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Sets in CN with vanishing global extremal function
and polynomial approximation

Józef Siciak(1)

ABSTRACT. — Let Γ be a non-pluripolar set in CN . Let f be a function
holomorphic in a connected open neighborhood G of Γ. Let {Pn} be a
sequence of polynomials with degPn � dn (dn < dn+1) such that

lim sup
n→∞

|f(z)− Pn(z)|1/dn < 1, z ∈ Γ.

We show that if

lim sup
n→∞

|Pn(z)|1/dn � 1, z ∈ E,

where E is a set in CN such that the global extremal function VE ≡ 0 in
CN , then the maximal domain of existence Gf of f is one-sheeted, and

lim sup
n→∞

‖f − Pn‖
1
dn
K < 1

for every compact set K ⊂ Gf . If, moreover, the sequence {dn+1/dn} is
bounded then Gf = CN .
If E is a closed set in CN then VE ≡ 0 if and only if each series of ho-
mogeneous polynomials

∑∞
j=0

Qj , for which some subsequence {snk} of

partial sums converges point-wise on E, possesses Ostrowski gaps relative
to a subsequence {nkl} of {nk}.
In one-dimensional setting these results are due to J. Müller and A.
Yavrian [5].

RÉSUMÉ. — Soit Γ un sous-ensemble non pluripolaire de CN . Soit f une
fonction holomorphe sur un voisinage ouvert connexe G de Γ. Soit {Pn}
une suite de polynômes de degré degPn � dn (dn < dn+1) telle que

lim sup
n→∞

|f(z)− Pn(z)|1/dn < 1, z ∈ Γ.

(1) Institute of Mathematics, Jagiellonian University, <Lojasiewicza 6, 30-348 Kraków,
Poland
Jozef.Siciakm.uj.edu.pl
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Sets in CN with vanishing global extremal function

On démontre que si

lim sup
n→∞

|Pn(z)|1/dn � 1, z ∈ E,

où E is est un sous-ensemble de CN tel que la fonction extrémale globale
VE ≡ 0 sur CN , alors le domaine maximal d’existence Gf de f est
uniforme, et

lim sup
n→∞

‖f − Pn‖
1
dn
K < 1

pour tout compact K ⊂ Gf . Si, de plus, la suite {dn+1/dn} est bornée
alors Gf = CN .
Si E est un sous-ensemble fermé de CN alors VE ≡ 0 si et seulement
si chaque série de polynômes homogènes

∑∞
j=0

Qj , ayant une sous-suite

{snk} de sommes partielles convergeant ponctuellement sur E, admet des
lacunes de type Ostrowski relativement à une sous-suite {nkl} de {nk}.
En dimension 1, ces résultats sont dûs à J. Müller and A. Yavrian [5].

1. Introduction

Given an open set Ω in CN , let PSH(Ω) denote the set of all plurisub-
harmonic (PSH) functions in Ω. Let L be the class of PSH functions in
CN with minimal growth, i.e. u ∈ L if and only if u ∈ PSH(CN ) and
u(z)− log(1 + ‖z‖) � β on CN , where β is a real constant depending on u.

If E is a subset of CN , the global extremal function VE associated with
E is defined as follows.

If E is bounded, we put

VE(z) := sup{u(z); u ∈ L, u � 0 on E}, z ∈ CN .

If E is unbounded, we put (see [7])

VE(z) := inf{VF (z); F ⊂ E, F is bounded}, z ∈ CN.

It is known (see e.g. [6, 7]) that V ∗E (the upper semicontinuous regular-
ization) is a member of L iff E is non-pluripolar (non-plp). V ∗E ≡ +∞ iff
E is pluripolar (plp).

If N = 1 and E is a compact non-polar subset of C, then V ∗E(z) ≡
gE(z,∞) for z ∈ D∞, where D∞ is the unbounded component of C\E, and
gE is the Green function of D∞ with the logarithmic pole at infinity.

If N � 2 and E is non-pluripolar, the function V ∗E is called pluricomplex
Green function (with pole at infinity).
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By [5] a closed subset E of C is non-thin at ∞ if and only if V ∗E ≡ 0.
One can check that for all E ⊂ CN , N � 1, we have V ∗E ≡ 0 if and only if
VE ≡ 0. Therefore, one can agree with the author of [9] that it is reasonable
to say that a set E ⊂ CN is non-thin at infinity (resp., thin at infinity),
if VE ≡ 0 (resp., VE �≡ 0). In particular, if V ∗E ≡ ∞ the set E is thin at
infinity.

In chapter 2 of this paper we discuss properties of sets E in CN with
VE ≡ 0. Similarly, as in [5] and [9] , very important role in our applications
is played by the necessary and sufficient conditions stated in section 2.18
(which are a slightly modified version of the conditions of Tuyen Trung
Truong’s Theorem 2 in [9]).

In chapters 3 and 4 we prove an N -dimensional version of the classical
Ostrowski Gap Theorems for power series of a complex variable.

In chapters 5 an 6 we show that properties of sets E ⊂ CN with VE ≡ 0
(N � 1) may be applied to obtain results in N-dimensional setting analo-
gous to those obtained earlier by J. Müller and A. Yavrian [5] in the one-
dimensional case.

2. Sets in CN with VE ≡ 0

Now we shall state several properties of the global extremal function.
Most of the properties are known and follow either from the elementary
theory of the Lelong class L and from the definition of the extremal function,
or from the Bedford-Taylor theorem on negligible sets in CN .

In the sequel F,E,En (resp., K,Kn) are arbitrary (resp., compact) sub-
sets of CN .

2.1. Monotonicity property of the extremal function. VF � VE ,
if E ⊂ F .

2.2. VE = limR→∞ VER , where ER := E ∩ B(0, R), and B(0, R) :=
{z ∈ CN ; ‖z‖ < R} (resp., B(0, R) := {‖z‖ � R}).

2.3. V ∗E(z) = limR→∞ V ∗ER(z) = sup{u(z); u ∈ L, u � 0 q.a.e. on E},
where “q.a.e. on E” means that the corresponding property holds quasi-
almost everywhere on E, i.e. on E \A, where A is a pluripolar set.

Hence, if E is non-pluripolar then the pluricomplex Green function V ∗E is
the unique maximal element of the setW∗(E) := {u ∈ L, u � 0 q.a.e. on E}
ordered by the condition: if u1, u2 ∈ W∗(E) then u1 � u2 if u1(z) � u2(z)
for all z ∈ CN .
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2.4. VKn ↑ VK , if Kn+1 ⊂ Kn, K = ∩Kn.

2.5. V ∗En ↓ V ∗E , if En ⊂ En+1, E = ∪En.

2.6. (limVEn)∗ = (limV ∗En)∗ = V ∗E , if En+1 ⊂ En, E = ∩En.

2.7. If E, A are subsets of CN and A is pluripolar then V ∗E∪A ≡ V ∗E ≡
V ∗E\A.

2.8. Product property of the extremal function [1]. If E ⊂ CM ,
F ⊂ CN then

V ∗E×F (z, w) = max{V ∗E(z) , V ∗F (w)}, (z, w) ∈ CM × CN .

Hence, a product E × F is non-thin at infinity if and only if the both
factors are non-thin at infinity (a different proof of this property was given
in [9]) .

In the sequel we shall omit ”at infinity” while speaking about non-thin
(resp., thin) sets at infinity.

2.9. A set E in CN is non-thin if and only if the set E \B (resp., E∪B)
is non-thin for every bounded set B.

Without loss of generality we may assume that B is a ball B(0, R). If
E \B is non-thin then E is non-thin by the monotonicity property.

Now assume that E is non-thin. Then E \ B is non-pluripolar because

otherwise we would have log+ ‖z‖
R ≡ V ∗B(z) ≡ V ∗B∪(E\B)(z) ≡ V ∗E(z) ≡ 0.

A contradiction. Therefore V ∗E\B ∈ L. Put M = max‖z‖=R V
∗
E\B(z). Then

u := V ∗E\B −M ∈ L and u � 0 q.a.e. on E. Hence u � V ∗E ≡ 0 in CN

which implies that E \B is non-thin.

It is obvious that E ∪ B is non-thin if E is non-thin. In order to show
the inverse implication, it sufficient to observe that E \B = (E ∪B) \B.

2.10. If E is non-pluripolar then the limit

σ := lim
R↑∞

max
‖z‖=R

V ∗E(z)/ logR

exists and σ either equals 0 (if and only if E is non-thin), or σ = 1 (if and
only if E is thin).

The function V ∗E is a member of the class L. Therefore the limit exists
and 0 � σ � 1. One can check that σ = 0 if and only if E is non-thin.
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We should show that the case 0 < σ < 1 is excluded. Indeed, the function
u := 1

σV
∗
E is a member of L, and u � 0 q.a.e. on E. Hence, 1

σV
∗
E � V ∗E on

CN . It follows that σ � 1. Consequently, σ = 1.

2.11. Robin function, Robin constant and logarithmic capacity.
If E is non-pluripolar then there exists a uniquely determined homoge-
neous PSH function ṼE(λ, z) of 1 +N variables (λ, z) ∈ C× CN such that
ṼE(1, z) = V ∗E(z) on CN . One may check that Ṽ (λ, z) = log |λ|+ V ∗E(z/λ)
if λ �= 0, and ṼE(0, z) = lim sup(λ,ζ)→(0,z)(log |λ|+ VE(ζ/λ)).

The homogeneous PSH function ṼE(0 , z) is called Robin function of E,
and the set function γ(E) := max‖z‖=1 ṼE(0, z) - Robin constant of E. The
set function c(E) := e−γ is called logarithmic capacity of E. It is clear that
the Robin constant and the logarithmic capacity of E depend on the choice
of the norm ‖ · ‖ in CN .

2.12. A necessary condition for non-thinness. If E is non-thin then
c(E) = ∞.

Indeed, if VE ≡ 0 then ṼE(λ , z) ≡ log |λ|. Hence, ṼE(0, z) ≡ −∞
which implies that γ(E) = −∞, i.e. c(E) = +∞.

It is known that the condition 2.12 is not sufficient for closed subsets of
the complex plane (and, consequently, for subsets of CN with N � 2). We
shall give a simple example.

2.13. An example of a closed set E ⊂ C with VE �≡ 0 and c(E) =
∞.

Let {an}, {εn} be two sequences of real numbers such that:

an+1 > an > 0, εn > 0,

∞∑

1

εn = 1, lim
n→∞

n∑

1

εk log ak = +∞,

e.g. εn = 2−n, an = e2
n

.

Put

U(z) :=

∞∑

1

εn log
|z − an|
1 + an

, E := {z; U(z) � 0}.

It is clear that E is closed and unbounded. It remains to check that c(E) =
+∞ and VE(z) = U+(z), where U+(z) := max{0 , U(z)}. To this order we
put

Un(z) := (

n∑

1

εk)
−1

n∑

1

εk log
|z − ak|
1 + ak

, En := {z;Un(z) � 0}.
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One can easily check that En is compact and regular (En is a finite union
of non-trivial continua), En ⊂ En+1, VEn(z) ≡ U+

n (z) ↓ U+(z) ≡ VE(z),

ṼEn(λ, z) = (
∑n

1 εk)
−1

∑n
1 εk log |z−λak|1+ak

if |z/λ| � R = R(n) = const > 0,

ṼEn(0 , z) ≡ log ‖z‖+ γ(En) for all z ∈ C, and hence log c(En) = −γ(En) =
(
∑n

1 εk)
−1

∑n
1 εk log(1 + ak) for all n � 1, which gives the required result.

Taking E×F with E in C as just above , and with a non-thin subset F
of CN−1 (N � 2), one gets a thin subset of CN with c(E × F ) = ∞.

2.14. A sufficient condition for non-thinness. Using an inequality
due to B. A. Taylor [8] one can show (see [9] for details) that a sufficient
condition for E to be non-thin is

lim sup
R↑∞

log c(ER)

logR
> 1− 1

CN
,

where CN is a constant depending only on the dimension N with CN > 1
for N � 2, and C1 = 1.

2.15. Example. Let {an} be a sequence of distinct points in CN with
an �= 0 (n � 1). Let εn be a sequence of positive real numbers such that∑∞

1 εn = 1. Let u be the function defined by

u(z) =

∞∑

1

εn log
‖z − an‖
1 + ‖an‖

, z ∈ CN .

Then u is a non-constant (u(0) � − log 2, u(an) = −∞ for every n �
1) member of the class L such that E := {z ;u(z) < 0} is an open set
containing the unit ball and all points an. It is clear that E is thin. Moreover,
if the sequence {an} is dense in CN then E is a thin unbounded open set
dense everywhere.

2.16. Example. Every non-pluripolar real cone E in CN (without loss
of generality, we assume that E has its vertex at the origin, so that tz ∈ E,
if t ∈ R, t � 0, z ∈ E) is non-thin. Indeed, one can check that the sets
ER := E ∩ {‖z‖ � R} are non-pluripolar, and ER = RE1 for all R � 1.
Observe that VE(z) � VER(z) ≡ VE1

( 1
Rz) for all z in CN and for R � 1.

It follows that VE(z) � VE1
(0) for all z which gives the required result.

2.17. Example. It follows from Wiener Criterion [3] that if E is a
countable union of closed (or open) discs {z ∈ C; |z − an| � r}, where
r = const > 0, an ∈ C and an → ∞ as n → ∞, then E is non-thin at
infinity.

We shall show that analogous property is no more true in CN with N �
2. Put E := ∪∞1 Bn where Bn := {(z1 , z2); |z1−an|2 + |z2|2 � 1}, an ∈ C
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and an →∞ as n→∞. It is sufficient to prove that VE(z1 , z2) = log+ |z2|
for all (z1 , z2). It is clear that log+|z2| � VE(z1, z2) on E and hence in the
whole space C2. Now let u be a function of the class L with u � 0 on E. We
want to show that u(z1, z2) � log+|z2| in C2. Without loss of generality we
may assume (by taking max[u , 0]) that u = 0 on E. Fix z◦2 with |z◦2 | � 1.
Then u(z1, z

◦
2) = 0 for all z1 in the union of the discs {|z1 − an| � 1}.

Therefore u(z1, z2) = 0 for all (z1, z2) with z1 ∈ C and |z2| � 1. Hence
u(z1, z2) � log+ |z2| in C2.

2.18. Necessary and sufficient conditions for non-thinness. For
a non-pluripolar set E ⊂ CN the following conditions are equivalent.

(1) If u ∈ L, u � 0 q.a.e. on E then u = const � 0;

(2) VE ≡ 0;

(3) V ∗E ≡ 0;

(4) If uk ∈ L (k � 1) and u(z) := lim supk→∞ uk(z) � 0 q.a.e. on E
then u∗ = const � 0;

(5) If {pk} is a sequence of polynomials of N complex variables and {nk}
is a sequence of natural numbers such that deg pk � nk and
v := lim supk→∞

1
nk

log |pk| � 0 q.a.e. on E then v∗ = const � 0.

Proof. — The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are easy to
check. In order to show the implication (5) ⇒ (1) fix u ∈ L with u � 0
q.a.e. on E. Assuming (5) holds, we need to show that u = const � 0.

It is known [6, 7] that there exits a sequence of holomorphic polynomials
{pn} such that deg pn � n and u = v∗ where v := lim supn→∞

1
n log |pn|.

By theorem on negligible sets [4], we know that u = v∗ � 0 q.a.e. on E.
By (5) it follows that u = v∗ = const � 0. �

2.19. Remark. Consider the following property (1’) of E

(1’) If u ∈ L, u � 0 on E then u = const � 0.

It is obvious that if E has the property (1) then E satisfies (1’). The
inverse implication does not hold for N � 2 (we do not know if it is true for
arbitrary sets on the complex plane). Namely, by Example 1.1. of [2], the
set E := {(z1, z2) ∈ C2; (z1 ∈ C, |z2| � 1) or (z1 = 0, z2 ∈ C)} satisfies
(1’) but it does not satisfy (1), because V ∗E(z1, z2) ≡ log+ |z2|.
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3. Power series with Ostrowski gaps

Let

f(z) =

∞∑

0

Qj(z), where Qj(z) =
∑

|α|=j

aαz
α, (3.1)

be a power series in CN , i.e. a series of homogeneous polynomials Qj of N
complex variables of degree j.

The set D given by the formula D := {a ∈ CN ; the sequence (3.1) is
convergent in a neighborhood of a } is called a domain of convergence of
(3.1).

It is known that

D = {z ∈ CN ; ψ∗(z) < 0},

where

ψ(z) := lim sup
j→∞

j

√
|Qj(z)|.

If ψ∗ is finite then it is PSH and absolutely homogeneous (i.e. ψ∗(λz) =
|λ|ψ∗(z), λ ∈ C, z ∈ CN ). Therefore the domain of convergence D is either
empty, or it is a balanced (i.e. λz ∈ D for all λ ∈ C with |λ| � 1 and z ∈ D)
domain of holomorphy. Every balanced domain of holomorphy is a domain
of convergence of a series (3.1).

The number

ρ := 1/ lim sup
j→∞

j

√
‖Qj‖B,

where B := {z ∈ CN ; ‖z‖ � 1}, is called a radius of convergence of series
(3.1) (with respect to a given norm ‖ · ‖).

If N = 1 then D = ρB. If N � 2 then ρB ⊂ D but, in general, D �= ρB.

Series (3.1) is normally convergent in D, i.e.

lim sup
j→∞

j

√
‖Qj‖K < 1, lim sup

n→∞
n
√
‖f − sn‖K < 1,

for all compact sets K ⊂ D, where sn := Q0 + · · · +Qn is the nth partial
sum of (3.1).

For a strictly increasing sequence {nk} of positive integers we say that
a power series (3.1) possesses Ostrowski gaps relative to {nk} if there exists
a sequence of real numbers qk > 0 such that lim qk = 0 and
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lim
j→∞, j∈I

‖Qj‖1/j = 0 (3.2)

where B is the unit ball in CN , and I := ∪k[qknk , nk] ∩ N.

We say that a series (3.1) is overconvergent, if a subsequence {snk} of
its partial sums is uniformly convergent in a neighborhood of some point
a ∈ CN \ D.

Example. — Consider the function f(z) =
∑∞

0

(
z(z+1)

r

)2k
2

=
∑∞

0 r−2k
2

(z2k
2

+ · · · + z2k
2+1

) =
∑∞

0 cjz
j , where cj = 0 , when

2(k−1)2+1 + 1 � j � 2k
2+1 − 1, k � 1. The function f is given by a power

series with Ostrowski gaps relative to the sequence nk = 2k
2+1 − 1 (with

qk := (2(k−1)2+1+1)/(2k
2+1−1)). The sequence snk(z) =

∑2k
2+1−1

0 cjz
j =

∑2(k−1)2+1

0 cjz
j =

∑k−1
0

(
z(z+1)

r

)2j
2

is normally convergent to f(z) in the

lemniscate Er = {z; |z(z + 1)| < r}, r > 0.

The radius of convergence of our power series is given by the formula
ρ = dist(0 , ∂Er). If 0 < r � 1

4 then Er has two disjoint components. If
r > 1

4 the lemniscate Er is connected. Our power series is overconvergent at
every point of Er \{|z| � ρ}. If G is a a connected component of Er then the
function f |G is holomorphic in G and it has analytic continuation across no
boundary point of G.

4. Two Ostrowski Gap Theorems in CN

We say that a compact subset K of CN is polynomially convex if K is
identical with its polynomially convex hull K̂ : = {a ∈ CN ; |P (a)| � ‖P‖K
for every polynomial P of N complex variables }.

We say that an open set Ω in CN is polynomially convex, if for every
compact subset K of Ω the polynomially convex hull K̂ of K is contained
in Ω.

The aim of this section is to prove the two fundamental Ostrowski gap
theorems in N -dimensional setting, N � 1.

Let f be a function holomorphic in a neighborhood of the origin of CN

whose Taylor series development (3.1) possesses Ostrowski gaps relative to
a sequence {nk}.
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Let Ω be the set of points a in CN such that the sequence {snk} is
uniformly convergent in a neighborhood of a. By classical theory of envelops
of holomorphy, each connected component of Ω is a polynomially convex
domain. Let G be a connected component of Ω with 0 ∈ G.

Theorem 1. — G is the maximal domain of existence of f . Moreover,
G is polynomially convex and

lim sup
k→∞

‖f − snk‖
1/nk
K < 1

for every compact subset K of G.

Corollary 4.1. — The maximal domain of existence G of a function
f holomorphic in a neighborhood of the origin of CN with Taylor series
development possessing Ostrowski gaps relative to a sequence {nk} is a one-
sheeted polynomially convex domain of holomorphy.

Corollary 4.2. — If a function f holomorphic in a neighborhood of
0 ∈ CN has Taylor series development of the form

f(z) =

∞∑

0

Qmk
(z), where mk < mk+1 ,

mk+1

mk
→∞,

then the domain of convergence of the series is identical with the maximal
domain of existence of f .

We need the following lemma (known forN = 1, see e.g. [5], Lemma 3).

Lemma 4.3. — If a power series (3.1) with positive radius of conver-
gence possesses Ostrowski gaps relative to a sequence {nk} then for every
R > 0 we have

lim sup
k→∞

‖snk‖
1/nk
BR

� 1, (4.0)

where BR := B(0, R) is a ball with center 0 and radius R.

If series (3.1) possesses Ostrowski gaps relative to {nk}, then either
lim qknk = ∞, or N \ I is finite and consequently the function f is entire.
In the second case (4.0) is obvious. In the first case, we have

εk := max{‖Qj‖1/jB ; qknk � j � nk} → 0 as k →∞.
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Fix R > 0. Since the radius of convergence of the series (3.1) is positive,
there exists M > 1 such that RM > 1, and

‖Qj‖BR � (MR)j , j � 0,

because |Qj(z)| � ‖Qj‖B‖z‖j � (M‖z‖)j , j � 0, where M > 1 is suffi-

ciently large. Therefore ‖snk‖
1/nk
BR

�
∑
qknk�−1

j=0 (MR)j+
∑nk

j=
qknk�(εkR)j �
�qknk�(MR)qknk + (nk−�qknk�)(εkMR)qknk � nk(MR)qknk , where k � k0

and k0 is so large that εkMR � 1 for k � k0, and ‖Qj‖1/jB � εk for k � k0,
qknk � j � nk. Therefore

lim sup
k→∞

‖snk‖
1/nk
B(0,R) � lim sup

k→∞
n

1/nk
k (MR)qk = 1.

Proof of the Lemma is completed.

Proof of Theorem 1. — In the component G of Ω the function f is a
locally uniform limit of the sequence of polynomials {snk} of corresponding
degrees � nk.

The function

uk :=
1

nk
log |f − snk |

is PSH in G. By (4.0), the sequence {uk} is locally uniformly upper bounded
in G. Therefore, if u := lim supk→∞ uk, then u∗ ∈ PSH(G), u∗ � 0 in G
and u∗ < 0 in a neighborhood of 0. Hence, by the maximum principle for
PSH functions , we have u∗ < 0 in G. Hence, by Hartogs Lemma,

lim sup
k→∞

‖f − snk‖
1/nk
K < 1

for every compact subset K of G.

Suppose G is not a maximal domain of existence of f . Then, there exist
a point a ∈ G, a real number r > dist(a, ∂G) =: r0, and a function g
holomorphic in the ball B(a , r) such that g = f on B(a , r0). Basing on
the inequality (4.0), similarly as just above, we can show that

lim sup
k→∞

‖g − snk‖
1/nk
K < 1

for every compact subset K of B(a , r). It follows that snk → g locally
uniformly in B(a , r) as k → ∞. Therefore the sequence {snk} converges
uniformly in a neighborhood of some boundary point of G which contradicts
the definition of Ω. It follows that G is a polynomially convex maximal
domain of existence of f . The proof of Theorem 1 is completed.
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Theorem 2. — For every polynomially convex open set Ω ⊂ CN with
0 ∈ Ω there exists a function f holomorphic in Ω whose Taylor series de-
velopment around 0

f(z) =

∞∑

0

Qj(z), Qj(z) :=
∑

|α|=j

f (α)(0)

α!
zα, (4.1)

possesses Ostrowski gaps relative to a sequence {nk} such that:

(i) Every connected component D of Ω is the maximal domain of exis-
tence of f|D;

(ii) The subsequence {snk} of partial sums of (4.1) converges locally
uniformly to f in Ω; in particular, Taylor series (4.1) is overconvergent at
every point a of Ω \ D, where D is the domain of convergence of (4.1);

(iii) If G is the component of Ω with 0 ∈ G then

lim sup
k→∞

‖f − snk‖
1/nk
K < 1

for every compact subset K of G.

Proof. — Let {ξ(ν)} (ξ(j) �= ξ(k), j �= k) be a countable dense subset of
Ω. Put Bν := B(ξ(ν), rν) with rν := dist (ξ(ν) , ∂Ω). Let c(ν) be a point of
∂Ω ∩ ∂Bν , and let Eν = {a(µν)}µ�1 be a sequence of points of the ball Bν

such that a(µν) ∈ (ξ(ν) , c(ν)) := {ξν + t(c(ν) − ξ(ν)); 0 < t � 1} and

‖a(µν) − c(ν)‖ < 1

µν
, µ � 1.

Let {E∗ν} denote the sequence

E1;E1, E2;E1, E2, E3;E1, · · · , Eν ; · · · (4.2)

in which every set Eν is repeated infinitely many times.

Since Ω is polynomially convex there exists a sequence of polynomially
convex compact sets {∆k} such that ∆k is contained in the interior of ∆k+1

and Ω = ∪∞1 ∆k.

Taking, if necessary, a subsequence of {∆k}, we may assume that 0 ∈ ∆1

and
E∗k ∩ (∆k+1 \∆k) �= ∅, k � 1.

Let a(k) be an arbitrary fixed point of this intersection. Given k � 1, let
Wk be a polynomial such that dk := degWk � k, and

‖Wk‖∆k
< 1 < |Wk(a

(k))|. (4.3)
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Put f0(z) ≡ 0, µ0 = ν0 = 1, and

fk(z) =

(
ā
(k)
1 z1 + · · ·+ ā

(k)
N zN

‖a(k)‖2

)µk

(Wk(z))
νk , k � 1, (4.4)

where µk, νk are positive integers. We claim that integers can be chosen in
such a way that the following conditions are satisfied for all k � 1

(a) µk−1 + νk−1dk−1 < µk/k;

(b) ‖fk‖∆k
� 2−k;

(c) |fk(a(k))| � k + |∑k−1
j=0 fj(a

(k))|.

Indeed, put µ1 = 1 and choose ν1 � 1 so large that ‖f1‖∆1 � 1
2 . Then

the conditions are satisfied for k = 1. Suppose that µj , νj are already chosen
for j = 0, 1, · · · , k for a fixed k � 1. Observe that |fk(a(k))| = |Wk(a

(k)|νk
tends - by right hand side of (4.3) and (c) - to∞ as νk →∞ (here νk denotes
a positive integer valued variable). It is clear that one can find an integer
µk+1 such that (a) is satisfied with k replaced by k + 1. Now, applying left
hand side (respectively, right hand side) inequality of (4.3) one can find an
integer νk+1 so large that (b) (respectively,(c)) is satisfied for k replace by
k + 1. By the induction principle, the claim is true.

We shall prove that the function f , given by the formula

f(z) =

∞∑

j=0

fj(z), z ∈ Ω,

where fj are defined by (4.4), has the required properties.

It follows from (b) that the series is uniformly convergent on compact
subsets of Ω. Hence f ∈ O(Ω). Since for ν = 1, 2, ... the sequence {a(k)}
contains a subsequence of the sequence {a(µν)}µ�1, we have

lim sup
t↑1

|f(ξ(ν) + t(c(ν) − ξ(ν)))| = +∞.

It follows that every connected component D of Ω is a maximal domain of
existence of f|D.

The function fk is a polynomial given by

fk(z) =

µk+νkdk∑

j=µk

Qj(z),
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where Qj is a homogeneous polynomial of degree j. By the condition (a),
the Taylor series development of f around 0 is given by

f(z) =

∞∑

0

Qj(z), ‖z‖ < ρ, (4.5)

where ρ = dist(0 , ∂D) and Qj = 0 for µk−1 + νk−1dk−1 + 1 � j � µk − 1,
k � 1.

Put nk := µk − 1, and qk := µk−1+νk−1+1
µk−1 . Then qk > 0 and, by (a),

limk→∞qk = 0. It follows that the series (4.5) has Ostrowski gaps relative
to the sequence nk := µk − 1, k � 1. It is clear that

snk(z) =

nk∑

j=0

Qj(z) =

k∑

j=0

fj(z).

Therefore the subsequence {snk} of partial sums of the Taylor series (4.5)
converges locally uniformly to f in Ω. Moreover, by Theorem 1, we conclude
that {snk} satisfies condition (iii), which completes the proof of Theorem 2.

5. Sets E in CN with VE ≡ 0 and power series
with Ostrowski gaps

The following theorem is an N-dimensional version of Theorem 2 in [4].

Theorem 3. — Given a closed subset E of CN , the following two con-
ditions are equivalent:

(a) VE ≡ 0.

(b) If a subsequence {snk} of partial sums of a power series (3.1)
satisfies the inequality

lim sup
k→∞

|snk(z)|
1
nk � 1, for every z ∈ E, (5.1)

then series (3.1) possesses Ostrowski gaps relative to a subsequence {nk�}
of the sequence {nk}.

Proof of Theorem 3. — Our proof is an adaptation of the proof in one-
dimensional case presented in [5].

First we shall show that (a) ⇒ (b). To this order observe that – by (a)
– we have (5) of section 2.18 which implies – by Hartogs Lemma – that

lim sup
k→∞

‖snk‖
1
nk

B(0,R) � 1, for every R > 0. (5.2)
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Józef Siciak

The implication (a)⇒ (b) follows from

Lemma 5.1. — If {snk} satisfies (5.2) then the power series (3.1) pos-
sesses Ostrowski gaps relative to a subsequence {nkl} of {nk}.

Proof of Lemma 5.1. — By (5.2), for every l � 1, we can find kl ∈ N
such that kl < kl+1 and

‖snkl ‖B(0 , l) � (1 +
1

l
)nkl , l � 1.

Hence, by Cauchy inequalities, we get

‖Qj‖1/jB � 1

l
(1 +

1

l
)l·

nkl
lj � e

l
,

nkl
l
� j � nkl , l � 1,

which (with ql := 1
l ) completes the proof of Lemma 5.1.

(b) ⇒ (a). It is enough to prove that non(a) ⇒ non(b). Let E be a
thin closed set in CN . We shall construct a power series (3.1), for which
a subsequence {snk} satisfies (5.1), but which does not possess Ostrowski
gaps relative to any subsequence of {nk}.

Our construction is based on the following useful known result.

Lemma 5.2. — If K is a compact subset of CN then

VK(z) = sup{1
k

log |Pk(z)|; ‖Pk‖K = 1, k � 1}, z ∈ CN ,

where Pk is a polynomial of N complex variables of degree at most k.

Without loss of generality we may assume that B̄ ⊂ E (because, by
property 2.9 we know that E is thin if and only if E ∪ B̄ is thin).

Choose a point a ∈ CN such that R0 := ‖a‖ > 1 and VE(a) =: η > 0.
Put εk := η/k, Rk := R0 + k, and Ek = E ∩ {‖z‖ � Rk} for k � 0. Then
VEk(a) ↓ VE(a).

Let p0, q0 � 1 be arbitrary integers, and let Wq0 be a polynomial of
degree � q0 such that ‖Wq0‖E0 = 1, |Wq0(a)| > e(η−ε0)q0 , where 0 < ε0 < 1.

Suppose pj , qj , Wqj (j = 0, . . . , k) are already chosen in such a way
that Wqj is a polynomial of degree � qj and

pj−1 + qj−1 < pj < qj/j, (5.3)
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R
pj
j

(1 + εj)qj
� 1

j2
, (5.4)

‖Wqj‖Ej = 1, |Wqj (a)| > e(η−εj)qj . (5.5)

Now, it is easy to find integers pk+1, qk+1 and a polynomial Wqk+1
such

that (5.3), (5.4), (5.5) are satisfied for j = k + 1.

First choose an arbitrary integer pk+1 > pk + qk, next choose an arbi-
trary integer qk+1 > (k + 1)pk+1 and a polynomial Wqk+1

such that (5.4)
and (5.5) are satisfied with j = k + 1.

Consider the series

f(z) =

∞∑

k=0

(
ā1z1 + . . .+ āNzN

‖a‖2
)pk Wqk(z)

(1 + εk)qk
. (5.6)

From (5.5) it follows that series (5.6) converges uniformly on every
Ek, k � 0. In particular, its sum f is a holomorphic function in the unit ball.
The k-th component of (5.6) is of the form

∑pk+qk
j=pk

Qj , where Qj is a homo-

geneous polynomial of degree j. Hence f(z) =
∑∞

k=o

(∑pk+qk
j=pk

Qj(z)
)
, z ∈

B. After removing the parentheses we get a power series with positive radius
of convergence. Put nk = pk + qk. It is clear that for every k � 1

|snk(a)| �
|Wqk(a)|
(1 + εk)qk

− |snk−1
(a)| � eqk(η−εk)

(1 + εk)qk
−

k−1∑

0

expqjVEj (a) �

eqk(η−εk)

(1 + εk)qk
− kMqk−1 ,

whereM is a positive constant. Taking into account that εk → 0, (kMqk−1)1/qk

→ 1 and pk/qk → 0 as k →∞, we have

lim inf
k→∞

‖snk‖
1
nk

B(0 , R0)
� lim inf

k→∞
|snk(a)|

1
nk � eη > 1,

which by Lemma 4.3 gives the required result.

Remark. — The same idea of proof may be used to show that Theorem
3 remains true if E ⊂ CN is of type Fσ. The implication (a)⇒ (b) holds for
every set E with VE ≡ 0.
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6. Approximation by polynomials
with restricted growth near infinity

Let E be a subset of CN with VE ≡ 0. Let Γ be a non-pluripolar subset
of an open connected set G. Let f be a function holomorphic in G. The
following theorem is an N -dimensional counterpart of Theorem 1 in [5].

Theorem 4. — If {Pn} is a sequence of polynomials of N complex vari-
ables with degPn � dn (dn < dn+1, dn is an integer) such that

lim sup
n→∞

|f(z)− Pn(z)|1/dn < 1, z ∈ Γ, (6.1)

lim sup
n→∞

|Pn(z)|1/dn � 1, z ∈ E, (6.2)

then the maximal domain of existence Gf of f is a polynomially convex open
subset of CN such that

lim sup
n→∞

‖f − Pn‖1/dnK < 1 (6.3)

for every compact subset K of Gf .

If, moreover, the sequence {dn+1/dn} is bounded then Gf = CN .

Observe that the point-wise geometrical convergence (6.1) of {Pn} to f
on a non-pluripolar set Γ along with the restricted growth (6.2) of {Pn(z)} at
every point z of a non-thin set E imply the uniform geometrical convergence
(6.3) of {Pn} to f on every compact subset K of Gf .

In Theorem 1 of [5] the authors assume that Γ is a nontrivial continuum

in C, and lim supk→∞ ‖f − Pn‖1/dnΓ < 1, which in the case of N = 1 is
more restrictive than (6.1).

Proof of Theorem 4. — 10. First we shall show that (6.3) is true for every
compact subset K of G. To this order observe that the function

un(z) :=
1

dn
log |f(z) − Pn(z)|

is PSH(G). The condition (6.2) and property (5) of the necessary and suffi-
cient conditions 2.18 for non-thinness imply that for every compact subsetK
of G and for every ε > 0 there exist a positive constant M = M(K, ε) and a
positive integer n0 = n0(K, ε) such that un(z) � 1

dn
log(M +M(1+ε)dn) �

1
dn

log(2M) + ε, n � n0, z ∈ K. Hence u := lim supn→∞ un � 0 in G , and
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u < 0 on Γ by (6.1). The function u∗ is non-positive and plurisubharmonic
in G, and , by the theorem on negligible sets, we have u(z) = u∗(z) < 0
on Γ \ A, where A is pluripolar. By the maximum principle u∗(z) < 0 in
G which, by the Hartogs Lemma, implies the required inequality (6.3) for
compact sets K ⊂ G.

20. Put Ω := {a ∈ CN ; the sequence {Pn} is uniformly convergent in
a neighborhood of a}. It follows from 10 that G ⊂ Ω. Let Gf denote the
connected component of Ω containing G. It is clear that Gf is polynomially
convex. We claim that Gf is the maximal domain of existence of f . It is clear

that f̃(z) := limn→∞ Pn(z), z ∈ Gf , is holomorphic in Gf , and f̃ = f in

G. We need to show that Gf is the maximal domain of existence of f̃ . By

10 we have (6.3) with G replaced by Gf and f by f̃ .

Suppose, contrary to our claim, that there exist a ∈ Gf , r > dist(a, ∂Gf ) =:

r0 and a function g holomorphic in the ball B(a, r) such that g(z) = f̃(z) if

‖z−a‖ < r0. By 10 we have lim supn→∞ ‖g − Pn‖1/dnK < 1 for every com-
pact subset K of the ball B(a r). Therefore the sequence {Pn} converges
locally uniformly in this ball which contains boundary points of Gf . This
contradicts the definition of the last set.

30. Let us assume that the sequence {dn+1

dn
} is bounded, say dn+1/dn �

α,
n � 1. By 20, it is sufficient to show that in this case Ω = CN . Consider
the following sequence of elements of the Lelong class L

un(z) :=
1

dn+1
log |Pn+1(z) − Pn(z)|, z ∈ CN .

Put u(z) := lim supn→∞ un(z) , z ∈ CN . It follows from (6.1) that for every
z ∈ Γ there exit ε > 0 and M > 0 such that un(z) � 1

dn+1
log[Me−εdn+1 +

Me−εdn ] � 1
dn+1

log(2M) − 1
αε, n � 1. Hence, u(z) < 0 for every z ∈ Γ.

One can easily check that if z ∈ E, then by (6.2) u(z) � 0. Therefore
u∗ ∈ L and u∗(z) � 0 for all z ∈ E \ A, where A is pluripolar. It follows
that u∗ � V ∗E = 0 in CN . Hence u∗ = c = const � 0. But, by the theorem
on negligible sets, u∗(z) < 0 on a non-empty subset of Γ which implies
that c < 0. Hence, by Hartogs Lemma, for every compact subset K of CN

and for 0 < ε < −c there exists n0 = n0(K, ε) such that un(z) � −ε
for all z ∈ K and n � n0. It follows that the sequence {Pn} is uniformly
convergent on K. By the arbitrary property of K we get Ω = CN .

The method of proof of Theorem 4 may be used to show that the fol-
lowing corollaries are true.
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Corollary 6.1. — Let E be a subset of CN with VE ≡ 0. Let Γ be a
non-pluripolar subset of CN . Let {dn} be a strictly increasing sequence of
positive integers such that dn+1/dn � α, n � 1, with α = const > 1.

If f : Γ→ C is a function such that there exists a sequence of polynomials
{Pn} with degPn � dn such that

lim sup
n→∞

|f(z)− Pn(z)| 1
dn < 1, z ∈ Γ , (6.4)

lim sup
n→∞

|Pn(z)| 1
dn � 1, z ∈ E, (6.5)

then f extends to an entire function f̃ such that for every compact set
K ⊂ CN we have

lim sup
n→∞

‖f̃ − Pn‖
1
dn

K < 1.

Indeed, by (6.4), given z ∈ Γ, there are M > 0 and 0 < θ = θ(z) < 1
such that |f(z) − Pn(z)| � Mθdn , n � 1. Hence |Pn+1(z) − Pn(z)| �
2Mθ

1
αdn+1 which implies

lim sup
n→∞

|Pn+1(z)− Pn(z)|
1

dn+1 < 1, z ∈ Γ.

By (6.5), given z ∈ E and ε > 0, there is M > 0 such that |Pn+1(z) −
Pn(z)| � |Pn+1(z)|+ |Pn(z)| � Medn+1ε + ednε � 2Meαεdn , n � 1, which
implies that

lim sup
n→∞

dn+1

√
|Pn+1(z)− Pn(z)| � 1, z ∈ E.

Put u(z) := lim sup 1
dn+1

log |Pn+1(z) − Pn(z)|, z ∈ CN . Then u∗ ∈ L,

u∗ � 0 on E and u∗ < 0 on Γ \ A, where A is pluripolar. Therefore u∗ =

const < 0. Hence, by Hartogs Lemma, we have lim sup ‖Pn+1−Pn‖1/dn+1

K <

1 for every compact subset K of CN . It follows that f̃ := P1 +
∑∞

1 (Pn+1−
Pn) is an entire function with the required properties.

In the sequel Pn denotes polynomials with degPn � dn, where dn are
integers with 1 � dn < dn+1 � αdn, α = const > 1, Γ is a non-pluripolar,
subset of CN , and f is a complex valued function defined on Γ.

Corollary 6.2. — If f is holomorphic in an open connected set G
containing Γ such that

lim sup
n→∞

|f(z)− Pn(z)| 1
dn < 1, z ∈ Γ, (6.6)
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lim sup
n→∞

|Pn(z)| 1
dn � 1, z ∈ G, (6.7)

then f has a holomorphic extension f̃ to G such that

lim sup
n→∞

‖f̃ − Pn‖
1
dn

K < 1 , lim sup
n→∞

‖Pn+1 − Pn‖
1

dn+1

K < 1, (6.8)

for every compact set K ⊂ G. If, moreover, G is non-thin at infinity then
there is an entire function f̃ satisfying (6.8) for G = CN such that f̃ = f
on Γ.

Corollary 6.3. — If

lim sup
n→∞

|f(z)− Pn(z)| 1
dn = 0, z ∈ Γ, (6.9)

then f extends to a unique entire function

f̃(z) = P1(z) +

∞∑

j=1

(Pn+1(z)− Pn(z)), z ∈ CN ,

and (6.8) is satisfied.

In order to show the last two corollaries, define

u(z) := lim sup
n→∞

1

dn+1
log |Pn+1(z)− Pn(z)|,

observe that u∗ ∈ L, and check that u∗(z) < 0 onG in the case of Corollary
6.2 (resp., u∗(z) = −∞ on CN in the case of Corollary 6.3) which, by
Hartogs Lemma, implies Corollary 6.2 (resp., Corollary 6.3).
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