ANNALES DE LA FACULTÉ DES SCIENCES TOULOUSE Mathématiques

ARTURO FERNÁNDEZ-PÉREZ On Levi-flat hypersurfaces tangent to holomorphic webs

Tome XX, nº 3 (2011), p. 581-597.

<http://afst.cedram.org/item?id=AFST_2011_6_20_3_581_0>

© Université Paul Sabatier, Toulouse, 2011, tous droits réservés.

L'accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

ARTURO FERNÁNDEZ-PÉREZ⁽¹⁾

ABSTRACT. — We investigate real analytic Levi-flat hypersurfaces tangent to holomorphic webs. We introduce the notion of first integrals for local webs. In particular, we prove that a k-web with finitely many invariant subvarieties through the origin tangent to a Levi-flat hypersurface has a holomorphic first integral.

RÉSUMÉ. — Nous étudions les hypersurfaces analytiques réelles Leviplates tangentes à un tissu holomorphe. Nous introduisons la notion d'intégrale première pour un tissu défini localement. En particulier, nous prouvons qu'un k-tissu admettant un nombre fini de sous-variétés invariantes passant par l'origine et tangentes à une hypersurface Levi-plate possède une intégrale première holomorphe.

1. Introduction

In very general terms, a germ of codimension one k-web is a collection of k germs of codimension one holomorphic foliations in "general position". The study of webs was initiated by Blaschke and his school in the late 1920s. For a recent account of the theory, we refer the reader to [12].

For instance, take $\omega \in Sym^k \Omega^1(\mathbb{C}^2, 0)$ defined by $\omega = (dy)^k + a_{k-1}(dy)^{k-1}dx + \ldots + a_0(dx)^k,$

(*) Reçu le 15/11/2010, accepté le 20/06/2011

Work supported by CNPq-Brazil.

 (1) Departamento de Matemática, UFMG, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 – Belo Horizonte – MG, Brazil.
 afernan@impa.br

where $a_j \in \mathcal{O}_2$ for all $0 \leq j \leq k-1$. Then $\mathcal{W} : \omega = 0$, define a non-trivial k-web on ($\mathbb{C}^2, 0$). In this paper we study webs and its relation with Levi-flat hypersurfaces.

Let M be a germ at $0 \in \mathbb{C}^n$ of a real codimension one irreducible analytic set. Since M is real analytic of codimension one, it can be decomposed into M_{reg} and $\operatorname{Sing}(M)$, where M_{reg} is a germ of smooth real analytic hypersurface in \mathbb{C}^n and $\operatorname{Sing}(M)$, the singular locus, is contained in a proper analytic subvariety of lower dimension. We shall say that M is *Levi-flat* if the complex distribution L on M_{reg}

$$L_p := T_p M \cap i T_p M \subset T_p M, \text{ for any } p \in M_{reg}$$
(1.1)

is integrable, in Frobenius sense. It follows that M_{reg} is smoothly foliated by immersed complex manifolds of complex dimension n-1. The foliation defined by L is called the Levi foliation and will be denoted by \mathcal{L}_M .

If M is a real analytic smooth Levi-flat hypersurface, by a classic result of E. Cartan there exists a local holomorphic coordinates $(z_1, \ldots, z_n) \in \mathbb{C}^n$ such that M can be represented by $M = \{\mathcal{I}m(z_n) = 0\}$. The situation if different if the hypersurface have singularities. Singular Levi-flat real analytic hypersurfaces have been studied by Burns and Gong [1], Brunella [2], Lebl [9], the author [6], [7] and many others.

Recently D.Cerveau and A. Lins Neto [5] have studied codimension one holomorphic foliations tangent to singular Levi-flat hypersurfaces. A codimension one holomorphic foliation \mathcal{F} is tangent to M, if any leaf of \mathcal{L}_M is also a leaf of \mathcal{F} . In [5] it is proved that a germ of codimension one holomorphic foliation tangent to a real analytic Levi-flat hypersurface has a non-constant meromorphic first integral. In the same spirit, the authors propose a problem for webs, which is as follows:

Problem. — Let M be a germ at $0 \in \mathbb{C}^n$, $n \ge 2$, of real analytic hypersurface Levi-flat. Assume that there exists a singular codimension one k-web, $k \ge 2$, such that any leaf of the Levi foliation \mathcal{L}_M on M_{reg} is also a leaf of the web. Does the web has a non-constant meromorphic first integral?.

By a meromorphic first integral we mean something like $f_0(x)+z \cdot f_1(x)+$...+ $z^k \cdot f_k(x) = 0$, where $f_0, f_1, \ldots, f_k \in \mathcal{O}_n$. In this situation, the web is obtained by the elimination of z in the system given by

$$\begin{cases} f_0 + z \cdot f_1 + z^2 \cdot f_2 + \ldots + z^k \cdot f_k = 0\\ df_0 + z \cdot df_1 + z^2 \cdot df_2 + \ldots + z^k \cdot df_k = 0 \end{cases}$$

In this work, we organize some results on singular Levi-flat hypersurfaces and holomorphic foliations which provide a best approach to study of webs and Levi-flats. Concerning the problem, we obtain an interesting result in a case very special (Theorem 1), the problem remains open in general.

1.1. Local singular webs

It is customary to define a germ of singular holomorphic foliation as an equivalence class $[\omega]$ of germs of holomorphic 1-forms in $\Omega^1(\mathbb{C}^n, 0)$ modulo multiplication by elements of $\mathcal{O}^*(\mathbb{C}^n, 0)$ such that any representative ω is integrable ($\omega \wedge d\omega = 0$) and with singular set $\operatorname{Sing}(\omega) = \{p \in (\mathbb{C}^n, 0) : \omega(p) = 0\}$ of codimension at least two.

An analogous definition can be made for codimension one k-webs. A germ at $(\mathbb{C}^n, 0)$, $n \ge 2$ of codimension one k-web \mathcal{W} is an equivalence class $[\omega]$ of germs of k-symmetric 1-forms, that is sections of $Sym^k\Omega^1(\mathbb{C}^n, 0)$, modulo multiplication by $\mathcal{O}^*(\mathbb{C}^n, 0)$ such that a suitable representative ω defined in a connected neighborhood U of the origin satisfies the following conditions:

- 1. The zero set of ω has codimension at least two.
- 2. The 1-form ω , seen as a homogeneous polynomial of degree k in the ring $\mathcal{O}_n[dx_1,\ldots,dx_n]$, is square-free.
- 3. (Brill's condition) For a generic $p \in U$, $\omega(p)$ is a product of k linear forms.
- 4. (Frobenius's condition) For a generic $p \in U$, the germ of ω at p is the product of k germs of integrable 1-forms.

Both conditions (3) and (4) are automatic for germs at $(\mathbb{C}^2, 0)$ of webs and non-trivial for germs at $(\mathbb{C}^n, 0)$ when $n \ge 3$.

We can think k-webs as first order differential equations of degree k. The idea is to consider the germ of web as a meromorphic section of the projectivization of the cotangent bundle of $(\mathbb{C}^n, 0)$. This is a classical point view in the theory of differential equations, which has been recently explored in Web-geometry. For instance see [3], [4], [14].

1.2. The contact distribution

Let us denote $\mathbb{P} := \mathbb{P}T^*(\mathbb{C}^n, 0)$ the projectivization of the cotangent bundle of $(\mathbb{C}^n, 0)$ and $\pi : \mathbb{P}T^*(\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ the natural projection. Over a point p the fiber $\pi^{-1}(p)$ parametrizes the one-dimensional subspaces of $T_p^*(\mathbb{C}^n, 0)$. On \mathbb{P} there is a canonical codimension one distribution, the so

called contact distribution \mathcal{D} . Its description in terms of a system of coordinates $x = (x_1, \ldots, x_n)$ of $(\mathbb{C}^n, 0)$ goes as follows: let dx_1, \ldots, dx_n be the basis of $T^*(\mathbb{C}^n, 0)$ associated to the coordinate system (x_1, \ldots, x_n) . Given a point $(x, y) \in T^*(\mathbb{C}^n, 0)$, we can write $y = \sum_{j=1}^n y_j dx_j, (y_1, \ldots, y_n) \in \mathbb{C}^n$. In this way, if $(y_1, \ldots, y_n) \neq 0$ then we set $[y] = [y_1, \ldots, y_n] \in \mathbb{P}^{n-1}$ and $(x, [y]) \in (\mathbb{C}^n, 0) \times \mathbb{P}^{n-1} \cong \mathbb{P}$. In the affine coordinate system $y_n \neq 0$ of \mathbb{P} , the distribution \mathcal{D} is defined by $\alpha = 0$, where

$$\alpha = dx_n - \sum_{j=1}^{n-1} p_j dx_j, \quad p_j = -\frac{y_j}{y_n} \quad (1 \le j \le n-1).$$
(1.2)

The 1-form α is called the contact form.

1.3. Webs as closures of meromorphic multi-sections

Let us consider $X \subset \mathbb{P}$ a subvariety, not necessarily irreducible, but of pure dimension *n*. Let $\pi_X : X \to (\mathbb{C}^n, 0)$ be the restriction to X of the projection π . Suppose also that X satisfies the following conditions:

- 1. The image under π of every irreducible component of X has dimension n.
- 2. The generic fiber of π intersects X in k distinct smooth points and at these the differential $d\pi_X : T_pX \to T_{\pi(p)}(\mathbb{C}^n, 0)$ is surjective. Note that $k = \deg(\pi_X)$.
- 3. The restriction of the contact form α to the smooth part of every irreducible component of X is integrable. We denote \mathcal{F}_X the foliation defined by $\alpha|_X = 0$.

We can define a germ \mathcal{W} at $0 \in \mathbb{C}^n$ of k-web as a triple $(X, \pi_X, \mathcal{F}_X)$. This definition is equivalent to one given in Section 1.1. In the sequel, X will always be the variety associated to \mathcal{W} , the singular set of X will be denoted by $\operatorname{Sing}(X)$ and its the smooth part will be denoted by X_{reg} .

DEFINITION 1.1. — Let R be the set of points $p \in X$ where

- either X is singular,
- or the differential $d\pi_X : T_p X_{reg} \to T_{\pi(p)}(\mathbb{C}^n, 0)$ is not an isomorphism.

The analytic set R is called the criminant set of \mathcal{W} and $\Delta_{\mathcal{W}} = \pi(R)$ the discriminant of \mathcal{W} . Note that $\dim(R) \leq n-1$.

Remark 1.2. — Let $\omega \in Sym^k \Omega_1(\mathbb{C}^n, 0)$ and assume that it defines a kweb \mathcal{W} with variety X. Then X is irreducible if, and only if, ω is irreducible in the ring $\mathcal{O}_n[dx_1, \ldots, dx_n]$. In this case we say that the web is irreducible.

Let M be a germ at $0 \in \mathbb{C}^n$ of a real analytic Levi-flat hypersurface.

DEFINITION 1.3. — We say that M is tangent to W if any leaf of the Levi foliation \mathcal{L}_M on M_{reg} is also a leaf of W.

1.4. First integrals for webs

DEFINITION 1.4. — We say that W a k-web has a meromorphic first integral if, and only if, there exists

$$P(z) = f_0 + z \cdot f_1 + \ldots + z^k \cdot f_k \in \mathcal{O}_n[z],$$

where $f_0, \ldots, f_k \in \mathcal{O}_n$, such that every irreducible component of the hypersurface $(P(z_0) = 0)$ is a leaf of \mathcal{W} , for all $z_0 \in (\mathbb{C}, 0)$.

DEFINITION 1.5. — We say that W a k-web has a holomorphic first integral if, and only if, there exists

$$P(z) = f_0 + z \cdot f_1 + \ldots + z^{k-1} \cdot f_{k-1} + z^k \in \mathcal{O}_n[z],$$

where $f_0, \ldots, f_{k-1} \in \mathcal{O}_n$, such that every irreducible component of the hypersurface $(P(z_0) = 0)$ is a leaf of \mathcal{W} , for all $z_0 \in (\mathbb{C}, 0)$.

We will prove a result concerning the situation of definitions 1.3 and 1.5.

THEOREM 1. — Let \mathcal{W} be a germ at $0 \in \mathbb{C}^n$, $n \ge 2$ of k-web defined by

$$\omega = \sum_{\substack{i_1+\ldots+i_n=k\\i_1,\ldots,i_n \ge 0}} a_{i_1,\ldots,i_n}(z) dz_1^{i_1} \ldots dz_n^{i_n},$$

where $a_{i_1,...,i_n} \in \mathcal{O}_n$ and $a_{0,0,...,0,k}(0) \neq 0$. Suppose that \mathcal{W} is tangent to a germ at $0 \in \mathbb{C}^n$ of an irreducible real-analytic Levi-flat hypersurface M. Furthermore, assume that \mathcal{W} is irreducible and has finitely many invariant analytic subvarieties through the origin. Let X be the variety associated to \mathcal{W} . Then \mathcal{W} has a non-constant holomorphic first integral, if one of the following conditions is fulfilled :

- 1. If n = 2.
- 2. If $n \ge 3$ and $cod_{X_{reg}}(Sing(X)) \ge 2$.

-585 –

Moreover, if $P(z) = f_0 + z \cdot f_1 + \ldots + z^{k-1} \cdot f_{k-1} + z^k \in \mathcal{O}_n[z]$ is a holomorphic first integral for \mathcal{W} , then M = (F = 0), where F is obtained by the elimination of z in the system given by

$$\begin{cases} f_0 + z \cdot f_1 + z^2 \cdot f_2 + \ldots + z^{k-1} \cdot f_{k-1} + z^k = 0\\ \bar{f}_0 + z \cdot \bar{f}_1 + z^2 \cdot \bar{f}_2 + \ldots + z^{k-1} \cdot \bar{f}_{k-1} + z^k = 0. \end{cases}$$

Remark 1.6. — Under the hypotheses of Theorem 1, if n = 2 and k = 1, \mathcal{W} is a non-dicritical holomorphic foliation at $(\mathbb{C}^2, 0)$ tangent to a germ of an irreducible real analytic Levi-flat hypersurface M, then Theorem 1 given by Cerveau and Lins Neto [5] assures that \mathcal{W} has a non-constant holomorphic first integral. In this sense, our theorem is a generalization of result of Cerveau and Lins Neto.

Remark 1.7. — Let \mathcal{W} a germ at $0 \in \mathbb{C}^n$, $n \ge 2$, of a smooth k-web tangent to a germ at $0 \in \mathbb{C}^n$ of an irreducible real codimension one submanifold M. In other words, $\mathcal{W} = \mathcal{F}_1 \boxtimes \ldots \boxtimes \mathcal{F}_k$ is a generic superposition of k germs at $0 \in \mathbb{C}^n$ of smooth foliations $\mathcal{F}_1, \ldots, \mathcal{F}_k$. In this case the irreducibility and tangency conditions to M implies the existence of a unique $i \in \{1, \ldots, k\}$ such that \mathcal{F}_i is tangent to M. Therefore we can find a coordinates system z_1, \ldots, z_n of \mathbb{C}^n such that \mathcal{F}_i is defined by $dz_n = 0$ and $M = (\mathcal{I}m(z_n) = 0)$.

2. The foliation associated to a web

In this section, we prove a key lemma which will be used in the proof of main theorem.

Since the restriction of \mathcal{D} to X_{reg} is integrable, it defines a foliation \mathcal{F}_X , which in general is a singular foliation. Given $p \in (\mathbb{C}^n, 0) \setminus \Delta_{\mathcal{W}}, \pi_X^{-1}(p) = \{q_1, \ldots, q_k\}$, where $q_i \neq q_j$, if $i \neq j$, $(\deg(\pi_X) = k)$, denote by \mathcal{F}_X^i the germ of \mathcal{F}_X at q_i , $i = 1, \ldots, k$.

The projections $\pi_*(\mathcal{F}^i_X) := \mathcal{F}^i_p$ define k germs of codimension one foliations at p.

DEFINITION 2.1. — A leaf of the web W is, by definition, the projection on $(\mathbb{C}^n, 0)$ of a leaf of \mathcal{F}_X .

Remark 2.2. — Given $p \in (\mathbb{C}^n, 0) \setminus \Delta_{\mathcal{W}}$, and $q_i \in \pi_X^{-1}(p)$, the projection $\pi_X(L_i)$ of the leaf L_i of \mathcal{F}_X through q_i , gives rise to a leaf of \mathcal{W} through p. In particular, \mathcal{W} has at most k leaves through p.

We will use the following proposition (cf. [8] Th. 5, pg. 32). Let $\mathcal{O}(X)$ denote the ring of holomorphic functions on X.

PROPOSITION 2.3. — Let V be an analytic variety. If $\pi : V \to W$ is a finite branched holomorphic covering of pure order k over an open subset $W \subseteq \mathbb{C}^n$, then to each holomorphic function $f \in \mathcal{O}(V)$ there is a canonically associated monic polynomial $P_f(z) \in \mathcal{O}_n[z] \subseteq \mathcal{O}(V)[z]$ of degree k such that $P_f(f) = 0$ in $\mathcal{O}(V)$.

We have now the following lemma.

LEMMA 2.4. — Suppose that $(X, \pi_X, \mathcal{F}_X)$ defines a k-web \mathcal{W} on $(\mathbb{C}^n, 0)$, $n \ge 2$, where X is an irreducible subvariety of \mathbb{P} . If \mathcal{F}_X has a non-constant holomorphic first integral then \mathcal{W} also has a holomorphic first integral.

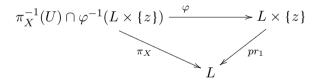
Proof. — Let $g \in \mathcal{O}(X)$ be the first integral for \mathcal{F}_X . By Proposition 2.3, there exists a monic polynomial $P_g(z) \in \mathcal{O}_n[z]$ of degree k such that $P_g(g) = 0$ in $\mathcal{O}(X)$. Write

$$P_q(z) = g_0 + z \cdot g_1 + \ldots + z^{k-1} \cdot g_{k-1} + z^k,$$

where $g_0, \ldots, g_{k-1} \in \mathcal{O}_n$.

Assertion. — P_g define a holomorphic first integral for \mathcal{W} .

Let $U \subseteq (\mathbb{C}^n, 0) \setminus \Delta_{\mathcal{W}}$ be an open subset and let $\varphi : X \to (\mathbb{C}^n, 0) \times \mathbb{C}$ be defined by $\varphi = (\pi_X, g)$. Take a leaf L of $\mathcal{W}|_U$. Then there is $z \in \mathbb{C}$ such that the following diagram



is commutative, where pr_1 is the projection on the first coordinate. It follows that L is a leaf of \mathcal{W} if and only if g is constant along of each connected component of $\pi_X^{-1}(L)$ contained in $\varphi^{-1}(L \times \{z\})$.

Consider now the hypersurface $G=\varphi(X)\subset (\mathbb{C}^n,0)\times \mathbb{C}$ which is the closure of set

$$\{(x,s) \in U \times \mathbb{C} : g_0(x) + s \cdot g_1(x) + \ldots + s^{k-1} \cdot g_{k-1}(x) + s^k = 0\}.$$

Let $\psi : (\mathbb{C}^n, 0) \times \mathbb{C} \to (\mathbb{C}^n, 0)$ be the usual projection and denote by $Z \subset (\mathbb{C}^n, 0)$ the analytic subset such that the restriction to G of ψ not is a finite branched covering. Notice that for all $x_0 \in (\mathbb{C}^n, 0) \setminus Z$, the equation

$$g_0(x) + s \cdot g_1(x) + \ldots + s^{k-1} \cdot g_{k-1}(x) + s^k = 0$$

- 587 -

defines k analytic hypersurfaces pairwise transverse in x_0 and therefore correspond to leaves of \mathcal{W} . \Box

3. Examples

This section is devoted to give some examples of Levi-flat hypersurfaces tangent to holomorphic foliations or webs.

Example 3.1. — Take a non constant holomorphic function $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and set $M = (\mathcal{I}m(f) = 0)$. Then M is Levi-flat and M_{sing} is the set of critical points of f lying on M. Leaves of the Levi foliation on M_{reg} are given by $\{f = c\}, c \in \mathbb{R}$. Of course, M is tangent to a singular holomorphic foliation generated by the kernel of df.

Example 3.2 ([5]). — Let $f_0, f_1, \ldots, f_k \in \mathcal{O}_n, n \ge 2$, be irreducible germs of holomorphic functions, where $k \ge 2$. Consider the family of hypersurfaces

$$G := \{G_s := f_0 + sf_1 + \ldots + s^k f_k | s \in \mathbb{R}\}.$$

By eliminating the real variable s in the system $G_s = \overline{G}_s = 0$, we obtain a real analytic germ $F : (\mathbb{C}^n, 0) \to (\mathbb{R}, 0)$ such that any complex hypersurface $(G_s = 0)$ is contained in the real hypersurface (F = 0). For instance, in the case k = 2, we obtain

$$F = det \begin{pmatrix} f_0 & f_1 & f_2 & 0\\ 0 & f_0 & f_1 & f_2\\ \bar{f}_0 & \bar{f}_1 & \bar{f}_2 & 0\\ 0 & \bar{f}_0 & \bar{f}_1 & \bar{f}_2 \end{pmatrix} =$$

 $= f_0^2 \cdot \bar{f}_2^2 + \bar{f}_0^2 \cdot f_2^2 + f_0 \cdot f_2 \cdot \bar{f}_1^2 + \bar{f}_0 \cdot \bar{f}_2 \cdot f_1^2 - |f_1|^2 (f_0 \cdot \bar{f}_2 + \bar{f}_0 \cdot f_2) - 2|f_0|^2 \cdot |f_2|^2.$ (3.1)

which comes from the elimination of s in the system

$$f_0 + s \cdot f_1 + s^2 \cdot f_2 = \bar{f}_0 + s \cdot \bar{f}_1 + s^2 \cdot \bar{f}_2 = 0.$$

We would like to observe that the examples of this type are tangent to singular webs. The web is obtained by the elimination of s in the system given by

$$\begin{cases} f_0 + s \cdot f_1 + s^2 \cdot f_2 + \ldots + s^k \cdot f_k = 0\\ df_0 + s \cdot df_1 + s^2 \cdot df_2 \ldots + s^k \cdot df_k = 0 \end{cases}$$

In the case we get a 2-web given by the implicit differential equation $\Omega = 0$, where

$$\Omega = det \begin{pmatrix} f_0 & f_1 & f_2 & 0\\ 0 & f_0 & f_1 & f_2\\ df_0 & df_1 & df_2 & 0\\ 0 & df_0 & df_1 & df_2 \end{pmatrix}$$

This example shows that, although \mathcal{L}_M is a foliation on $M_{reg} \subset M = (F = 0)$, in general it is not tangent to a germ of holomorphic foliation at $(\mathbb{C}^n, 0)$.

Example 3.3 [Clairaut's equations]. — Clairaut's equations are tangent to Levi-flat hypersurfaces. Consider the first-order implicit differential equation

$$y = xp + f(p), \tag{3.2}$$

where $(x, y) \in \mathbb{C}^2$, $p = \frac{dy}{dx}$ and $f \in \mathbb{C}[p]$ is a polynomial of degree k, the equation (3.2) define a k-web \mathcal{W} on $(\mathbb{C}^2, 0)$. The variety S associated to \mathcal{W} is given by (y - xp - f(p) = 0) and the foliation \mathcal{F}_S is defined by $\alpha|_S = 0$, where $\alpha = dy - pdx$. In the chart (x, p) of S, we get $\alpha|_S = (x + f'(p))dp$. The criminant set of \mathcal{W} is given by

$$R = (y - xp - f(p)) = x + f'(p) = 0).$$

Observe that \mathcal{F}_S is tangent to S along R and has a non-constant first integral g(x, p) = p. Denote by $\pi_S : S \to (\mathbb{C}^2, 0)$ the restriction to S of the usual projection $\pi : \mathbb{P} \to (\mathbb{C}^2, 0)$, then the leaves of \mathcal{F}_S project by π_S in leaves of \mathcal{W} . Those leaves are as follows

$$-y + s \cdot x + f(s) = 0, \tag{3.3}$$

where s is a constant. By the elimination of the variable $s \in \mathbb{R}$ in the system

$$\begin{cases} -y + s \cdot x + f(s) = 0\\ -\bar{y} + s \cdot \bar{x} + \overline{f(s)} = 0, \end{cases}$$

we obtain a Levi-flat hypersurface tangent to \mathcal{W} . In particular, Clairaut's equation has a holomorphic first integral.

4. Lifting of Levi-flat hypersurfaces to the cotangent bundle

In this section we give some remarks about the lifting of a Levi-flat hypersurface to the cotangent bundle of $(\mathbb{C}^n, 0)$.

Let \mathbb{P} be as before, the projectivized cotangent bundle of $(\mathbb{C}^n, 0)$ and M an irreducible real analytic Levi-flat at $(\mathbb{C}^n, 0)$, $n \ge 2$. Note that \mathbb{P} is a \mathbb{P}^{n-1} -bundle over $(\mathbb{C}^n, 0)$, whose fiber $\mathbb{P}T_z^*\mathbb{C}^n$ over $z \in \mathbb{C}^n$ will be thought of as the set of complex hyperplanes in $T_z^*\mathbb{C}^n$. Let $\pi : \mathbb{P} \to (\mathbb{C}^n, 0)$ be the usual projection.

The regular part M_{reg} of M can be lifted to \mathbb{P} : just take, for every $z \in M_{reg}$, the complex hyperplane

$$T_z^{\mathbb{C}} M_{reg} = T_z M_{reg} \cap i(T_z M_{reg}) \subset T_z \mathbb{C}^n.$$
(4.1)

We call

$$M'_{req} \subset \mathbb{P} \tag{4.2}$$

this lifting of M_{reg} . We remark that it is no more a hypersurface: its (real) dimension 2n-1 is half of the real dimension of $\mathbb{P}T^*\mathbb{C}^n$. However, it is still "Levi-flat", in a sense which will be precised below.

Take now a point y in the closure $\overline{M'_{reg}}$ projecting on \mathbb{C}^n to a point $x \in \overline{M}$. Now, we shall consider the following results, which are adapted from [2].

LEMMA 4.1. — There exist, in a germ of neighborhood $U_y \subset \mathbb{P}T^*(\mathbb{C}^n, 0)$ of y, a germ of real analytic subset N_y of dimension 2n - 1 containing $M'_{reg} \cap U_y$.

PROPOSITION 4.2. — Under the above conditions, in a germ of neighborhood $V_y \subset U_y$ of y, there exists a germ of complex analytic subset Y_y of (complex) dimension n containing $N_y \cap V_y$.

5. Proof of Theorem 1

The proof will be divided in two parts. First, we give the proof for n = 2. The proof in dimension $n \ge 3$ will be done by reduction to the case of dimension two.

First of all, we recall some results (cf. [5]) about foliations and Levi-flats. Let M and \mathcal{F} be germs at (\mathbb{C}^2 , 0) of a real analytic Levi-flat hypersurface and of a holomorphic foliation, respectively, where \mathcal{F} is tangent to M. Assume that:

- (i) \mathcal{F} is defined by a germ at $0 \in \mathbb{C}^2$ of holomorphic vector field X with an isolated singularity at 0.
- (ii) M is irreducible.

Let us assume that 0 is a reduced singularity of X, in the sense of Seidenberg [13]. Denote the eigenvalues of DX(0) by λ_1, λ_2 .

PROPOSITION 5.1. — Suppose that X has a reduced singularity at $0 \in \mathbb{C}^2$ and is tangent to a real analytic Levi-flat hypersurface M. Then $\lambda_1, \lambda_2 \neq 0$, $\lambda_2/\lambda_1 \in \mathbb{Q}_-$ and X has a holomorphic first integral. In particular, in a suitable coordinates system (x, y) around $0 \in \mathbb{C}^2$, $X = \phi.Y$, where $\phi(0) \neq 0$ and

$$Y = q \cdot x \partial_x - p \cdot y \partial_y , g \cdot c \cdot d(p,q) = 1.$$
(5.1)

In this coordinate system, $f(x, y) := x^p \cdot y^q$ is a first integral of X.

We call this type of singularity of \mathcal{F} a saddle with first integral, (cf. [10], pg. 162). Now we have the following lemma.

LEMMA 5.2. — For any $z_0 \in M_{reg}$, the leaf L_{z_0} of \mathcal{L}_M through z_0 is closed in M_{reg} .

5.1. Planar webs

A k-web \mathcal{W} on $(\mathbb{C}^2, 0)$ can be written in coordinates $(x, y) \in \mathbb{C}^2$ by

$$\omega = a_0(x, y)(dy)^k + a_1(x, y)(dy)^{k-1}(dx) + \ldots + a_k(x, y)(dx)^k = 0,$$

where the coefficients $a_j \in \mathcal{O}_2, j = 1, \ldots, k$. We set

$$U = \{ (x, y, [adx + bdy]) \in \mathbb{P}T^*(\mathbb{C}^2, 0) : a \neq 0 \}$$

and

$$V = \{ (x, y, [adx + bdy]) \in \mathbb{P}T^*(\mathbb{C}^2, 0) : b \neq 0 \}.$$

Note that $\mathbb{P}T^*(\mathbb{C}^2, 0) = U \cup V$. Suppose that $(S, \pi_S, \mathcal{F}_S)$ define \mathcal{W} , in the coordinates $(x, y, p) \in U$, where $p = \frac{dy}{dx}$, we have

1.
$$S \cap U = \{(x, y, p) \in \mathbb{P}T^*(\mathbb{C}^2, 0) : F(x, y, p) = 0\},$$
 where
 $F(x, y, p) = a_0(x, y)p^k + a_1(x, y)p^{k-1} + \ldots + a_k(x, y).$

Note that S is possibly singular at 0.

- 2. \mathcal{F}_S is defined by $\alpha|_S = 0$, where $\alpha = dy pdx$.
- 3. The criminant set R is defined by the equations

$$F(x, y, p) = F_p(x, y, p) = 0.$$

In V the coordinate system is $(x, y, q) \in \mathbb{C}^3$, where $q = \frac{1}{p}$, the equations are similar.

5.2. Proof in dimension two

Let \mathcal{W} be a k-web tangent to M Levi-flat and let us consider S, π be as before. The idea is to use Lemma 2.4, assume that \mathcal{W} is defined by

$$\omega = a_0(x,y)(dy)^k + a_1(x,y)(dy)^{k-1}dx + \ldots + a_k(x,y)(dx)^k = 0, \quad (5.2)$$

where the coefficients $a_j \in \mathcal{O}_2$, $j = 1, \ldots, k$ and $a_0(0, 0) = 1$.

LEMMA 5.3. — Under the hypotheses of Theorem 1 and above conditions, the surface S is irreducible and $S \cap \pi^{-1}(0)$ contains just a number finite of points. See figure 1.

Proof. — Since \mathcal{W} is irreducible so is S. On the other hand, $S \cap \pi^{-1}(0)$ is finite because \mathcal{W} has a finite number of invariant analytic leaves through the origin and is defined as in (5.2). \Box

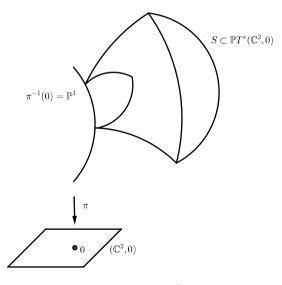


Figure 1. — $S \cap \pi^{-1}(0)$.

We can assume without lost of generality that $S \cap \pi^{-1}(0)$ contains just one point, in the case general, the idea of the proof is the same. Then in the coordinate system $(x, y, p) \in \mathbb{C}^3$, where $p = \frac{dy}{dx}$, we have $\pi^{-1}(0) \cap S =$ $\{p_0 = (0, 0, 0)\}$, which implies that S must be singular at $p_0 \in \mathbb{P}T^*(\mathbb{C}^2, 0)$. In particular, (S, p_0) the germ of S at p_0 is defined by $F^{-1}(0)$, where

$$F(x, y, p) = p^{k} + a_{1}(x, y)p^{k-1} + \ldots + a_{k}(x, y),$$

- 592 -

and $a_1, \ldots, a_k \in \mathcal{O}_2$. Let \mathcal{F}_S be the foliation defined by $\alpha|_S = 0$. The assumptions implies that \mathcal{F}_S is a non-dicritical foliation with an isolated singularity at p_0 .

Recall that a germ of foliation \mathcal{F} at $p_0 \in S$ is discritical if it has infinitely many analytic separatrices through p_0 . Otherwise it is called non-discritical.

Let M'_{reg} be the lifting of M_{reg} by π_S , and denote by $\sigma : (\tilde{S}, D) \to (S, p_0)$ the resolution of singularities of S at p_0 . Let $\tilde{\mathcal{F}} = \sigma^*(\mathcal{F}_S)$ be the pull-back of \mathcal{F}_S under σ . See figure 2.

LEMMA 5.4. — In the above situation. The foliation $\tilde{\mathcal{F}}$ has only singularities of saddle with first integral type in D.

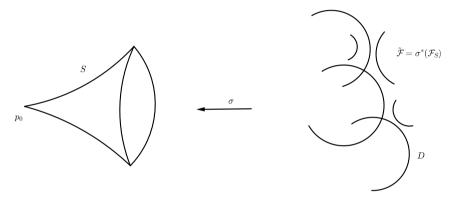


Figure 2. — Resolution of singularities of S at p_0 .

Proof. — Let $y \in \overline{M'_{reg}}$, it follows from Lemma 4.1 the existence, in a neighborhood $U_y \subset \mathbb{P}T^*(\mathbb{C}^2, 0)$ containing y, of a real analytic subset N_y of dimension 3 containing $M'_{reg} \cap U_y$. Then by Proposition 4.2, there exists, in a neighborhood $V_y \subset U_y$ of y, a complex analytic subset Y_y of (complex) dimension 2 containing $N_y \cap V_y$. As germs at y, we get $Y_y = S_y$ then $N_y \cap V_y \subset S_y$, we have that $N_y \cap V_y$ is a real analytic hypersurface in S_y , and it is Levi-flat because each irreducible component contains a Levi-flat piece (cf. [1], Lemma 2.2).

Let us denote $M'_y = N_y \cap V_y$. The hypotheses implies that \mathcal{F}_S is tangent to M'_y . These local constructions are sufficiently canonical to be patched together, when y varies on $\overline{M'_{reg}}$: if $S_{y_1} \subset V_{y_1}$ and $S_{y_2} \subset V_{y_2}$ are as above, with $M'_{reg} \cap V_{y_1} \cap V_{y_2} \neq \emptyset$, then $S_{y_2} \cap (V_{y_1} \cap V_{y_2})$ and $S_{y_1} \cap (V_{y_1} \cap V_{y_2})$ have some common irreducible components containing $M'_{reg} \cap V_{y_1} \cap V_{y_2}$, so that M'_{y_1} , M'_{y_2} can be glued by identifying those components. In this way, we obtain a Levi-flat hypersurface N on S tangent to \mathcal{F}_S .

By doing additional blowing-ups if necessary, we can suppose that $\tilde{\mathcal{F}}$ has reduced singularities. Since \mathcal{F}_S is non-dicritical, all irreducible components of D are $\tilde{\mathcal{F}}$ -invariants. Let \tilde{N} be the strict transform of N under σ , then $\tilde{N} \supset D$. In particular, \tilde{N} contains all singularities of $\tilde{\mathcal{F}}$ in D. It follows from Proposition 5.1 that all singularities of $\tilde{\mathcal{F}}$ are saddle with first integral. \Box

5.3. End of the proof of Theorem 1 in dimension two

The idea is to prove that \mathcal{F}_S has a holomorphic first integral. Since D is invariant by $\tilde{\mathcal{F}}$, i.e., it is the union of leaves and singularities of $\tilde{\mathcal{F}}$, we have $S := D \setminus \text{Sing}(\tilde{\mathcal{F}})$ is a leaf of $\tilde{\mathcal{F}}$. Now, fix $p \in S$ and a transverse section \sum through p. By Lemma 5.4, the singularities of $\tilde{\mathcal{F}}$ in D are saddle with first integral types. Therefore the transverse section \sum is complete, (see [10], pg. 162). Let $G \subset \text{Diff}(\sum, p)$ be the Holonomy group of the leaf S of $\tilde{\mathcal{F}}$. It follows from Lemma 5.2 that all leaves of \mathcal{F}_S through points of N_{reg} are closed in N_{reg} . This implies that all transformations of G have finite order and G is linearizable. According to [11], \mathcal{F}_S has a non-constant holomorphic first integral. Finally from Lemma 2.4, \mathcal{W} has a first integral as follows:

$$P(z) = f_0(x, y) + z \cdot f_1(x, y) + \ldots + z^{k-1} \cdot f_{k-1}(x, y) + z^k,$$

where $f_0, f_1, \ldots, f_{k-1} \in \mathcal{O}_2$.

5.4. Proof in dimension $n \ge 3$

Let us give an idea of the proof. First of all, we will prove that there is a holomorphic embedding $i : (\mathbb{C}^2, 0) \to (\mathbb{C}^n, 0)$ with the following properties:

- (i) $i^{-1}(M)$ has real codimension one on $(\mathbb{C}^2, 0)$.
- (ii) $i^*(\mathcal{W})$ is a k-web on $(\mathbb{C}^2, 0)$ tangent to $i^{-1}(M)$.

Set $E := i(\mathbb{C}^2, 0)$. The above conditions and Theorem 1 in dimension two imply that $\mathcal{W}|_E$ has a non-constant holomorphic first integral, say $g = f_0 + z \cdot f_1 + \ldots + z^{k-1} \cdot f_{k-1} + z^k$, where $f_0, \ldots, f_{k-1} \in \mathcal{O}_2$. After that we will use a lemma to prove that g can be extended to a holomorphic germ g_1 , which is a first integral of \mathcal{W} .

Let \mathcal{F} be a germ at $0 \in \mathbb{C}^n$, $n \geq 3$, of a holomorphic codimension one foliation, tangent to a real analytic hypersurface M. Let us suppose that \mathcal{F} is defined by $\omega = 0$, where ω is a germ at $0 \in \mathbb{C}^n$ of an integrable holomorphic 1-form with $cod_{\mathbb{C}^n}(\operatorname{Sing}(\omega)) \geq 2$. We say that a holomorphic embedding $i : (\mathbb{C}^2, 0) \to (\mathbb{C}^n, 0)$ is transverse to ω if $cod_{\mathbb{C}^n}(\operatorname{Sing}(\omega)) = 2$, which means

in fact that, as a germ of set, we have $Sing(i^*(\omega)) = \{0\}$. Note that the definition is independent of the particular germ of holomorphic 1-form which represents \mathcal{F} . Therefore, we will say that the embedding *i* is transverse to \mathcal{F} if it is transverse to some holomorphic 1-form ω representing \mathcal{F} .

We will use the following lemma of [5].

LEMMA 5.5. — In the above situation, there exists a 2-plane $E \subset \mathbb{C}^n$, transverse to \mathcal{F} , such that the germ at $0 \in E$ of $M \cap E$ has real codimension one.

We say that a embedding i is transverse to \mathcal{W} if it is transverse to all k-foliations which defines \mathcal{W} . Now, one deduces the following

LEMMA 5.6. — There exists a 2-plane $E \subset \mathbb{C}^n$, transverse to \mathcal{W} , such that the germ at $0 \in E$ of $M \cap E$ has real codimension one.

Proof. — First of all, note that outside of the discriminant set of \mathcal{W} , we can suppose that $\mathcal{W} = \mathcal{F}_1 \boxtimes \ldots \boxtimes \mathcal{F}_k$, where $\mathcal{F}_1, \ldots, \mathcal{F}_k$ are germs of codimension one smooth foliations. Since \mathcal{W} is tangent to M, there is a foliation \mathcal{F}_j such that is tangent to a Levi foliation \mathcal{L}_M on M_{reg} . Lemma 5.5 implies that we can find a 2-plane E_0 transverse to M and to \mathcal{F}_j . Clearly the set of linear mappings transverse to $\mathcal{F}_1, \ldots, \mathcal{F}_k$ simultaneously is open and dense in the set of linear mappings from \mathbb{C}^2 to \mathbb{C}^n , by Transversality theory, there exists a linear embedding i such that $E = i(\mathbb{C}^2, 0)$ is transverse to M_{reg} and to \mathcal{W} simultaneously. \Box

Let E be a 2-plane as in Lemma 5.6. It easy to check that $\mathcal{W}|_E$ satisfies the hypotheses of Theorem 1. By the two dimensional case $\mathcal{W}|_E$ has a nonconstant first integral:

$$g_0 + z \cdot g_1 + \ldots + z^{k-1} \cdot g_{k-1} + z^k, \tag{5.3}$$

where $g_0, \ldots, g_{k-1} \in \mathcal{O}_2$.

Let X be the variety associated to \mathcal{W} and set S be the surface associated to $\mathcal{W}|_E$. Observe that \mathcal{F}_S has a non-constant holomorphic first integral g defined on S.

LEMMA 5.7. — In the above situation, we have $\mathcal{F}_X|_S = \mathcal{F}_S$ and \mathcal{F}_X has a non-constant holomorphic first integral g_1 on X, such that $g_1|_S = g$.

Proof. — It is easily seen that $S \subset X$ which implies that $\mathcal{F}_X|_S = \mathcal{F}_S$. Let us extend g to X. Fix $p \in X_{reg} \setminus \text{Sing}(\mathcal{F}_X)$. It is possible to find a small neighborhood $W_p \subset X$ of p and a holomorphic coordinate chart $\varphi : W_p \to \Delta$, where $\Delta \subset \mathbb{C}^n$ is a polydisc, such that:

- (i) $\varphi(S \cap W_p) = \{z_3 = \ldots = z_n = 0\} \cap \triangle$.
- (ii) $\varphi_*(\mathcal{F}_X)$ is given by $dz_n|_{\triangle} = 0$.

Let $\pi_n : \mathbb{C}^n \to \mathbb{C}^2$ be the projection defined by $\pi_n(z_1, \ldots, z_n) = (z_1, z_2)$ and set $\tilde{g}_p := g \circ \varphi^{-1} \circ \pi_n |_{\Delta}$. We obtain that \tilde{g} is a holomorphic function defined in Δ and is a first integral of $\varphi_*(\mathcal{F}_X)$. Let $g_p = \tilde{g}_p \circ \varphi$. Notice that, if $W_p \cap W_q \neq \emptyset$, p and q being regular points for \mathcal{F}_X , then we have $g_p|_{W_p \cap W_q} = g_q|_{W_p \cap W_q}$. This follows easily form the identity principle for holomorphic functions. In particular, g can be extended to

$$W = \bigcup_{p \in X_{reg} \setminus \mathsf{Sing}(\mathcal{F}_X)} W_p,$$

which is a neighborhood of $X_{reg} \setminus \text{Sing}(\mathcal{F}_X)$. Call g_W this extension.

Since $cod_{X_{reg}} \operatorname{Sing}(\mathcal{F}_X) \geq 2$, by a theorem of Levi (cf. [15]), g_W can be extended to X_{reg} , as $cod_{X_{reg}}(\operatorname{Sing}(X)) \geq 2$ this allows us to extend g_W to g_1 as holomorphic first integral for \mathcal{F}_X , in whole X. \Box

5.5. End of the proof of Theorem 1 in dimension $n \ge 3$

Since \mathcal{F}_X has a non-constant holomorphic first integral on X, Lemma 2.4 imply that \mathcal{W} has a non-constant holomorphic first integral.

Acknowledgments. — The author is greatly indebted to Alcides Lins Neto for suggesting the problem and for many stimulating conversations. This is part of the author's Ph.D. thesis, written at IMPA. I would like to acknowledge D. Cerveau for their useful comments for improvement the exposition. I would also like to acknowledge M. Brunella, for pointing out a problem with the proof of Lemma 5.3. Finally, I would like to thank the referee for his comments and suggestions.

Bibliography

- BURNS (D.), GONG (X.). Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121, p. 23-53 (1999).
- [2] BRUNELLA (M.). Singular Levi-flat hypersurfaces and codimension one foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, no. 4, p. 661-672 (2007).
- [3] CAVALIER (V.), LEHMANN (D.). Introduction à l'étude globale des tissus sur une surface holomorphe. Ann. Inst. Fourier (Grenoble) 57, no. 4, p. 1095-1133 (2007).
- [4] CAVALIER (V), LEHMANN (D.). Global structure of holomorphic webs on surfaces. Geometry and topology of caustics-CAUSTICS '06, 35-44, Banach Center Publ., 82, Polish Acad. Sci. Inst. Math., Warsaw (2008).

- [5] CERVEAU (D.), LINS NETO (A.). Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation, To appear in Amer. J. Math.
- [6] FERNÁNDEZ-PÉREZ (A.). On normal forms of singular Levi-flat real analytic hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 42, no. 1, p. 75-85 (2011).
- [7] FERNÁNDEZ-PÉREZ (A.). Singular Levi-flat hypersurfaces. An approach through holomorphic foliations. Ph.D Thesis IMPA, Brazil (2010).
- [8] GUNNING (R.). Introduction to holomorphic functions of several variables. Vol. II. Local theory. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1990).
- [9] LEBL (J.). Singularities and complexity in CR geometry. Ph.D. Thesis, University of California at San Diego, Spring (2007).
- [10] LORAY (F.). Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux.; http://hal.archives-ouvertures.fr/ccsd-00016434
- [11] MATTEI (J.F.), MOUSSU (R.). Holonomie et intégrales premières, Ann. Ec. Norm. Sup. 13, p. 469-523 (1980).
- [12] PEREIRA (J.V.), PIRIO (L.). An invitation to web geometry. From Abel's addition theorem to the algebraization of codimension one webs. Publicações Matemáticas do IMPA. Rio de Janeiro (2009).
- [13] SEIDENBERG (A.). Reduction of singularities of the differential equation A dy = B dx. Amer. J. Math. 90, p. 248-269 (1968).
- [14] YARTEY (J.N.A). Number of singularities of a generic web on the complex projective plane. J. Dyn. Control Syst. 11, no. 2, p. 281-296 (2005).
- [15] SIU (Y.T.). Techniques of extension of analytic objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8. Marcel Dekker, Inc., New York (1974).