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A converse to the Andreotti-Grauert theorem

Jean-Pierre Demailly(1)

Dedicated to Professor Nguyen Thanh Van

ABSTRACT. — The goal of this paper is to show that there are strong rela-
tions between certain Monge-Ampère integrals appearing in holomorphic
Morse inequalities, and asymptotic cohomology estimates for tensor pow-
ers of holomorphic line bundles. Especially, we prove that these relations
hold without restriction for projective surfaces, and in the special case of
the volume, i.e. of asymptotic 0-cohomology, for all projective manifolds.
These results can be seen as a partial converse to the Andreotti-Grauert
vanishing theorem.

RÉSUMÉ. — Le but de ce travail est de montrer qu’il y a des relations
fortes entre certaines intégrales de Monge-Ampère apparaissant dans les
inégalités de Morse holomorphes, et les estimations asymptotiques de co-
homologie pour les fibrés holomorphes en droites. En particulier, nous
montrons que ces relations sont satisfaites sans restriction pour toutes les
surfaces projectives, et dans le cas particulier du volume, c’est-à-dire de
la 0-cohomologie asymptotique, pour toutes les variétés projectives. Ces
résultats peuvent être vus comme une réciproque partielle au théorème
d’annulation d’Andreotti-Grauert.

1. Main results

Throughout this paper, X denotes a compact complex manifold,
n = dimCX its complex dimension and L → X a holomorphic line bun-
dle. In order to estimate the growth of cohomology groups, it is interest-
ing to consider appropriate “asymptotic cohomology functions”. Following

(1) Université de Grenoble I, Département de Mathématiques, Institut Fourier, 38402
Saint-Martin d’Hères, France
demailly@fourier.ujf-grenoble.fr
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partly notation and concepts introduced by A. Küronya [Kür06, FKL07],
we introduce

Definition 1.1. —

(i) The q-th asymptotic cohomology functional is defined as

ĥq(X,L) := lim sup
k→+∞

n!

kn
hq(X,L⊗k).

(ii) The q-th asymptotic holomorphic Morse sum of L is

ĥ�q(X,L) := lim sup
k→+∞

n!

kn

∑

0�j�q
(−1)q−jhj(X,L⊗k).

When the lim sup’s are limits, we have the obvious relation

ĥ�q(X,L) =
∑

0�j�q
(−1)q−j ĥj(X,L).

Clearly, Definition 1.1 can also be given for a Q-line bundle L or a Q-divisor
D, and in the case q = 0 one gets what is usually called the volume of L,
namely

Vol(X,L) = ĥ0(X,L) = lim sup
k→+∞

n!

kn
h0(X,L⊗k). (1.1)

(see also [DEL00], [Bou02], [Laz04]). It has been shown in [Kür06] for the

projective case and in [Dem10] in general that the ĥq functional induces a
continuous map

DNSR(X) � α �→ ĥq(X,α)

defined on the “divisorial Neron-Severi space” DNSR(X) ⊂ H1,1
BC(X,R) con-

sisting of real linear combinations of classes of divisors in the real Bott-
Chern cohomology group of bidegree (1, 1). Here Hp,q

BC(X,C) is defined as
the quotient of d-closed (p, q)-forms by ∂∂-exact (p, q)-forms, and there is
a natural conjugation Hp,q

BC(X,C) → Hq,p
BC(X,C) which allows us to speak

of real classes when q = p. The ĥq functional is in fact locally Lipschitz
continous on DNSR(X), and can be obtained as a limit (not just a limsup)
on all those classes. Notice that Hp,q

BC(X,C) coincides with the usual Dol-
beault cohomology group Hp,q(X,C) when X is Kähler, and that DNSR(X)
coincides with the usual Néron-Severi space

NSR(X) = R⊗Q
(
H2(X,Q) ∩H1,1(X,C)

)
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A converse to the Andreotti-Grauert theorem

when X is projective. It follows from holomorphic Morse inequalities (cf.
[Dem85], [Dem91]) that asymptotic cohomology can be compared with cer-
tain Monge-Ampère integrals.

Theorem ([Dem85]) 1.2. — For every holomorphic line bundle L on
a compact complex manifold X, one has the “weak Morse inequality”

(i) ĥq(X,L) � inf
u∈c1(L)

∫

X(u,q)

(−1)qun

where u runs over all smooth d-closed (1, 1)-forms which belong to the co-
homology class c1(L) ∈ H1,1

BC(X,R), and X(u, q) is the open set

X(u, q) :=
{
z ∈ X ; u(z) has signature (n− q, q)

}
.

Moreover, if X(u,� q) :=
⋃

0�j�qX(u, j), one has the “strong Morse inequa-
lity”

(ii) ĥ�q(X,L) � inf
u∈c1(L)

∫

X(u,�q)
(−1)qun.

It is a natural problem to ask whether the inequalities (1.2) (i) and
(1.2) (ii) might not always be equalities. These questions are strongly related
to the Andreotti-Grauert vanishing theorem [AG62]. A well-known variant
of this theorem says that if for some integer q and some u ∈ c1(L) the
form u(z) has at least n − q + 1 positive eigenvalues everywhere (so that
X(u,� q) =

⋃
j�qX(u, j) = ∅), then Hj(X,L⊗k) = 0 for j � q and k 


1. We are asking here whether conversely the knowledge that cohomology
groups are asymptotically small in a certain degree q implies the existence
of a hermitian metric on L with suitable curvature, i.e. no q-index points or
only a very small amount of such.

The first goal of this note is to prove that the answer is positive in the
case of the volume functional (i.e. in the case of degree q = 0), at least when
X is projective algebraic.

Theorem 1.3. — Let L be a holomorphic line bundle on a projective
algebraic manifold. then

Vol(X,L) = inf
u∈c1(L)

∫

X(u,0)

un.

The proof relies mainly on five ingredients: (a) approximate Zariski de-
composition for a Kähler current T ∈ c1(L) (when L is big), i.e. a decompo-

– 125 –



Jean-Pierre Demailly

sition µ∗T = [E] + β where µ : X̃ → X is a modification, E an exceptional
divisor and β a Kähler metric on X̃ ; (b) the characterization of the pseu-
doeffective cone ([BDPP04]), and the orthogonality estimate

E · βn−1 � C
(
Vol(X,L)− βn

)1/2

proved as an intermediate step of that characterization; (c) properties of
solutions of Laplace equations to get smooth approximations of [E] ; (d) log
concavity of the Monge-Ampère operator ; and finally (e) birational invari-
ance of the Morse infimums. In the case of higher cohomology groups, we
have been able to treat only the case of projective surfaces.

Theorem 1.4. — Let L→ X be a holomorphic line bundle on a com-
plex projective surface. Then both weak and strong inequalities (1.3) (i) and
(1.3) (ii) are equalities for q = 0, 1, 2, and the lim sup’s involved in ĥq(X,L)
and ĥ�q(X,L) are limits.

Thanks to Serre duality and the Riemann-Roch formula, the (in)equality
for a given q is equivalent to the (in)equality for n−q. Therefore, on surfaces,
the only substantial case which remains to be proved is the case q = 1 ;
our statements are of course trivial on curves since the curvature of any
holomorphic line bundle can be taken to be constant with respect to any
given hermitian metric.

(1.5) Remark. — It is interesting to put these results in perspec-
tive with the algebraic version of holomorphic Morse inequalities proved
in [Dem94] (see also [Siu93] and [Tra95] for related ideas, and [Ang94] for
an algebraic proof). When X is projective, the algebraic Morse inequalities
used in combination with the birational invariance of the Morse integrals
(cf. section 2) imply the inequalities

(i) inf
u∈c1(L)

∫

X(u,q)

(−1)qun � inf
µ∗(L)�O(A−B)

(
n

q

)
An−qBq ,

(ii) inf
u∈c1(L)

∫

X(u,�q)
(−1)qun � inf

µ∗(L)�O(A−B)

∑

0�j�q
(−1)q−j

(
n

j

)
An−jBj ,

where the infimums on the right hand side are taken over all modifications
µ : X̃ → X and all decompositions µ∗L = O(A−B) of µ∗L as a difference of
two nef Q-divisors A, B on X̃. In case A and B are ample, the proof simply
consists of taking positive curvature forms ΘO(A),hA , ΘO(B),hB on O(A) and
O(B), and evaluating the Morse integrals with u = ΘO(A),hA − ΘO(B),hB ;
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the general case follows by approximating the nef divisors A and B by ample
divisors A+εH and B+εH with H ample and ε > 0, see [Dem94]. Again, a
natural question is to know whether these infimums derived from algebraic
intersection numbers are equal to the asymptotic cohomology functionals
ĥq(X,L) and ĥ�q(X,L). A positive answer would of course automatically
yield a positive answer to the equality cases in 1.3 (i) and 1.3 (ii). However,
the Zariski decompositions involved in our proofs of the “analytic equality
case” produces certain effective exceptional divisors which are not nef. It
is unclear how to write those effective divisors as a difference of nef divi-
sors. This fact raises a lot of doubts upon the sufficiency of taking merely
differences of nef divisors in the infimums 1.6 (i) and 1.6 (ii).

I warmly thank Burt Totaro for stimulating discussions in connection
with his recent work [Tot10].

2. Invariance by modification

It is easy to check that the asymptotic cohomology function is invariant
by modification, namely that for every modification µ : X̃ → X and every
line bundle L we have

ĥq(X,L) = ĥq(X̃, µ∗L). (2.1)

In fact the Leray’s spectral sequence provides an E2 term

Ep,q
2 = Hp(X,Rqµ∗OX̃(µ∗L⊗k)) = Hp(X,OX(L⊗k)⊗Rqµ∗OX̃).

SinceRqµ∗OX̃ is equal toOX for q = 0 and is supported on a proper analytic

subset of X for q � 1, one infers that hp(X,OX(L⊗k⊗Rqµ∗OX̃) = O(kn−1)
for all q � 1. The spectral sequence implies that

hq(X,L⊗k)− ĥq(X̃, µ∗L⊗k) = O(kn−1).

We claim that the Morse integral infimums are also invariant by modifica-
tion.

Proposition 2.1. — Let (X,ω) be a compact Kähler manifold, α ∈
H1,1(X,R) a real cohomology class and µ : X̃ → X a modification. Then

(i) inf
u∈α

∫

X(u,q)

(−1)qun = inf
v∈µ∗α

∫

X(v,q)

(−1)qvn,

(ii) inf
u∈α

∫

X(u,�q)
(−1)qun = inf

v∈µ∗α

∫

X(v,�q)
(−1)qvn.
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Proof. — Given u ∈ α on X, we obtain Morse integrals with the same
values by taking v = µ∗u on X̃, hence the infimum (resp. supremum) on X̃
is smaller (resp. larger) than what is on X, or it is equal. Conversely, we
have to show that given a smooth representative v ∈ µ∗α on X̃, one can find
a smooth representative u ∈ X such that the Morse integrals do not differ
much. We can always assume that X̃ itself is Kähler, since by Hironaka
[Hir64] any modification X̃ is dominated by a composition of blow-ups of
X. Let us fix some u0 ∈ α and write

v = µ∗u0 + ddcϕ

where ϕ is a smooth function on X̃. We adjust ϕ by a constant in such
a way that ϕ � 1 on X̃. There exists an analytic set S ⊂ X such that
µ : X̃ � µ−1(S) → X � S is a biholomorphism, and a quasi-psh function
ψS which is smooth on X � S and has −∞ logarithmic poles on S (see e.g.
[Dem82]). We define

ũ = µ∗u0+ddc maxε0(ϕ+δ ψS ◦µ , 0) = v+ddc maxε0(δ ψS ◦µ , −ϕ) (2.3)

where maxε0 , 0 < ε0 < 1, is a regularized max function and δ > 0 is
very small. By construction ũ coincides with µ∗u0 in a neighborhood of
µ−1(S) and therefore ũ descends to a smooth closed (1, 1)-form u onX which
coincides with u0 near S, so that ũ = µ∗u. Clearly ũ converges uniformly
to v on every compact subset of X̃ � µ−1(S) as δ → 0, so we only have to
show that the Morse integrals are small (uniformly in δ) when restricted to
a suitable small neighborhood of the exceptional set E = µ−1(S). Take a

sufficiently large Kähler metric ω̃ on X̃ such that

−1

2
ω̃ � v � 1

2
ω̃, −1

2
ω̃ � ddcϕ � 1

2
ω̃, −ω̃ � ddcψS ◦ µ.

Then ũ � −ω̃ and ũ � ω̃+ δ ddcψS ◦ µ everywhere on X̃. As a consequence

|ũn|�
(
ω̃+δ(ω̃+ddcψS◦µ)

)n� ω̃n+nδ(ω̃+ddcψS◦µ)∧
(
ω̃+δ(ω̃+ddcψS◦µ)

)n−1

thanks to the inequality (a+b)n � an+nb(a+b)n−1. For any neighborhood
V of µ−1(S) this implies

∫

V

|ũn| �
∫

V

ω̃n + nδ(1 + δ)n−1

∫

X̃

ω̃n

by Stokes formula. We thus see that the integrals are small if V and δ
are small. The reader may be concerned that Monge-Ampère integrals were
used with an unbounded potential ψS , but in fact, for any given δ, all
the above formulas and estimates are still valid when we replace ψS by
maxε0(ψS ,−(M + 2)/δ) with M = max

X̃
ϕ, especially formula (2.3) shows

that the form ũ is unchanged. Therefore our calculations can be handled by
using merely smooth potentials.
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3. Proof of the infimum formula for the volume

We have to show here that

inf
u∈c1(L)

∫

X(u,0)

un � Vol(X,L) (3.1)

Let us first assume that L is a big line bundle, i.e. that Vol(X,L) > 0.
Then it is known by [Bou02] that Vol(X,L) is obtained as the supremum of∫
X�sing(T )

Tn for Kähler currents T = − i
2π∂∂h with analytic singularities

in c1(L); this means that locally h = e−ϕ where ϕ is a strictly plurisubhar-
monic function which has the same singularities as c log

∑ |gj |2 where c > 0
and the gj are holomorphic functions. By [Dem92], there exists a blow-up

µ : X̃ → X such that µ∗T = [E] + β where E is a normal crossing divisor

on X̃ and β � 0 smooth. Moreover, by [BDPP04] we have the orthogonality
estimate

[E] · βn−1 =

∫

E

βn−1 � C
(
Vol(X,L)− βn

)1/2
, (3.2)

while

βn =

∫

X̃

βn =

∫

X�sing(T )

Tn approaches Vol(X,L). (3.3)

In other words, E and β become “more and more orthogonal” as βn ap-
proaches the volume (approximate Zariski decomposition, cf. [Fuj94]). By
subtracting to β a small linear combination of the exceptional divisors and
increasing accordingly the coefficients of E, we can even achieve that the
cohomology class {β} contains a positive definite form β′ on X̃ (i.e. is the
fundamental form of a Kähler metric); we refer e.g. to ([DP04], proof of
Lemma 3.5) for details. This means that we can replace T by a cohomolo-
gous current such that the corresponding form β is actually a Kähler metric,
and we will assume for simplicity of notation that this situation occurs right
away for T . Under this assumption, there exists a smooth closed (1, 1)-form
v belonging to the Bott-Chern cohomology class as [E], such that we have
identically (v − δβ) ∧ βn−1 = 0 where

δ =
[E] · βn−1

βn
� C ′(Vol(X,L)− βn

)1/2
(3.4)

for some constant C ′ > 0. In fact, given an arbitrary smooth representative
v0 ∈ {[E]}, the existence of v = v0 + i∂∂ψ amounts to solving a Laplace
equation ∆ψ = f with respect to the Kähler metric β, and the choice of δ
ensures that we have

∫
X
f βn = 0 and hence that the equation is solvable.

Then ũ := v + β is a smooth closed (1, 1)-form in the cohomology class
µ∗c1(L), and its eigenvalues with respect to β are of the form 1 + λj where
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λj are the eigenvalues of v. The Laplace equation is equivalent to the identity∑
λj = nδ. Therefore

∑

1�j�n
λj � C ′′(Vol(X,L)− βn

)1/2
. (3.5)

The inequality between arithmetic means and geometry means implies

∏

1�j�n
(1 + λj) �

(
1 +

1

n

∑

1�j�n
λj

)n
� 1 + C3(Vol(X,L)− βn

)1/2

whenever all factors (1 + λj) are nonnegative. By 2.2 (i) we get

infu∈c1(L)

∫
X(u,0)

un �
∫

X̃(ũ,0)

ũn

�
∫

X̃

βn
(
1 + C3(Vol(X,L)− βn

)1/2)

� Vol(X,L) + C4(Vol(X,L)− βn
)1/2

.

As βn approches Vol(X,L), this implies inequality (3.1).

We still have to treat the case when L is not big, i.e. Vol(X,L) = 0. Let
A be an ample line bundle and let t0 � 0 be the infimum of real numbers
such that L+ tA is a big Q-line bundle for t rational, t > t0. The continuity
of the volume function implies that 0 < Vol(X,L + tA) � ε for t > t0
sufficiently close to t0. By what we have just proved, there exists a smooth
form ut ∈ c1(L + tA) such that

∫
X(ut,0)

unt � 2ε. Take a Kähler metric

ω ∈ c1(A) and define u = ut − tω. Then clearly
∫

X(u,0)

un �
∫

X(ut,0)

unt � 2ε,

hence

inf
u∈c1(L)

∫

X(u,0)

un = 0.

Inequality (3.1) is now proved in all cases.

4. Estimate of the first cohomology group on a projective surface

We start with a projective non singular variety X of arbitrary dimension
n, and will later restrict ourselves to the case when X is a surface. The
proof again consists of using (approximate) Zariski decomposition, but now
we try to compute more explicitly the resulting curvature forms and Morse
integrals; this will turn out to be much easier on surfaces.
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Assume first that L is a big line bundle on X. As in section 3, we can
find an approximate Zariski decomposition, i.e. a blow-up µ : X̃ → X and
a current T ∈ c1(L) such µ∗T = [E] + β, where E an effective divisor and

β a Kähler metric on X̃ such that

Vol(X,L)− η < βn < Vol(X,L), η � 1. (4.1)

(On a projective surface, one can even get exact Zariski decomposition, but
we want to remain general as long as possible). By blowing-up further, we
may even assume that E is a normal crossing divisor. We select a hermitian
metric h on O(E) and take

uε =
i

2π
∂∂ log(|σE |2h + ε2) + ΘO(E),h + β ∈ µ∗c1(L) (4.2)

where σE ∈ H0(X̃,O(E)) is the canonical section and ΘO(E),h the Chern
curvature form. Clearly, by the Lelong-Poincaré equation, uε converges to
[E] + β in the weak topology as ε→ 0. Straightforward calculations yield

uε =
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h + β.

The first term converges to [E] in the weak topology, while the second, which
is close to ΘE,h near E, converges pointwise everywhere to 0 on X̃ � E. A
simple asymptotic analysis shows that

( i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h

)p
→ [E] ∧Θp−1

E,h

in the weak topology for p � 1, hence

lim
ε→0

unε = βn +

n∑

p=1

(
n

p

)
[E] ∧Θp−1

E,h ∧ βn−p. (4.3)

In arbitrary dimension, the signature of uε is hard to evaluate, and it is also
non trivial to decide the sign of the limiting measure limunε . However, when
n = 2, we get the simpler formula

lim
ε→0

u2
ε = β2 + 2[E] ∧ β + [E] ∧ΘE,h.

In this case, E can be assumed to be an exceptional divisor (otherwise
some part of it would be nef and could be removed from the poles of T ).
Hence the matrix (Ej · Ek) is negative definite and we can find a smooth
hermitian metric h on O(E) such that (ΘE,h)|E < 0, i.e. ΘE,h has one
negative eigenvalue everywhere along E.
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Lemma 4.1. — One can adjust the metric h of O(E) in such a way
that ΘE,h is negative definite on a neighborhood of the support |E| of the
exceptional divisor, and ΘE,h+β has signature (1, 1) there. (We do not care
about the signature far away from |E|).

Proof. — At a given point x0 ∈ X, let us fix coordinates and a positive
quadratic form q on C2. If we put ψε(z) = εχ(z) log(1 + ε−1q(z)) with a
suitable cut-off function χ, then the Hessian form of ψε is equal to q at x0 and
decays rapidly to O(ε log ε)|dz|2 away from x0. In this way, after multiplying
h with e±ψε(z), we can replace the curvature ΘE,h(x0) with ΘE,h(x0) ±
q without substantially modifying the form away from x0. This allows to
adjust ΘE,h to be equal to (say) − 1

4β(x0) at any singular point x0 ∈ Ej∩Ek
in the support of |E|, while keeping ΘE,h negative definite along E. In
order to adjust the curvature at smooth points x ∈ |E|, we replace the
metric h with h′(z) = h(z) exp(−c(z)|σE(z)|2). Then the curvature form
ΘE,h is replaced by ΘE,h′(x) = ΘEh(x)+ c(x)|dσE |2 at x ∈ |E| (notice that
dσE(x) = 0 if x ∈ sing |E|), and we can always select a real function c so
that ΘE,h′ is negative definite with one negative eigenvalue between −1/2
and 0 at any point of |E|. Then ΘE,h′+β has signature (1, 1) near |E|.

With this choice of the metric, we see that for ε > 0 small, the sum

ε2

ε2 + |σE |2
ΘE,h + β

is of signature (2, 0) or (1, 1) (or degenerate of signature (1, 0)), the non posi-
tive definite points being concentrated in a neighborhood of E. In particular
the index set X(uε, 2) is empty, and also

uε �
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+ β

on a neighborhood V of |E|, while uε converges uniformly to β on X̃ � V .
This implies that

β2 � lim inf
ε→0

∫

X(uε,0)

u2
ε � lim sup

ε→0

∫

X(uε,0)

u2
ε � β2 + 2β · E.

Since
∫
X̃
u2
ε = L2 = β2 + 2β · E + E2 we conclude by taking the difference

that

−E2 − 2β · E � lim inf
ε→0

∫

X(uε,1)

−u2
ε � lim sup

ε→0

∫

X(uε,1)

−u2
ε � −E2.

Let us recall that β · E � C(Vol(X,L)− β2)1/2 = 0(η1/2) is small by (4.1)
and the orthogonality estimate. The asymptotic cohomology is given here
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by ĥ2(X,L) = 0 since h2(X,L⊗k) = H0(X,KX ⊗ L⊗−k) = 0 for k � k0,
and we have by Riemann-Roch

ĥ1(X,L) = ĥ0(X,L)− L2 = Vol(X,L)− L2 = −E2 − β · E +O(η).

Here we use the fact that n!
knh

0(X,L⊗k) converges to the volume when L
is big. All this shows that equality occurs in the Morse inequalities (1.3)
when we pass to the infimum. By taking limits in the Neron-Severi space
NSR(X) ⊂ H1,1(X,R), we further see that equality occurs as soon as L
is pseudo-effective, and the same is true if −L is pseudo-effective by Serre
duality.

It remains to treat the case when neither L nor −L are pseudo-effective.
Then ĥ0(X,L) = ĥ2(X,L) = 0, and asymptotic cohomology appears only in

degree 1, with ĥ1(X,L) = −L2 by Riemann-Roch. Fix an ample line bundle
A and let t0 > 0 be the infimum of real numbers such that L+ tA is big for
t rational, t > t0, resp. let t′0 > 0 be the infimum of real numbers t′ such
that −L+ t′A is big for t′ > t′0. Then for t > t0 and t′ > t′0, we can find a

modification µ : X̃ → X and currents T ∈ c1(L + tA), T ′ ∈ c1(−L + t′A)
such that

µ∗T = [E] + β, µ∗T ′ = [F ] + γ

where β, γ are Kähler forms and E, F normal crossing divisors. By taking
a suitable linear combination t′(L+ tA)− t(−L+ t′A) the ample divisor A
disappears, and we get

1

t+ t′

(
t′[E] + t′β − t[F ]− tγ

)
∈ µ∗c1(L).

After replacing E, F , β, γ by suitable multiples, we obtain an equality

[E]− [F ] + β − γ ∈ µ∗c1(L).

We may further assume by subtracting that the divisors E, F have no
common components. The construction shows that β2 � Vol(X,L+tA) can
be taken arbitrarily small (as well of course as γ2), and the orthogonality
estimate implies that we can assume β ·E and γ ·F to be arbitrarily small.
Let us introduce metrics hE on O(E) and hF on O(F ) as in Lemma 4.4,
and consider the forms

uε = +
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
+

ε2

ε2 + |σE |2
ΘE,hE + β

− i

2π

ε2D1,0
hF
σF ∧D1,0

hF
σF

(ε2 + |σF |2)2
− ε2

ε2 + |σF |2
ΘF,hF − γ ∈ µ∗c1(L).
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Observe that uε converges uniformly to β−γ outside of every neighborhood
of |E| ∪ |F |. Assume that ΘE,hE < 0 on VE = {|σE | < ε0} and ΘF,hF < 0
on VF = {|σF | < ε0}. On VE ∪ VF we have

uε �
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
− ε2

ε2 + |σF |2
ΘF,hF + β +

ε2

ε20
Θ+
E,hE

where Θ+
E,hE

is the positive part of ΘE,hE with respect to β. One sees im-
mediately that this term is negligible. The first term is the only one which
is not uniformly bounded, and actually it converges weakly to the current
[E]. By squaring, we find

lim sup
ε→0

∫

X(uε,0)

u2
ε �

∫

X(β−γ,0)
(β − γ)2 + 2β · E.

Notice that the term − ε2

ε2+|σF |2 ΘF,hF does not contribute to the limit as it
converges boundedly almost everywhere to 0, the exceptions being points
of |F |, but this set is of measure zero with respect to the current [E]. Clearly
we have

∫
X(β−γ,0)(β − γ)2 � β2 and therefore

lim sup
ε→0

∫

X(uε,0)

u2
ε � β2 + 2β · E.

Similarly, by looking at −uε, we find

lim sup
ε→0

∫

X(uε,2)

u2
ε � γ2 + 2γ · F.

These lim sup’s are small and we conclude that the essential part of the
mass is concentrated on the 1-index set, as desired.
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