d \omega+i\left(v_{J}\right) \omega \wedge d \omega^{\prime}=0 \tag{3.6}
\end{equation*}
$$

In order to work out ω^{\prime} from (3.6) we will need a pair of technical results.

3.1. Lemmata

The first technical Lemma is a generalization of Lemma 2.2 that will be a central tool in the rest of this article.

Lemma 3.1. - Let F_{0}, \ldots, F_{q} be homogeneous polynomial functions on \mathbb{C}^{r+1} and let $\Theta \in \Omega^{q+1}\left(\mathbb{C}^{r+1}\right)$ be the $(q+1)$-form given by

$$
\Theta=d F_{0} \wedge \ldots \wedge d F_{q}
$$

Suppose that $\operatorname{codim} \operatorname{sing}(\Theta) \geqslant 3$. If $\eta \in \Omega^{q+1}\left(\mathbb{C}^{r+1}\right)$ is such that $\eta \wedge d F_{i} \wedge$ $d F_{j}=0$ for every $0 \leqslant i<j \leqslant q$ then there exist holomorphic 1-forms $\alpha_{0}, \ldots, \alpha_{q} \in \Omega^{1}\left(\mathbb{C}^{r+1}\right)$ such that

$$
\eta=\sum_{i=0}^{q} \alpha_{i} \wedge d F_{0} \wedge \ldots \widehat{d F_{i}} \ldots \wedge d F_{q}
$$

Proof. - For the second item let \mathcal{U} be an open covering of $\mathbb{C}^{r+1} \backslash \operatorname{sing}(\Theta)$. Since codim $\operatorname{sing}(\Theta) \geqslant 3$ we can assume that over each open set $U \in \mathcal{U}$ our set of functions is part of a coordinate system on U. It is then clear that

$$
\eta_{\mid U}=\sum \alpha_{i, U} \wedge d F_{0} \wedge \ldots \widehat{d F_{i}} \ldots \wedge d F_{q}
$$

for suitable 1-forms $\alpha_{0, U}, \ldots, \alpha_{q, U} \in \Omega^{1}(U)$.

A simple computation shows that over $U \cap V$

$$
\left(\alpha_{i, U}-\alpha_{i, V}\right) \wedge \Theta=0
$$

It follows from Saito's Lemma [15] that there exists a unique $(q+1) \times(q+1)$ matrix $A_{U \cap V}$ with entries in $\mathcal{O}(U \cap V)$ such that

$$
\left[\begin{array}{c}
\alpha_{0, U}-\alpha_{0, V} \\
\vdots \\
\alpha_{q, U}-\alpha_{q, V}
\end{array}\right]=A_{U \cap V} \cdot\left[\begin{array}{c}
d F_{0} \\
\vdots \\
d F_{q}
\end{array}\right]
$$

Of course the collection of matrices $A_{U \cap V}$ with (U, V) ranging in \mathcal{U}^{2} defines an element of $\mathrm{H}^{1}\left(\mathbb{C}^{r+1} \backslash \operatorname{sing}(\Theta), \mathbb{M} \otimes \mathcal{O}\right) \cong \mathrm{H}^{1}\left(\mathbb{C}^{r+1} \backslash \operatorname{sing}(\Theta), \mathcal{O}\right) \otimes \mathbb{M}$, with \mathbb{M} being the vector space of $(q+1) \times(q+1)$ matrices.

The hypothesis codim $\operatorname{sing}(\Theta) \geqslant 3$ implies that this cohomology group is trivial, see for instance [8, pg. 133]. Therefore we may write $A_{U \cap V}=$ $A_{U}-A_{V}$ where A_{U}, A_{V} are matrices of holomorphic functions in U resp. V. We can thus set

$$
\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{q}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{0, U} \\
\vdots \\
\alpha_{q, U}
\end{array}\right]-A_{U} \cdot\left[\begin{array}{c}
d F_{0} \\
\vdots \\
d F_{q}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{0, V} \\
\vdots \\
\alpha_{q, V}
\end{array}\right]-A_{V} \cdot\left[\begin{array}{c}
d F_{0} \\
\vdots \\
d F_{q}
\end{array}\right]
$$

as the sought global 1-forms at least over $\mathbb{C}^{r+1} \backslash \operatorname{sing}(\Theta)$. To conclude one has just to invoke Hartog's extension Theorem to ensure that these 1-forms extend to \mathbb{C}^{r+1}.

By expanding in its homogeneous components both sides of the equality

$$
\eta=\sum_{i=0}^{q} \alpha_{i} \wedge d F_{0} \wedge \ldots \widehat{d F_{i}} \ldots \wedge d F_{q}
$$

it can be easily seen that if η is a homogeneous polynomial q-form then the 1 -forms $\alpha_{0}, \ldots, \alpha_{q}$ can be assumed homogeneous polynomial 1-forms.

The second technical Lemma in this subsection replaces the iteration argument in the proof of Theorem 2.1

Lemma 3.2. - For $j=0, \ldots, q$ let $F_{j} \in \mathbf{S}_{d_{j}}$ be a homogeneous polynomial of degree d_{j}. Suppose $\omega=i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)$ satisfies codim $\operatorname{sing}(d \omega) \geqslant$ 3. Then, for $\alpha \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}(e)\right)$ the following conditions are equivalent:
(a) $d \alpha=\sum_{0 \leqslant k \leqslant q} A_{k} \wedge d F_{k}$ for some $A_{k} \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}\left(e-d_{k}\right)\right)$.
(b) $\alpha=d G+\sum_{0 \leqslant k \leqslant q} H_{k} d F_{k}$ for some $G \in \mathbf{S}_{e}$ and $H_{k} \in \mathbf{S}_{e-d_{k}}$.

Proof. - It is clear that (b) implies (a). Let us prove the converse, by induction on $e \in \mathbb{N}$. If (a) holds, applying exterior derivative we get

$$
0=d^{2} \alpha=\sum_{0 \leqslant k \leqslant q} d A_{k} \wedge d F_{k} \Longrightarrow d A_{k} \wedge d F_{0} \wedge \cdots \wedge d F_{q}=0
$$

By the hypothesis on the F_{j} and Lemma 2.2,

$$
d A_{k}=\sum_{0 \leqslant h \leqslant q} A_{k h} \wedge d F_{h}
$$

for some $A_{k h} \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}\left(e-d_{k}-d_{h}\right)\right)$. Since $e-d_{k}<e$, the inductive hypothesis applies to A_{k} and yields

$$
A_{k}=d G_{k}+\sum_{0 \leqslant h \leqslant q} H_{k h} d F_{h}
$$

for some $G_{k} \in \mathbf{S}_{e-d_{k}}$ and $H_{k} \in \mathbf{S}_{e-d_{k}-d_{h}}$. Replacing in (a) we find

$$
d \alpha=\sum_{k} d G_{k} \wedge d F_{k}+\sum_{h, k} H_{k h} d F_{h} \wedge d F_{k}
$$

Since $i_{R} \alpha=0$, we have $e \cdot \alpha=i_{R} d \alpha$. Applying i_{R} we obtain, after a little calculation

$$
e \cdot \alpha=d G+\sum_{0 \leqslant k \leqslant q} H_{k} d F_{k}
$$

where

$$
G=-\sum_{k} d_{k} F_{k} G_{k}, \quad H_{k}=\left(d_{k}+e\right) G_{k}+\sum_{h} d_{h} F_{h}\left(H_{k h}-H_{h k}\right)
$$

as claimed.

3.2. Surjectivity of the derivative and proof of Theorem 1.2

Now we are ready to complete the proof of Theorem 3.1 and hence of Theorem 1.2 of the Introduction. The proof follows from Proposition 3.3 below combined with the same argument used in the proof of Theorem 2.1.

Proposition 3.3. - Suppose $r \geqslant 3$ and $1 \leqslant q<r-1$. If $\underline{F}=\left(F_{0}, \ldots, F_{q}\right) \in$ $\prod_{i} \mathbb{P}\left(\mathbf{S}_{d_{i}}\right)$ is such that $\rho(\underline{F})=\omega \in \mathcal{U}$ then the derivative

$$
d \rho(\underline{F}): T_{\underline{F}}\left(\mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \cdots \times \mathbb{P}\left(\mathbf{S}_{d_{q}}\right)\right) \rightarrow T_{\omega} \mathcal{F}
$$

is surjective.

Stability of foliations induced by rational maps

Proof. - At a point $\underline{F}=\left(F_{0}, \ldots, F_{q}\right)$ belonging to the domain of ρ the derivative

$$
\begin{equation*}
d \rho(\underline{F}): \mathbf{S}_{d_{0}} /\left(F_{0}\right) \times \ldots \times \mathbf{S}_{d_{q}} /\left(F_{q}\right) \rightarrow T_{\omega} \mathcal{F} \tag{3.7}
\end{equation*}
$$

is calculated by multilinearity as

$$
d \rho(\underline{F})\left(F_{0}^{\prime}, \ldots, F_{q}^{\prime}\right)=\sum_{0 \leqslant j \leqslant q} i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{j}^{\prime} \wedge \ldots \wedge d F_{q}\right) .
$$

Let $\omega=\rho(\underline{F}) \in \mathcal{U}$ and $\omega^{\prime} \in T_{\omega} \mathcal{F}$. From (3.6) we have

$$
i\left(v_{J}\right) \omega^{\prime} \wedge d \omega=-i\left(v_{J}\right) \omega \wedge d \omega^{\prime}
$$

Since $d \omega$ is a constant multiple of $d F_{0} \wedge \ldots \wedge d F_{q}$ (see Lemma 2.1), by exterior multiplication with $d F_{j}$ we obtain

$$
d F_{j} \wedge i\left(v_{J}\right) \omega \wedge d \omega^{\prime}=0
$$

for all j, J.
Let $Y_{j},(0 \leqslant j \leqslant q)$, be rational vector fields such that $d F_{i}\left(Y_{j}\right)=\delta_{i j}$. For $J=\{0, \ldots, q\} \backslash\{i, j\}$ we have $i\left(v_{J}\right) \omega=\lambda\left(F_{i} d F_{j}-F_{j} d F_{i}\right)$. Then,

$$
0=d F_{j} \wedge i\left(v_{J}\right) \omega \wedge d \omega^{\prime}=\lambda d F_{j} \wedge F_{j} d F_{i} \wedge d \omega^{\prime}
$$

which implies that

$$
d F_{i} \wedge d F_{j} \wedge d \omega^{\prime}=0
$$

for all $0 \leqslant i, j \leqslant q$.
Lemma 3.1 implies that

$$
\begin{equation*}
d \omega^{\prime}=\sum_{0 \leqslant j \leqslant q} \alpha_{j} \wedge d F_{0} \wedge \ldots \wedge \widehat{d F_{j}} \wedge \ldots \wedge d F_{q} \tag{3.8}
\end{equation*}
$$

for some $\alpha_{j} \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}\left(d_{j}\right)\right)$. Applying exterior derivative we find

$$
0=d^{2} \omega^{\prime}=\sum_{0 \leqslant j \leqslant q} d \alpha_{j} \wedge d F_{0} \wedge \ldots \wedge \widehat{d F_{j}} \wedge \ldots \wedge d F_{q}
$$

Taking wedge product with $d F_{j}$ we get

$$
d \alpha_{j} \wedge\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)=0
$$

for all j. Therefore, thanks to Lemma 2.2,

$$
d \alpha_{j}=\sum_{0 \leqslant k \leqslant q} A_{j k} \wedge d F_{k}
$$

for suitable $A_{j k} \in \mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{1}\left(d_{j}-d_{k}\right)\right)$. Lemma 3.2 implies that

$$
\alpha_{j}=d G_{j}+\sum_{0 \leqslant k \leqslant q} H_{j k} d F_{k}
$$

for some $G_{j} \in \mathbf{S}_{d_{j}}$ and $H_{j k} \in \mathbf{S}_{d_{j}-d_{k}}$ (we use the convention $\mathbf{S}_{e}=0$ for $e<0$). Replacing in (3.8) above we have

$$
\begin{equation*}
d \omega^{\prime}=\sum_{0 \leqslant j \leqslant q} d G_{j} \wedge d F_{0} \wedge \ldots \wedge \widehat{d F_{j}} \wedge \ldots \wedge d F_{q}+c d F_{0} \wedge \ldots \wedge d F_{q} \tag{3.9}
\end{equation*}
$$

for some $c \in \mathbb{C}$. Since $i_{R} \omega^{\prime}=0$, Lemma 2.1 yields $\left(\sum_{i} d_{i}\right) \omega^{\prime}=i_{R} d \omega^{\prime}$. Applying i_{R} to (3.9) and taking (3.7) into account, we obtain

$$
\omega^{\prime}=d \rho(\underline{F})\left(F_{0}^{\prime}, \ldots, F_{q}^{\prime}\right)
$$

where $F_{j}^{\prime}=\frac{(-1)^{j}}{\left(\sum_{i} d_{i}\right)} G_{j}$. Therefore $d \rho(\underline{F})$ is surjective, as claimed.

4. Geometry of the parametrization

In this section we analyze the parametrization

$$
\rho: \mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \ldots \times \mathbb{P}\left(\mathbf{S}_{d_{q}}\right)-->\mathcal{R}_{q}(r, \bar{d}) \subset \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+q+1)\right)\right)
$$

where $\mathbf{S}_{d_{i}}=\mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(d_{i}\right)\right), d=\sum d_{i}$ and $\bar{d}=\left(d_{0}, \ldots, d_{q}\right)$.

4.1. Base locus

Let us start by describing the base locus $\mathbf{B}(\rho)$ of ρ.
If $i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)=0$, applying exterior differentiation and Lemma 2.1 we obtain that $d F_{0} \wedge \ldots \wedge d F_{q}=0$. This means that the Jacobian matrix of F_{0}, \ldots, F_{q} has rank $<q+1$ everywhere, that is, the derivative of the map

$$
\underline{F}: \mathbb{C}^{r+1} \rightarrow \mathbb{C}^{q+1}
$$

defined by $\underline{F}(x)=\left(F_{0}(x), \ldots, F_{q}(x)\right)$ has rank $<q+1$ at every $x \in \mathbb{C}^{r+1}$. This is equivalent to the fact that F is not dominant, that is, $f\left(F_{0}, \ldots, F_{q}\right)=$ 0 for some non-zero polynomial $f \in \mathbb{C}\left[y_{0}, \ldots, y_{q}\right]$ (i.e., the F_{j} are algebraically dependent). We thus obtain

$$
\begin{equation*}
\mathbf{B}(\rho)=\left\{\left(F_{0}, \ldots, F_{q}\right) \in \prod_{i} \mathbb{P}\left(\mathbf{S}_{d_{i}}\right) \mid \underline{F}: \mathbb{C}^{r+1} \rightarrow \mathbb{C}^{q+1} \text { is not dominant }\right\} \tag{4.1}
\end{equation*}
$$

For $q=1$ the set theoretical description of ρ is rather simple:

$$
\begin{equation*}
\mathbf{B}(\rho)=\left\{\left(F_{0}, F_{1}\right) \in \mathbb{P}\left(\mathbf{S}_{d_{0}}\right) \times \mathbb{P}\left(\mathbf{S}_{d_{1}}\right) \mid F_{0}^{d_{1}}=F_{1}^{d_{0}}\right\} . \tag{4.2}
\end{equation*}
$$

For general q we have a stratification

$$
\mathbf{B}(\rho)_{1} \subset \mathbf{B}(\rho)_{2} \subset \ldots \subset \mathbf{B}(\rho)_{q}=\mathbf{B}(\rho)
$$

where $\mathbf{B}(\rho)_{k}=\left\{\left(F_{0}, \ldots, F_{q}\right) \mid\right.$ dimimage $\left.(F) \leqslant k\right\}$. The first stratum $\mathbf{B}(\rho)_{1}$ is set-theoretically equal to

$$
\left\{\left(F_{0}, \ldots, F_{q}\right) \in \prod_{i} \mathbb{P}\left(\mathbf{S}_{d_{i}}\right) \mid F_{0}^{\hat{d}_{0}}=\ldots=F_{q}^{\hat{d}_{q}}\right\}
$$

where $\hat{d}_{j}=\prod_{i \neq j} d_{i}$. For $k>1$ the same set theoretical description is considerably more complex and we will carry it out only in very particular cases in $\S 5$.

Beware that the scheme structure of $\mathbf{B}(\rho)$ is often non-reduced, see $\S 5.6$.
At any rate, we register the following easy consequence of Lemma 2.1.
Proposition 4.1. - Let

$$
\begin{array}{rll}
\tilde{\rho}: \prod_{i} \mathbb{P}\left(\mathbf{S}_{d_{i}}\right) & -\rightarrow & \mathbb{P}\left(\mathbf{S}_{d-1} \otimes \stackrel{q+1}{\wedge} \mathbf{S}_{1}^{\star}\right) \\
\left(F_{0}, \ldots, F_{q}\right) & \longmapsto & d F_{0} \wedge \ldots \wedge F_{q} .
\end{array}
$$

Then the base loci of $\widetilde{\rho}$ and ρ are one and the same as schemes.
Proof. - Let $V \subset \mathbf{S}_{e} \otimes{ }_{\wedge}^{q} \mathbf{S}_{1}^{\star}$ be the subspace of closed q-forms with coefficients of degree e. Put $W=i_{R}(V) \subset \mathbf{S}_{e+1} \otimes{ }^{q-1} \mathbf{S}_{1}^{\star}$. Then $i_{R}: V \rightarrow$ W is a linear isomorphism. We still denote by $i_{R}: \mathbb{P}(V) \rightarrow \mathbb{P}(W)$ the projectivization. Since the image of $\widetilde{\rho}$ lies in $\mathbb{P}(V)$ and $\rho=i_{R} \circ \widetilde{\rho}$, the assertion follows.

4.2. Weighted homogeneous polynomials

Fix $\bar{d}=\left(d_{0}, \ldots, d_{q}\right) \in \mathbb{N}^{q+1}$ and $e \in \mathbb{N}$. A polynomial f in $\mathbb{C}\left[y_{0}, \ldots, y_{q}\right]$ is said to be weighted homogeneous of type \bar{d} and degree e if

$$
f\left(\lambda^{d_{0}} y_{0}, \ldots, \lambda^{d_{q}} y_{q}\right)=\lambda^{e} f\left(y_{0}, \ldots, y_{q}\right)
$$

for any $\lambda \in \mathbb{C}$. Equivalently, f is a linear combination of monomials

$$
\prod_{0 \leqslant j \leqslant q} y_{j}^{\alpha_{j}} \text { such that } \bar{d} \cdot \alpha:=\sum_{0 \leqslant j \leqslant q} d_{j} \alpha_{j}=e
$$

This is tantamount to declaring each variable y_{i} to be of degree d_{i}.
We denote by

$$
\mathbf{S}_{q, \bar{d}, e}
$$

the \mathbb{C}-vector space of all such polynomials and write its dimension as $N(q, \bar{d}, e)$. Notice that $N(q, \bar{d}, e)=\operatorname{dim} \mathbf{S}_{q, \bar{d}, e}$ can be expressed by the Hilbert series

$$
H(t)=\sum_{e} N(q, \bar{d}, e) t^{e}=\frac{1}{\prod_{i=1}^{q}\left(1-t^{d_{i}}\right)} .
$$

Throughout we will assume that the vector of natural numbers $\bar{d} \in \mathbb{N}^{q+1}$ is non-decreasingly ordered, i.e., $d_{0} \leqslant d_{1} \leqslant \cdots \leqslant d_{q}$.

Define $\bar{e}=\bar{e}(\bar{d})=\left(e_{1}, \ldots, e_{k}\right)$ such that $e_{i}<e_{i+1}$ and $\cup_{0 \leqslant i \leqslant q}\left\{d_{i}\right\}=$ $\cup_{1 \leqslant i \leqslant k}\left\{e_{i}\right\}$. If n_{i} stands for the number of times the natural number e_{i} appears in \bar{d} then the pair (\bar{e}, \bar{n}), where $\bar{n}=\left(n_{1}, \ldots, n_{k}\right)$, determines \bar{d}.

Set $q_{j}=-1+\sum_{1 \leqslant i \leqslant j} n_{i}$, and for $l=1, \ldots, k$

$$
\bar{d}_{l}=(\underbrace{e_{1}, \ldots, e_{1}}_{n_{1} \text { times }}, \underbrace{e_{2}, \ldots, e_{2}}_{n_{2} \text { times }}, \ldots, \underbrace{e_{l}, \ldots, e_{l}}_{n_{l} \text { times }}) .
$$

Clearly, for each $f \in \mathbf{S}_{q, \bar{d}, e_{j}}$, no variable y_{i} with weight $d_{i}>e_{j}$ occurs in f; thus

$$
\mathbf{S}_{q, \bar{d}, e_{j}} \cong \mathbf{S}_{q_{j}, \bar{d}_{j}, e_{j}} .
$$

Denote by $\mathbb{E}^{q+1}=\operatorname{End}\left(\mathbb{C}^{q+1}\right)$ the set of all polynomial maps $f: \mathbb{C}^{q+1} \rightarrow$ \mathbb{C}^{q+1}. It is a ring under sum and composition of maps. If $f=\left(f_{0}, \ldots, f_{q}\right) \in$ \mathbb{E}^{q+1}, we say that f is of type \bar{d} if f_{i} is weighted homogeneous of type \bar{d} and degree d_{i}, for all $i=0, \ldots, q$.

Lemma 4.2. - Maps of type \bar{d} form a subring of \mathbb{E}^{q+1}. More precisely, if $f, g \in \mathbb{E}^{q+1}$ are of type \bar{d} then $f \circ g$ is of type \bar{d}. Moreover, the set

$$
\mathrm{GL}(q, \bar{d})=\left\{f \in \mathbb{E}^{q+1} \mid f \text { is of type } \bar{d} \text { and } d f(0) \text { is invertible }\right\}
$$

is a group.
Proof. - Clearly $\mathrm{G}=\mathrm{GL}(q, \bar{d})$ is closed under compositions. It remains to show that every element is invertible in G. Let us denote the block of variables of weight e_{i} by

$$
\underline{y}_{1}=\underbrace{y_{0}, \ldots, y_{q_{1}}}_{\left(\text {weight } e_{1}\right)}, \quad \underline{y}_{2}=\underbrace{y_{q_{1}+1}, \ldots, y_{q_{2}}}_{\left(\text {weight } e_{2}\right)}, \quad \ldots, \quad \underline{y}_{k}=\underbrace{y_{q_{k-1}}, \ldots, y_{q_{k}}}_{\text {(weight } e_{k} \text {) }} .
$$

The main point is that each $f \in \mathrm{G}$ has the following triangular shape,

$$
\left(\underline{f}_{1}\left(\underline{y}_{1}\right), \underline{f}_{2}\left(\underline{y}_{1}, \underline{y}_{2}\right), \ldots, \underline{f}_{k}\left(\underline{y}_{1}, \ldots, \underline{y}_{k}\right)\right) .
$$

Here

$$
\underline{f}_{i}\left(\underline{y}_{1}, \ldots, \underline{y}_{i}\right)=\left(f_{i 1}\left(\underline{y}_{1}, \ldots, \underline{y}_{2}\right), \ldots, f_{2 n_{i}}\left(\underline{y}_{1}, \ldots, \underline{y}_{i}\right)\right)
$$

with

$$
f_{i j}\left(\underline{y}_{1}, \ldots, \underline{y}_{i}\right)=g_{i j}\left(\underline{y}_{1}, \ldots, \underline{y}_{i-1}\right)+h_{i j}\left(\underline{y}_{i}\right) \in \mathbf{S}_{q_{i}, \bar{d}_{i}, e_{i}}
$$

where $h_{i j}\left(\underline{y}_{i}\right)$ is in fact linear in the block of variables \underline{y}_{i} of weight e_{i}. Indeed, since $e_{i+1}>e_{i}$, no \underline{y}_{i+1} occurs in \underline{f}_{i}. Thus f can be written as

$$
\left(\underline{h}_{1}\left(\underline{y}_{1}\right), \underline{h}_{2}\left(\underline{y}_{2}\right)+\underline{g}_{2}\left(\underline{y}_{1}\right), \ldots, \underline{h}_{k}\left(\underline{y}_{k}\right)+\underline{g}_{k}\left(\underline{y}_{1}, \ldots, \underline{y}_{k-1}\right)\right) .
$$

Now we see that $d f(0)$ is made up of blocks of the linear maps $\underline{h}_{i}=d \underline{h}_{i}$: $\mathbb{C}^{n_{i}} \rightarrow \mathbb{C}^{n_{i}}$. Hence invertibility of the former is equivalent to $d \underline{h}_{i} \in \mathrm{GL}_{n_{i}} \forall i$. Thus, given $\left(z_{1}, \ldots, z_{q}\right)=(f(y))$, one can solve successively

$$
\left\{\begin{array}{l}
\underline{y}_{1}=\underline{h}_{1}^{-1}\left(\underline{z}_{1}\right), \text { then } \\
\underline{y}_{2}=\underline{h}_{2}^{-1}\left(\underline{z}_{2}-\underline{g}_{2}\left(\underline{y}_{1}\right)\right) \\
\vdots \\
\underline{y}_{k}=\underline{h}_{k}^{-1}\left(\underline{z}_{k}-\underline{g}_{k}\left(\underline{y}_{1}, \ldots, \underline{y}_{k-1}\right)\right)
\end{array}\right.
$$

The group GL(q, $\overline{\mathrm{d}})$ naturally acts on the domain of μ (cf. 3.3):

$$
\begin{aligned}
\mathrm{GL}(\mathrm{q}, \overline{\mathrm{~d}}) \times \prod_{0 \leqslant j \leqslant q} \mathbf{S}_{d_{j}} & \longrightarrow \prod_{0 \leqslant j \leqslant q} \mathbf{S}_{d_{j}} \\
\left(f,\left(F_{0}, \ldots, F_{q}\right)\right) & \longmapsto\left(f_{0}(\underline{F}), \ldots, f_{q}(\underline{F})\right)
\end{aligned}
$$

In other words, considering \underline{F} as a polynomial map $\underline{F}: \mathbb{C}^{r+1} \rightarrow \mathbb{C}^{q+1}$, the action is just composition with a polynomial map $f: \mathbb{C}^{q+1} \rightarrow \mathbb{C}^{q+1}$ which belongs to GL(q, $\overline{\mathrm{d}})$.

4.3. The fibers of ρ

The key tool for the description of the fiber of ρ and the proof of Theorem 1.3 is the following Proposition.

Proposition 4.3.-Let $\underline{F}=\left(F_{0}, \ldots, F_{q}\right), \underline{G}=\left(G_{0}, \ldots, G_{q}\right) \in \mathbf{S}_{d_{0}} \times$ $\ldots \times \mathbf{S}_{d_{q}}$ Suppose that both $d F_{0} \wedge \cdots \wedge d F_{q}$ and $d G_{0} \wedge \cdots \wedge d G_{q}$ are non-zero $(q+1)$-forms. If codim $\operatorname{sing}\left(d F_{0} \wedge \cdots \wedge d F_{q}\right) \geqslant 2$ then the following conditions are equivalent:
(a) $i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)=i_{R}\left(d G_{0} \wedge \ldots \wedge d G_{q}\right)$ up to a constant multiple.
(b) $d F_{0} \wedge \ldots \wedge d F_{q}=d G_{0} \wedge \ldots \wedge d G_{q}$ up to a constant multiple.
(c) $d G_{j}=\sum_{0 \leqslant k \leqslant q} A_{j k} d F_{k}$ for some $A_{j k} \in \mathbf{S}_{d_{j}-d_{k}}$, for all j.
(d) $G_{j}=f_{j}\left(F_{0}, \ldots, F_{q}\right)$ for some $f_{j} \in \mathbb{C}\left[y_{0}, \ldots, y_{q}\right]$, for all j.
(e) $G_{j}=f_{j}\left(F_{0}, \ldots, F_{q}\right)$, for all j for a unique $f_{j} \in \mathbf{S}_{q, \bar{d}, d_{j}}$. Moreover, $\left(f_{0}, \ldots, f_{q}\right)$ belongs to $\operatorname{GL}(q, \bar{d})$.

Proof. - (a) $\Leftrightarrow(\mathrm{b}):$ Use the identity $d\left(i_{R}\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)\right)=(q+$ $d)\left(d F_{0} \wedge \ldots \wedge d F_{q}\right)$ from Lemma 2.1.
(b) \Rightarrow (c): Multiplying by $d G_{j}$ we obtain $d G_{j} \wedge d F_{0} \wedge \ldots \wedge d F_{q}=0$. Since \underline{F} is generic, it follows by the division lemma that the $d G_{j}$ are linear combinations of the $d F_{k}$. The coefficients may be chosen as homogeneous polynomials, necessarily of the stated degree.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$: Using the hypothesis and calculating wedges we have

$$
d G_{0} \wedge \ldots \wedge d G_{q}=\operatorname{det}(A) d F_{0} \wedge \ldots \wedge d F_{q}
$$

Now $\operatorname{det}(A)$ is a non-zero homogeneous polynomial, and its degree is zero, so it is a constant, thereby proving the claim.
(d) $\Rightarrow(\mathrm{e}):$ Let $f_{j}=\sum_{\alpha} c_{\alpha} y^{\alpha}$, where $\alpha \in \mathbb{N}^{q+1}$ and $c_{\alpha} \in \mathbb{C}$, so that $G_{j}=\sum_{\alpha} c_{\alpha} F^{\alpha}$. Write $f_{j}=g_{j}+h_{j}$ where g_{j} is the sum over the exponents α such that $\bar{d} \cdot \alpha=d_{j}$. We have $h_{j}(\underline{F})=0$ by the homogeneity of G_{j} and of the F_{k}. Therefore we may take $f_{j}=g_{j}$, the weighted homogeneous polynomial that we needed. Uniqueness is clear since the F_{k} are algebraically independent. Finally, setting $f=\left(f_{0}, \ldots, f_{q}\right)$, since

$$
d G_{0} \wedge \ldots \wedge d G_{q}=\operatorname{det}(d f) d F_{0} \wedge \ldots \wedge d F_{q}
$$

it follows that $\operatorname{det}(d f)=\operatorname{det}(d f(0))$ is a nonzero constant.
$(\mathrm{e}) \Rightarrow(\mathrm{d})$: obvious.
$(\mathrm{d}) \Rightarrow(\mathrm{c})$: If $G_{j}=\sum_{\alpha} c_{\alpha} F^{\alpha}$, taking exterior derivative we immediately get $d G_{j}$ as a linear combination of the $d F_{k}$.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$: It suffices to use Lemma 4.4 below.
Lemma 4.4.-Let $\underline{F}=\left(F_{0}, \ldots, F_{q}\right) \in \mathbf{S}_{d_{0}} \times \ldots \times \mathbf{S}_{d_{q}}$ be generic. Let G be a homogeneous polynomial of degree e such that $d G=\sum_{0 \leqslant k \leqslant q} A_{k} d F_{k}$
for some $A_{k} \in \mathbf{S}_{e-d_{k}}$. Then $G=f\left(F_{0}, \ldots, F_{q}\right)$ for a unique polynomial $f \in \mathbf{S}_{q, \bar{d}, e}$.

Proof. - We proceed by induction on e. The assertion is clear for $e=0$. Taking exterior derivative we have $d^{2} G=\sum_{k} d A_{k} \wedge d F_{k}=0$. Thus $d A_{k} \wedge$ $d F_{0} \wedge \ldots \wedge d F_{q}=0$ for all k. Since \underline{F} is generic, we get $d A_{k}=\sum_{h} B_{k h} d F_{h}$ for some $B_{k h} \in \mathbf{S}_{e-d_{k}-d_{h}}$. By the inductive hypothesis, $A_{k}=f_{k}\left(F_{0}, \ldots, F_{q}\right)$ for some polynomial f_{k}. On the other hand, applying i_{R} to $d G=\sum_{k} A_{k} d F_{k}$ we obtain $e G=\sum_{k} A_{k} d_{k} F_{k}$. Replacing here A_{k} by $f_{k}\left(F_{0}, \ldots, F_{q}\right)$ we obtain the claim. Uniqueness and weighted homogeneity were argued before.

Proposition 4.5. - For general $\underline{F}=\left(F_{0}, \ldots, F_{q}\right) \in \prod_{0 \leqslant j \leqslant q} \mathbf{S}_{d_{j}}$ we have a bijective map

$$
\begin{array}{ccc}
\mathrm{GL}(q, \bar{d}) & \longrightarrow & \mu^{-1} \mu(\underline{F}) \\
\left(f_{0}, \ldots, f_{q}\right) & \longmapsto & \left(f_{0}(\underline{F}), \ldots, f_{q}(\underline{F})\right)
\end{array}
$$

with μ the multilinear map inducing ρ as in (3.3).
Proof. - The assertion follows from the equivalence $(\mathrm{a}) \Longleftrightarrow(\mathrm{e})$ in 4.3 .

Corollary 4.6. - We have the formula for the fiber dimension,

$$
\operatorname{dim} \rho^{-1} \rho(\underline{F})=\sum_{0 \leqslant j \leqslant q}\left(N\left(q, \bar{d}, d_{j}\right)-1\right)
$$

4.4. A natural factorization and proof of Theorem 1.3

We will now proceed to describe a tower of open subsets of Grassmann bundles birational to $\mathcal{R}(r, \bar{d})$. We preserve the notation of Subsection 4.2.

Start with $Y_{0}=G\left(n_{1}, \mathbf{S}_{e_{1}}\right)$, the grassmannian of n_{1}-planes in $\mathbf{S}_{e_{1}}$. Let $X_{1} \subset Y_{1}$ be the open subset defined as

$$
X_{1}=\left\{F_{1} \wedge \cdots \wedge F_{n_{1}} \in G\left(n_{1}, S_{e_{1}}\right) \mid \operatorname{codimsing}\left(d F_{0} \wedge \cdots \wedge d F_{n_{1}}\right) \geqslant 2\right\}
$$

Now let $\mathcal{A}_{2} \rightarrow X_{1}$ be the vector subbundle of the trivial bundle $\mathbf{S}_{e_{2}} \times X_{1}$ with fiber over $\underline{F}_{1}=F_{1} \wedge \cdots \wedge F_{n_{1}} \in X_{1}$ given by

$$
\mathcal{A}_{2}\left(\underline{F}_{1}\right)=\left\{G \in \mathbf{S}_{e_{2}} \mid d F_{1} \wedge \cdots \wedge d F_{n_{1}} \wedge d G=0\right\}
$$

Recalling Lemma 2.2(a), and the above considerations on weighted homogeneity, we have in fact

$$
\mathcal{A}_{2}\left(\underline{F}_{1}\right)=\left\{G \in \mathbf{S}_{e_{2}} \mid G=f\left(\underline{F}_{1}\right), f \in \mathbf{S}_{q_{1}, \bar{d}_{1}, e_{2}}\right\} \cong \mathbf{S}_{q_{1}, \bar{d}_{1}, e_{2}}
$$

Let $Y_{2}=G\left(n_{2}, \mathbf{S}_{e_{2}} / \mathcal{A}_{2}\right)$ be the Grassmann bundle over X_{1}. Notice that, for an element $\underline{G}_{2}=\left[G_{1}\right] \wedge \cdots \wedge\left[G_{n_{2}}\right] \in G\left(n_{2}, \mathbf{S}_{e_{2}} / \mathbf{S}_{q, \bar{d}, e_{2}}(p)\right)$ over a point $\underline{F}_{1}=F_{1} \wedge \cdots \wedge F_{n_{1}} \in X_{1}$, the $\left(n_{1}+n_{2}\right)$-form

$$
\eta\left(\underline{G}_{2}\right)=d F_{1} \wedge \cdots d F_{n_{1}} \wedge d G_{1} \wedge \cdots \wedge d G_{n_{2}}
$$

is well-defined up to a non zero multiplicative constant. Therefore we can set $X_{2} \subset Y_{2}$ as the open subset defined by

$$
X_{2}=\left\{\underline{G}_{2} \in Y_{2} \mid \operatorname{codim} \operatorname{sing} \eta\left(\underline{G}_{2}\right) \geqslant 2\right\}
$$

Continuing, we have a vector subbundle \mathcal{A}_{3} of $\mathbf{S}_{e_{3}} \times X_{2}$ with fiber

$$
\mathcal{A}_{3}\left(\underline{F}_{1}, \underline{G}_{2}\right)=\left\{H \in \mathbf{S}_{e_{3}} \mid d F_{1} \wedge \cdots \wedge d F_{n_{1}} \wedge d G_{1} \wedge \cdots \wedge d G_{n_{2}} \wedge d H=0\right\}
$$

As before, this is isomorphic to $\mathbf{S}_{q_{2}, \bar{d}_{2}, e_{3}}$. Proceeding this way, we arrive at an open subset $X=X_{k} \subset Y_{k}$ where $Y_{k} \rightarrow X_{k-1}$ is the Grassmann bundle $G\left(n_{k}, \mathbf{S}_{e_{k}} / \mathcal{A}_{k-1}\right)$. Clearly X is a rational variety just like all Grassmann bundles over rational varieties. Using Proposition 4.3, we arrive at a birrational map from X to $\mathcal{R}(r, \bar{d})$. It follows that $\mathcal{R}(r, \bar{d})$ is rational and this concludes the proof of Theorem 1.3

5. Degree calculations

5.1. Input from intersection theory

Let $q: X \rightarrow \mathbb{P}^{N}$ be a proper, generically finite map. Then the degree of the image $Y=q(X) \subseteq \mathbb{P}^{N}$ is given by

$$
\int_{Y} \mathbf{h}^{r}=\frac{1}{\delta} \int_{X} q^{\star} \mathbf{h}
$$

where $\mathbf{h}=$ hyperplane class, $\delta=\operatorname{deg} q$ is the number of points in $q^{-1}(q(x))$ for general $x \in X$.

Suppose next that $\pi: \mathcal{E} \rightarrow Z$ is a holomorphic vector bundle over a smooth projective variety Z. The total Chern class of E can be written as $c(E)=1+c_{1}(E)+\cdots+c_{k}(E)$, with $c_{i}(E) \in A^{i}(Z)$, the Chow group of codimension i cycles. Chern classes can be thought of as operators on homology or on the total Chow group $A(Z)=\oplus A_{j}(Z)$ by taking cap products: $A_{j}(Z) \ni z \mapsto c_{i}(E) \cap z \in A_{j-i}(Z)$. The total Segre class is given by the inverse operator, $s(E)=(1-\eta)^{-1}=1+\eta+\eta^{2}+\cdots$, with $\eta=1-c(E)$. Thus, $s(E)=1-c_{1}(E)+c_{1}(E)^{2}-c_{2}(E)+\cdots$. Segre classes give the Gysin
map for a projective bundle, $p: \mathbb{P}(\mathcal{E}) \rightarrow Z$. If \mathbf{h} denotes the relative hyperplane class, we have $p_{\star}\left(\mathbf{h}^{e+i} \cap p^{\star}(z)\right)=s_{i}(E) \cap z$, where $e=\operatorname{rank} \mathcal{E}-1$. Suppose $\mathcal{E}>\longrightarrow \mathbb{C}^{N+1} \times Z$ is a vector subbundle. Put $X=\mathbb{P}(\mathcal{E})$. Let $q: X \subset \mathbb{P}^{N} \times Z \rightarrow \mathbb{P}^{N}$ be induced by projection. The relative hyperplane class is equal to the pullback of the hyperplane class of $\mathbb{P}^{N}, q^{\star} \mathbf{h}$, written simply \mathbf{h}. If q is generically injective then we have $\operatorname{deg} q(X)=\int_{Z} s_{n}(\mathcal{E})$, with $n=\operatorname{dim} Z$. Indeed, we have $\operatorname{dim} q(X)=\operatorname{dim} X=n+e$. Hence $\operatorname{deg} q(X)=\int_{X} \mathbf{h}^{e+n}=\int_{Z} p_{\star}\left(\mathbf{h}^{e+n}\right)=\int_{Z} s_{n}(\mathcal{E})$.

5.2. Linear projections of grassmannians

We keep the notation as in the previous section. Here we proceed to find the degree of the projective variety

$$
\mathcal{R}(r, \bar{d}) \subset \mathbb{P}\left(\mathrm{H}^{0}\left(\mathbb{P}^{r}, \Omega^{q}(d+q+1)\right)\right)
$$

in some cases. Recalling the proof of Proposition 4.1, we see that all degree calculations can be lifted from $\mathbb{P}(W)$ to $\mathbb{P}(V)$.

When $q_{1}=q$, i.e. all the degrees d_{i} are equal to e_{1}, the variety X constructed in $\S 4.4$ is an open subset of the grassmannian $G\left(q, \mathbf{S}_{e_{1}}\right)$. It follows that the morphism $\bar{\rho}: X \rightarrow \mathcal{R}(r, \bar{d})$ gives rise to a rational map

$$
\widetilde{\rho}: G\left(q+1, \mathbf{S}_{e_{1}}\right)-->\widetilde{\mathcal{R}}(r, \bar{d}) \subset \mathbb{P}\left(\mathbf{S}_{d-1} \otimes \stackrel{q+1}{\wedge} \mathbf{S}_{1}^{\star}\right) .
$$

Notice that $\bar{\rho}$ is the composition of Plücker's embedding with a central projection

$$
\begin{array}{lll}
\mathbb{P}\left(\bigwedge^{q+1} S_{e_{1}}\right) & --> & \mathbb{P}\left(\mathbf{S}_{d-1} \otimes \stackrel{q+1}{\wedge} \mathbf{S}_{1}^{\star}\right) \\
F_{0} \wedge \cdots \wedge F_{q} & \mapsto & d F_{0} \wedge \cdots \wedge d F_{q}
\end{array}
$$

It is a simple exercise to show that $G\left(q+1, \mathbf{S}_{e_{1}}\right)$ is disjoint from the center of this projection if, and only if, $q=1$ or $d_{0}=\cdots=d_{q}=1$. In both cases the degree of these components is equal to the degree of the corresponding grassmannians under Plücker's embedding. More precisely, setting $N=(q+1)(r-q)=\operatorname{dim} G(q+1, r+1)$, we have

$$
\begin{align*}
\operatorname{deg}(\mathcal{R}(q, 1, \ldots, 1))= & \operatorname{deg} G\left(q+1, \mathbf{S}_{1}\right)=\frac{1!2!\cdots q!N!}{(r-q)!(r-q+1)!\ldots r!} \\
\operatorname{deg}(\mathcal{R}(1, d, d))= & \operatorname{deg} G\left(2, \mathbf{S}_{d_{1}}\right)=\frac{1}{N_{d}-1}\binom{2 N_{d}-2}{N_{d}}, \\
\text { where } & N_{d}=\binom{r+d}{r-1} .
\end{align*}
$$

5.3. Correction due to base locus

The scheme-theoretic structure of the base locus of a rational map ϕ : $Y \rightarrow \mathbb{P}\left(\mathbb{C}^{N}\right)$ is defined as follows (cf. [10, 7.17.3, p. 168]). We are given a line bundle (=invertible sheaf) \mathcal{L} over Y together with a homomorphism $\mathcal{O}_{Y}^{N} \rightarrow$ \mathcal{L}, surjective over the open dense subset $U \subseteq Y$ where ϕ is a morphism. The image, \mathcal{J}, of the induced homomorphism

is the sheaf of ideals defining the base locus. If D denotes an effective Cartier divisor such that $\mathcal{J}=\mathcal{O}_{Y}(-D) \cdot \mathcal{J}^{\prime}$ for some ideal sheaf \mathcal{J}^{\prime}, then the set of zeros, $V\left(\mathcal{J}^{\prime}\right)$ is contained in $V(\mathcal{J})$. Clearly ϕ extends to the complement $U^{\prime}=Y \backslash V\left(\mathcal{J}^{\prime}\right) \supseteq U$ in such a way that the pullback of the hyperplane bundle is

$$
\phi_{\mid U}^{\star} \mathcal{O}_{\mathbb{P}\left(\mathbb{C}^{N}\right)}(1)=\mathcal{L} \otimes \mathcal{O}(-D)
$$

5.4. Case $(2,2,2)$

The situation is still manageable. It turns out that the scheme of indeterminacy of the rational map

$$
\begin{array}{ccc}
\widetilde{\rho}: X=G\left(3, \mathbf{S}_{2}\right) & -\rightarrow & \widetilde{\mathcal{R}}(r, \bar{d}) \subset \mathbb{P}\left(\mathbf{S}_{3} \otimes \wedge \wedge^{3} \mathbf{S}_{1}^{\star}\right) \\
F_{0} \wedge F_{1} \wedge F_{2} & \longmapsto & d F_{0} \wedge d F_{1} \wedge d F_{2}
\end{array}
$$

is equal to the image of the Veronese-like embedding

$$
\begin{array}{ccc}
Y=G\left(2, \mathbf{S}_{1}\right) & \stackrel{\mathrm{v}}{\longleftrightarrow} & X=G\left(3, \mathbf{S}_{2}\right) \\
\left\langle L_{0}, L_{1}\right\rangle & \longmapsto & \left\langle L_{0}^{2}, L_{0} L_{1}, L_{1}^{2}\right\rangle .
\end{array}
$$

Thus a single blowup $\pi: \widetilde{X} \rightarrow X$ along Y resolves the indeterminacy i.e., the induced map $\widetilde{\rho}: \widetilde{X} \rightarrow \widetilde{\mathcal{R}}(r, \bar{d})$ is a morphism. The reader may consult the Arxiv version [5] for details. This yields the formula for the pullback of the hyperplane class

$$
\widetilde{\rho}^{\star} \mathbf{h}=\pi^{\star} \mathbf{q}_{1}-\mathbf{e},
$$

with $\mathbf{e}=[E]$, class of the exceptional divisor $E=\pi^{-1} Z$ and \mathbf{q}_{1} is the hyperplane class of the Plücker embedding. See also [6, §4.4, p. 82].

Since $\widetilde{\rho}$ is generically injective, the degree of the image can be calculated as

$$
\operatorname{deg} \mathcal{R}(r, 2,2,2)=\int_{\widetilde{X}} \widetilde{\rho}^{\star} \mathbf{h}^{\operatorname{dim} X}
$$

Setting $N=\operatorname{dim} X=\operatorname{dim} G\left(3, \mathbf{S}_{2}\right)=3\left(\binom{r+2}{2}-3\right)$, the degree is given by

$$
\int_{\widetilde{X}} \widetilde{\rho}^{\star} \mathbf{h}^{N}=\int_{X} \pi_{\star} \sum_{0}^{N}\binom{N}{i} \pi^{\star} \mathbf{q}_{1}^{i} \cdot(-\mathbf{e})^{N-i}
$$

Using projection formula, we are reduced to the calculation of

- the Plücker's degree of $G\left(3, \mathbf{S}_{2}\right)$ for the term with $i=N$,
and
- the contribution of $\pi_{\star}(\mathbf{e})^{j}=(-1)^{j-1} \mathrm{v}_{\star} s_{j-\delta} \mathcal{N}$, where \mathcal{N} stands for the normal bundle of the embedding v and

$$
\delta=\operatorname{rank} \mathcal{N}=\operatorname{dim} G\left(3, \mathbf{S}_{2}\right)-\operatorname{dim} G\left(2, \mathbf{S}_{1}\right)
$$

The minus signs come from the formula

$$
\iota^{\star} \mathcal{O}_{\widetilde{X}}(E)=\mathcal{O}_{\mathcal{N}}(-1)
$$

The Segre classes of the normal bundle are obtained from the usual exact sequence

$$
T Y>T X_{\mid Y} \longrightarrow \mathcal{N}
$$

Details can be seen in [5]. We find,

r	deg
3	1324220
4	2860923458080
5	243661972980477736263
6	728440733705107831789517245858
7	704613096513585123585398408696231899176183
$\quad d_{0}=d_{1}=d_{2}=2$	

5.5. Bundles of projective spaces

When $k=2$ and $n_{2}=1$, the variety X constructed in $\S 4.4$ is an open subset of a projective bundle over an open subset of a grassmannian. In
general we do not know a manageable compactification. Even when we can compactify X as above, the scheme structure of the base locus of $\bar{\rho}$ can be non reduced and is far form being understood in general.

Nevertheless in the following three cases we are able to handle the degree:

- $q=1$ and d_{0} divides d_{1}.
- arbitrary q but $k=2$ and $d_{1}=1$, i.e., $\bar{d}=(1, \ldots, 1, e)$.
- $q=1, d_{0}=2$ and $d_{1}=3$.

5.5.2. $q=1$ and d_{0} divides d_{1}

This is in fact the only case for which we got a closed formula. Now the natural parameter space, X, is a projective bundle

$$
X \longrightarrow \mathbb{P}\left(\mathbf{S}_{d_{0}}\right)
$$

described in the sequel.
Write the tautological line subbbundle over the projective space $\mathbb{P}\left(\mathbf{S}_{d_{0}}\right)$,

$$
\mathcal{O}_{\mathbf{s}_{d_{0}}}(-1)>\mathbf{S}_{d_{0}}
$$

Set $\kappa=d_{1} / d_{0}$. Taking symmetric power, we have the exact sequence

$$
\mathcal{O}_{\mathbf{S}_{d_{0}}}(-\kappa)>\mathbf{S}_{d_{1}} \longrightarrow \overline{\mathbf{S}}_{d_{1}}
$$

which defines the vector bundle $\overline{\mathbf{S}}_{d_{1}}$. The fiber of $\overline{\mathbf{S}}_{d_{1}}$ over each $F_{0} \in \mathbb{P}\left(\mathbf{S}_{d_{0}}\right)$ is the quotient vector space $\mathbf{S}_{d_{1}} /\left\langle F_{0}^{\kappa}\right\rangle$. Thus we have

$$
\begin{aligned}
\tilde{\rho}: X=\mathbb{P}\left(\overline{\mathbf{S}}_{d_{1}}\right) & \longrightarrow \widetilde{\mathcal{R}}\left(r, d_{0}, d_{1}\right) \subseteq \mathbb{P}\left(\mathbf{S}_{d_{1}+d_{0}-2} \otimes \stackrel{2}{\wedge} \mathbf{S}_{1}^{\star}\right) . \\
\left(F_{0}, \bar{F}_{1}\right) & \longmapsto d F_{0} \wedge d F_{1} .
\end{aligned}
$$

The pullback of the hyperplane class via the map $\widetilde{\rho}$ is obtained as

$$
H=\mathbf{h}+\mathbf{h}^{\prime}
$$

where $\mathbf{h}=c_{1} \mathcal{O}_{\mathbf{S}_{d_{0}}}(1)$, which comes from the base $\mathbb{P}\left(\mathbf{S}_{d_{0}}\right)$, and $\mathbf{h}^{\prime}=$ $c_{1} \mathcal{O}_{\overline{\mathbf{S}}_{d_{1}}}(1)$, the relative hyperplane class. With the notation as in (18), we have

$$
\operatorname{rank} \overline{\mathbf{S}}_{d_{1}}-1=N_{d_{1}}-2
$$

for the fiber dimension of $\mathbb{P}\left(\overline{\mathbf{S}}_{d_{1}}\right) \rightarrow \mathbb{P}\left(\mathbf{S}_{d_{0}}\right)$. The sought for degree is

$$
\begin{aligned}
\operatorname{deg} \mathcal{R}\left(r, d_{0}, d_{1}\right) & =\int_{\mathbb{P}\left(\overline{\mathbf{S}}_{d_{1}}\right)} H^{N_{d_{1}}+N_{d_{0}}-1}=\sum_{i}\left(N_{d_{1}}+N_{d_{0}}-1 i\right) \mathbf{h}^{i} s_{N_{d_{0}}-i}\left(\overline{\mathbf{S}}_{d_{1}}\right) \\
& =\binom{N_{d_{1}}+N_{d_{0}}-1}{N_{d_{0}}}-\frac{d_{1}}{d_{0}}\binom{N_{d_{1}}+N_{d_{0}}-1}{N_{d_{0}}-1} .
\end{aligned}
$$

The last equality follows from the calculation of the Segre class $s\left(\overline{\mathbf{S}}_{d_{1}}\right)=$ $1-\kappa \mathbf{h}$, so $s_{i}\left(\overline{\mathbf{S}}_{d_{1}}\right)$ is zero in degrees $i \geqslant 2$, cf. [6, p. 47].

If $r=3, d_{1}=2, d_{0}=1$, one finds $\binom{3+8}{3}-2\binom{11}{2}=55$. By contrast, the degree of the Segre variety $\check{\mathbb{P}}^{3} \times \mathbb{P}^{9} \subset \mathbb{P}^{39}$ of which the image of ρ is a rational projection, is equal to $\binom{12}{3}$.

5.5.2. $k=2$ and $d_{0}=1$

We are now looking at foliations defined by

$$
\omega=i_{R}\left(d F_{0} \wedge \cdots \wedge d F_{q}\right)
$$

where $\operatorname{deg} F_{0}=\cdots=\operatorname{deg} F_{q-1}=1 ; \operatorname{deg} F_{q}=d \geqslant 2$. A natural parameter space is the projective bundle over the grassmannian

$$
G=G\left(q, \mathbf{S}_{1}\right)
$$

defined as follows. Write the tautological sequence

$$
R_{q}>\mathbf{S}_{1} \longrightarrow Q
$$

The fiber of R_{q} over $\underline{F} \in G$ is the space $\left\langle F_{0}, \ldots, F_{q-1}\right\rangle$ spanned by linear forms. Now the last polynomial F_{q} is taken as a class in the projective space $\mathbb{P}\left(\mathbf{S}_{d} /\left\langle F_{0}^{d}, F_{0} \cdot F_{1}^{d-1}, \ldots, F_{q-1}^{d}\right\rangle\right)$. The natural homomorphism $\mathrm{Sym}_{d} R_{q} \rightarrow \mathbf{S}_{d}$ is injective; it corresponds to an instance of the vector bundle \mathcal{A}_{2} described in 4.4. Form the projective bundle

$$
\pi: X=\mathbb{P}\left(\mathbf{S}_{d} / \operatorname{Sym}_{d} R_{q}\right) \longrightarrow G
$$

Note that the rational map

$$
\begin{array}{ccc}
X & \stackrel{\bar{\rho}}{-} & \mathbb{P}\left(\mathbf{S}_{d-1} \otimes \stackrel{q}{\wedge} \mathbf{S}_{1}^{\star}\right) \\
\left(\left\langle F_{0}, \ldots, F_{q-1}\right\rangle, \bar{F}_{q}\right) & \stackrel{ }{\longmapsto} & d F_{0} \wedge \ldots \wedge d F_{q-1} \wedge d F_{q}
\end{array}
$$

is in fact regular everywhere. Indeed, regularity is an open condition; the map is invariant under the natural action of $G L_{r+1}$ and is regular at the
representative $\left(\left\langle x_{0}, \ldots, x_{q-1}\right\rangle, \overline{x_{q}^{d-1} x_{0}}\right)$ of the unique closed orbit. Thus the sought for degree can be computed by Schubert calculus in the following manner. Set

$$
\begin{align*}
& g=q(r+1-q)=\operatorname{dim} G \\
& N=\binom{r+d}{r}-\binom{q-1+d}{q-1}-1 \tag{5.3}
\end{align*}
$$

so that presently the dimension of the component is $\delta=N+g$. The pullback of the hyperplane class from $\mathbb{P}\left(\mathbf{S}_{d-1} \otimes \stackrel{q}{\wedge} \mathbf{S}_{1}^{\star}\right)$ is equal to $\mathbf{h}+\mathbf{q}_{1}$, where \mathbf{h} stands for the relative hyperplane class of the projective bundle $X \rightarrow G$ and $\mathbf{q}_{1}=c_{1} Q$. By general principles, the degree is given by

$$
\int_{X}\left(\mathbf{h}+\mathbf{q}_{1}\right)^{\delta}=\sum_{0}^{g}\binom{\delta}{i} \int_{G} \pi_{\star}\left(\mathbf{h}^{\delta-i}\right) \mathbf{q}_{1}^{i}=\sum_{0}^{g}\binom{\delta}{i} \int_{G} s_{g-i} \cdot \mathbf{q}_{1}^{i} .
$$

Here $s_{i}=c_{i}\left(\operatorname{Sym}_{d} R_{q}\right)$. For $q=2, r=3$ we find

$$
d^{2}(d-1)(d+3)\left(d^{2}+2\right)\left(d^{2}+4 d+6\right)(d+2)^{2}(d+1)^{2} /\left(2^{6} \cdot 3^{5}\right)
$$

a polynomial of degree 12 in d. For $q=2 ; r=4,5,6,7,8$ we find polynomial formulas of respective degrees $24,40,60,84,112$. This suggests a polynomial degree like $2 r(r-1)$. Now for $q=3, r=4,5,6,7,8$ we get polynomial formulas of degrees $3 r(r-2)$ with respect to d. Further experiments (cf. [17]) suggest polynomial formulas of degrees $q r(r-q+1)$. Here is a sample for small values of r, q, d.

$(r, q)=(5,2)$				
d	2	3	4	5
deg	2390850	10457430102	9654013512864	3099059696318355

$(r, q)=(6,2)$				
d	2	3	4	5
deg	1139133688	91451421683006	1118409272891730904	3524857658574891999976

5.6. $(2,2 m+1)$

Assume $q=1, d_{0}=2$ and $d_{1}=2 m+1$. Set for short $\mathbf{X}=\mathbb{P}\left(\mathbf{S}_{2}\right) \times$ $\mathbb{P}\left(\mathbf{S}_{2 m+1}\right)$. Put as before $N_{d}=\binom{r+d}{d}-1$. We have

$$
\operatorname{dim} \mathbf{X}=N_{2}+N_{2 m+1}
$$

The indeterminacy locus of

$$
\begin{array}{ccc}
\tilde{\rho}: \mathbf{X} & -> & \mathbb{P}\left(\mathbf{S}_{2 m+1} \otimes \stackrel{2}{\wedge} \mathbf{S}_{1}^{\star}\right) \\
(F, G) & \longmapsto & d F \wedge d G
\end{array}
$$

is, set-theoretically, the "bi-Veronese",

$$
\mathbf{V}=\left\{\left(L^{2}, L^{2 m+1}\right) \mid L \in \mathbb{P}\left(\mathbf{S}_{1}\right)\right\}
$$

There is compelling computer algebra evidence indicating that the indeterminacy locus of the rational map $\widetilde{\rho}$ is a thickening of \mathbf{B}. Blowing up the reduced structure, the new indeterminacy locus, \mathbf{B}^{\prime}, of the induced rational map $\mathbf{X}^{\prime}--\rightarrow \mathbb{P}\left(\mathbf{S}_{2 m+1} \otimes \stackrel{2}{\wedge} \mathbf{S}_{1}^{\star}\right)$ is reduced only for $m=1$. Nevertheless, it still is a rather manageable complete intersection. In fact, we find local equations of \mathbf{B}^{\prime} of the form $e^{m}, f_{1}, \ldots, f_{u}$, with e denoting the equation of the exceptional divisor, and the f_{i} 's define a projective subbundle of the exceptional divisor. We find that the reduced structure $\mathbf{B}_{\text {red }}^{\prime}=\mathbb{P}\left(\mathcal{N}_{\mathbb{P}\left(S_{1}\right) / \mathbf{B}}\right)$ is the projectivization of the normal bundle of $\mathbb{P}\left(S_{1}\right)$ in \mathbf{B}, as indicated in the diagram

all restricted to $\mathbb{P}\left(S_{1}\right)$. Using this, we find the following table for the first few degrees in dimensions 3 and 4 . Details can be read in [5].

$\operatorname{deg} \mathcal{R}\left(r, d_{0}=2, d_{1}=2 m+1\right)$			
d_{1}	$\operatorname{deg}\left(\mathbb{P}^{3}\right)$	d_{1}	$\operatorname{deg}\left(\mathbb{P}^{4}\right)$
5	27500627268	5	5858652068789831804
7	19062120397608	7	2734930355086609774678630
9	3910289698588916	9	118796991387599661786404269060
11	341013122932980120	11	955667356931740162987705236374200

Interpolating the first few values of odd d_{1}, we find for \mathbb{P}^{3} the polynomial $(t-1)\left(t^{26}+55 t^{25}+1450 t^{24}+24616 t^{23}+305020 t^{22}+2961172 t^{21}+23561656 t^{20}+\right.$ $158392960 t^{19}+918866662 t^{18}+4670514826 t^{17}+21033417148 t^{16}+84615935632 t^{15}$ $+305921226844 t^{14}+998318576836 t^{13}+2949392111320 t^{12}+7903552056256 t^{11}+$ $19229223618721 t^{10}+41774679574903 t^{9}+72390849730794 t^{8}+15945324910344 t^{7}$ $-541088235621216 t^{6}-2539188961011216 t^{5}-315410776482528 t^{4}$ $+14933666207688192 t^{3}+85822791395378688 t^{2}-247712474710388736 t+$ $162893498195312640) / 3656994324480$.

It fits all values of $\operatorname{deg} \mathcal{R}(3,2, t), t=2 m+1$, up to $m=35$, presently the physical limit of our computer's memory. It should be noted that $\operatorname{deg} \mathcal{R}(3,2,2 t)=\binom{N_{2 t}+N_{2}-1}{N_{2}}-\frac{2 t}{2}\binom{N_{2 t}+N_{2}-1}{N_{2}-1}$ is a polynomial in t of the same degree 27 as in (19) above.

Bibliography

[1] Calvo-Andrade (O.). - Deformations of branched Lefschetz pencils. Bol. Soc. Brasil. Mat. (N.S.) 26, no. 1, p. 67-83 (1995).
[2] Cerveau (D.) and Lins Neto (A.). - Irreducible components of the space of holomorphic foliations of degree two in $\mathrm{CP}(\mathrm{n})$. Ann. of Math., 143, p. 577-612 (1996).
[3] Coutinho (S. C.) and Pereira (J. V.). - On the density of algebraic foliations without algebraic invariant sets, Crelle's J. reine angew. Math. 594, p. 117-135 (2006).
[4] Cukierman (F.) and Pereira (J. V.). - Stability of Holomorphic Foliations with Split Tangent Sheaf, preprint (Arxiv). To appear in American J. of Math.
[5] Cukierman (F.), Pereira (J. V.) and Vainsencher (I.). - preprint http://arxiv.org/abs/0709.4072
[6] Fulton (W.). - Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag (1998).
[7] Gómez-Mont (X.) and Lins Neto (A.). - Structural stability of singular holomorphic foliations having a meromorphic first integral. Topology 30, no. 3, p. 315-334 (1991).
[8] Grauert (H.) and Remmert (R.). - Theory of Stein spaces. Springer-Verlag (1979).
[9] Greuel (G.-M.), Pfister (G.), and Schönemann (H.). - Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005). http://www.singular.uni-kl.de.
[10] Hartshorne (R.). - Algebraic Geometry, Springer-Verlarg, (1977).
[11] Jouanolou (J. P.). - Équations de Pfaff algébriques. Lecture Notes in Mathematics, 708. Springer, Berlin, (1979).
[12] Katz (S.) and Stromme (S.A.). - Schubert: a maple package for intersection theory, http://www.mi.uib.no/schubert/

Stability of foliations induced by rational maps
[13] De Medeiros (A.). - Singular foliations and differential p-forms. Ann. Fac. Sci. Toulouse Math. (6) 9, no. 3, p. 451-466 (2000).
[14] Muciño-Raymundo (J.). - Deformations of holomorphic foliations having a meromorphic first integral. J. Reine Angew. Math. 461, p. 189-219 (1995).
[15] Saito (K.). - On a generalization of de-Rham lemma. Ann. Inst.Fourier (Grenoble) 26, no. 2, vii, p. 165-170 (1976).
[16] SCÁRDUA (B.). - Transversely affine and transversely projective holomorphic foliations. Ann. Sci. École Norm. Sup. (4) 30, no. 2, p. 169-204 (1997).
[17] VAINSENCHER (I.). — http://www.mat.ufmg.br/~israel/Publicacoes/Degsfol

