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Analysis on Extended Heisenberg Group

B. Zegarliński(1)

ABSTRACT. — In this paper we study Markov semigroups generated by
Hörmander-Dunkl type operators on Heisenberg group.

RÉSUMÉ. — Dans ce travail, nous étudions des semi-groupes de Markov
produit par les opérateurs de type d’Hörmander-Dunkl sur le groupe
d’Heisenberg.
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(1) CNRS, Toulouse. On leave of absence from Imperial College London.
b.zegarlinski@imperial.ac.uk

– 379 –



B. Zegarliński

1. Introduction

Given a family of smooth Hörmander fields {Xj}j=1,..,n on a differ-
entiable manifold M one can introduce the corresponding reflection maps
{σj}j=1,..,n, which by definition satisfy the following conditions

Xj(f ◦ σj) = −(Xjf) ◦ σj (∗)

and σ2
j = id. Choosing antisymmetric continuous functions, i.e. functions

satisfying xj ◦σj = −xj , we can introduce the following family of Demazure
operators

Ajf ≡ κj
f − f ◦ σj

xj

with the right hand side well defined whenever xj �= 0 and otherwise ex-
tended by continuity, and κj �= 0. In this way one can define extended first
order operators

Tj ≡ Xj +Aj

and consider the following T-Laplacian

L ≡ Σn
j=1 T

2
j

In particular one can then study the following Cauchy problem
{

∂t u = Lu
ut=0 = f

Below we illustrate how one can implement such a programme in an in-
teresting example provided by the Heisenberg type group. The organisa-
tion of the paper is as follows. In Section 2 we briefly recall basic elements
of analysis on the Heisenberg group. In Section 3 we introduce a Coxeter
group of reflections associated with the Heisenberg generators X,Y , define
corresponding Demazure operators and provide fundamentals of algebraic
and analytic properties of the underlying theory leading to the associated
Markov semigroup generated by the T -Laplacian. In Section 4 we study nat-
ural quadratic forms associate to the generator as well as provide Lp setup
for our theory; in particular including integration by parts formula for T
operators with a natural invariant (with respect to the extended Heisenberg
group) measure. In Section 5 we prove basic coercive inequalities necessary
to obtain ultracontractivity estimates for the Markov semigroup. In Sec-
tion 6 we get to the (pointwise off diagonal) heat kernel Gaussian bounds
employing suitable adaptation of arguments of [17]; (the classical very nice
arguments of [8]-[10] seemed difficult to implement). We conclude in Sec-
tion 7 with a summary and an outlook. Three Appendices contain some
computations and/or some additional facts.
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2. Analysis on Heisenberg Group

We consider H1 	 R3 with the following group operation

w ◦ w′ ≡ (x, y, z) ◦ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + 2a(yx′ − xy′)),

defined with a ∈ R \ 0. The corresponding left invariant vector fields

X = ∂x + 2ay∂z, Y = ∂y − 2ax∂z

satisfy the following basic commutation relation

[X,Y ] = −4a∂z ≡ −4aZ, [X,Z] = 0 = [Y,Z]

With such the fields, we introduce the following Heisenberg laplacian

L0 ≡ X2 + Y 2

The group is furnished with a dilation operation

w �→ wt ≡ (tx, ty, t2z).

with a corresponding generator

D ≡ xX + yY + 2zZ

In such the structure we have useful classification of the operators intro-
duced above by means of the following relations

[X,D] = X, [Y,D] = Y, [Z,D] = 2Z, [L0, D] = 2L0 (2.1)

It is well known for a long time that the Markov semigroup P
(0)
t ≡ etL0 is ul-

tracontractive and therefore can be represented as an integral operator with
strictly positive and normalised (heat) kernel ht which satisfy a Gaussian
sandwich bound, (see e.g. [27] and references therein). More recently such
bounds where sharpened, ([4], [23], [13]), with the same Gaussian factor on
both sides of the sandwich. As a consequence it was possible to prove the
following gradient bounds

|∇∇P (0)
t f |q � CtP

(0)
t |∇∇f |q

with ∇∇ ≡ (X,Y ) and some constant Ct ∈ (0,∞); (see [12] for q > 1 and
more general groups via stochastic methods, and [23], [3], for Heisenberg
group, and [14], [20] for general H-type groups with q = 1).
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3. Dunkl type operators in Heisenberg Group

We augment the above structure by the following maps on the Heisen-
berg group

σXw ≡ (−x, y, z − cxy), σY w ≡ (x,−y, z + cxy)

with c ∈ R \ 0. These are continuous and bounded maps, (in fact with
some constant C ∈ (0,∞) one has 1

C d(w) � d(σ·(w)) � Cd(w) for any
homogeneous norm d, i.e. satisfying d(wt) = td(w) for a dilation wt of w).
They do not commute and satisfy

σX ◦ σX = id = σY ◦ σY

Thus they generate a Coxeter group of infinite order. It is tempting to call
σX and σY the reflection operations, but it appears to be justified only when

c = 4a

when one has the following relations

X(f ◦ σX) = −(Xf) ◦ σX , Y (f ◦ σY ) = −(Y f) ◦ σY

(Remark that each of these relations can be implemented non-uniquely, but
this choice has certain advantages and we stick to it later on.) Next we
introduce the following operators

AXf ≡ κ
f − f ◦ σX

x
, AY f ≡ κ

f − f ◦ σY
y

for x, y �= 0, with some κ ∈ (0,∞). We set A ≡ (AX , AY ). Using this
definition one immediately sees that

A2
X = 0 = A2

Y (3.1)

Thus each of them generate a group

eitA·f = (1 + itA·)f, eitA·eisA· = (1 + i(s+ t)A·) = ei(s+t)A·

These generators are homogeneous of order one, that is one has the following
property.

Lemma 3.1. —

[AX , D] = AX , [AY , D] = AY . (3.2)
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(For the proof see Appendix.) Next we notice that

lim
x→0

AXf(x, y, z) = 2κ Xf(0, y, z), lim
y→0

AY f(x, y, z) = 2κ Y f(x, 0, z)

Thus in particular one can see that they are unbounded operators. More
generally, using suitable interpolation and fundamental theorem of calculus,
we have

Lemma 3.2. —

AXf(w) = 2κ

∫ 1

0

ds (Xf)(γ
(w)
s,X), AY f(w) = 2κ

∫ 1

0

ds (Y f)(γ
(w)
s,Y ) (3.3)

with

γ
(w)
s,X ≡ ((1−2s)x, y, z−2sx·2ay), γ

(w)
s,Y ≡ (x, (1−2s)y, z+2sy ·2ax)

As a consequence, in L2(λ) with the (reflection invariant) Haar measure
λ (which for the Heisenberg group coincides with Lebesgue measure), we
obtain

Proposition 3.3. —

||AXf ||L2(λ) � 4|κ| · ||Xf ||L2(λ), ||AY f ||L2(λ) � 4|κ| · ||Y f ||L2(λ)

and

||AXf ||∞ � 2|κ| · ||Xf ||∞, ||AY f ||∞ � 2|κ| · ||Y f ||∞

Proof. — We have

||AXf ||L2(λ) = ||2κ
∫ 1

0

ds Xf(γ
(w)
s,X)||L2(λ) � 2|κ|

∫ 1

0

ds||Xf(γ
(w)
s,X)||L2(λ)

Changing the integration variable w → γ
(w)
s,X , we have

||Xf(γ
(w)
s,X)||L2(λ) =

1√
|1− 2s|

||Xf ||L2(λ)

Hence

||AXf ||L2(λ) � 4|κ| ||Xf ||L2(λ)

and similarly in case of Y . �
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Thus the following homogeneous operators of order one are well defined
on a set of differentiable functions

TX ≡ X +AX , TY ≡ Y +AY .

We set T ≡ (TX , TY ). Since one has

AX(f ◦ σX)(w) = −AXf(w) = −(AXf)(σXw)

and
AY (f ◦ σY )(w) = −AY f(w) = −(AY f)(σY w) ,

we obtain the following property.

Proposition 3.4. —

TX(f ◦σX)(w) = −(TXf)(σXw) , TY (f ◦σY )(w) = −(TY f)(σY w)

and
[TX , D] = TX , [TY , D] = TY

We remark that the homogeneity property follows from (2.1) and (3.1).

In particular the above result means that σX and σY are reflection oper-
ations in our more general framework. From Proposition 3.3 we have the
following corollary.

Proposition 3.5. — Let d be the Carnot-Caratheodory distance for ∇∇,
i.e. distance satisfying the eikonal equation

|∇∇d| = 1.

Then
(1− 4κ) � |Td| � (1 + 4κ)

where |Tf |2 ≡ |TXf |2 + |TY f |2.

As for the algebraic properties of T·’s we notice the following

Proposition 3.6. —

[TX , TY ]f = −4aZf − 4aκ (Zf) ◦ σX − 4aκ (Zf) ◦ σY + [AX , AY ]f

with

[AX , AY ]f = κ2 f ◦ σY ◦ σX − f ◦ σX ◦ σY
yx

and
[TX , Z] = 0 = [TY , Z]
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One can check that in the limit x, y → 0, also [AX , AY ] points out into the
Z direction. Thus generally we have similar situation as in the Hörmader
theory. In a conclusion to the above, it is now time to introduce the following
T -Laplacian.

L ≡ T 2
X + T 2

Y

Let Pt ≡ etL denote the corresponding semigroup (which for a moment is
only well defined on polynomials).

We have the following property.

Theorem 3.7. — L with a domain C2o(H1) functions satisfies minimum
principle, i.e.

f(w) = min f =⇒ Lf(w) � 0

Remark. — See e.g. [26] and references therein for a commutative case.

Proof. — Evidently L vanishes on constants. We show that it also sat-
isfies minimum principle. Suppose that w0 = (x0, y0, z0) is the minimum
point of a function f ∈ C2, we will show that

Lf(w0) = (X2 + Y 2)f(w0) + {X,AX}f(w0) + {Y,AY }f(w0) � 0

Since one has

(X2 + Y 2)f(w0) � 0,

we need only to prove the positivity for second part containing the anti-
commutators. If x0, y0 �= 0, then for the minimum point w0, we also have

{X,AX}f(w0) =
1

x0
2κXf(w0)−

1

x0
AXf(w0) =

κ

x2
0

(f ◦ σX(w0)−f(w0))�0

and similarly in direction y. Suppose next that x0 = 0, (similar arguments
can be given in direction y). Using the representation of AX from Lemma
3.1, (for w with x �= 0)), we have

{X,AX}f(w) =
2

x
κXf(w)− 1

x
AXf(w)

=
1

x
2κ

(
Xf(w)−

∫ 1

0

ds(Xf)(γws,X)

)

= 4κ

∫ 1

0

ds

∫ s

0

ds′(X2f)(γws′,X)
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Now passing to the limit with x→ x0 = 0, we obtain

{X,AX}f(w)→ 2κX2f(w0) � 0.

�

Suppose the pre-generator L extends to the Markov generator (denoted
later on by the same symbol), and let Pt ≡ etL denotes the corresponding
semigroup on a space including bounded (uniformly) continuous functions.
Then the above property implies that Pt is a Markovian semigroup, i.e. it
preserves constants and positivity.

We recall that in Proposition 3.4 one has

[TX , D] = TX , [TY , D] = TY

Setting Sτf(x, y, z) ≡ eτDf(x, y, z) = f(eτx, eτy, e2τz), τ � 0, we get

Proposition 3.8. —

[L, D] = 2L

and so

PtSτ = SτPe2τ t (3.4)

(For the second relation (3.4) see e.g. [3].)

4. Square of the T – Form and Quadratic Form Bounds

Define

ΓΓ1(f) ≡ 1

2
(Lf2 − 2fLf)

By direct computations we get

ΓΓ1(f) = |∇∇f |2 +
1

2κ
(Af)

2

where we have set (Af)
2 ≡ |AXf |2 + |AY f |2.

Next we introduce the following square of the T form as follows

|Tf |2 ≡ |TXf |2 + |TY f |2.
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Proposition 4.1. —

|Tf |2 � 2 max(1, 2κ)ΓΓ1(f)

and one has

ΓΓ1(f) � (2 + 2κ)

(
|Tf |2 +

1

2κ
(Af)2

)

Proof. — Note that

(TXf)2 = (Xf +AXf)2 � 2|Xf |2 + 2(AXf)2 � 2|Xf |2 + 4κ · 1

2κ
(AXf)2

� 2 max(1, 2κ)

(
|Xf |2 +

1

2κ
(AXf)2

)

and similarly for the case of Y . Hence

|Tf |2 ≡ |TXf |2 + |TY f |2 � 2 max(1, 2κ)ΓΓ1(f)

The second statement follows from the following relation

ΓΓ1(f) = |Tf |2 − 2TXf ·AXf − 2TY f ·AY f + (1 +
1

2κ
)|Af |2

This ends the proof of the proposition. �

Using this property and Proposition 3.3, we get the following bounds.

Proposition 4.2. —

(1−ε)(1−16κ2

ε
)|| |∇∇f |2 ||L1(λ) � || |Tf |2 ||L1(λ) � 2 max(1, 2κ)|| ΓΓ1(f) ||L1(λ)

Proof. — The first inequality follows using

(TXf)2 = (Xf +AXf)2 � (1− ε)|Xf |2 + (1− 1

ε
)(AXf)2

and the following bound from Proposition 3.3

||(AXf)2||L1(λ) � 16κ2|| |Xf |2 ||L1(λ)

with the similar one for Y . �
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For later purposes we need the following result.

Theorem 4.3 (Integration by Parts Lemma). — For Lipschitz continu-
ous functions f, g and σX , σY invariant measure dν ≡ ρdλ , one has
∫

AX(g)fdν =

∫
gκ

f + f ◦ σX
x

dν =

∫
gx−1AX(fx)dν ≡

∫
gA∗X(f)dν

and similarly for Y . Moreover, if ρ(w) = |x|2κ|y|2κ, with κ ∈ (− 1
2 ,∞), then

the following integration by parts formula holds

∫
TX(g)fdν = −

∫
gTX(f)dν (IP)

and similarly for TY .

Remark 4.4. — We remark that one gets similar properties choosing dif-
ferent value for κ in case of TX and TY . We also notice that there are other
reflection invariant measures, (for which the last formula for integration by
parts may fail), which can be defined as nonnegative function of (real part)
of quantities ηξ + ηξ−1 , where

ηξ ≡
∑

n∈Z
ξn eip(z+εnxy)ρ(x, y, z + εnxy)

defined with p, ε ∈ R and ξ ∈ C, |ξ| = 1 with a conditions that 4a
ε ∈ Z and

ξ
4a
ε = 1, and a suitable function ρ.

Proof. — By shifting a differentiable function g by a constant g(0) if
necessary, we can and do assume that it vanishes at x = 0. By change of
variables of integration by the map σX , we have

∫
(g ◦ σX)

1

x
fρdλ = −

∫
g

1

x
(f ◦ σX) ρdλ.

Hence we have ∫
AX(g)fρdλ =

∫
g
f + f ◦ σX

x
ρdλ

Combining this relation with the formula for integration by parts for the
field X with the measure dν = |x|2κ|y|2κdλ, one obtains the integration by
parts formula for TX . The proof for the case of TY is similar. �

Using the integration by parts formula and the definition of ΓΓ1, we
obtain the following
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Corollary 4.5. — Let dν ≡ x2κy2κdλ. Then

∫
fL(g)dν = −

∫
Tf ·Tgdν

and hence ∫
fL(f)dν = −

∫
ΓΓ1(f)dν

Proof. — The first result follows from integration by parts (IP) formula.
It implies that L is symmetric in L2(dν) and hence ν is invariant measure
for this generator. This together with the definition of ΓΓ1 yields the second
relation. �

Since

ΓΓ1 = |∇∇f |2 +
1

2κ
(Af)

2

one can show directly that the quadratic form

E(f) ≡
∫

ΓΓ1(f)dν

satisfies for any normal contraction S, (that is a real function vanishing at
zero and having Lipschitz norm equal to one), the following bound

E(S(f)) � E(f).

This is clear for the first part of the form involving subgradient. To see
that for the second part, using the fact that the normal contraction has by
definition the Lipschitz norm equal to one, we get

1

2κ
(AXS(f))

2
=

κ

2x2
(S(f)− S(f) ◦ σX)

2

=
κ

2x2
(S(f)− S(f ◦ σX))

2 � κ

2x2
(f − f ◦ σX)

2

and similarly in direction y. Thus, using the theory of Dirichlet forms [15]
we arrive at the following result.

Theorem 4.6. — The closure of the quadratic form

E(f) ≡
∫

ΓΓ1(f)dν

defines a (self-adjoint) Markov generator denoted later on by the symbol L
with the corresponding Markov semigroup Pt = etL.
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5. Coercive Bounds

We recall that the following Sobolev inequality holds

||f ||2Lq(λ) � a

∫
|∇∇f |2 dλ+ b

∫
f2 dλ

with some q > 2 and a, b ∈ (0,∞) independent of f . Hence, by standard
arguments (see e.g. [18]), we have

∫
f2 log

f2

∫
f2dλ

dλ � ε

∫
|∇∇f |2 dλ+ C̃ε

∫
f2dλ (5.1)

for any ε ∈ (0, 1) with

C̃ε ≡
q

2(q − 2)
(log

1

ε
+ log

q

2(q − 2)
− 1) + εb

We prove the following generalisation of this fact.

Theorem 5.1. — For any ε ∈ (0, 1)
∫

f2 log
f2

||f ||2L2(ν)

dν � ε

∫
ΓΓ1(f) dν + Cε

∫
f2dν. (5.2)

where Cε ≡ C1 log 1
ε +C2 with some constants C1, C2 ∈ (0,∞) independent

of f .

Proof. — Applying (5.1) to f |x|κ|y|κ, we obtain
∫

f2 log
f2

||f ||2L2(ν)

dν +

∫
f2 log(|x|2κ|y|2κ)dν (5.3)

� ε

∫
|∇∇(f · |x|κ|y|κ)|2 dλ+ C̃ε

∫
f2dν

with dν ≡ |x|2κ|y|2κdλ. Hence
∫

f2 log
f2

||f ||2L2(ν)

dν � ε

∫
|∇∇f |2 dν

+ 2ε

∫ (
fκ|x|−1Xf + fκ|y|−1Y f

)
dν

+ εκ2

∫ (
f2|x|−2 + f2|y|−2

)
dν (5.4)

+ κ

∫
f2

(
χ{|x|<1} log

1

|x|2 + χ{|y|<1} log
1

|y|2
)
dν

+ C̃ε

∫
f2dν.
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To bound the last but one term on the r.h.s., we use the inequality

log t � εt+ cε

with ε ∈ (0, 1) and cε ≡ log 1
ε − 1, to get

κ

∫
f2

(
χ{|x|<1} log

1

|x|2 + χ{|y|<1} log
1

|y|2
)
dν

� κε

∫ (
f2|x|−2 + f2|y|−2

)
dν + cεκ

∫
f2dν

Using this and (5.4), we obtain

∫
f2 log

f2

||f ||2L2(ν)

dν � ε

∫
|∇∇f |2 dν

+ ε(κ2 +
1

2
κ)

∫ (
f2|x|−2 + f2|y|−2

)
dν (5.5)

+ Ĉε

∫
f2dν

with Ĉε ≡ C̃ε/2 + cε/2κ. Now we complete the estimates using the following
lemma ([22]).

Lemma 5.2. — κ ∈ (0,∞), κ �= 1
2 . There exist constants â, b̂ ∈ (0,∞)

such that

∫ (
g2|x|−2 + g2|y|−2

)
dν � â

∫
ΓΓ1(g)dν + b̂

∫
g2dν

for any function g for which the right hand side is well defined.

Using (5.5) together with Lemma 5.2, we obtain

∫
f2 log

f2

||f ||2L2(ν)

dν � ε

∫
ΓΓ1(f) dν + Cε

∫
f2dν. (5.6)

with

Cε ≡ Ĉ(ε[1 + (κ2 +
1

2
κ)â]−1) + ε(κ2 +

1

2
κ)[1 + (κ2 +

1

2
κ)â]−1.

From this and the definition of ΓΓ1 the bound (5.2) follows. �
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Proof Lemma 5.2. — We mention that for κ > 1
2 one can use the follow-

ing arguments based on simple integration by parts
∫

g2|x|−2dνκ ≡
∫

g2|x|2κ−2|y|2κdλ =
1

2κ− 1

∫
g2X|x|2κ−1|y|2κdλ

= − 2

2κ− 1

∫
g|x|−1Xg|x|2κ|y|2κdλ (5.7)

� 2

2κ− 1
a

∫
|Xg|2dνκ +

2

a(2κ− 1)

∫
g2|x|−2dνκ

with a constant a > 0 and dνκ ≡ |x|2κ|y|2κdλ. From this, a choice of a >
2

(2κ−1) plus similar arguments for the case with factor |y|−2, deliver the

desired bound.

To consider the case κ ∈ (0, 1
2 ), we also note that on the set {x > 0} we

have the following property

TX(x−1) = Xx−1 + κ
x−1 − x−1 ◦ σX

x
= (2κ− 1)x−2

and similarly for TY (y−1) in {y > 0}, (as well as in other quadrants modulo
change of sign of the variable). Thus for 2κ �= 1, we have

∫ (
g2|x|−2

)
dνκ =

1

(1− 2κ)

∫ (
g2(−TXx−1)

)
dνκ

=
1

(1− 2κ)

∫ (
(TXg

2)x−1
)
dνκ

Since TXg
2 = 2gTXg − (g − g ◦ σX)AX(g) � 2gTXg

for κ ∈ (0, 1
2 ), we get with some a ∈ (0,∞)

∫ (
g2|x|−2

)
dνκ =

1

(1− 2κ)

∫ (
(TXg

2)x−1
)
dνκ

� 1

(1− 2κ)
a

∫
|TXg|2 dνκ +

1

(1− 2κ)
a−1

∫
g2|x|−2 dνκ

+
1

(1− 2κ)
a

∫
|AXg|2 dνκ +

1

(1− 2κ)
2a−1

∫
g2|x|−2 dνκ

Thus, using the definition of Γ1,X(f) ≡ |Xf |2 + 1
2κ |AXf |2, we have

∫ (
g2|x|−2

)
dνκ �

1

(1− 2κ)
2amax

(
1,

1

2κ

) ∫
Γ1,X(g) dνκ

+
1

(1− 2κ)
3a−1

∫
g2|x|−2 dνκ
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whence choosing 1
(1−2κ)3a

−1 < 1, we arrive at

∫ (
g2|x|−2

)
dνκ � Const

∫
Γ1,X(g) dνκ

with Const ≡ 1
(1−2κ)2amax(1, 1

2κ )[1− 1
(1−2κ)3a

−1]−1. Similar arguments for

y direction and all quadrants complete the proof.

Remark . — To get the bound for small κ > 0, we recall first that the
following Hardy type inequality for half spaces in the Heisenberg group
holds with the Haar (Lebesgue) measure λ, (see Theorem 1.1 in [22]).

∫ (
g2|x|−2

)
dλ � 4

∫
|∇∇g|2dλ.

and similarly with a singular factor |y|−2. Replacing the function g by
g|x|κ|y|κ, simple arguments (involving integration by parts) yield
∫ (

g2|x|−2 + g2|y|−2
)
dνκ � 8

∫
|∇∇g|2dνκ+8κ(1−κ)

∫ (
g2|x|−2 + g2|y|−2

)
dνκ

(5.8)
This for 8κ(1 − κ) < 1 implies the desired result with a constant
â � 8(1− 8κ(1− κ))−1.

Next suppose that (5.8) holds for some κ0 ∈ (0,∞). Applying our current
assumption to a function g|x|κ′−κ0 |y|κ′−κ0 , we get

∫ (
g2|x|−2 + g2|y|−2

)
dνκ′ (5.9)

� 2â

∫
|∇∇g|2dνκ′ + 2â(κ′ − κ0)

2

∫ (
g2|x|−2 + g2|y|−2

)
dνκ′

with b0 ≡ b0(κ0), which implies the following bound
∫ (

g2|x|−2 + g2|y|−2
)
dνκ′ � bκ′

∫
|∇∇g|2dνκ′ (5.10)

where bκ′ ≡ 2b0(1− 2b0(κ
′− κ0)

2)−1, provided that 2b0(κ
′− κ0)

2 < 1. This
perturbative procedure shows that the set of κ’s for which a statement with
the gradient square on the right hand side holds is open.

Using Theorem 5.1 together with the fact that
∫

ΓΓ1(f)dν = −
∫

fLfdν

is a Dirichlet form, one can now apply arguments based on Gross integration
lemma ([16], [8], [11]) to obtain the following corollary.
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Theorem 5.3. — The semigroup Pt ≡ etL is ultracontractive, that is
for t > 0 there exists θt ∈ (0,∞) such that

||Ptf ||L∞(ν) � θt||f ||L1(ν) (5.11)

This means that the semigroup Pt has a kernel ht with respect to the mea-
sure ν satisfying with some θt ∈ (0,∞)

ht(w, w̃) � θt

6. Heat Kernel Bounds

We begin from recalling the following arguments due to Aronson [1].
Suppose

∂th = Lh.
Let ψ be a function satisfying

∂tψ +
1

2
|Tψ|2 � 0

Then we have

d

dt

∫
h2eψdν =

∫ (
h2∂tψ + 2hLh

)
eψdν

�
∫ (
−1

2
h2|Tψ|2eψ −Th ·T(heψ)

)
dν

In our case, since r2 ≡ x2 + y2 is invariant with respect to all reflections,
one can see that the right hand side can be made nonpositive by a choice

ψ =
r2

2(δ + t)

with δ ∈ (0,∞). That is one gets the following simple integrated bound

Proposition 6.1. —

sup
t>0

∫
h2e

r2

2(δ+t) dν <∞ (6.1)

To improve this bound in other directions, we note the following pro-
perty.
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Proposition 6.2. — For any n ∈ N, we have
∫

h2
t=1d

ndν <∞ (6.2)

Proof. — First of all we note that for a smooth cutoff dc ≡ dχ(d/L) of
d, with smooth monotone function χ vanishing inside a unit ball and equal
to one outside a ball of radius 2 and some large constant L > 1, we have

∂t

∫
htd

n
c dν =

∫
L(ht)d

n
c dν =

∫
ht(T

2dnc )dν

Next we observe that

X2dnc = n(n− 1)dn−2
c

(
χ+

d

L
χ′

)2

|Xd|2 (6.3)

+ ndn−1
c

((
2

L
χ′ +

d

L2
χ′′

)
|Xd|2 +

(
χ+

d

L
χ′

)
X2d

)

By arguments used in the proof of Theorem 6.1 in [19], we have with some
K̃ ∈ (0,∞)

X2d, Y 2d � K̃.

Thus using relation (6.3), we obtain with some constants ã, b̃ ∈ (0,∞)

X2dnc , Y
2dc � n(n− 1)ã dn−2

c + nb̃ dn−1
c (6.4)

Since

T 2dnc = ∆dnc + 4κ

∫ 1

0

ds

∫ s

0

dτ
(
(X2dnc )(γτ,X) + (Y 2dnc )(γτ,Y )

)

and

dc(γτ,X) = dc(w) + 2κx

∫ τ

0

ds ((χ(d) + χ′(d))Xd) (γs,X) � dc(w) + 2κτ |x|

� (1 + 2κτ)dc(w)

we get

T 2dnc � n(n− 1)a(1 + 2κ)n−2 dn−2
c + nb(1 + 2κ)n−1 dn−1

c

with some constants a, b ∈ (0,∞). This implies the following inductive in-
equality

∂t

∫
htd

n
c dν � n(n−1)a(1+2κ)n−2

∫
htd

n−2
c dν+nb(1+2κ)n−1

∫
htd

n−1
c dν.

– 395 –



B. Zegarliński

Similar computations for n = 1 show that

∂t

∫
htdcdν < Const <∞

Using the fact that we also have

∫
htdcdν = const <∞

by inductive arguments, one can show that for any n ∈ N and t ∈ (0,∞)

∫
htd

n
c dν = const <∞

This implies the statement of the proposition. �

We conclude with the following result.

Corollary 6.3. — For any δ, β ∈ (0,∞) there exists a positive function
Ct(·) such that

ht(w,w
′) � Ct(w)Ct(w

′) e−
(

α
2(δ+t)

r2(w,w′)+β log(1+ 1√
t
d(w,w′))

)
(6.5)

Proof. — By homogeneity of the generator L it is sufficient to show the
bound at t = 1. From Proposition 6.2, for any β ∈ (0,∞) and t ∈ (0,∞) we
have ∫

hqt (w, w̃)eβ log(1+d(w,w̃))ν(dw̃) <∞

for any q ∈ [1,∞) , since ht is bounded. Hence via Hölder inequality, with
sufficiently small α > 0, we also have

C2
t (w) ≡

∫
h2
t (w, w̃)eαr

2(w,w̃)+β log(1+d(w,w̃))ν(dw̃) <∞ (6.6)

Now we can follow an idea of [17] to get an off diagonal heat kernel bound,
as follows. We note that because log(1 + d(w, w̃)) is a metric, we have

α

2
r2(w,w′) + β log(1 + d(w,w′))

� αr2(w, w̃) + β log(1 + d(w, w̃)) + αr2(w̃, w′) + β log(1 + d(w̃, w′)).
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Hence using Chapman-Kolmogorov property and Hölder inequality, we get

ht(w,w
′) =

∫
h t

2
(w, w̃)h t

2
(w̃, w′)ν(dw̃) (6.7)

=

∫ (
h t

2
(w, w̃)eαr

2(w,w̃)+β log(1+d(w,w̃))
)

(
h t

2
(w̃, w′)eαr

2(w̃,w′)+β log(1+d(w̃,w′))
)
ν(dw̃)× e−(α2 r2(w,w′)+β log(1+d(w,w′)))

� Ct(w)Ct(w
′) e−(α2 r2(w,w′)+β log(1+d(w,w′)))

�

Instead of directly dealing with expression involving the control distance,
next we estimate the moments of the z variable. Later we will show that
one can combine that with the Gaussian bound in the Euclidean direction
to arrive at the Gaussian bounds with respect to a homogeneous metric on
the group.

Proposition 6.4. — There exists C ∈ (0,∞) such that for any n ∈ N,
we have ∫

ht=1z
2ndν � Cn (2n)! (6.8)

Proof. — We have

∂t

∫
htz

2ndν =

∫
L(ht)z

2ndν =

∫
ht(T

2z2n)dν (6.9)

with

T 2z2n = (T 2
X + T 2

Y )z2n =
(
X2 + Y 2

)
z2n + ({X,AX}+ {Y,AY }) z2n

We have

(
X2 + Y 2

)
z2n = 4a2r2∂2

zz
2n = 4a2 · 2n(2n− 1)r2z2(n−1) (6.10)

On the other hand

{X,AX}z2n = 2κ

∫ 1

0

ds

∫ s

0

ds′(X2z2n)(γws′,X)

= 2κ4a22n(2n− 1)

∫ 1

0

ds

∫ s

0

ds′(y2z2(n−1))(γws′,X)

= 8κa22n(2n− 1)

∫ 1

0

ds

∫ s

0

ds′y2(z − 2s′x · 2ay)2(n−1)
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and similarly

{Y,AY }z2n = 8κa22n(2n− 1)

∫ 1

0

ds

∫ s

0

ds′x2(z + 2s′y · 2ax)2(n−1)

Hence

({X,AX}+ {Y,AY }) z2n =

= 8κa22n(2n− 1)

∫ 1

0

ds

∫ s

0

ds′
(
y2(z − 2s′x · 2ay)2(n−1)

+x2(z + 2s′y · 2ax)2(n−1)
)

� κ(4a)22n(2n− 1)r2
∫ 1

0

ds

∫ s

0

ds′(|z|+ s′2ar2)2(n−1)

Combining the above bounds we obtain

T 2z2n = 4a22n(2n− 1)r2z2(n−1) (6.12)

+κ(4a)22n(2n− 1)r2
∫ 1

0

ds

∫ s

0

ds′(|z|+ s′2ar2)2(n−1)

For the first term on the right hand side, by Young inequality one has

4a22n(2n− 1)r2z2(n−1) � 2(n−1)
2n (2n− 1)

2n
2(n−1) z2n +

(
4a2(2n)

)n
r2n

� C̄1n z
2n + C̄2(4a

2e)n
√

(2n)! r2n (6.13)

with some constants C̄1, C̄2 ∈ (0,∞). For the second term, using binomial
expansion and applying suitable Youngs inequality to each term, we have

(4a)22n(2n− 1)r2
∫ 1

0

ds

∫ s

0

ds′(|z|+ s′2ar2)2(n−1) (6.14)

�
2(n−1)∑

k=0

2

(
2n

k + 2

)
|z|2n−(k+2)r2(k+1)(2a)k+2

� z2n +

2(n−1)−1∑

k=0

(
2n

k + 2

)
2

2n
k+2 (2a)2nr2(k+1) 2n

k+2 + r2(2n−1)(4a)2n

� z2n + 42n(4a)2nr2·2n

Combining (6.9) - (6.14) we arrive at the following Gronwal type relation

< z2n >t � Cn
1 (2n)! + C2n

∫ t

0

ds < z2n >s (6.15)
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with suitable constants C1, C2 ∈ (0,∞) uniformly bounded on compact
intervals of t and where

< f >t ≡
∫

htfdν

Deriving this bound we have taken advantage of the Gaussian estimate in
the xy directions

< r2k >t � Ckk!

which follows from Proposition 6.1. Iteration of (6.14) yields

< z2n >t � Cn
1 e

C2nt (2n)!

�

Using Proposition 6.1, Corollary 6.3, and arguments of [17], we obtain
the following pointwise Gaussian bounds result.

Theorem 6.5. — There exists α0 ∈ (0,∞) and a positive function Ct(·)
such that for any α ∈ (0, α0) one has

ht(w,w
′) � Ct(w)Ct(w

′) e−αd
2(w,w′) (6.16)

Using extra homogeneity of the theory one can refine a bit these esti-
mates. At the origin one can also obtain some monotonicity properties (see
Appendix II).

We remark that using the pointwise upper bound one should be able to
obtain the lower Gaussian bounds by the arguments of [5].

7. Summary

In this paper we have introduced a representation of infinite Coxeter
group with two generators associated to fundamental fields of H1 given by
explicit maps on H1. (Incidentally that is the same Coxeter group as the one
of the Backlund transformations associated to the Painleve II, [25].) While
in more general case explicit formulas for reflection maps may be difficult
to obtain, in a class of so called Kolmogorov-type and H-type groups ([6])
it is an easy matter to get. Thus one gets in this case a solution of the set of
differential problem (*) and a representation of a Coxeter group. One may
hope that the (*) problem can be solved for any set of generating fields as-
sociated to a free nilpotent Lie algebra in Euclidean space, [21]. Conversely,
given any Coxeter group, one can find a set of maps on a Euclidean space
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representing this group and for which (*) is satisfied for a suitable set of
fields (generating some free nilpotent Lie group).
In case of manifolds there exist a geometric notion of reflection, see e.g. [2],
which could be complemented in a natural way by using (*) for a funda-
mental set of fields.

In the bulk of the paper we have developed the basis of a calculus nec-
essary for interesting initial analysis of the heat kernel. But the emerging
structures are likely to lead to other natural destinations as for example
theory of special functions, non-commutative geometry (involving number
of noncommuting boundary operators),..., and physics, which we hope to
explore elsewhere.

Acknowledgements. — The author would like to thank Dominique
Bakry and Waldemar Hebisch for discussions and enthusiasm.

Appendix I

Proof of reflection property. — One has

X(f ◦ σX) = (∂x + 2ay∂z)(f(−x, y, z − 4axy))

= −(∂xf) ◦ σX − 4ay(∂zf) ◦ σX + 2ay(∂zf) ◦ σX
= −(∂xf + 2ay∂zf) ◦ σX = −(Xf) ◦ σX

and

Y (f ◦ σY ) = (∂y − 2ax∂z)(f(x,−y, z + 4axy))

= −(∂yf) ◦ σY + 4ax(∂zf) ◦ σY +−2ax(∂zf) ◦ σY
= −(∂yf − 2ax∂zf) ◦ σY = −(Y f) ◦ σY

�

Proof of Lemma 3.1. — We show the relations

[AX , D] = AX , [AY , D] = AY .

To show the first relation, we note that D = xX+yY +2zZ and we compute

AXDf −DAXf = κ
Df − (Df) ◦ σX

x
− κD

f − f ◦ σX
x

= κ
D(f ◦ σX)− (Df) ◦ σX

x
+AXf
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with

D(f ◦ σX)− (Df) ◦ σX
x

=
xX(f ◦ σX)− (xXf) ◦ σX

x

+
yY (f ◦ σX)− (yY f) ◦ σX

x

+
2zZ(f ◦ σX)− (2zZf) ◦ σX

x

Now we have

xX(f ◦ σX) = x(∂x + 2ay∂z)(f(−x, y, z − 4axy))

= −x(∂xf) ◦ σX − 4axy(∂zf) ◦ σX + x2ay(∂zf) ◦ σX
= −x(∂xf) ◦ σX − 2axy(∂zf) ◦ σX
= −x(Xf) ◦ σX = (xXf) ◦ σX

and so
xX(f ◦ σX)− (xXf) ◦ σX

x
= 0

Moreover

yY (f ◦ σX) = y(∂y − 2ax∂z)(f(−x, y, z − 4axy))

= y(∂yf) ◦ σX − 4axy(∂zf) ◦ σX − y2ax(∂zf) ◦ σX
= y(∂yf) ◦ σX − 6axy(∂zf) ◦ σX
= y(Y f) ◦ σX − 8axy(∂zf) ◦ σX

and thus
yY f ◦ σX)− (yY f) ◦ σX

x
= −8ay(∂zf) ◦ σX

Finally we have

zZ(f ◦ σX) = (zZf) ◦ σX + 4axy(∂zf) ◦ σX

and hence
2zZ(f ◦ σX)− (2zZf) ◦ σX

x
= 8ay(∂zf) ◦ σX

Combining these all we obtain

D(f ◦ σX)− (Df) ◦ σX
x

= 0

which ends the proof of for AX . The case of AY is similar. �
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Appendix II

Using homogeneity properties of our theory, we can also show the fol-
lowing bound.

Proposition 7.1. — For any function ζ ≡ χ(z2) defined with a nonin-
creasing real function χ and any ε ∈ (0,∞), at the origin w = 0 we have

sup
t>0

∫
hte

ε zχt dν <∞ (7.1)

Proof. — We recall that

[L, D] = 2L

and therefore one has the following relation

PtDf = DPtf + 2tPtLf

(with the first term on the right hand side vanishing at w = 0). Now we do
the following calculation at w = 0, with a function ζ ≡ χ(z2) defined with
a nonincreasing real function χ and any ε ∈ (0,∞)

∂t

∫
hte

ε zζt dν =

∫
htLeε

zζ
t dν − ε

t2

∫
ht

(
zζeε

zζ
t

)
dν

=
1

2t

∫
htDe

ε zζt dν − ε

t2

∫
ht

(
zζeε

zζ
t

)
dν

=
2ε

t2

∫
ht

(
z2χ′(z2)eε

zζ
t

)
dν

We conclude noting that the right hand side is nonpositive for nonincreasing
function χ. �

Remark. — In case when the kernel is group covariant, we get a similar
bound at any point w.

Proposition 7.2. — Let ψt ≡ ε d̃
2

t χ( d̃
2

t ) defined with t ∈ (0,∞), a ho-

mogeneous almost everywhere differentiable distance d̃4 ≡ r4 + αz2, where
α, ε ∈ (0,∞)) and 0 � χ � 1 being a Lipschitz function, which is equal to
one on an interval [0,K] and zero on [K + 1,∞] for some K ∈ (0,∞). At
w = 0 we have

d

dt

∫
hte

ψtdν � 0 (7.2)
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Proof. — We have

∂tPte
ψt = PtLeψt + Pt∂tψte

ψt

Since at w = 0 we have

PtLf =
1

2t
PtDf,

so we get

∂tPte
ψt = Pt

((
1

2t
Deψt + ∂tψt

)
eψt

)

Now using the fact that

∂tψt = −ε d̃
2

t2

(
χ

(
d̃2

t

)
+
d̃2

t
χ′

(
d̃2

t

))

and, since Dd̃2 = 2d̃2,

Dψt = 2ε
d̃2

t

(
χ

(
d̃2

t

)
+
d̃2

t
χ′

(
d̃2

t

))

we conclude that
1

2t
Dψt + ∂tψt = 0

Hence at w = 0 we obtain

∂tPte
ψt = 0

�

Appendix III: Representation of Coxeter Group and CCRs

In the text we did not get much into algebraic properties of the T -theory.
It is however worth to mention that it offers interesting realisation of CCR
with different coefficient on symmetric and antisymmetric subspaces. More
precisely on the linear span of the following generalised linear functions

x, y, η ≡ x+
z

2ay
, ζ ≡ y − z

2ax

we have a representation of the Coxeter group determined by the following
relations

x ◦ σX = −x y ◦ σX = y η ◦ σX = η − 4x ζ ◦ σX = −ζ
x ◦ σY = x y ◦ σY = −y η ◦ σY = −η ζ ◦ σY = ζ − 4y
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and the following commutation relations

[TX , x]f = (1 + 2κ)fs,X + (1− 2κ)fa,X
[TY , y]f = (1 + 2κ)fs,Y + (1− 2κ)fa,Y
[TX , y]f = 0

[TX , ζ]f = − (1−2κ)
x fs,X − (1+2κ)

x fa,X
[TX , η]f = 2(1 + 2κ)fs,X + 2(1− 2κ)fa,X
[TY , ζ]f = 2(1 + 2κ)fs,Y + 2(1− 2κ)fa,Y
[TY , x]f = 0

[TY , η]f = (1−2κ)
y fs,Y + (1+2κ)

y fa,Y

where fs,· ≡ 1
2 (f + f ◦ σ·) and fa,· ≡ 1

2 (f − f ◦ σ·). The interesting thing is
that on symmetric and antisymmetric subspaces the constants in CCRs are
different. (There are also some interesting critical points κ = ± 1

2 .)
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bounds for the heat kernel on the Heisenberg group, J. Funct. Anal. 255, p.
1905-1938 (2008).

[4] Beals (R.), Gaveau (B.) and Greiner (P.C.). — Hamiltonian-Jacobi Theory
and Heat Kernel On Heisenberg Groups, J. Math. Pures Appl. 79, p. 633-689
(2000).

[5] Benjamini (I.), Chavel (I.) and Feldman (A.). — Heat Kernel Lower Bounds
on Riemannian Manifolds Using the Old Idea of Nash, Proc. of the London Math.
Soc. 1996 s3-72(1):215-240; doi:10.1112/plms/s3-72.1.215

[6] Bonfiglioli (A.), Lanconelli (E.), and Uguzzoni (F.). — Stratified Lie Groups
and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathe-
matics, Springer (2007).

[7] Chow (B.), Lu Peng and Ni Lei. — Hamilton’s Ricci Flow, Grad. Stud. Math.,
Amer. Math. Soc. (2006).

[8] Davies (E.B.). — Heat kernels and spectral theory. Cambridge University Press,
Cambridge, 197 pp (1989).

[9] Davies (E.B.). — Explicit Constants for Gaussian Upper Bounds on Heat Ker-
nels, American Journal of Mathematics, Vol. 109, No. 2 (Apr., 1987) p. 319-333,
http://www.jstor.org/stable/2374577

[10] Davies (E.B.). — Heat Kernel Bounds for Second Order Elliptic Operators on
Riemannian Manifolds, Amer. J. of Math. Vol. 109, No. 3 (Jun., 1987) p. 545-569,
http://www.jstor.org/stable/2374567

[11] Davies (E.B.) and Simon (B.). — Ultra-contractivity and the heat kernel for
Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59, p. 335-395
(1984).

– 404 –



Analysis on Extended Heisenberg Group

[12] Driver (B.K.) and Melcher (T.). — Hypoelliptic heat kernel inequalities on
the Heisenberg group, J. Funct. Anal. 221, p. 340-365 (2005).

[13] Eldredge (N.). — Precise estimates for the subelliptic heat kernel on H-type
groups, J. Math. Pures Appl. 92, p. 52-85 (2009).

[14] Eldredge (N.). — Gradient estimates for the subelliptic heat kernel on H-type
groups J. Funct. Anal. (2009), http://dx.doi.org/doi:10.1016/j.jfa.2009.08.012.

[15] Fukushima (M.). — Dirichlet Forms and Markov Processes, North Holland
(1980).

[16] Gross (L.). — Logarithmic Sobolev inequalities, Amer. J. Math. 97, p. 1061-
1083 (1975).

[17] Grigor’yan (A.). — Gaussian Upper Bounds for the Heat Kernel on Arbitrary
Manifolds, J. Differential Geometry 45, 33-52 (1997).
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