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Spectral Real Semigroups

M. Dickmann(1), A. Petrovich(2)

ABSTRACT. — The notion of a real semigroup was introduced in [8] to
provide a framework for the investigation of the theory of (diagonal)
quadratic forms over commutative, unitary, semi-real rings. In this pa-
per we introduce and study an outstanding class of such structures, that
we call spectral real semigroups (SRS). Our main results are: (i) The ex-
istence of a natural functorial duality between the category of SRSs and
that of hereditarily normal spectral spaces; (ii) Characterization of the
SRSs as the real semigroups whose representation partial order is a dis-
tributive lattice; (iii) Determination of all quotients of SRSs, and (iv)
Spectrality of the real semigroup associated to any lattice-ordered ring.

RÉSUMÉ. — Dans [8] nous avons introduit la notion de semigroupe réel
dans le but de donner un cadre général pour l’étude des formes quadra-
tiques diagonales sur des anneaux commutatifs, unitaires, semi-réels. Dans
cet article nous étudions une classe de semigroupes réels avec des pro-
priétés remarquables : les semigroupes réels spectraux (SRS). Nos résultats
principaux sont : (i) l’existence d’une dualité fonctorielle naturelle en-
tre la catégorie des SRS et celle des espaces spectraux héréditairement
normaux ; (ii) la caractérisation des SRS comme étant les semigroupes
réels dont l’ordre de représentation est un treillis distributif ; (iii) la
détermination des quotients des SRS ; (iv) le caractére spectral des semi-
groupes réels associés aux anneaux réticulés.
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À François Lucas, en témoignage d’une longue et loyale amitié.

Introduction

In the next few paragraphs we briefly review some basic concepts of the
theory of real semigroups, introduced in [8], further investigated in [9], and
extensively developed in [10] (unpublished1).

The motivation behind the theory of real semigroups is the study of
quadratic form theory over rings2 having a minimum of orderability in their
structure. The requirement that −1 is not a sum of squares gives the right
level of generality for most purposes. Rings with this property are called
semi-real. This condition is equivalent to require that the real spectrum of
the given ring, A – henceforth denoted by Sper (A) – be non-empty.3

With the real spectra of (semi-real) rings as a point of departure, and
building on prior ideas of Bröcker, Marshall introduced and investigated
in [14], Chs. 6−8, an axiomatic theory – the abstract real spectra (ARS) –
combining topology and quadratic-form-theoretical structure.4

In [8] we introduced a purely algebraic (or, rather, model-theoretic) dual
to abstract real spectra, namely the theory of real semigroups (abbreviated
RS), given by a finite set of simple first-order axioms in the language LRS
= {·, 1, 0,−1, D} consisting of:

– A binary operation · verifying the axioms for commutative semigroups
with unit 1 (a.k.a. monoids);

– Constants 1, 0,−1, satisfying, in addition: −1 �= 1, x3 = x, x · 0 = 0,
and (−1) · x = x⇒x = 0 for all x. Semigroups with these properties are
called ternary.

– A ternary relation, written a ∈ D(b, c), whose intended meaning is
“a is represented by the binary quadratic form with coefficients b, c”.5 The
axioms required for the relation D are expounded in [8], §2, p. 106, and [9],
§2, p. 58; the basic theory of RSs is developed in [8].

(1) Preliminary version available online at
http://www.maths.manchester.ac.uk/raag/index.php?preprint=0339.

(2) All rings considered in this paper are commutative and unitary.
(3) For basic information on the real spectrum of rings, cf. [2], §7.1, pp. 133–142; [11],
§24; [13], Kap. III.

(4) An equivalent axiom system occurs in [1], Ch. III, under the name spaces of signs.
(5) The notion of representation by a quadratic form, well understood and extensively

studied in the case of fields and preordered fields, is much less straightforward in the
general context of rings; see [7], Ch. 2, §§2, 4, and the discussion in [14], §5.5, p. 95. The
restriction of the primitive terms to representation by binary forms is not an impairment.
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The way in which rings give rise to real semigroups is briefly outlined in
9.1.A below; cf. also [9], pp. 50-51, and [14], p. 92.

The aim of this paper is to study an important class of real semigroups,
that we call spectral. The abstract real spectra dual to these real semigroups
were considered by Marshall in §8.8 of [14] under the name “real closed
abstract real spectra”6; he briefly outlined some of their basic properties.
We adopt the name “spectral” in view of the nowadays standard name
for the objects of these RSs, namely spectral maps (here with values in
3 = {1, 0,−1} endowed with the spectral topology; cf. 1.1.B(4) below).

We shall prove four significant sets of results concerning spectral real
semigroups.

(I) The first is a categorical duality (a.k.a. anti-equivalence) between the
category HNSS of hereditarily normal spectral spaces with spectral maps7

and SRS, the category of spectral real semigroups with RS-homomorphisms;
see Theorem 5.4. Specifically, our results show (Theorem 1.7) that the LRS-
structures dual to arbitrary spectral spaces verify all axioms for real semi-
groups with the possible exception of [RS3b] (i.e., Dt(·, ·) �= ∅), while this

axiom is equivalent to the hereditary normality of the space (Theorem 1.8).

The main thrust in sections 3, 4 and 5 is directed at proving this dual-
ity, though several other results are obtained as a by-product. Noteworthy
among the latter is that any real semigroup has a natural hull in the cate-
gory SRS, with the required functorial properties; cf. section 4 and Theo-
rem 5.3(ii) (the existence of this spectral hull was observed in [14], p. 177).
Further,

(i) The operation of forming the spectral hull of a real semigroup is
idempotent: iteration does not produce a larger structure (Theorem
4.5 and Corollary 4.6).

(ii) Every RS-character of a real semigroup extends uniquely to its spec-
tral hull (Corollary 5.5).

(II) The second set of results deals with the properties of the representa-
tion partial order (Definition 1.1) in spectral RSs. Our main theorem here,
6.6, shows that the spectral RSs are exactly the real semigroups for which
the representation partial order is a distributive lattice; distributivity is the
crucial point here. In fact, this property is also equivalent to the assertions
that the representation partial order has a lattice structure and that the

(6) A name presumably motivated by the homonymous terminology in the ring case,
that we treat in broader generality in section 9 below.

(7) These notions are defined in 1.1.B(2),(3) below.
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RS-characters are lattice homomorphisms (into 3). We also prove (Theo-
rem 6.2) that any real semigroup generates its spectral hull as a lattice.

An important feature is that the lattice operations ∧ and ∨ of a spectral
RS are first-order definable in terms of the real semigroup product operation
and binary representation relation by positive-primitive formulas (Theorem
2.1 and Remark 7.2). A consequence of this is Corollary 2.2, which shows
that the RS-characters of – and, more generally, the RS-homomorphisms be-
tween – spectral real semigroups are automatically lattice homomorphisms
(into 3 with the order 1 < 0 < −1). This fact plays a key role in the
development of the theory presented here. Theorem 2.1 also yields a use-
ful first-order axiomatisation of the class of spectral RSs (Theorem 7.1),
having as a corollary that the class of spectral RS is closed under (right-
directed) inductive limits, reduced products – in particular, arbitrary prod-
ucts – (Proposition 7.3) and, more significantly, also under quotients modulo
arbitrary RS-congruences (Fact 8.2).

(III) In section 8 we deal with quotients of spectral RSs. Theorem 8.5 and
Corollary 8.7 elucidate the structure of the RS-congruences8 of any spectral
RS, showing that they are completely determined by a proconstructible
subset of its character space. This is an exceptional situation: even though
any RS-congruence of a real semigroup gives rise to a proconstructible subset
of its character space (see Theorem 8.3(1)), in the absence of additional
requirements this set alone is not enough to determine the given congruence
(an example is given in [10], Ex. II.2.10). As a corollary we obtain that the
operation of forming the spectral hull of a real semigroup commutes with
that of taking quotients modulo a RS-congruence.

(IV) As a by-product of the preceding theory we prove (Theorem 9.3)
that the RS associated to any lattice-ordered ring is spectral and that the
spectral hull of the RS associated to any semi-real ring is canonically iso-
morphic to the RS of its real closure in the sense of Prestel-Schwartz [16]
(Proposition 9.4); cf. also [14], Rmk. (3), p. 178. Thus, spectral RSs occur
in profusion amongst the real semigroups associated to rings.

Acknowledgments. — The authors wish to thank the anonymous
referee for his/her attentive reading of our manuscript, suggesting, among
other things, a streamlining of the proof of Theorem 1.8. Thanks are also
due to F. Miraglia for his help in improving the presentation.

(8) Cf. Definition 8.1.
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1. Spectral real semigroups. Basic theory

1.1. Preliminaries, Reminders and Notation

We include here some basic notions, notation and results concerning real
semigroups and spectral spaces used throughout. Further material will be
introduced as needed.

(A) Real semigroups.

(1) The axioms for real semigroups (RS) appear in [8], §2, p. 106, and in
[9], Def. 2.2, p. 58. Further information on ternary semigroups can be found
in [8], pp. 100-105. The axioms for abstract real spectra can be found in [14],
pp. 99-100. The functorial duality between abstract real spectra and real
semigroups is proved in [8], Thm. 4.1. For the main, motivating example of
the RSs associated to (commutative, unitary, semi-real) rings, cf. 9.1.A.

(2) The set 3 = {1, 0,−1} has a unique structure of RS, with constants
as displayed, the usual (integer) multiplication as product, representation
given by

D
3
(0, 0) = {0}; D

3
(0, 1) = D

3
(1, 0) = D

3
(1, 1) = {0, 1};

D
3
(0,−1) = D

3
(−1, 0) = D

3
(−1,−1) = {0,−1};

D
3
(1,−1) = D

3
(−1, 1) = 3;

and transversal representation given by:

Dt

3
(0, 0) = {0}; Dt

3
(0, 1) = Dt

3
(1, 0) = Dt

3
(1, 1) = {1};

Dt

3
(0,−1) = Dt

3
(−1, 0) = Dt

3
(−1,−1) = {−1};

Dt

3
(1,−1) = Dt

3
(−1, 1) = 3.

Cf. [8], Cor. 2.4, p 109, or [9], Ex. 2.3(3), p. 58. Note that, for x, y, z ∈ 3,

x ∈ D
3
(y, z) ⇔x �= 0⇒x = y ∨x = z, and

x ∈ Dt

3
(y, z) ⇔ (x = 0⇒ y = −z)∨ (x �= 0⇒x = y ∨x = z).

(3) (RS-characters) LRS-homomorphisms of a LRS-structure with values
in 3 are called RS-characters.

The set of (RS-)characters of a RS, G, denoted by X
G

, is endowed with

a natural topology having as a basis the family of sets
⋂n
i=1[[ ai = 1 ]], for

all finite sequences a1, . . . , an ∈ G where, for a ∈ G and i ∈ {1, 0,−1},
[[ a = i ]] = {h ∈ X

G
|h(ai) = i}. Endowed with this topology, X

G
is a

spectral space (cf. [11], §1; [13], Kap. III; or [14], Prop. 6.3.3, p. 113). The
corresponding constructible topology – denoted (X

G
)
con

– has a basis the
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family of sets
n⋂

i=1

[[ ai = 1 ]] ∩
m⋂

j=1

[[ bj = 0 ]],

for all finite sequences a1, . . . , an, b1, . . . , bm ∈ G (one can always take
m � 1).

Specialization in (the spectral topology of) X
G

admits the following al-
gebraic characterization ([8], Lemma 1.13, p. 105): for g, h ∈ X

G
,

g�h (i.e., h specializes g) ⇔h−1[1]⊆g−1[1]⇔h = h2g
(equivalently, h2 = hg).

(4) (The representation partial order)

Definition 1.1. — ([10], Def. I.5.2) Given a RS, G, the binary relation

a �
G
b : ⇔ a ∈ D

G
(1, b) and −b ∈ D

G
(1,−a),

is a partial order – called the representation partial order of G –, with
the following properties (we omit the subscript G):

Proposition 1.2. — ([10], Prop. I.5.4, Cor. I.5.5(5) and Prop. I.5.6(2))

(a) a � b⇔ − b � −a.

(b) For all a ∈ G, 1 � a � −1.

(c) a � 0⇔ a = a2 ∈ Id(G) (= the set {x2 |x ∈ G} of idempotents of G),

0 � a⇔ a = −a2 ∈ −Id(G).

(d) Let X
G

be the character space of G. For a, b ∈ G,

a � b ⇔∀h ∈ X
G

(h(a)�
3
h(b))⇔

⇔∀h ∈ X
G

[(h(b) = 1⇒h(a) = 1) ∧ (h(b) = 0⇒h(a) ∈ {0, 1})].

(e) For all a ∈ G, the infimum and the supremum of a and −a for the
representation partial order � exists, and a∧ − a = a2, a ∨ − a = −a2. In
particular,

(f) a∧ − a � 0 � b ∨ − b for all a, b ∈ G (called the Kleene inequality).

(g) With join and meet defined by

a ∨ b = a · b,
a ∧ b = the unique element c ∈ Dt(a, b).
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for a, b ∈ Id(G) = {x2 |x ∈ G}, 〈 Id(G),∧,∨, 1, 0 〉 is a distributive lattice
with smallest element 1 and largest element 0, whose order is the restriction
to Id(G) of the representation partial order of G.

Remarks. — (i) The representation partial order of a real semigroup is
nothing else but the trace of the (lattice) order of its Post hull (cf. [9], §4,
pp. 61-65). Fact 1.4 shows that it is also the trace of the (lattice) order of
its spectral hull.

(ii) Note that the representation partial order of the real semigroup 3 is
1 < 0 < −1 (1.2(b)), rather than the order inherited from Z.

(B) Spectral spaces.

For general background on spectral spaces the reader is referred to [11],
whose notation we shall systematically use; certain results therein will be
cited as needed but, due to space limitations, proofs are omitted9. See also
[13].

(1) If X is a spectral space, the associated constructible topology is
denoted by Xcon.

(2) Recall that a spectral space X is called hereditarily normal iff any
of the following equivalent conditions hold:

(i) The specialization order of X is a root-system.

(ii) Every proconstructible subset of X endowed with the induced topol-
ogy is normal.

(iii) Every open, quasi-compact subset of X endowed with the induced
topology is normal.

A proof of the equivalence of these conditions can be found in [11], Thm.
20.2.2.

(3) A map f : X −→Y between spectral spaces X,Y is called spec-
tral iff the preimage of every open and quasi-compact subset of Y under
f is, again, open and quasi-compact. Each of the following conditions is
equivalent to f being spectral:

(i) f is continuous (for the spectral topologies) and continuous for the
constructible topologies of X and Y ([11], Corol. 3.1.12).

(9) These can be obtained on demand from the first author. The numbering of refer-
ences from [11] may change.
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(ii) f is continuous for the constructible topologies and monotone for
the specialization orders, of X and Y ([11], Lemma 5.6.6).

See also [11], Corol. 4.2.3.

(4) We shall consider two different topologies and two different orders on
the set {1, 0,−1}. The first is the discrete topology and the representation
partial order 1 < 0 < −1 (see 1.2(b)), denoted by 3. The second is the
spectral topology, where the singletons {1} and {−1} are a basis of opens,
endowed with the specialization partial order:

•
0

•
1

•
−1

The set {1, 0,−1} endowed with this topology (and order) will be de-
noted by 3sp. Clearly, the singletons {±1} are quasi-compact and {0} is
closed in 3sp. Note that (3sp)con is just the discrete topology on 3.

Definition 1.3. — Spectral maps f : X −→3sp from a spectral space X
into 3sp will be called spectral characters. The set of spectral characters
on X will be denoted by Sp(X).

(5) Clearly, f : X −→3sp is a spectral character iff f−1[1] and f−1[−1]
are quasi-compact open in X.

(C) The structure of Sp(X).

(1) (Product in Sp(X)) Sp(X) has a product operation: the pointwise
defined product of spectral characters h, g is a spectral character; indeed,

(hg)−1[1] = (h−1[1] ∩ g−1[1]) ∪ (h−1[−1] ∩ g−1[−1]),

(hg)−1[−1] = (h−1[−1] ∩ g−1[1]) ∪ (h−1[1] ∩ g−1[−1]);

the sets on the right-hand side of these equalities are quasi-compact open.

Obviously, Sp(X) contains the functions with constant values 1, 0,−1
(denoted by the same symbols). Thus, Sp(X) is a commutative semigroup
and, since product is pointwise defined, also a ternary semigroup ([8], Def.
1.1, p. 100).

(2) (Representation in Sp(X)) A ternary (representation) relation is
pointwise defined: for h, h

1
, h

2
∈ Sp(X),

h ∈ D
Sp(X)

(h
1
, h

2
) : ⇔∀x ∈ X(h(x) ∈ D

3
(h

1
(x), h

2
(x))).
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Note that (by the definition of Dt in terms of D), Dt

Sp(X)
is also point-

wise defined in terms of Dt

3
. The structure 〈Sp(X), ·, 1, 0,−1, D

Sp(X)
〉 will

be denoted by Sp(X).

(3) (The pointwise partial order of Sp(X)) This order is induced by the
total order 1 < 0 < −1 of 3 in the obvious way: for f, g ∈ Sp(X),

f � g⇔∀x ∈ X(f(x) � g(x)) (in 3).

The structure Sp(X) is also endowed with a binary relation �
Sp(X)

defined as in 1.1: for f, g ∈ Sp(X),

(†) f �Sp(X) g : ⇔ f ∈ D
Sp(X)

(1, g) and −g ∈ D
Sp(X)

(1,−f).

Fact 1.4. — The relation �Sp(X) coincides with the pointwise partial
order �.

Proof. — Since the representation partial order of the RS 3 is 1 < 0 <
−1, for f, g ∈ Sp(X) we have:

f � g⇔∀x ∈ X(f(x)�
3
g(x))

⇔∀x ∈ X[f(x) ∈ D
3
(1, g(x))∧ − g(x) ∈ D

3
(1,−f(x))]

⇔ f ∈ DSp(X)(1, g) ∧ − g ∈ DSp(X)(1,−f)
⇔ f �Sp(X) g.

(The equivalences are, respectively, the definition of � together with the
preceding observation, the definition of �

3
, the definition of D

Sp(X)
(see

1.1.C(1),(2)), and the definition of �Sp(X).) �

Remark. — Note that Fact 1.4 does not require Sp(X) to be a real semi-
group. In spite of this equivalence it will be useful to keep the notational
distinction between � and �Sp(X).

(4) (Lattice structure of Sp(X)) Sp(X) has a lattice structure pointwise
induced by the total order 1 < 0 < −1 of 3: for f, g ∈ Sp(X) and x ∈ X,

(f ∨ g)(x) := max{f(x), g(x)}, (f ∧ g)(x) := min{f(x), g(x)} (in 3).

One must check that the maps f ∨ g, f ∧ g thus defined are spectral; this
is clear as

(f ∨ g)−1[1] = f−1[1] ∩ g−1[1], (f ∨ g)−1[−1] = f−1[−1] ∪ g−1[−1], and

(f ∧ g)−1[1] = f−1[1] ∪ g−1[1], (f ∧ g)−1[−1] = f−1[−1] ∩ g−1[−1],

are quasi-compact open subsets of X.
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Since 3 is a chain, the lattice structure just defined is distributive. The
functions with constant value 1 or −1 (denoted by the same symbols) are
the smallest and largest elements, respectively, of the lattice 〈Sp(X), ∧ , ∨ 〉.

We also note:

(5) The product operation and both representation relations of the LRS-
structure Sp(X) can be described (in a quantifier-free manner) in terms of
the constants together with its lattice order and operations, as follows:

Proposition 1.5. — With notation as above, for f, g, h ∈ Sp(X), we
have:

(i) Product in Sp(X) is identical with symmetric difference (defined in
terms of the lattice operations and −):

g · h = g � h(:= (g ∧ − h)∨ (h∧ − g)).

In particular (with g = −1), (−1) · h = −h.

(ii) f ∈ D
Sp(X)

(g, h)⇔ g ∧h∧ 0 � f � g ∨h∨ 0.

(iii) f ∈ Dt

Sp(X)
(g, h)⇔ g ∧h � f � g ∨h, f ∧ − g � h � f ∨ − g and

f ∧ − h � g � f ∨ − h.

Proof. — (i) and (ii) follow straightforwardly from the pointwise defini-
tion of product and representation in Sp(X) (cf. 1.1.C(1),(2) above) and
the validity of the respective items in 3.

The absence of 0 in the inequalities in (iii) demands a bit of extra work
to prove.

(⇒ ) Noting that f ∈ Dt

Sp(X)
(g, h) implies h ∈ Dt

Sp(X)
(f,−g) and g ∈

Dt

Sp(X)
(f,−h), it suffices to prove

(*) g(x)∧h(x) � f(x) � g(x)∨h(x) for all x ∈ X.

Assume f(x) ∈ Dt

3
(g(x), h(x)). If f(x) �= 0, by the last equivalence in

1.1.A(2), f(x) = g(x) or f(x) = h(x), from which (*) clearly follows. If
f(x) = 0, by the same equivalence, g(x) = −h(x), whence (*) reduces in
this case to g(x)∧ − g(x) � 0 � g(x)∨ − g(x), a particular instance of
Kleene’s inequality 1.2(f).

(⇐ ) Assuming the inequalities in the right-hand side of (iii), we prove
f(x) ∈ Dt

3
(g(x), h(x)) for all x ∈ X. If f(x) �= 0, say f(x) = 1, the left

inequality in (*) yields g(x)∧h(x) = 1, whence one of g(x) or h(x) is 1.

– 368 –



Spectral Real Semigroups

A similar argument applies in case f(x) = −1, using the right inequality in
(*).

Suppose, then, f(x) = 0, and argue according to the values of, say,
g(x), to prove g(x) = −h(x) (1.1.A(2)). If g(x) = 0, then −g(x) = 0, and
f(x)∧ − g(x) = 0 = f(x)∨ − g(x). From f ∧ − g � h � f ∨ − g we
conclude h(x) = 0 = −g(x). If g(x) = 1, then f ∧ − h � g � f ∨ − h yields
1 = f(x)∧ − h(x) = 0∧ − h(x), whence −h(x) = 1, and h(x) = −g(x). A
similar argument applies if g(x) = −1.

Next, we examine, for an arbitrary spectral space X, which of the axioms
for real semigroups are satisfied by Sp(X), and the requirements to be
imposed on X for Sp(X) to become a real semigroup.

1.6 Reminder. It is proved in [14], Prop. 6.1.1, p. 100 and Thm. 6.2.4,
pp. 107-108, that the strong associativity axiom for real semigroups, i.e. the
statement

[RS3] If a ∈ Dt(b, c) and c ∈ Dt(d, e), then there exists x ∈ Dt(b, d) such
that a ∈ Dt(x, e),

is equivalent to the conjuntion of the weak associativity axiom [RS3a] (called
AX3a in [14], p. 99), i.e., the same statement with Dt replaced by D, and
the axiom

[RS3b] For all a, b,Dt(a, b) �= ∅.

Theorem 1.7. — For every spectral space X, the structure Sp(X) sat-
isfies all axioms for real semigroups – including the weak associativity axiom
[RS3a] – except, possibly, axiom [RS3b].

Proof. — The validity of the axioms [RSi] for i �= 3(0 � i � 8) is straight-
forward, stemming from the following observations:

(i) Product and representation are pointwise defined in Sp(X), and

(ii) All axioms for real semigroups, except [RS3], are universal statements
in the language L

RS
= {·, 1, 0,−1, D}.

Details are left to the reader.

To prove the weak associativity axiom [RS3a] we use the lattice structure
of Sp(X), see 1.1.C(4).

Let a, b, c, d, e ∈ Sp(X) be such that a ∈ D
Sp(X)

(b, c) and c ∈ D
Sp(X)

(d, e).

We must find an f ∈ Sp(X) so that f ∈ D
Sp(X)

(b, d) and a ∈ D
Sp(X)

(f, e).

We claim that
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f = (a∧ − e)∨ (b∧ d)∨ (a∧ b)∨ (a∧ d)

has the desired property. Indeed, we have:

– f ∈ D
Sp(X)

(b, d). By Proposition 1.5(ii) our assumptions amount to:

(*) b∧ c∧ 0 � a � b∨ c∨ 0 and (**) d∧ e∧ 0 � c � d∨ e∨ 0,

and we must prove b∧ d∧ 0 � f � b∨ d∨ 0. The left-hand side inequality is
clear as b∧ d occurs as a disjunct in f . For the inequality in the right-hand
side, the last three disjuncts of f are either � b or � d, and so � b∨ d∨ 0.
It remains to show that a∧ − e � b∨ d∨ 0. From (*) comes

a∧ − e � b∨ (c∧ − e)∨ (0∧ − e) � b∨ (c∧ − e)∨ 0,

and from (**), using the Kleene inequality 1.2(f), we obtain

c∧ − e � (d∨ e∨ 0)∧ − e � d∨ (e∧ − e)∨ 0 = d∨ 0.

Hence, a∧ − e � b∨ d∨ 0, as required.

– a ∈ D
Sp(X)

(f, e). By 1.5(ii) we must now prove f ∧ e∧ 0 � a � f ∨ e∨ 0.

For the left inequality: three of the disjuncts of f are � a. So, it suffices to

prove b∧ d∧ e∧ 0 � a, which is clear using successively the left-hand side
inequalities in (*) and (**). For the inequality in the right-hand side, we
show its validity at each point x ∈ X. This clearly holds if a(x) ∈ {0, 1}.
So, assume a(x) = −1 and prove that either f(x) = −1 or e(x) = −1. Since
a(x)∧ z = −1∧ z = z, we have

f(x) = −e(x)∨ (b(x)∧ d(x))∨ b(x)∨ d(x) = b(x)∨ d(x)∨ − e(x).

From the right inequality in (*) we get either b(x) = −1 (whence f(x) =
−1), or c(x) = −1. This, together with the right inequality in (**) yields
d(x) = −1 (and hence f(x) = −1) or e(x) = −1, as required. �

Concerning the remaining axiom [RS3b], we have:

Theorem 1.8. — The following are equivalent for every spectral space
X:

(1) X is hereditarily normal.

(2) The structure Sp(X) verifies axiom [RS3b], i.e. it is a real semi-
group.

The following known results concerning spectral spaces will be needed
in the proof of 1.8. Recall that a subset A of a spectral space X is called
generically closed if it is downward closed for the specialization order of
X: for x, y ∈ X, x� y and y ∈ A imply x ∈ A; cf. [11], 5.1.6.
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Proposition 1.9. — Let X be a spectral space and let D
1
, D

2
be dis-

joint, generically closed, quasi-compact subsets of X. Then,

(i) D
1
, D

2
are contained in disjoint quasi-compact open subsets of X.

(ii) Given quasi-compact opens U
1
, U

2
such that Di ⊆ Ui(i = 1, 2) there

are disjoint quasi-compact opens V
1
, V

2
so that Di ⊆ Vi ⊆ Ui(i = 1, 2).

Remark. — Item (ii) is a consequence of (i): if V ′
1
, V ′

2
are disjoint quasi-

compact opens such that Di⊆V ′i , then the sets Vi = V ′i ∩Ui(i = 1, 2) satisfy
the conclusion of (ii). Item (i) is Prop. 6.1.14(iii) in [11].

Fact 1.10. — Let X be a topological space, and B,C⊆X. If B is quasi-
compact and C is closed, then B ∩ C is quasi-compact.

Proof of Theorem 1.8. — (1) ⇒ (2). Let f, g ∈ Sp(X). We consider the
following subsets of X:

K
1

= (f−1[0, 1] ∩ g−1[1]) ∪ (g−1[0, 1] ∩ f−1[1]),

K
2

= (f−1[0,−1] ∩ g−1[−1]) ∪ (g−1[0,−1] ∩ f−1[−1]).

By 1.10 these sets are quasi-compact. Let Gen (Ki) = {x ∈ X | There is y ∈
Ki such that x� y} denote the generization of Ki(i = 1, 2) in X, i.e., the
downward closure of Ki under the specialization order � of X. Since open
sets are downward closed under � , it is easily checked that Gen (Ki) is also
quasi-compact. We claim:

Claim 1. — Gen (K
1
) ∩Gen (K

2
) = ∅.

Proof of Claim 1. — Assume there is t ∈ Gen (K
1
) ∩ Gen (K

2
), and let

ki ∈ Ki be such that t� ki (i = 1, 2). Since X is assumed hereditarily
normal, either k1� k2 or k2� k1, say the first. Since k2 ∈ K

2
⊆f−1[−1] ∪

g−1[−1] and the latter set is open, we get k1 ∈ f−1[−1] ∪ g−1[−1], contra-
dicting k

1
∈ K

1
. �

Since f−1[1]∪g−1[1] is open and contains K
1
, we have Gen (K

1
)⊆f−1[1]∪

g−1[1]. Similarly, Gen (K
2
)⊆ f−1[−1]∪g−1[−1]. By Proposition 1.9 there are

disjoint quasi-compact opens V
1
, V

2
so that Gen (K

1
)⊆V

1
⊆f−1[1] ∪ g−1[1]

and Gen (K
2
)⊆V

2
⊆f−1[−1] ∪ g−1[−1]. Let h : X −→3 be the map

h(x) =





1 if x ∈ V
1

−1 if x ∈ V
2

0 if x �∈ V
1
∪ V

2
.

Clearly, h ∈ Sp(X), and we assert
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Claim 2. — h ∈ Dt

Sp(X)
(f, g).

Proof of Claim 2. — By Proposition 1.5(iii) it suffices to show that each
of the following pairs of inequalities

(*) f ∧ g � h � f ∨ g, h∧ − f � g � h∨ − f and h∧ − g � f � h∨ − g,

holds at every point x ∈ X. If h(x) = 1, then x ∈ V
1
, whence f(x) = 1

or g(x) = 1. This yields (f ∧ g)(x) = 1, f(x) � −g(x) and g(x) � −f(x),
which, together, imply the validity of all inequalities in (*) at the point x.
A similar argument works if h(x) = −1.

So, assume h(x) = 0, i.e., x �∈ V
1
∪ V

2
. Then, x �∈ K

1
∪ K

2
, and this

implies

x ∈ (g−1[0, 1] ∪ f−1[1]) ∩ (f−1[0, 1] ∪ g−1[1]) ∩ (g−1[0,−1] ∪ f−1[−1]) ∩
(f−1[0,−1] ∪ g−1[−1]).

If f(x) = g(x) = −1, then x does not belong to the first conjunct; hence
(f ∧ g)(x) � 0. Likewise, f(x) = g(x) = 1 is not possible; so, (f ∧ g)(x) � 0,
proving that the first (double) inequality in (*) holds at x. Note that g(x) =
±1⇔ f(x) = ∓1, which proves that the two last pairs of inequalities in (*)
hold at x. �

(2) ⇒ (1). With � denoting the specialization order of X, assume there
are x, y, z ∈ X such that x� y, z, but y �� z and z �� y. Thus, z �∈ {y} and
y �∈ {z}. Then, there are quasi-compact opens U, V such that z ∈ U, y ∈
V, y �∈ U and z �∈ V . Let f

U
, f
V

: X −→3 be the spectral maps defined by:

f
U

(x) =

{
1 if x ∈ U
0 if x �∈ U

, f
V

(x) =

{
−1 if x ∈ V

0 if x �∈ V.

Since Sp(X) |= [RS3b], there is f ∈ Sp(X) such that f ∈ Dt

Sp(X)
(f
U
, f
V

).

In particular, for w ∈ {y, z} we have f(w) ∈ Dt

3
(f
U

(w), f
V

(w)). Now,

f
U

(y) = 0, f
V

(y) = −1 and f
U

(z) = 1, f
V

(z) = 0 imply f(y) = −1 and
f(z) = 1 (cf. 1.1.A(2)). Since f is monotone for the order of 3sp, x� y, z
entails f(x) = −1 and f(x) = 1, contradiction. �

Definition 1.11. — A real semigroup is called spectral if it is of the
form Sp(X) for some spectral space X (necessarily hereditarily normal by
the preceding theorem).
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2. Definability of the lattice structure

In this section we prove a weak converse to Proposition 1.5 by giving
an explicit first-order (but not quantifier-free) definition of the lattice op-
erations of any spectral RS in the language LRS = {·, 1, 0,−1, D} for real
semigroups. The specific (logical) form of this definition entails that the RS-
characters of spectral RSs are automatically lattice homomorphisms, a key
result towards a structural theory of spectral real semigroups and, hence,
to many later results in this paper.

Theorem 2.1. — Let G be a spectral real semigroup. For a, b, c, d ∈ G
we have:

(i) a∧ 0 = c⇔ c = c2, a · c = c and −a ∈ D
G

(1,−c).

Setting a− := a∧ 0 and a+ := −(−a)− = a∨ 0, we have:

(ii) a ∧ b = d ⇔ d ∈ D
G

(a, b), d+ = −a+ · b+ and d− ∈ Dt

G
(a−, b−).

Remark. — These equivalences prove, in particular, that the elements
c, d in (i) and (ii) are uniquely determined by a and b.

Proof. — Let G = Sp(X), X a hereditarily normal spectral space. Owing
to Fact 1.4, the lattice operations in G can interchangeably be taken in the
pointwise order � or in the representation partial order �

G
(we shall use

both).

(i) (⇒ ) We check that c := a∧ 0 verifies the three conditions on the
right-hand side of (i).

Firstly, c � 0 implies c = c2 (1.2(c)), and c � a implies −a ∈ D
Sp(X)

(1,−c)

(1.1). To check ac = c, recall that ac = a� c (� = symmetric difference,
cf. 1.5(i)). Hence,

a� (a∧ 0) = (a∧ − (a∧ 0))∨ ((a∧ 0)∧ − a)
= (a∧ (−a∨ 0))∨ (a∧ − a∧ 0)

= (a∧ − a)∨ (a∧ 0)∨ (a∧ − a∧ 0) = (a∧ − a)∨ (a∧ 0);

since a∧ − a � 0, a (cf. 1.2(f)), the last term equals a∧ 0.

(⇐ ) By 1.2(c), c = c2 � 0; by [8], Prop. 2.3(5) we have c = c2 ∈ D
G

(1, a).
By assumption we also have −a ∈ D

G
(1,−c), whence c � a.

To prove c = a∧ 0, let z ∈ G be such that z � 0 and z � a, and show
z � c, i.e., z(x) � c(x) for all x ∈ X. Otherwise, since z = z2, we must
have z(x) = 0 and c(x) = 1 for some x ∈ X. From ac = c we get a(x) = 1,
contradicting z(x) � a(x).
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(ii) (⇒ ) Set d := a∧ b. We check the three conditions on the right-hand
side of (ii).

a) d ∈ D
G

(a, b). This is clear from a∧ b∧ 0 � d � a∨ b∨ 0, using Propo-

sition 1.5(ii).

b) (a∧ b)+ = −a+ · b+. We compute the right-hand side using the dis-
tributive lattice structure of G and that product in G is symmetric differ-
ence (1.5(i)). Recall that z+ = z ∨ 0 and −(z �w) = (−z ∨w)∧ (−w∨ z).
We have:

−a+ · b+ = −(a∨ 0) � (b∨ 0) = (−(a∨ 0)∨ (b∨ 0))∧ (−(b∨ 0)∨ (a∨ 0))

= ((−a∧ 0)∨ (b∨ 0))∧ ((−b∧ 0)∨ (a∨ 0)) = (b∨ 0)∧ (a∨ 0)

= (a∧ b)∨ 0 = (a∧ b)+,

as asserted.

c) (a∧ b)− ∈ Dt

G
(a−, b−). By Proposition 1.5(iii) this amounts to proving

(I) a− ∧ b− � (a∧ b)− � a− ∨ b−,

(II) (a∧ b)− ∧ − a− � b− � (a∧ b)− ∨ − a−,

(III) (a∧ b)− ∧ − b− � a− � (a∧ b)− ∨ − b−.

Observe that a− ∧ b− = (a∧ 0)∧ (b∧ 0) = a∧ b∧ 0 = (a∧ b)−, which
clearly implies (I). For (II) we have

(a∧ b)− ∧ − a− = a− ∧ − a− ∧ b− � b− and

(a∧ b)− ∨ − a− = (a− ∧ b−)∨ − a− = (b− ∨ − a−)∧ (a− ∨ − a−).

Since z− � 0 for all z ∈ G, invoking Kleene’s inequality 1.2(f) we get
b− � 0 � a− ∨ − a−, and hence b− � (a∧ b)− ∨ − a−, as required. Item
(III) is equivalent to (II) by symmetry.

(⇐ ) Given d ∈ G, we assume d ∈ D
G

(a, b), d+ = −a+ ·b+, d− ∈ Dt

G
(a−, b−),

and prove d = a∧ b.

a) d �
G
a and d �

G
b. By symmetry it suffices to prove the first inequal-

ity. In view of the pointwise definition of �
G

(see (†) in 1.1.C(3)), it suffices,

in turn, to prove, for x ∈ X:

a(x) = 1⇒ d(x) = 1 and a(x) = 0⇒ d(x) ∈ {0, 1}.
Note that z− = z ∧ 0 � 0 clearly implies

(*) z = 1⇔ z− = 1 (equivalently, z = 0⇔ z− ∈ {0,−1}).
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For the first implication, a(x) = 1 yields a−(x) = 1. From d−∈Dt

G
(a−, b−)

and b−(x) ∈ {0, 1} we get d−(x) ∈ Dt

3
(a−(x), b−(x)) = Dt

3
(1, b−(x)) = {1},

which, by (*), gives d(x) = 1, as needed.

For the second implication, if a(x) = 0 but d(x) = −1, we would have
a+(x) = a(x)∨ 0 = 0 and d+(x) = d(x)∨ 0 = −1, contradicting the
equality d+ = −a+ · b+ at the point x.

b) For all z ∈ G, z �
G
a and z �

G
b imply z �

G
d. We must check, for all

x ∈ X:

d(x) = 1⇒ z(x) = 1 and d(x) = 0⇒ z(x) ∈ {0, 1}.

For the first implication, (*) yields d−(x) = 1. On the other hand,
since a−(x), b−(x) ∈ {0, 1}, from d− ∈ Dt

G
(a−, b−) we obtain 1 = d−(x) ∈

Dt

3
(a−(x), b−(x)). This relation implies that a−(x), b−(x) cannot both be 0

(cf. 1.1.A(2)). If, e.g., a−(x) = 1, then a(x) = 1, and z �
G
a yields z(x) = 1.

For the second implication, suppose d(x) = 0; hence d+(x) = d(x)∨ 0 =
0. This and d+ = −a+ · b+ imply that one of a+(x) or b+(x) is 0, say, e.g.,
a+(x) = 0. Then, 0 = a+(x) = a(x)∨ 0 entails a(x) ∈ {0, 1}; this, together
with z �

G
a yields z(x) ∈ {0, 1}, completing the proof of Theorem 2.1.

Remark. — First-order definability of the lattice structure of Sp(X) in
L

RS
follows also from Fact 1.4: it suffices to express

(i) The definition of �Sp(X) in terms of DSp(X) (Definition 1.1), and

(ii) The usual definition of the glb (∧ ) and the lub (∨ ) in terms of the
order �Sp(X).

However, the definition of the lattice operations obtained in this way
does not guarantee that the next Corollary holds, while that of Theorem
2.1 does. Though only implicit at this stage, the reason is that the definition
in 2.1 is given by a positive-primitive L

RS
-formula, while that above is not.

For more details, see 7.2.

Corollary 2.2. — The RS-characters of a spectral real semigroup are
lattice homomorphisms. Further, RS-homomorphisms between spectral RSs
are automatically homomorphisms of the corresponding lattice structures.

Proof. — We do the proof for characters, leaving the second assertion to
the reader. To begin with, observe that 3 is a spectral RS. Indeed, 3 = Sp(1),
where 1 the singleton spectral space; the three functions 1−→3sp map
the unique element to 1, 0 and −1, respectively; clearly, they are pointwise
ordered in the correct way.
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Let G be a spectral RS, a, b ∈ G and σ ∈ X
G

; we show that σ(a∧ b) =
σ(a)∧σ(b). The equivalences (i) and (ii) of 2.1 can (and will) be applied to
both G and 3.

We first treat the case b = 0. We know that c = a ∧ 0, verifies the
conditions in the right-hand side of 2.1(i). Since σ is a RS-homomorphism
we get σ(c) ∈ Id(3) = {0, 1}, σ(a)σ(c) = σ(c) and −σ(a) ∈ Dt

3
(1,−σ(c)).

Using the implication (⇐ ) of 2.1(i) in 3, gives σ(c) = σ(a)∧ 0, i.e.,

(†) σ(a∧ 0) = σ(a)∧ 0 (equivalently, σ(a−) = σ(a)−).

Since σ(−(−a)−) = −σ((−a)−) = −(σ(−a))− = −(−σ(a))−, we also get

(††) σ(a+) = σ(a)+.

Next, for arbitrary b ∈ G, applying item (ii) of 2.1 with d = a∧ b,
taking into account that σ is a RS-homomorphism, and using (†) and
(††) above, we get σ(d) ∈ D

3
(σ(a), σ(b)), σ(d)+ = −σ(a)+ · σ(b)+ and

σ(d)− ∈ Dt

3
(σ(a)−, σ(b)−). On the other hand, the element x = σ(a)∧σ(b)

exists in 3, and verifies x ∈ D
3
(σ(a), σ(b)), x+ = −σ(a)+ · σ(b)+ and

x− ∈ Dt

3
(σ(a)−, σ(b)−). That is, both x and σ(d) verify in 3 the con-

ditions of the right-hand side of (ii) in 2.1. This implies x = σ(d), i.e.,
σ(a)∧σ(b) = σ(a∧ b), as asserted.

3. The functor Sp

We begin here the study of the correspondence X �−→ Sp(X) assigning
to each hereditarily normal spectral space, X, the real semigroup Sp(X).
In this and the next two sections we set the stage to prove that this cor-
respondence is the object map of a duality between the category HNSS
of hereditarily normal spectral spaces with spectral maps, and SRS, the
category of spectral real semigroups with real semigroup morphisms, a goal
attained in Theorem 5.4 below.

We now describe the behaviour of our functor on spectral maps.

Definition and Notation 3.1. — Given a spectral map ϕ : X −→Y
between spectral spaces X,Y we define a dual map Sp(ϕ) : Sp(Y )−→Sp(X)
by composition: for f ∈ Sp(Y ) we set,

Sp(ϕ)(f) := f ◦ ϕ.

Being a composition of spectral maps, we have Sp(ϕ)(f) ∈ Sp(X).
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Proposition 3.2. — Let ϕ : X −→Y be a spectral map between spectral
spaces. Then Sp(ϕ) is a homomorphism of L

RS
-structures.

The proof is routine verification using the fact that product and repre-
sentation in both Sp(Y ) and Sp(X) are pointwise defined. We omit it. Note
that it is not required that X,Y be hereditarily normal.

As a beginning step in proving that this functor is an anti-equivalence
of categories we show that any hereditarily normal spectral space, X, is
isomorphic in the category of spectral spaces to the abstract real spectrum
XSp(X) of the real semigroup Sp(X). The proof requires a fine touch. First,
we observe the following straightforward

Fact 3.3. — Let X be a spectral space. The evaluation map at a point
x ∈ X, evx : Sp(X)−→3, given by evx(f) = f(x) for f ∈ Sp(X), is a
character of L

RS
-structures., i.e., evx ∈ XSp(X).

Let ev : X −→XSp(X) be the map ev(x) = evx(x ∈ X).

Proposition 3.4. — ev : X −→XSp(X) is injective and spectral.

Proof. — (1) ev is injective. This amounts to showing that Sp(X) sepa-
rates points in X: for x �= y in X, there is g ∈ Sp(X) so that g(x) �= g(y),

i.e., evx(g) �= evy(g), whence evx �= evy, i.e., ev(x) �= ev(y).

Since X is T
0
, if x �= y, there is a quasi-compact open U⊆X so that

x ∈ U and y �∈ U , or y ∈ U and x �∈ U , say the first. Let g : X −→3 be
defined by: g�U = 1, g�(X \ U) = 0. Since g−1[1] = U, g−1[−1] = ∅ are
quasi-compact open, g ∈ Sp(X) and, clearly, g(x) = 1, g(y) = 0. The case
y ∈ U and x �∈ U is similar.

(2) ev is spectral. By definition, the family {[[ f = 1 ]] | f ∈ Sp(X)},
where [[ f = 1 ]] = {σ ∈ XSp(X) |σ(f) = 1} is a subbasis for the spectral
topology on XSp(X), cf. 1.1.A(3). It suffices, then, to show that ev−1[[[ f =
1 ]]] is quasi-compact open in X, for f ∈ Sp(X). For x ∈ X we have:

x ∈ ev−1[[[ f = 1 ]]]⇔ ev(x) = evx ∈ [[ f = 1 ]]⇔ evx(f) = f(x) = 1,

i.e., ev−1[[[ f = 1 ]]] = f−1[1], a quasi-compact open set, as claimed. �

The surjectivity of ev is the key to establish the anti-equivalence of
categories announced above.

Theorem 3.5. — Let X be a hereditarily normal spectral space. Then,
ev : X −→XSp(X) is surjective.
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Proof. — Given σ ∈ XSp(X) we have to find x ∈ X so that ev(x) = evx =
σ. To accomplish this we shall use Stone’s representation theorem of spectral
spaces by bounded distributive lattices (cf. [11], §§1,2). This fundamental
result proves the existence of a (functorial) bijective correspondence between
the points of a spectral space, X, and the prime filters of the bounded
distributive lattice K(X) of closed constructible – i.e., complements of
quasi-compact open – subsets of X; cf. [11], Thm. 2.1.7 for a more precise
statement). We shall construct a prime filter p of K(X) such that, if x

0
is

the unique point of
⋂

p, then σ = evx0 . Recall that the pointwise order

coincides with the representation partial order in Sp(X) (1.4).

Since σ : Sp(X)−→ 3 is a lattice homomorphism (2.2), the set q =
σ−1[0,−1] is a prime filter of the lattice Sp(X). For A ∈ K(X) we define
maps c

A
, d
A

: X −→3 as follows: for x ∈ X,

c
A
(x) =

{
0 if x ∈ A
−1 if x �∈ A,

d
A
(x) = −c

A
(x) =

{
0 if x ∈ A
1 if x �∈ A.

Since X \A is quasi-compact open, we have c
A
, d
A
∈ Sp(X). Further, since

d
A
� 0 � c

A
and σ is monotone, we get σ(d

A
) ∈ {0, 1} and σ(c

A
) ∈ {0,−1}.

Now set:

p := {A ∈ K(X) | d
A
∈ q} = {A ∈ K(X) |σ(d

A
) = 0}.

Claim 1. — p is a prime filter of K(X).

Proof of Claim 1. — (a) A⊆B and A ∈ p imply B ∈ p. Clearly, A⊆B⇒
d
A
� d

B
. Since σ is monotone, 0 = σ(d

A
) � σ(d

B
), and from σ(d

B
) ∈ {0, 1},

it follows σ(d
B

) = 0, i.e., B ∈ p.

(b) ∅ �∈ p. Clear, since d∅ = 1.

(c) It is straightforward that d
A∩B = d

A
∧ d

B
and d

A∪B = d
A
∨ d

B
.

Recalling that σ is a lattice homomorphism, these equalities yield that p is
closed under meets and is prime.

Claim 2. — For f ∈ Sp(X), f ∈ q⇔ f−1[0,−1] ∈ p.

Proof of Claim 2. — Set A := f−1[0,−1] ∈ K(X). Note that d
A
� f

because Im(d
A
) = {0, 1} and, for x ∈ X, d

A
(x) = 0⇒x ∈ A⇒ f(x) ∈

{0,−1}.
(⇐ ) If A ∈ p, then d

A
∈ q and d

A
� f give f ∈ q (q is a filter).

(⇒ ) For the converse, first observe that d
A

= c
A
∧ f . Indeed, for x ∈ X we

have:
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– d
A
(x) = 0 ⇒ x ∈ A ⇒ c

A
(x) = 0 and f(x) ∈ {0,−1}, whence

(c
A
∧ f)(x) = 0;

– d
A
(x) = 1 ⇒ x �∈ A ⇒ f(x) = 1 ⇒ (c

A
∧ f)(x) = 1.

Now assume A �∈ p; then, σ(d
A
) = 1. Since σ is a lattice homomorphism,

d
A

= c
A
∧ f yields 1 = σ(d

A
) = σ(c

A
)∧σ(f); since σ(c

A
) ∈ {0,−1}, this

equality entails σ(f) = 1, i.e., f �∈ q.

Let x
0

be the unique point in
⋂

p; then:

Claim 3. — evx0 = σ.

Proof of Claim 3. — By Claim 2, for f ∈ Sp(X) we have:

f ∈ q⇔ f−1[0,−1] ∈ p⇔x
0
∈ f−1[0,−1]⇔ f(x

0
) ∈ {0,−1}.

Using this equivalence, we argue by cases according to the values of σ(f):

– σ(f) = 0⇒ f ∈ q and −f ∈ q⇒ f(x
0
),−f(x

0
) ∈ {0,−1}⇒ f(x

0
) = 0.

– σ(f) = −1⇒σ(−f) = 1⇒ − f �∈ q⇒ − f(x
0
) = 1⇒ f(x

0
) = −1.

– σ(f) = 1⇒ f �∈ q⇒ f(x
0
) = 1.

This completes the proof of Claim 3 and, hence, of Theorem 3.5. �

Corollary 3.6. — For a hereditarily normal spectral space X,
ev : X −→XSp(X) is a homeomorphism of Xcon onto (XSp(X))con.

Proof. — Immediate from Proposition 3.4 and Theorem 3.5, since ev
is a continuous bijection between the compact Hausdorff spaces Xcon and
(XSp(X))con. �

To prove that ev is an isomorphism between X and XSp(X) in the cat-
egory of spectral spaces we show:

Proposition 3.7. — Let X be a hereditarily normal spectral space.
Then, ev−1 : XSp(X) −→X is a spectral map. Hence, ev is a homeomor-
phism and, therefore, an isomorphism between X and XSp(X) in the cate-
gory of spectral spaces.

Proof. — By the characterization of spectral maps mentioned in 1.1.B(3.ii)
and the preceding Corollary 3.6, to show that ev−1 is spectral it only re-
mains to prove that, for σ

1
, σ

2
∈ XSp(X),

σ
1
�
XSp(X)

σ
2
⇒ ev−1(σ

1
)�
X

ev−1(σ
2
).
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Since ev−1(σi) is the unique xi ∈ X such that evxi = σi, this is equivalent
to

evx
1
�
XSp(X)

evx
2
⇒x

1
�
X

x
2
.

Assume x1 ��
X

x2, i.e., x
2
�∈ {x

1
}. Then, there is a quasi-compact open

U⊆X such that x
2
∈ U and x

1
�∈ U . Define f : X −→3 by:

f(x) =

{
1 if x ∈ U
0 if x �∈ U.

Since f−1[1] = U, f−1[−1] = ∅ are quasi-compact open, f ∈ Sp(X) and,
clearly, f(x

2
) = 1, f(x

1
) = 0, which shows f ∈ (evx

2
)−1[1] \ (evx

1
)−1[1].

Hence, (evx
2
)−1[1] �⊆ (evx

1
)−1[1]. From the characterization of specializa-

tion in 1.1.A(3) it follows that evx
1
��
XSp(X)

evx
2
, as required. The remain-

ing statement is now immediate. �

4. The spectral hull of a real semigroup. Idempotency

We now take on a reverse tack, consisting in applying the construction
of the spectral real semigroup Sp(X) to the case where X is the character
space X

G
of a given real semigroup G. The result will be a real semigroup

Sp(G) extending G and having the functorial properties of a hull. This
spectral hull turns out to be idempotent, i.e., its iteration does not produce
a larger RS.

Definition and Notation 4.1. — Let G be a RS and let X
G

be its
character space. By [14], Prop. 6.4.1, p. 114, X

G
is a hereditarily normal

spectral space.

(i) We define Sp(G) to be the real semigroup Sp(X
G

) (see 1.8).

(ii) We denote by η
G

the map of G into 3XG defined by evaluation at
elements g ∈ G:

η
G

(g) := evg : X
G
−→3, where, for σ ∈ X

G
, evg(σ) := σ(g).

The next Proposition states some elementary properties of the map η
G

.
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Proposition 4.2. — Let G be a RS.

(i) For all g ∈ G, evg is a spectral map, i.e., η
G

(g) ∈ Sp(G).

(ii) η
G

is a real semigroup homomorphism into Sp(G).

(iii) η
G

is injective.

Proof. — (i) Same argument as for item (2) in Proposition 3.4.

(ii) This is straightforward checking using the fact that the constants,
product and representation in Sp(G) are pointwise defined. Details are left
to the reader.

(iii) By the definition of η
G

we must show

evg1 = evg2 ⇒ g
1

= g
2

(g
1
, g

2
∈ G),

or, equivalently,

g
1
�= g

2
⇒∃σ ∈ X

G
(σ(g

1
) �= σ(g

1
)).

This is precisely the separation theorem 4.4(3) in [8], pp. 116-117.

Note. 4.2(iii) is also a consequence of the more general Corollary 5.10 below.

Definition and Notation 4.3. — (a) The map η
G

: G−→Sp(G) –
more precisely, the pair (Sp(G), η

G
) – will be called the spectral hull of G.

This name is justified by Theorem 5.3(ii).

(b) Any RS-homomorphism f : G−→H gives rise, by composition, to a
dual map, f∗ : X

H
−→X

G
, given by: for γ ∈ X

H
,

f∗(γ) := γ ◦ f : G−→3.

Clearly, f∗(γ) ∈ X
G
.

Fact 4.4. — f∗ : X
H
−→X

G
is a spectral map.

Proof. — It suffices to check that, for all g ∈ G, f∗−1[[[ g = 1 ]]] is quasi-
compact open in X

H
. For γ ∈ X

H
we have,

γ ∈ f∗−1[[[ g = 1 ]]] ⇔ f∗(γ) ∈ [[ g = 1 ]]⇔ γ ◦ f ∈ [[ g = 1 ]]⇔ (γ ◦ f)(g) = 1

⇔ γ(f(g)) = 1⇔ γ ∈ [[ f(g) = 1 ]],

i.e., f∗−1[[[ g = 1 ]]] = [[ f(g) = 1 ]], as needed. �

(c) In the preceding setting we define, as in 3.1, a map Sp(f) : Sp(G)−→
Sp(H) again by composition: for g ∈ Sp(G), Sp(f)(g) := g ◦ f∗. By 4.4,
g ◦ f∗ ∈ Sp(H).
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(d) Fact 4.4 shows that the correspondence (G �−→ X
G
, f �−→ f∗), for

G |= RS and RS-morphisms f : G−→H defines a contravariant functor –
written * – from the category of real semigroups with RS-morphisms into
that of spectral spaces with spectral maps.

Next we show that the operator Sp is idempotent.

Theorem 4.5. — (Idempotency of Sp) Let X be a hereditarily normal
spectral space. Then, ηSp(X) : Sp(X)−→Sp(Sp(X)) is an isomorphism of
real semigroups.

Proof. — Applying Proposition 4.2 with G = Sp(X), it only remains to
prove:

(a) ηSp(X) is surjective, and (b) η−1
Sp(X)

is a RS-homomorphism.

Proof of (a). Since Sp is a contravariant functor (3.1, 3.2), ev−1 ◦ ev =

id
X

, and ev ◦ ev−1 = idSp(X) imply Sp(ev−1 ◦ ev) = Sp(ev) ◦ Sp(ev−1) =

idSp(X) and Sp(ev ◦ ev−1) = Sp(ev−1) ◦ Sp(ev) = idSp(Sp(X)). Hence, for
f ∈ Sp(Sp(X)), f = Sp(ev−1)(Sp(ev)(f)) = Sp(ev−1)(f ◦ev), cf. 3.1. Then,
it suffices to show:

(*) ηSp(X) = Sp(ev−1).

Proof of (∗). We must show, for b ∈ Sp(X):

Sp(ev−1)(b) = b ◦ ev−1 = ηSp(X)(b) = ev
b
,

i.e., (b ◦ ev−1)(γ) = ev
b
(γ) = γ(b), for all γ ∈ XSp(X). By definition,

ev−1(γ) = the unique x ∈ X such that ev(x) = evx = γ. Then, γ(b) =
evx(b) = b(x), and b(x) = b(ev−1(γ)), i.e., (b ◦ ev−1)(γ) = γ(b), as required.

Proof of (b). In the proof of (a) we noted that

Sp(ev)
−1

= Sp(ev−1) and Sp(ev−1)
−1

= Sp(ev).

This, together with (*), gives η−1
Sp(X) = Sp(ev−1)

−1
= Sp(ev). Since Sp(ϕ)

is a RS-homomorphism for any spectral map ϕ (3.2), Proposition 3.4 yields
that η−1

Sp(X) is a RS-homomorphism, proving (b) and Theorem 4.5. �

Theorem 4.5 can be restated as follows:

Corollary 4.6. — Let G be a spectral RS (1.11). Then, the map
η
G

: G−→Sp(G) is an isomorphism. In other words, every spectral RS is
canonically isomorphic to its spectral hull (the converse is obviously true).
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5. An anti-equivalence of categories

Our main result in this section is the anti-equivalence of the categories
HNSS and SRS (Theorem 5.4). The commutativity of diagrams required
for this result are proven in 5.1 and 5.3. These results also have further
important consequences, such as:

(i) The duality of the functors * (4.3(d)) and Sp (3.1), and

(ii) Uniqueness of the extension Sp(f) : Sp(G)−→Sp(H) (4.3) of any
RS-homomorphism f : G−→H (G,H |= RS); in particular, unique exten-
sion of any RS-character of G to Sp(G).

Example 5.6 gives a simple illustration of how a RS sits inside its spectral
hull. Finally, Theorem 5.8 is an analog to Theorem 5.2 in [6], pp. 75-77 (and
to Theorem III.3.5 in [10]) for spectral real semigroups.

Proposition 5.1. — Let X,Y be hereditarily normal spectral spaces
and let ϕ : X −→Y be a spectral map. Let ev

X
: X −→ X

Sp(X)
and ev

Y
:

Y −→ X
Sp(Y )

denote the bijections given by 3.4 and 3.5. The following di-

agram is commutative:

Proof. — Recall that, for x ∈ X, ev
X

(x) = evx : Sp(X)−→3; likewise,
ev
Y

(ϕ(x)) = evϕ(x) : Sp(Y )−→3. By the definition of * (4.3(b)),

(Sp(ϕ)
∗ ◦ ev

X
)(x) = Sp(ϕ)

∗
(evx) = evx ◦ Sp(ϕ),

and
(ev

Y
◦ ϕ)(x) = ev

Y
(ϕ(x)) = evϕ(x).

Thus, we must check that evϕ(x) = evx ◦ Sp(ϕ). Let b ∈ Sp(Y ); then,
Sp(ϕ)(b) = b ◦ ϕ, and we get:

(evx ◦ Sp(ϕ))(b) = evx(Sp(ϕ)(b)) = evx(b ◦ ϕ) = (b ◦ ϕ)(x) = b(ϕ(x))

= evϕ(x)(b),

as required. �
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Notation. — Next we fix a G |= RS and set X = X
G

. We rebaptize
ev
G

: X
G
−→ XSp(G) the map ev

XG
considered above, i.e., ev

G
(σ) := ev

σ
,

for σ ∈ X
G

. Then,

Fact 5.2. — With notation as above, the following identities hold:

(i) ev−1

G
= η∗

G
; (ii) Sp(η∗

G
) = η

Sp(G)
. Hence,

(iii) η∗
G

is bijective.

Proof. — (i) Fix γ ∈ XSp(G). Since ev−1

G
(γ) = the unique σ ∈ X

G
so that

γ = ev
G

(σ) = ev
σ
, and η∗

G
(γ) = γ ◦ η

G
, the identity to be proved boils down

to showing that ev
σ
◦ η

G
= σ, for σ ∈ X

G
. Let g ∈ G; since η

G
(g) = evg, we

get ev
σ
(η
G

(g)) = η
G

(g)(σ) = evg(σ) = σ(g), as desired.

(ii) From (*) in the proof of idempotency (4.5) with X = X
G

, we have

ηSp(G) = ηSp(XG) = Sp(ev−1

G
),

and the result follows at once from (i).

Item (iii) is clear from 3.4, 3.5 and item (i). �

Our next result is an analog of Thm. 4.17 of [6] (and of Theorem III.3.2
of [10]), a result of crucial importance:

Theorem 5.3. — (i) Let f : G−→H be a homomorphism of real semi-
groups. Then Sp(f) (defined in 4.3(c)) is the unique RS-homomorphism
F : Sp(G)−→Sp(H) making the following diagram commute:

(ii) Let G be a RS. Then Sp(G) is a hull for G in the category SRS of
spectral real semigroups. That is, every RS-morphism f : G−→ Sp(X), X
a hereditarily normal spectral space, factors uniquely through Sp(G), i.e.,
there is a unique RS-morphism h : Sp(G)−→ Sp(X) making the following
diagram commute:
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Proof. — (i) We first show that with F = Sp(f) diagram [D] commutes,
i.e., η

H
(f(g))= Sp(f)(η

G
(g)) for all g ∈ G. By the definition of η

G
, η
H

, and
with f∗ defined in 4.3(b) , this amounts to evf(g) = evg ◦ f∗. For γ ∈ X

H
we have evf(g)(γ) = γ(f(g)), and (evg ◦ f∗)(γ) = evg(f

∗(γ)) = evg(γ ◦ f) =
γ(f(g)).

For uniqueness, let F
1
, F

2
: Sp(G)−→Sp(H) be RS-homomorphisms

making diagram [D] commute. Applying the functor * to this square we get
a commutative diagram

whence η∗
G
◦F ∗

1
= η∗

G
◦F ∗

2
(= f∗◦η∗

H
). Since η∗

G
is injective (5.2(iii)), F ∗

1
= F ∗

2
,

and we show this entails F
1

= F
2
.

In fact, if F
1
(g) �= F

2
(g) for some g ∈ Sp(G), since XSp(H) separates

points in Sp(H), there is γ ∈ XSp(H) so that (γ ◦ F
1
)(g) �= (γ ◦ F

2
)(g),

i.e., γ ◦ F
1
�= γ ◦ F

2
. By definition F ∗i = γ ◦ Fi, so we get F ∗

1
(γ) �= F ∗

2
(γ),

contradiction.

(ii) Use the commutative square [D] of (i) with H = Sp(X) and f :
G−→ Sp(X) the given map. By the idempotency theorem 4.5, η

H
: H −→

Sp(H) is an isomorphism of real semigroups. Setting h := η−1

H
◦Sp(f) proves

the commutativity of the triangle in (ii). Uniqueness is clear from (i). �

Putting together some of the preceding results we obtain the anti-equiva-
lence of the categories HNSS and SRS. This is expressed in rather compact
form, using category-theoretic language, by the following:

Theorem 5.4. — (Anti-equivalence theorem) The functor Sp : HNSS
−→SRS assigning to each hereditarily normal spectral space X the real
semigroup Sp(X) is an anti-equivalence of categories. Its quasi-inverse is
the functor ARS : SRS−→HNSS assigning to each G ∈ SRS its asso-
ciated character space X

G
.10 The natural transformations establishing this

anti-equivalence are as follows:

(1) The isomorphism Id
HNSS

�−→ ARS ◦ Sp is the natural transforma-
tion that sends X ∈ HNSS to the homeomorphism ev : X −→Sp(X).

(10) I.e., ARS is the restriction of the functor * (4.3(d)) to the subcategory SRS.
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(2) The isomorphism Id
SRS

�−→ Sp◦ARS is the natural transformation
that sends a spectral RS, G, to the isomorphism η

G
: G−→Sp(G).

Proof. — (1) Given a spectral map ϕ : X −→Y , with X,Y ∈ HNSS,
(1) follows from the commutativity of the diagram in Proposition 5.1 and
the fact that the maps ev

X
: X −→ XSp(X) and ev

Y
: Y −→ XSp(Y ) are

homeomorphisms of spectral spaces (3.7(2)).

(2) Given a RS-morphism f : G−→H, where G,H ∈ SRS, (2) follows
from the commutativity of the diagram in Theorem 5.3(i) together with the
fact that the canonical embeddings η

G
, η
H

are isomorphisms (4.6). �

Corollary 5.5. — Let G be a RS. Then every σ ∈ X
G

extends uniquely
to a RS-character of Sp(G).

Proof. — Follows from 5.3(ii) by taking X = 1 (= the singleton spectral
space) and observing that Sp(1) = 3 (see proof of Corollary 2.2).

Explicitly, the extension σ̂ : Sp(G)−→3 of a RS-character σ ∈ X
G

is
defined by evaluation at σ: for f ∈ Sp(G), σ̂(f) := f(σ). The reader can
readily check that σ̂ ∈ XSp(G) and σ̂ ◦ η

G
= σ (i.e., σ̂�G = σ with G

canonically embedded into Sp(G) via η
G

). �

Remark. — The uniqueness statements in Theorem 5.3 and Corollary
5.5 indicate that a real semigroup “generates” its spectral hull. In Theorem
6.2 we will show that, in fact, it generates its spectral hull as a lattice.

Example 5.6. — Here is a simple example illustrating the way in which
a real semigroup sits inside its spectral hull. We compute the spectral hull
of the “free” fan on one generator (Example V.4.2(A) in [10]):

F = {1, 0,−1, x,−x, x2,−x2},

with representation given by: for a, b ∈ F ,

D
F
(a, b) := a · Id(F ) ∪ b · Id(F ) ∪ {y ∈ F | ya = −yb and y = a2y}.

– Firstly, F is represented inside Sp(F ) by the seven elements of the
form eva, a ∈ F .

– Besides these, Sp(F ) contains four other elements. Indeed, X
F

has the
shape:
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where h1(x) = 0, h2(x) = 1, h3(x) = −1 (the order being specialization).
Since the constructible topology is discrete, the spectral characters are the
maps of X

F
into 3sp that preserve the specialization order. Note, further,

that if a spectral character sends h2 or h3 to 0, then it must also send h1

to 0. Direct verification shows that Sp(F )(= Sp(X
F
)) contains the following

additional maps:

f
1

:





h
1
�→ 0

h
2
�→ 0

h
3
�→ 1,

f
2

:





h
1
�→ 0

h
2
�→ 0

h
3
�→ −1,

f
3

:





h
1
�→ 0

h
2
�→ 1

h
3
�→ 0,

f
4

:





h
1
�→ 0

h
2
�→ −1

h
3
�→ 0,

and looks as follows:

Our last result in this section is an analog to Theorem 5.2 in [6], pp.
75–77 (and to Theorem III.3.5 in [10]). It gives, in the context of spectral
real semigroups, several characterizations of the surjectivity of the map f∗,
dual to a given RS-homomorphism f (4.3(b)), showing, in particular, that
this condition is equivalent to the injectivity of Sp(f).

We shall need the following notion (a “poor man’s” version of the Witt
equivalence of quadratic forms.)

Definition and Notation 5.7. — Let G,H, be real semigroups.

(i) Given forms ϕ = 〈 a
1
, . . . , a

n
〉, ψ = 〈 b

1
, . . . , b

m
〉 with entries in G

(of arbitrary, possibly different, dimension) we set:

ϕ ∼=
G
ψ : ⇔For all h ∈ X

G
,

n∑

i=1

h(a
i
) =

m∑

j=1

h(b
j
) (sum in Z).

(ii) Given a form ϕ = 〈 a
1
, . . . , a

n
〉 over G and a map f : G−→H, f ∗ϕ

denotes the form 〈 f(a
1
), . . . , f(a

n
) 〉.
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(iii) A RS-homomorphism f : G−→H is a complete embedding if
for every pair of forms ϕ,ψ, over G,

ϕ ∼=
G
ψ ⇔ f ∗ ϕ ∼=

H
f ∗ ψ.

Complete embeddings are automatically injective.

Theorem 5.8. — Let G,H be real semigroups, and let f : G−→H
be a RS-morphism. With f∗ denoting the dual of f and Sp(f) its spectral
extension (4.3(b), (c)), the following are equivalent:

(1) f∗ is surjective.

(2) Im(f∗) is dense in (XG)
con

(the constructible topology of X
G

).

(3) Sp(f) is injective.

(4) For every Pfister form ϕ over G11 and every a ∈ G,
f(a) ∈ D

H
(f ∗ ϕ)⇒ a ∈ D

G
(ϕ).

(5) f is a complete embedding.

Proof. — Recall that f∗ is a spectral map (4.4). (1)⇒ (2) is obvious.

(2)⇒ (1). By Cor. 6.0.2 of [11], Im(f∗) is a proconstructible subset of
X
G

, i.e., closed in (XG)
con

. This, together with (2), at once implies (1).

(1)⇒ (3). Assume there are g
1
, g

2
∈ Sp(X

G
) so that g

1
�= g

2
but Sp(f)(g

1
)

= Sp(f)(g
2
), i.e., g

1
◦f∗ = g

2
◦f∗ and let σ ∈ X

G
be such that g

1
(σ) �= g

2
(σ).

Since f∗ is assumed surjective, there is γ ∈ X
H

such that f∗(γ) = σ. Then,

(g
1
◦ f∗)(γ) = g

1
(f∗(γ)) = g

1
(σ) �= g

2
(σ) = (g

2
◦ f∗)(γ),

contradiction.

(3)⇒ (1). Since “surjective” = “epic” holds in the category of spectral
spaces with spectral maps, cf. [11], Cor. 11.3.5(ii), it suffices to prove that
f∗ is epic, i.e., right-cancellable.

Recall that, if ρ : X
G
−→X is a spectral map into a spectral space X,

then Sp(ρ ◦ f∗) = Sp(f∗) ◦ Sp(ρ) = Sp(f) ◦ Sp(ρ), since Sp(f) = Sp(f∗), cf.
3.1 and 4.3(c).

Assume ρ
1
, ρ

2
: X

G
−→X are spectral maps into a spectral space X

such that ρ
1
◦ f∗ = ρ

2
◦ f∗. By the preceding paragraph, Sp(f) ◦ Sp(ρ

1
) =

Sp(f) ◦ Sp(ρ
2
). Since Sp(f) is injective (assumption (3)), Sp(ρ

1
) = Sp(ρ

2
),

and we show this entails ρ
1

= ρ
2
. Otherwise, ρ

1
(σ) �= ρ

2
(σ) for some σ ∈ X

G
.

(11) I.e., a form of the type
⊗n

i=1
〈 1, ai 〉, with a1, . . . , an ∈ G.
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Since X is T0, there is a quasi-compact open U⊆X so that, say, ρ
1
(σ) ∈ U

and ρ
2
(σ) �∈ U (or the other way around). Let h : X −→3 be given by

h�U = 1 and h�(X \ U) = 0; h is spectral, i.e., h ∈ Sp(X), and h(ρ
1
(σ)) =

1 �= 0 = h(ρ
2
(σ)), i.e., Sp(ρ

1
)(h) �= Sp(ρ

2
)(h), contradiction.

(1) ⇒ (4). For this proof we will need:

Proposition. — (Separation Lemma; [8], Thm. 4.4(1), p. 116, and [10],
Cor. I.4.7) Let G be a RS and let ϕ be either a binary form or a Pfister form,
with entries in G. Then, for a ∈ G,

a ∈ D
G

(ϕ)⇔ For all σ ∈ X
G
, σ(a) ∈ D

3
(σ ∗ ϕ).

Let ϕ be a Pfister form with entries in G, a ∈ G, and assume f(a) ∈
D
H

(f ∗ ϕ). The Proposition tells us:

(i) The assumption f(a) ∈ D
H

(f∗ϕ) is equivalent to ∀σ ∈ X
H

(σ(f(a)) ∈
D

3
((σ ◦ f) ∗ ϕ)), and

(ii) The conclusion a∈D
G

(ϕ) is equivalent to ∀γ∈X
G

(γ(a)∈D
3
(γ ∗ϕ)).

Since f∗ is surjective, for every γ ∈ X
G

there is σ ∈ X
H

such that
γ = f∗(σ) = σ ◦ f . Then, (ii) follows at once from (i), proving (4).

(1) ⇒ (5). Let ϕ = 〈 a
1
, . . . , a

n
〉, ψ = 〈 b

1
, . . . , b

m
〉 be arbitrary forms

over G, and assume f ∗ ϕ ∼=
H
f ∗ ψ, i.e.,

(+)
∑n
i=1 σ(f(a

i
)) =

∑m
j=1 σ(f(b

j
)) for all σ ∈ X

H
.

Given γ ∈ X
G

, pick σ ∈ X
H

so that γ = f∗(σ) = σ ◦ f . Then, (+) yields∑n
i=1 γ(a

i
) =

∑m
j=1 γ(b

j
) for all γ ∈ X

G
, i.e., ϕ ∼=

G
ψ.

The proofs of (4) ⇒ (2) and (5) ⇒ (2) rest on:

Fact. — Let G be a RS, and a
1
, . . . , a

n
, b ∈ G.

Let V =
⋂n

i=1
[[ a

i
= 1 ]] ∩ [[ b = 0 ]]⊆X

G
.

Let ϕand ψrespectively denote the Pfister forms 〈〈 a
1
, . . . , a

n
,−b2 〉〉 and

2n−1〈〈−1, b2 〉〉, if n � 1, and ψ = 〈 1,−b2 〉, ϕ = 2 ·ψ = ψ⊕ψ, if n = 0. Set
d =

∏n
i=1a

2

i
, if n � 1, and d = 1, if n = 0. The following hold:

i) If V �= ∅, then −d �∈ D
G

(ϕ) and dϕ �∼=
G
ψ.

ii) If V = ∅, then −d ∈ D
G

(ϕ) and dϕ ∼=
G
ψ.
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Note. In case V =
⋂n

i=1
[[ a

i
= 1 ]](n � 1), just omit the entries −b2 in ϕ and

b2 in ψ.

Proof of Fact. — By the Proposition above (Separation Lemma), condi-
tion −d ∈ D

G
(ϕ) is equivalent to

(†) ∀σ ∈ X
G
[σ(a

i
) ∈ {0, 1} for i = 1, . . . , n, and σ(−b2) = 0⇒σ(−d) = 0].

Any σ ∈ V verifies σ(a
i
) = 1, σ(b) = 0, whence σ(d) =

∏n
i=1σ(a

i
)2 = 1,

for n � 1 (and, obviously, also for n = 0). Thus, (†) fails at every σ ∈ V .
Hence, V �= ∅⇒ − d �∈ D

G
(ϕ).

For the second assertion in (i), note that if n � 1, since sgnσ(〈〈−1, x 〉〉) =
sgnσ(〈 1,−1, x,−x 〉) = 0 holds for all x ∈ G, we have sgnσ(ψ) = 0, for all
σ ∈ X

G
. Next, observe that if σ ∈ V , then sgnσ(dϕ) = σ(d) · (1 − σ(b2)) ·∏n

i=1(1+σ(a
i
)) = 2n. Hence, sgnσ(dϕ) �= sgnσ(ψ) whenever n � 1. If n = 0,

we have sgnσ(ψ) = 1 and sgnσ(ϕ) = 2.

(ii) If V = ∅, then for any σ ∈ X
G

either σ(b) �= 0 (i.e., σ(b2) = 1) or
σ(a

i
) �= 1 for some i ∈ {1, . . . , n}. If σ(b) �= 0 or σ(a

i
) = −1 for some i, (†)

holds because its antecedent fails. If σ(b) = 0 and σ(a
i
) = 0 for some i, then

σ(−d) = 0, and (†) holds. Hence, (†) holds at every σ ∈ X
G

, which entails
−d ∈ D

G
(ϕ).

To prove the last assertion in (ii), it suffices to show that sgnσ(dϕ) = 0
for all σ ∈ X

G
. Since σ �∈ V , if σ(b) �= 0, the factor 1 − σ(b)2 is 0, and

sgnσ(dϕ) = 0. Likewise, if σ(a
i
) = 0 for some i, the factor σ(d) vanishes,

and if σ(a
i
) = −1 for some i, then 1+σ(a

i
) = 0; in either case sgnσ(dϕ) = 0,

as required.

(4) ⇒ (2). Assume Im(f∗) is not dense in (XG)
con

. Then, there is a non-

empty clopen set U of the form
⋂n

i=1
[[ a

i
= 1 ]]∩ [[ b = 0 ]](a

1
, . . . , a

n
, b ∈ G),

such that U ∩ Im(f∗) = ∅, i.e., f∗−1[U ] = ∅. Statement (i) of the Fact
with V = U yields −d �∈ D

G
(ϕ), while item (ii) with V = f∗−1[U ] =⋂n

i=1
[[ f(a

i
) = 1 ]] ∩ [[ f(b) = 0 ]]⊆X

H
(and f ∗ ϕ) gives f(−d) ∈ D

H
(f ∗ ϕ),

contradicting assumption (4).

(5) ⇒ (2). Similar to the preceding proof: assuming (2) fails, the last
assertion in item (i) of the Fact with V = U yields dϕ �∼=

G
ψ, while that of

(ii) applied with V = f∗−1[U ] gives f ∗ (dϕ) ∼=
G
f ∗ ψ, contradicting (5).

This ends the proof of Theorem 5.8. �

The following are noteworthy consequences of Theorem 5.8.
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Corollary 5.9. — Any injective RS-morphism f : G−→H of spectral
RSs is a complete embedding.

Proof. — We use the commutative diagram [D] in Theorem 5.3(i) with
F = Sp(f). Since G,H are spectral, the embeddings η

G
and η

H
are isomor-

phisms (4.6); hence Sp(f) is injective. By 5.8, f is a complete embedding.
�

Corollary 5.10. — For any RS, G, the morphism η
G

: G−→Sp(G)
is a complete embedding.

Proof. — Follows from the equivalence of (1) and (5) in Theorem 5.8,
and Fact 5.2(iii). �

6. The distributive lattice structure of spectral real semigroups

In this section we prove two results concerning the (pure) lattice struc-
ture of spectral RSs:

– The spectral real semigroups are exactly the real semigroups whose
representation partial order is a distributive lattice (Theorem 6.6).

– Any real semigroup generates its spectral hull as a lattice (Theorem
6.2).

We start by checking the following simple, but important property of
the lattice structure of spectral real semigroups:

Proposition 6.1. — Let G,H be RSs, and let f : G−→H be a RS-
homomorphism. Then, the spectral extension Sp(f) : Sp(G)−→Sp(H) of f
(4.3(c)) is a lattice homomorphism.

Proof. — Recall that Sp(f)(g) = g◦f∗ for g ∈ Sp(G). Hence, for γ ∈ X
H

we have (g ◦ f∗)(γ) = g(f∗(γ)) = g(γ ◦ f), and:

((g
1
∨ g

2
) ◦ f∗)(γ) = (g

1
∨ g

2
)(γ ◦ f) = max{g

1
(γ ◦ f), g

2
(γ ◦ f)}

= (g
1
◦ f∗)(γ)∨ (g

2
◦ f∗)(γ),

proving preservation of joins. Similarly one establishes that of meets. �

Remarks. — (1) Obviously, the constants 1, 0,−1 of Sp(G) and Sp(H)
correspond to each other under Sp(f); hence, Sp(f) is a homomorphism of
bounded lattices.
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(2) F. Miraglia has found an example of an injective RS-morphism
f : G−→L of a RS, G, with values in a spectral RS, L, whose spectral
extension, Sp(f) : Sp(G)−→L(= Sp(L)) is not injective.

We shall now prove that any real semigroup generates its spectral hull
as a lattice.12

Theorem 6.2. — Let G be a RS. Then, for every f ∈ Sp(G) there is a

finite family {F
i
| i∈ I} of finite subsets of G so that f =

∨
i∈I

∧
g∈Fi

η
G

(g);

i.e., Sp(G) is generated as a lattice by Im(η
G

).

Proof. — Recall from 1.1.A(3) that the collection of all finite intersec-
tions of sets of the form [[x = 1 ]] with x ∈ G is a basis for the spectral
topology of X

G
. To ease notation we write ĝ for η

G
(g) = evg(g ∈ G).

Let L denote the sublattice of Sp(G) generated by Im(η
G

), and fix f ∈
Sp(G). The construction of a representation of f as in the statement depends
on the form of the quasi-compact opens f−1[1], f−1[−1]. We split the proof
into two cases.

Case I. Both f−1[1] and f−1[−1] are basic quasi-compact opens of X
G

,
i.e.,

(*) f−1[1] =

k⋂

i=1

[[ a
i
= 1 ]] and f−1[−1] =

n⋂

j=1

[[ b
j

= 1 ]],

for some a
1
, . . . , a

k
, b

1
, . . . , b

n
∈ G.

Since Dt

G
(·, ·) �= ∅ (axiom [RS3b]) for each i ∈ {1, . . . , k} and j ∈

{1, . . . , n} we pick an element t
ij

∈ Dt

G
(a
i
,−b

j
) and consider the follow-

ing element of L:

(**) p :=

[(
k∨

i=1

â
i

)
∧ 0̂

]
∨







n∧

j=1

−̂b
j


 ∧

k∨

i=1

n∧

j=1

t̂
ij


 .

Claim. — p = f . Hence, f ∈ L.

Proof of Claim. — To abridge we set r :=

(∨k

i=1
â
i

)
∧ 0̂ and

s :=
(∧n

j=1
−̂b

j

)
∧

∨k

i=1

∧n

j=1
t̂
ij

in (**). The proof proceeds by cases ac-

cording to the values of f . Let σ ∈ X
G

.

(12) For a result in a similar spirit concerning the Boolean hull of a reduced special
group, see [6], Prop. 4.10(b).
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– f(σ) = 1. By (*), σ(a
i
) = â

i
(σ) = 1 for all 1 � i � k, whence r(σ) = 1.

On the other hand, since f−1[1] and f−1[−1] are disjoint, by (*) there is
a j

0
∈ {1, . . . , n} so that σ(b

j0
) ∈ {0,−1}. Fix i ∈ {1, . . . , k}. Since t

ij0
∈

Dt

G
(a
i
,−b

j0
) and −σ(b

j0
) ∈ {0, 1}, we have σ(t

ij0
) ∈ Dt

3
(σ(a

i
),−σ(b

j0
)) =

Dt

3
(1,−σ(b

j0
)) = {1} (cf. 1.1.A(2)); that is, t̂

ij0
(σ) = σ(t

ij0
) = 1 for all i. It

follows that s(σ) = 1, and hence p(σ) = 1.

– f(σ) = −1. By (*), σ(b
j
) = b̂

j
(σ) = 1 for all 1 � j � n, i.e.,

∧n

j=1
−̂b

j
(σ) =

−1. Since the sets in (*) are disjoint, there is a i
0
∈ {1, . . . , k} so that

σ(a
i0

)∈{0,−1}. Fix j ∈{1, . . . , n}. Since t
i0j

∈Dt

G
(a
i0
,−b

j
) and −σ(b

j
) =

−1, we get σ(t
i0j

) ∈ Dt

3
(σ(a

i0
),−σ(b

j
)) = Dt

3
(σ(a

i0
),−1) = {−1} (1.1.A(2));

that is, t̂
i0j

(σ) = σ(t
i0j

) = −1 for all j ∈ {1, . . . , n}, which shows that

s(σ) = −1, and hence p(σ) = −1.

– f(σ) = 0. In this case, σ �∈ f−1[1] ∪ f−1[−1], and (*) implies that
there are indices i

0
∈ {1, . . . , k} and j

0
∈ {1, . . . , n} so that σ(a

i0
) �= 1

and σ(b
j0

) �= 1. Then, we have σ(a
i0

) ∈ {0,−1}, whence (â
i0
∧ 0̂)(σ) = 0,

and therefore r(σ) = 0. Likewise, σ(b
j0

) ∈ {0,−1} yields −̂b
j0

(σ) ∈ {0, 1},
whence (

∧n

j=1
−̂b

j
)(σ) � 0, which in turn gives s(σ) � 0. These evaluations

together entail p(σ) = 0, ending the proof of the Claim.

Case II. f−1[±1] are arbitrary quasi-compact opens.

Then, there are basic quasi-compact opens V
1
, . . . , V

k
, U

1
, . . . , U

n
, so that

f−1[1] =

k⋃

i=1

V
i

and f−1[−1] =

n⋃

j=1

U
j
.

For each pair of indices i ∈ {1, . . . , k}, j ∈ {1, . . . , n} we define a map
f
ij

: X
G
−→ 3 by: for σ ∈ X

G
,

f
ij

(σ) =





1 if σ ∈ V
i

−1 if σ ∈ U
j

0 if σ �∈ V
i
∪ U

j
.

Since V
i
∩ U

j
= ∅, f

ij
is well defined; clearly, f

ij
∈ Sp(X

G
)(= Sp(G)).

Since V
i
, U

j
are basic quasi-compact opens, Case I implies that each of the

functions f
ij

is in L. On the other hand, straightforward checking according
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to the values of f shows that f =
∨n

j=1

∧k

i=1
f
ij

, yielding f ∈ L. This

completes the proof of Theorem 6.2. �

Recalling that the lattice operations of Sp(G) are definable in the lan-
guage LRS for real semigroups (2.1), we obtain:

Corollary 6.3. — Let G be a RS. Then, Sp(G)⊆dcl
RS

(G,3XG), the

definitional closure of G in 3XG for the language L
RS

(with 3XG endowed
with the pointwise defined L

RS
-structure). In particular, Sp(G) is rigid over

G: every L
RS

-automorphism of 3XG which pointwise fixes G is the identity
on Sp(G).

Remark. — For the notion of definitional closure of a structure, see [12],
pp. 134 ff.

Our last result in this section shows that the spectral real semigroups
are exactly the real semigroups for which the representation partial order is
a distributive lattice.

Warning. — The essential point here is distributivity. In fact, there are
other classes of real semigroups for which the representation partial order
is a lattice (necessarily non-distributive); for example, the RS-fans – a class
introduced and investigated in Chapter V of [10] –, have this property.

As a preliminary step we prove:

Lemma 6.4. — Let G be a RS. Assume that the representation partial
order �

G
is a distributive lattice. Then, product in G coincides with sym-

metric difference: for a, b ∈ G,

a · b = (a∧ − b)∨ (b∧ − a)(:= a� b).

Proof. — To ease notation we write � for �
G

. For x, y ∈ G, Proposition
1.2(d) yields:

(∗) x � y⇔∀σ ∈ X
G

(σ(x)�
3
σ(y)).

We first observe:

(a) a∧ − b, b∧ − a � a · b. Hence, a� b � a · b.
(b) ab � a∨ b,−a ∨ − b.

Proof of (a). By symmetry, it suffices to prove the first inequality. Using
(*) we show σ(a∧ − b) � σ(ab), for all σ ∈ X

G
.
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– Suppose σ(a ∧ −b) = 0. By monotonicity, σ(a), σ(−b) � 0, i.e., σ(a) �
0 and σ(b) � 0. This implies that σ(ab) �= 1, for σ(ab) = 1 implies that
σ(a), σ(b) are both either 1 or −1. Thus, σ(a ∧ − b) = 0 � σ(ab).

– If σ(a ∧ − b) = −1, by monotonicity, σ(a) = σ(−b) = −1, i.e., σ(a) =
−1 and σ(b) = 1. Hence σ(ab) = −1 = σ(a ∧ − b).

Proof of (b). Let σ ∈ X
G

. If σ(ab) = 0, then at least one of σ(a), σ(b)
is 0, say σ(a) = 0; by monotonicity, σ(ab) = 0 = σ(a) � σ(a ∨ b) and
σ(ab) = 0 = σ(−a) � σ(−a∨ − b). If σ(ab) = −1, then, say σ(a) = −1 and
σ(b) = 1 (or the other way round). By monotonicity, −1 = σ(a) � σ(a∨ b)
and −1 = σ(−b) � σ(−a ∨ − b), as required.

The Lemma follows from (b). Indeed, using distributivity we have:

(**) ab � (a∨ b)∧ (−a∨−b) = (a∧−a)∨ (a∧−b)∨ (b∧−a)∨ (b∧−b).

The Kleene inequality (1.2(f)) yields x∧ − x � y ∨ − y for all x, y ∈ G.
Using distributivity again obtains:

a∧ − a = (a∧ − a)∧ (b∨ − b) = (a∧ − a∧ b)∨ (a∧ − a∧ − b)

� (−a∧ b)∨ (−b∧ a).

Similarly, b∧ −b � (−a∧ b)∨ (−b∧ a). The last term in (**) then equals
(−a∧ b)∨ (−b∧ a) = a� b, proving ab � a� b, as asserted. �

Corollary 6.5. — Under the assumptions of Lemma 6.4, the following
holds for a, b ∈ G:

(i) a · (a∨ b), b · (a∨ b) � ab.

(ii) For all x ∈ G, x ∈ D
G

(a2, b2)⇔x = x2 and a2 ∧ b2 � x.

(iii) (a∨ b)2 ∈ D
G

(a2, b2).

Proof. — (i) By Lemma 6.4,

a · (a∨ b) = a� (a∨ b) = (a∧ − (a∨ b))∨ ((a∨ b)∧ − a)

= (a∧ − a∧ − b))∨ (a∧ − a)∨ (b∧ − a)

= (a∧ − a)∨ (b ∧ − a).

The Kleene inequality a∧ −a � b ∨ −b implies that a∧ −a � a� b = ab;
indeed, by distributivity

a∧ − a = (a∧ − a)∧ (b ∨ − b) = (a∧ − a∧ b))∨ (a∧ − a∧ − b))

� (−a∧ b)∨ (a∧ − b) = a� b.
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Since b∧ − a � a� b, our contention follows. The other inequality in (i)
holds by symmetry.

Next, we prove, for σ ∈ X
G

:

(*) σ(a2 ∧ b2) = σ(a2)∧ σ(b2).

Recall that by Proposition 1.2(g), {a2 ∧ b2} = Dt

G
(a2, b2) (any G). Since σ

preserves Dt,

σ(a2 ∧ b2) ∈ Dt

3
(σ(a2), σ(b2)) = Dt

3
(σ(a)2, σ(b)2) = {σ(a)2 ∧ σ(b)2},

and (*) follows.

(ii) (⇒ ) Clearly, x ∈ D
G

(a2, b2) implies x = x2. To show a2 ∧ b2 � x

we check that σ(a2 ∧ b2) � σ(x) for all σ ∈ X
G

; by (*) it suffices to verify

σ(a2)∧ σ(b2) � σ(x2). But σ(x2) = 1 implies σ(x) �= 0, whence, from
x = x2 ∈ D

G
(a2, b2) we get 1 = σ(x2) = σ(a2) or 1 = σ(x2) = σ(b2) and

hence σ(a2)∧ σ(b2) = 1.

(⇐ ) From x = x2 we get σ(x) = σ(x2) ∈ {0, 1} for σ ∈ X
G

. If σ(x) = 1,

then a2 ∧ b2 � x and (*) give σ(a2 ∧ b2) = σ(a2)∧σ(b2) = 1, and hence
either σ(a2) = 1 or σ(b2) = 1, proving that x ∈ D

G
(a2, b2).

(iii) By (ii) it suffices to prove (a∨ b)2 � a2 ∧ b2. Invoking Lemma 6.4
and using distributivity, we get:

(a∨ b)2 = (a∨ b)� (a∨ b) = (a∨ b)∧ − (a∨ b) = (a∨ b)∧ (−a∧ − b) =

= (a∧ − a∧ − b)∨ (b ∧ − a∧ − b) � (a∧ − a)∧ (b ∧ − b) =

= (a� a)∧ (b� b) = a2 ∧ b2,

as needed. �

Theorem 6.6. — Let G be a RS and let �
G

denote its representation
partial order. Assume that (G,�

G
) is a lattice. The following are equivalent:

(1) (G,�
G

) is a distributive lattice.

(2) The RS-characters of G are lattice homomorphisms of (G,�
G

) into
3 (ordered by 1 < 0 < −1).

(3) The canonical embedding η
G

: G−→Sp(G) is a surjective lattice
homomorphism. Hence, G $ Sp(G).

Each of these conditions is equivalent to:

(4) G is a spectral RS.
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Proof. — (3)⇒ (4) is obvious, (4)⇒ (3) was proved in 4.6, (4)⇒ (2) in
2.2, and (4)⇒ (1) has been observed in 1.1.C(4).

(1)⇒ (2). We show that every σ ∈ X
G

preserves suprema. This suffices,
since σ also preserves “−” and the De Morgan laws hold in G, i.e., −(a∧ b) =
−a∨ − b and dually. In fact, it suffices to prove σ(a∨ b) � σ(a)∨ σ(b), as
the reverse inequality is immediate from the monotonicity of σ. We argue
by cases:

– σ(a∨ b) = 0. From a · (a∨ b) � ab (6.5(i)) comes σ(a)σ(a∨ b) = 0 �
σ(a)σ(b). This shows that σ(a), σ(b) cannot both be 1, i.e., σ(a) � 0 or

σ(b) � 0, whence σ(a)∨σ(b) � 0 = σ(a∨ b).

– σ(a∨ b) = −1. Suppose first that σ(a) = σ(b) = 0. From (a∨ b)2 ∈
D
G

(a2, b2) (6.5(iii)) we get σ(a∨ b)2 ∈ D
3
(σ(a)2, σ(b)2) = D

3
(0, 0) = {0},

whence σ(a∨ b) = 0, contradiction. So, either σ(a) or σ(b) is �= 0. If, say,
σ(a) = 1, as above we get −1 = σ(a)σ(a∨ b) � σ(a)σ(b) = σ(b), and hence
σ(b) = −1. So, either σ(a) or σ(b) is −1, and we get σ(a)∨σ(b) = −1 =
σ(a∨ b).

(2)⇒ (3). (i) η
G

is a lattice homomorphism. This follows from (2) by
direct computation: for a, b ∈ G and σ ∈ X

G
,

η
G

(a∧ b)(σ) = ev
(a∧b)(σ) = σ(a∧ b) = σ(a)∧σ(b) = ev

a
(σ)∧ ev

b
(σ)

= η
G

(a)(σ)∧ η
G

(b)(σ),

and similarly for ∨ .

(ii) η
G

is surjective. This is clear from Theorem 6.2 and (i). �

Corollary 6.7. — The set of invertible elements of a spectral real
semigroup (with induced product operation, representation relation and con-
stants 1,−1) is a Boolean algebra and, hence, a reduced special group.

Proof. — By Proposition 1.2(e), for G |= RS and g ∈ G, in the rep-
resentation partial order �

G
we have g ∧ − g = g2 and g ∨ − g = −g2;

hence:

g invertible in G ⇔ g2 = 1⇔ g ∧ − g = 1 and g ∨ − g = −1.

If G is spectral, by the preceding theorem �
G

is a distributive lattice,
and this shows that −g is the Boolean complement of g. �
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7. Axiomatization and model-theoretic results

Summarizing the preceding results and those of section 2, we have:

Theorem 7.1 (Axioms for spectral real semigroups). — The following
statements, together with the axioms for real semigroups, give a first-order
axiomatization for the class of spectral real semigroups in the language
L

RS
= {·, 1, 0,−1, D}:

[SRS1] ∀a∃c(c = c2 ∧ ac = c ∧ −a ∈ D(1,−c)).

Setting:

a− := the unique c verifying [SRS1] (see 2.1(i)), and a+ := −((−a)−),

[SRS2] ∀a∀b∃d(d ∈ D(a, b) ∧ d+ = −a+ · b+ ∧ d− ∈ Dt(a−, b−)).

Proof. — Theorem 2.1 shows that the spectral RSs verify axioms [SRS1]
and [SRS2].

Conversely, any real semigroup, G, verifying axioms [SRS1] and [SRS2]
has a lattice structure (defined in the language L

RS
), where a∧ 0 := a− and

a∧ b := the unique element d verifying [SRS2]. Since the characters of G
preserve the constants, operation and relation in L

RS
, these axioms ensure

that they are lattice homomorphisms (see Corollary 2.2). Thus, condition
(2) of Theorem 6.6 is verified, implying that G is spectral. �

Remark 7.2. — Axioms [SRS1] and [SRS2] are of the form ∀aψ
1
(a)

and ∀a∀b ψ
2
(a, b), where ψ

1
, ψ

2
are positive-primitive L

RS
-formulas, i.e., of

the form ∃x θ
1
(a, x),∃y θ

2
(a, b, y), with θ

1
, θ

2
conjunctions of atomic L

RS
-

formulas and y a tuple of variables of suitable length. This is clear for
[SRS1] [θ

1
(z, w) : w = w2 ∧ zw = w ∧ −z ∈ D(1,−w)]. For [SRS2] (using

uniqueness) replace z− by ∃z
1
θ
1
(z, z

1
) for z ∈ {d, a, b} and, similarly, z+ :=

−((−z)−) by ∃z
2
θ
1
(−z, z

2
). Explicitly, in new variables d

i
, a
i
, b
i

(i = 1, 2)
(corresponding to d, a, b, respectively), with y = 〈d, d

1
, d

2
, a

1
, a

2
, b

1
, b

2
〉,

θ
2
(a, b, y) : d ∈ D(a, b)∧

∧
z∈{d,a,b}

θ
1
(z, z

1
)∧ θ

1
(−z, z

2
)∧ d

2
= a

2
b
2

∧ d
1
∈ Dt(a

1
, b

1
).

These manipulations, together with Theorem 7.1, yield the following
closure properties of the class of spectral real semigroups:

Proposition 7.3. — (1) The class of spectral real semigroups is closed
under inductive limits (colimits) over a right-directed index set and reduced
products13 (in particular, arbitrary products).

(13) Cf. [4], Def. 4.1.6 and §6.2, or [12], §9.4.
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(2) Let f : G−→H be a surjective RS-homomorphism, where G,H
are RSs. If G is spectral, so is H.

Proof. — (1) Closure under inductive limits and reduced products is
known to hold for classes of structures (in an arbitrary language) axiom-
atized by first-order sentences of the form ∀v(ϕ

1
→ϕ

2
), where ϕ

1
, ϕ

2
are

positive-primitive formulas. (For inductive limits a more general result is
proven in [15], Ch. 17, §4; for reduced products, cf. [4], Prop. 6.2.2.). The
axioms for RSs and statements [SRS1] and [SRS2] in 7.1 are of this form.

(2) We check that, for arbitrary structures A,B with language L, say,
if f : A−→B is a surjective L-morphism, θ is an L-sentence of the form

θ : ∀v∃x
∧

i
ϕi(v, x), with the ϕi atomic L-formulas, and A |= θ, then B |= θ.

This is routine model-theoretic verification: Let b ∈ B, and let a be
a tuple in A such that f(a) = b. Since A |= θ there is a′ ∈ A so that

A |=
∧

i
ϕi[a, a′]. Since the ϕi are atomic and f is a L-morphism, B |=

ϕi[f(a), f(a′)] holds for all i, whence B |= ∃x
∧

i
ϕi[b, x]. Since b is an arbi-

trary tuple in B we get B |= θ. �

Proposition 7.4. — Let G be a RS and H be a spectral RS. Then,

(1) If f : G−→H is a pure embedding14 of RSs, then G is a spectral
RS.

(2) The canonical embedding η
G

: G −→ Sp(G) of G into its spectral hull
is not pure unless G itself is spectral. In the latter case, η

G
is an isomorphism

of G onto Sp(G).

Proof. — (1) Let ψ
1
(v), ψ

2
(v

1
, v

2
) denote the positive-primitive matrices

of [SRS1], [SRS2], as in 7.2. Assume G �|= SRS. Since G is supposed to be
a RS, one of [SRS1] or [SRS2] fails in G, say G �|= [SRS2]. Then, there are
a, b ∈ G so that G |= ¬ψ

2
[a, b]. On the other hand, since by assumption

H |= [SRS2], we have H |= ψ
2
[f(a), f(b)]. Since ψ

2
is positive-primitive, f

is not pure, contradiction.

(2) follows from (1) with f = η
G

. The last assertion is Corollary 4.6. �

8. Quotients of spectral real semigroups

After a brief presentation of a general notion of a quotient in the con-
text of real semigroups and of the relationship between quotients of a RS

(14) A map is pure if it reflects positive-existential formulas. For details, see [6], Ch. 5,
§3, pp. 91–92.
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and proconstructible subsets of its character space, we show that, in the
case of spectral real semigroups every such proconstructible set determines
a congruence of RSs. As a corollary we obtain that the formation of the spec-
tral hull of a RS “commutes” with that of taking quotients under arbitrary
RS-congruences.

Definition 8.1. — ([10], Ch. II) A (RS-)congruence of a real semi-
group G is an equivalence relation ≡ verifying the following requirements:

(i) ≡ is a congruence of ternary semigroups.

(ii) There is a ternary relation D
G/≡ in the quotient ternary semigroup

(G/≡, ·,−1, 0, 1) so that (G/≡, ·,−1, 0, 1, D
G/≡) is a real semigroup, and the

canonical projection π : G−→G/≡ is a RS-morphism.

(iii) (Factoring through π.) For every RS-morphism f : G−→H into
a real semigroup H such that a ≡ b implies f(a) = f(b) for all a, b ∈ G,

there exists a RS-morphism (necessarily unique), f̂ : G/≡ −→ H, such that

f̂ ◦ π = f , i.e. the following diagram commutes

/

Note that Proposition 7.3(2) yields:

Fact 8.2. — Any quotient G/≡ of a spectral RS, G, modulo a RS-
congruence ≡ is a spectral RS.

Proof. — Apply 7.3(2) with f = π, the canonical quotient map G−→G/≡
given by Definition 8.1(ii). �

Remark. — This Fact applies, in particular, to the various types of quo-
tients of real semigroups studied in [10], §II.3 and in [14], Ch. 6.

The following theorem (proof omitted) describes the relationship be-
tween the (RS-)congruences of a real semigroup and the proconstructible
subsets of its character space.

Theorem 8.3 (1) ([10], Prop. II.2.5). — Every RS-congruence ≡ of a
real semigroup G determines a proconstructible set of characters of G;
namely:

H≡ = {p ∈ X
G
|There exists σ ∈ X

G/≡ so that p = σ ◦ π}.
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(2) Conversely, any subset H of X
G

defines an equivalence relation of G
by setting, for a, b ∈ G:

(†) a≡Hb : ⇔For all σ ∈ H, σ(a) = σ(b),

having the following properties:

(i) ≡H is a congruence of the ternary semigroup (G, ·, 1, 0,−1).

(ii) The quotient ternary semigroup G/≡H (denoted G/H) carries a
ternary relation naturally defined by (with πH : G−→G/H canonical): for
a, b, c ∈ G,

πH(a) ∈ D
G/H(πH(b), πH(a)) : ⇔∀σ ∈ H(σ(a) ∈ D

3
(σ(b), σ(c)).

(iii) The closure H of H in the constructible topology of X
G

defines the
same quotient LRS-structure as H, i.e., ≡H = ≡H and D

G/H = D
G/H. So,

without loss of generality, we can take H to be proconstructible.

(3) ([10], Thm. II.2.8) (G/H, ·, 1, 0,−1, D
G/H) verifies all axioms for real

semigroups except, possibly, the weak associativity axiom [RS3a] (cf. 1.6).

(4) (i) With the topology induced from the spectral topology in X
G
, the set

H≡ is homeomorphic to the character space X
G/≡ (by the map p ∈ H≡ �−→

the unique σ ∈ X
G/≡ such that p = σ ◦ π).

(ii) Given a RS-congruence ≡ of G, the equivalence relation on G in-
duced by H≡ (as in (†) above) coincides with ≡.

Remarks and Notation 8.4. — (i) Let X be a hereditarily normal spec-
tral space. Since X = XSp(X) (via identification by the map ev, cf. 3.7), the
equivalence relation ≡

Y
of Sp(X) defined by a proconstructible set Y⊆X

(see (†) in 8.3(2)), boils down to: for a, b ∈ Sp(X),

a ≡Y b⇔∀y ∈ Y (a(y) = b(y))⇔ a�Y = b�Y,
and the corresponding quotient representation relation D

Sp(X)/≡Y
becomes:

for a, b, c ∈ Sp(X) and with π
Y

: Sp(X)−→Sp(X)/≡Y canonical,

π
Y

(a) ∈ D
Sp(X)/≡Y

(π
Y

(b), π
Y

(c)) : ⇔∀y ∈ Y (a(y) ∈ D
3
(b(y), c(y)).

Routine checking shows that we also have:

π
Y

(a) ∈ Dt

Sp(X)/≡Y
(π
Y

(b), π
Y

(c))⇔∀y ∈ Y (a(y) ∈ Dt

3
(b(y), c(y)).

To ease notation we shall write D
Y

for D
Sp(X)/≡Y

, and similarly for transver-

sal representation.
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(ii) It is a general and well-known fact that the spectral subspaces of
a spectral space X are exactly the proconstructible subsets Y⊆X with the
induced topology. To avoid possible confusion, in the sequel we denote by Ysp

the proconstructible subset Y endowed with the (spectral) topology induced
from X. The quasi-compact opens of Ysp are exactly the intersections of
quasi-compact opens of X with Y , and similarly for the closed constructible
subsets of Ysp. These results imply that the specialization order of Ysp is just
the restriction of specialization in X. See [11], Thm. 3.3.1. Hence, it is clear
that, if in addition X is hereditarily normal, then so is Ysp. In this case, to
ease notation, the real semigroup Sp(Ysp) will be denoted by Sp(Y ). �

Our first result is:

Theorem 8.5. — Let X be a hereditarily normal spectral space, and let
Y be a proconstructible subset of X. Then,

(1) (Sp(X)/≡Y , DY
) is a real semigroup.

(2) (Sp(X)/≡Y , DY
) is isomorphic to (Sp(Y ), D

Sp(Y )
).

(3) The character space X
Sp(X)/≡Y

is homeomorphic to Ysp (for the

respective spectral topologies).

(4) Every RS-congruence of Sp(X) is of the form ≡Y for a suitable
proconstructible set Y⊆X.

Proof. — (1) follows from (2) and Theorems 1.7 and 1.8 applied with the
spectral space Ysp, see 8.4(ii).

(2) The required isomorphism is the map

a/≡Y = π
Y

(a)
ϕ�−→ a�Y (a ∈ Sp(X)).

By 8.4(i) it is clear that ϕ is a well-defined, injective homomorphism of
ternary semigroups. Since representation is pointwise defined in both
Sp(X)/≡Y and Sp(Y ), we have

π
Y

(a) ∈ D
Sp(X)/≡Y

(π
Y

(b), π
Y

(c)) ⇔∀y ∈ Y (a(y) ∈ D
3
(b(y), c(y))

⇔ a�Y ∈ D
Sp(Y )

(b�Y, c�Y ),

showing that both ϕ and ϕ−1�Im(ϕ) preserve representation.

The proof that ϕ is surjective is more delicate; it boils down to:

Claim. — Every map f ∈ Sp(Y ) extends to a map g ∈ Sp(X).
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Proof of Claim. — The argument is similar to (a part of) the proof of
Theorem 1.8, using Proposition 1.9; we only sketch it.

Recall that f ∈ Sp(Y ) just means that f−1[±1] are quasi-compact opens
in Ysp. To get a spectral map g : X −→3sp extending f it suffices to con-
struct disjoint quasi-compact opens U

i
(i ∈ {±1}) of X so that f−1[i]⊆U

i
,

and set:

g�U
i
= i (i ∈ {±1}) and g�(X \ (U

1
∪ U−1

)) = 0.

For i ∈ {±1} let GenX(f−1[i]) = {x ∈ X | ∃y ∈ f−1[i](x�
X

y)} be the

generization of f−1[i] in X. Arguments similar to those in the proof of 1.8
show:

(i) GenX(f−1[i]) is quasi-compact in X (i ∈ {±1});
(ii) GenX(f−1[1]) ∩GenX(f−1[−1]) = ∅.
By Proposition 1.9 there are disjoint quasi-compact open subsets U

i
of

X such that GenX(f−1[i]) ⊆U
i

(i ∈ {±1}), as required.

(3) follows from (2) using the duality between the categories RS of real
semigroups and ARS of abstract real spectra ([8], Thm. 4.1, p. 115), and
the fact that XSp(Y ) $ Y (Proposition 3.7(2)).

(4) is a particular case of Theorem 8.3(4): with notation therein, given
a congruence ≡ of Sp(X), take Y := H≡ (a proconstructible subset of
XSp(X) = X; 8.3(1)), and conclude by 8.3(4.ii). �

To establish that the equivalence relation ≡Y is a RS-congruence we
still have to prove the factorization condition 8.1(iii). This will follow from
the next Proposition, which gives a lifting for the quotient representation
relation D

Y
.

Proposition 8.6. — Let X be a hereditarily normal spectral space, let
Y⊆X be proconstructible, and let a, b, c ∈ Sp(X). The following are equiv-
alent:

(1) π
Y

(a) ∈ D
Y

(π
Y

(b), π
Y

(c)).

(2) There exists a′ ∈ Sp(X) such that a′�Y = a�Y and a′ ∈ DSp(X)(b, c).

Proof. — (2) ⇒ (1) is clear from the pointwise definition of both D
Y

and DSp(X).

(1) ⇒ (2). Throughout this proof i stands for ±1. Let U
i

:= a−1[i]

and V
i
:= b−1[i]∪ c−1[i], quasi-compact open subsets of X. Assumption (1)
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amounts to U
i
∩ Y⊆V

i
∩ Y . Set W

i
:= U

i
∩ V

i
; W

i
is quasi-compact open,

and W
1
∩W−1

= ∅. We define a map a′ : X −→3 by:

a′�W
i
= i for i ∈ {±1}, and a′�X \ (W

1
∪W−1

) = 0.

Clearly, a′ ∈ Sp(X). We have:

– a′�Y = a�Y . Let y ∈ Y ; for i ∈ {±1} it holds:

a(y) = i⇒ y ∈ U
i
∩ Y⊆V

i
∩ Y ⇒ y ∈ W

i
∩ Y ⇒ a′(y) = i,

and

a(y) = 0⇒ y ∈ X \ (U
1
∪ U−1

)⊆X \ (W
1
∪W−1

)⇒ a′(y) = 0.

– a′ ∈ DSp(X)(b, c). For x ∈ X and i ∈ {±1} we have:

a′(x) = i⇒x ∈ W
i
⊆V

i
⇒ b(x) = i or c(x) = i,

as required. �

Corollary 8.7. — Let X be a hereditarily normal spectral space, and
let Y⊆X be a proconstructible subset. The equivalence relation ≡Y verifies
the factorization condition of Definition 8.1(iii).

Proof. — Given a RS-morphism f : Sp(X)−→H into a RS, H, such that

a ≡Y b⇒ f(a) = f(b) for a, b ∈ Sp(X), it suffices to show that the map f̂ :

Sp(X)/≡Y = Sp(Y )−→H defined by f̂ ◦ π = f preserves representation,
i.e., for a, b, c ∈ Sp(X),

π
Y

(a) ∈ D
Y

(π
Y

(b), π
Y

(c))⇒ f(a) ∈ D
H

(f(b), f(c)).

By Proposition 8.6, the antecedent implies that a′ ∈ DSp(X)(b, c) for some
a′ ∈ Sp(X) such that a′�Y = a�Y , i.e., a′≡

Y
a. By the assumption on

f we have f(a) = f(a′) and, since f is a RS-morphism, f(a) = f(a′) ∈
D
H

(f(b), f(c)), as required. �

The spectral hull of a RS-quotient . — As an application of the foregoing
results we prove that the spectral hull operation commutes with that of
taking quotients under arbitrary RS-congruences:

Theorem 8.8. — Let ≡ be a RS-congruence of a real semigroup G. Let
Y := H≡⊆X

G
denote the (proconstructible) set of characters defined by ≡

(cf. 8.3) and let ≡
Y

denote the RS-congruence of Sp(G) induced by Y , as
in 8.4(i). Then we have Sp(G/≡) $ Sp(G)/≡

Y
.
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Proof. — In Theorem 5.3(i) we proved that – identifying G with Im(ηG)
⊆ Sp(X) via ηG – any RS-homomorphism f : G−→H extends uniquely to
a RS-morphism Sp(f) : Sp(G)−→Sp(H); see 4.3(b) and 4.4. We shall use
this with H = G/≡ and f = π

G
= the canonical quotient map G−→G/≡.

As in Theorem 8.5, π
Y

: Sp(G)−→Sp(G)/≡
Y

denotes the corresponding
quotient map. We first note:

(a) For a, b ∈ Sp(G), a ≡
Y
b⇒Sp(π

G
)(a) = Sp(π

G
)(b).

Proof of (a). This implication can be rephrased as

a�Y = b�Y ⇒ a ◦ π∗
G

= b ◦ π∗
G
.

That is, we must show that, for σ ∈ X
G/≡, (a ◦ π∗

G
)(σ) = (b ◦ π∗

G
)(σ);

equivalently, a(σ ◦ π
G

) = b(σ ◦ π
G

). Since σ ◦ π
G
∈ H≡ = Y (cf. 8.3(1)) and

a�Y = b�Y , we conclude a(σ ◦ π
G

) = b(σ ◦ π
G

), as required.

Since ≡
Y

is a RS-congruence of Sp(G) (8.5(1) and 8.7), item (a) en-
tails that the map Sp(π

G
) : Sp(G)−→ Sp(G/≡) induces a RS-morphism

̂Sp(π
G

) : Sp(G)/≡
Y
−→ Sp(G/≡) so that ̂Sp(π

G
) ◦ π

Y
= Sp(π

G
). We show

that ̂Sp(π
G

) is the required RS-isomorphism.

(b) ̂Sp(π
G

) is injective.

Proof of (b). This is just the converse to the implication in (a): for a, b ∈
Sp(G),

Sp(π
G

)(a) = Sp(π
G

)(b)⇒ a�Y = b�Y,
i.e.,

(∗) a ◦ π∗
G

= b ◦ π∗
G
⇒ a�Y = b�Y.

Let p ∈ Y = H≡. By the definition of H≡ (8.3) there is σ ∈ X
G/≡ such that

p = σ ◦ π
G

. From the antecedent of (*) comes

a(p) = a(σ ◦ π
G

) = (a ◦ π∗
G

)(σ) = (b ◦ π∗
G

)(σ) = b(σ ◦ π
G

) = b(p);

since p is an arbitrary element of Y , (*) is proved.

(c) ̂Sp(π
G

) is surjective.

Proof of (c). We show Sp(π
G

) is surjective. Let f ∈ Sp(G/≡), i.e., f :
X
G/≡−→ 3sp is a spectral map. With ϕ : Y = H≡−→X

G/≡ denoting
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the (spectral) homeomorphism defined in 8.3(a), we have f ◦ ϕ ∈ Sp(Y ).
The Claim in the proof of Theorem 8.5 shows that f ◦ ϕ extends to a map
g ∈ Sp(X

G
) = Sp(G), i.e., g�Y = f ◦ ϕ. The definition of ϕ shows that

ϕ = π∗
G

−1. Hence the last equality yields f = g ◦ π∗
G

= Sp(π
G

)(g), prov-

ing (c).

(d) ̂Sp(π
G

) reflects representation.

Proof of (d). This amounts to proving, for a, b, c ∈ Sp(G),

Sp(π
G

)(a)∈D
Sp(G/≡)

(Sp(π
G

)(b),Sp(π
G

)(c))

⇒π
Y

(a)∈D
Sp(G)/≡Y

(π
Y

(b), π
Y

(c)), i.e.,

(∗∗) a ◦ π∗
G
∈ D

Sp(G/≡)
(b ◦ π∗

G
, c ◦ π∗

G
)⇒ a�Y ∈ DSp(Y )(b�Y, c�Y ).

For z ∈ Sp(G) and σ ∈ X
G/≡ we have (z ◦ π∗

G
)(σ) = z(σ ◦ π

G
). So, the

antecedent in (**) translates as

(∗ ∗ ∗) ∀σ ∈ X
G/≡

[
a(σ ◦ π

G
) ∈ D

3
(b(σ ◦ π

G
), c(σ ◦ π

G
))

]
.

To establish (d), let p ∈ Y = H≡, i.e., p = σ ◦π
G

for some σ ∈ X
G/≡. Then,

(***) yields a(p) ∈ D
3
(b(p), c(p)). Since p is an arbitrary element of Y , the

conclusion in (**) follows. �

9. Rings whose associated real semigroups are spectral

In this section we prove, first, that the real semigroup associated to any
lattice-ordered ring is spectral, a rather direct consequence of the axiomati-
sation in 7.1(1). This exhibits a very extensive class of examples of spectral
RSs arising from rings. An interesting consequence is that the spectral hull
of the RS G

A
associated to any semi-real ring A is canonically isomorphic

to the RS G
A

associated to the real closure A of A (real closure in the sense
of Schwartz [17], see also Prestel-Schwartz, [16]); further, the canonical em-
bedding η

GA
of G

A
into Sp(G

A
) (4.1(ii)) is induced by the natural map of A

into A (see also [14], Remark (3), p. 178).

Preliminaries and Notation 9.1. — (A) The RS associated to a ring.

Associated to each ring (commutative, unitary, semi-real, i.e., −1 �∈ ∑
A2)

there is a real semigroup G
A

= {a | a ∈ A}, where a : Sper (A)−→3 =
{1, 0,−1} is defined as follows. For α ∈ Sper (A), let π

α
: A−→ A/supp(α)

be the canonical quotient map, and let �
α

denote the total order of A/supp(α)
defined by α. Then,
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[∗] a(α) =





1 ⇔ a ∈ α \ (−α) ⇔πα(a)>
α
0 (in (A/supp(α),�α)),

0 ⇔ a ∈ supp(α) ⇔πα(a) = 0,

−1 ⇔ a ∈ −α \ α ⇔πα(a)<
α
0.

with constants 1, 0,−1, multiplication induced by that of A, and represen-
tation (resp. transversal representation) given by: for a, b, c ∈ A,

[R] c ∈ D
A
(a, b) ⇔ ∀α ∈ Sper (A)[c(α) = 0 ∨ a(α)c(α) = 1 ∨ b(α)c(α) = 1],

[TR] c ∈ Dt

A
(a, b) ⇔ ∀α ∈ Sper(A)[(c(α) = 0 ∧ a(α) = −b(α)) ∨

a(α)c(α) = 1 ∨ b(α)c(α) = 1].

In other words,

a(α) = sgn
�α

(π
α
(a)) = the (strict) sign of π

α
(a) in (A/supp(α),�α).

(“Strict” means strictly positive, strictly negative or zero.)

The proof that G
A

is, indeed, a real semigroup (couched in the dual
language of abstract real spectra), can be found in [14], Thm. 6.1.2, p. 100.
Its character space is X

GA
= Sper (A). A similar definition can be given for

the set G
A,T

of functions a restricted to Sper (A, T ) = {α ∈ Sper (A) |T⊆α},
where T is a preorder of A, and a similar result holds in this case.

(B) Lattice-ordered rings. We assume known the basics on lattice-ordered
rings (abbreviated 5-rings) for which the reader is referred to [3], Chs. 8, 9.

Throughout this section we assume A is a 5-ring. The underlying partial
order of A will be denoted by � (not to be confused with the representation
partial order of G

A
= G

A,�, cf. 1.1). Without risk of confusion, the lattice

operations in both A and G
A

will be denoted by ∧ , ∨ . In this situation, π
α

is a homomorphism of ordered rings of (A,�) onto (A/supp(α),�
α
). Since

�
α

is a total order, we have:

[†] πα(a∧ b) = min�α
{πα(a), πα(b)} and πα(a∨ b) = max�α

{πα(a), πα(b)}.

The lattice operations in A induce binary operations (a, b) �→ a∧ b (resp.
a∨ b) in G

A
.

Fact. — The operations (a, b) �→ a∧ b (resp. a∨ b) are well-defined: for
a, a′, b, b′ ∈ A,

a = a′ and b = b′ imply a∧ b = a′ ∧ b′ and a∨ b = a′ ∨ b′.
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Sketch of proof. — We just sketch the argument for the case (a, b) �→
a∧ b. Obviously it suffices to show: a = a′⇒ a∧ b = a′ ∧ b.

By [*] in 9.1.A, the assumption a(α) = a′(α)(α ∈ Sper(A,�)) amounts
to the fact that πα(a) and πα(a′) have the same strict sign in �α. The
conclusion follows from 9.1.B[†] by a case-wise argument according to the

values of (a∧ b)(α). �

The simple observations that follow will be used in the proof of our main
result, together with the characterization of the representation partial order
of G

A
given in Proposition 1.2(d).

Fact 9.2. — Let A be a 5-ring and let G
A

be its associated RS (9.1.A).
For a, b ∈ A we have:

(1) a � b⇒ b � a.

(2) b � a⇔ There is a′ ∈ A so that a′ = a and a′ � b.

(3) b � 0⇔ For all α ∈ Sper(A,�), πα(b)�
α
0.

(4) a∧ b = a ∨ b and a∨ b = a∧ b.

Proof. — (1) By 1.2(d) , we must show, for all α ∈ Sper(A,�):

(i) a(α) = 1⇒ b(α) = 1, and (ii) a(α) = 0⇒ b(α) ∈ {0, 1}.
By 9.1.A[*] these conditions are, respectively, equivalent to:

(i′) πα(a)>
α
0⇒πα(b)>

α
0, and (ii′) πα(a) = 0⇒πα(b)�

α
0.

Since πα : (A,�)−→ (A/supp(α),�α) is a homomorphism of ordered
rings, a � b implies πα(a)�

α
πα(b), from which (i′) and (ii′) clearly follow.

(2) The implication (⇐ ) is clear from (1).

(⇒ ) Assume b � a (in G
A
); then, (i′) and (ii′) above hold. Set a′ := a∧ b.

It remains to show that a(α) = a′(α) for α ∈ Sper(A,�); we argue by cases
according to the values of a(α):

– a(α) = 1. Then, πα(a)>
α
0 (see 9.1.A[*]); by (i′), πα(b)>

α
0, and we get,

0<
α
min�α

{πα(a), πα(b)} = πα(a∧ b) = πa(a
′)

i.e., a′(α) = 1.

– a(α) = 0. By 9.1.A[*], πα(a) = 0; (ii′) gives πα(b)�
α
0; thus,

πα(a′) = πα(a∧ b) = min�α
{πα(a), πα(b)} = 0,

i.e., a′(α) = 0.
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– a(α) = −1. An argument similar to the first case yields a′(α) = −1.

(3) Since πα(0) = 0, the characterization of b � a set forth in items (i′)
and (ii′) of the proof of (1) applied with a = 0, yields at once that πα(b)�

α
0

for all α ∈ Sper(A,�).

(4) We only prove the first equality. Since a∧ b � a, b (in A), item (1)
gives a, b � a∧ b, whence a∨ b � a∧ b. To prove the reverse inequality we
proceed by cases, according to the values of (a∧ b)(α), α ∈ Sper(A,�).

– If (a∧ b)(α) = 1, there is nothing to prove.

– (a∧ b)(α) = 0. By 9.1.A[*], πα(a∧ b) = 0, and the first equality in
9.1.B[†] implies that one of πα(a), πα(b) is 0 and the other is �

α
0, i.e.,

either a(α) = 0 and b(α) ∈ {0, 1} or the other way round. Since the order
in 3 is 1 < 0 < −1, this clearly yields a(α)∨ b(α) = 0.

– (a∧ b)(α) = −1. From 9.1.A[*] and 9.1.B[†] we get min�α
{πα(a), πα(b)}

<
α
0. Then, at least one of πα(a) or πα(b) is <

α
0, i.e., a(α) = −1 or b(α) =

−1, which yields a(α)∨ b(α) = −1. �

Now we turn to the proof of:

Theorem 9.3. — Let (A,�) be a 5-ring. The real semigroup G
A

asso-
ciated to A is spectral.

Proof. — We show that G
A

verifies axioms [SRS1] and [SRS2] of 7.1. We
repeatedly use the results of 9.2, notably that the order reverses in passing
from A to G

A
, and the equalities [†] in 9.1.B.

[SRS1]. Fix a ∈ A, and set c = a∨ 0. Then, c � 0, whence c � 0, and,
by 1.2(c), c ∈ Id(G

A
); in particular, c(α) ∈ {0, 1}, i.e., πα(c)�α0 for α ∈

Sper(A,�). Also, c � a, i.e., c � a, whence, by 1.1, −a ∈ D
GA

(1,−c).

To prove ac = c, let α ∈ Sper(A,�). The equality obviously holds at
α if c(α) = 0. So, assume c(α) = 1, i.e., πα(c)>α0; by 9.1.B[†], πα(c) =
max�α

{πα(a), 0}>α0 which clearly implies πα(a)>α0, i.e., a(α) = 1.

[SRS2]. Given a, b ∈ A, set d = a∨ b, i.e., d = a∧ b (9.2(4)). We show:

(i) d ∈ D
GA

(a, b). We must prove: d(α) �= 0⇒ d(α) = a(α) or d(α) =

b(α), for α ∈ Sper(A,�). Since the order �α is total, the second equality in
9.1.B[†] yields πα(d) = πα(a) or πα(d) = πα(a), which obviously yields the
required conclusion.
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(ii) d
+

= −a+ · b+. Since z+ = z ∨ 0 � 0(z ∈ A), we get z+(α) ∈ {0,−1}
for α ∈ Sper(A,�). To prove (ii), we argue by cases according to the values

of d
+
(α).

– d
+
(α) = −1. This means (d∧ 0)(α) = −1, i.e., πα(d∧ 0) <α 0; by

9.1.B[†], πα(d) <α 0. Since d = a∨ b, the second equality in 9.1.B[†] implies

that both πα(a) and πα(b) are <α 0, whence a+(α) = b
+
(α) = −1. It follows

that −a+(α) · b+(α) = −1 = d
+
(α).

– d
+
(α) = 0. Thus, (d∧ 0)(α) = 0, i.e., πα(d∧ 0) = 0. The first equality

in 9.1.B[†] gives πα(d)�α0, and (as d = a∨ b) the second equality shows that
at least one of πα(a) or πα(b) is �α0. Then, one of πα(a∧ 0) or πα(b∧ 0)

equals 0, i.e., either a+(α) = 0 or b
+
(α) = 0, proving that (ii) holds at α.

(iii) (d)− ∈ Dt

GA
((a)−, (b)−). For z ∈ A we have (z)− = z ∧ 0 � 0, and

hence (z)−(α) ∈ {0, 1} for α ∈ Sper(A,�). To establish (iii) we must show:

– (d)−(α) = 0⇒ (a)−(α) = (b)−(α) = 0, and

– (d)−(α) = 1⇒ (a)−(α) = 1 or (b)−(α) = 1.

For the first implication, the assumption is (d∨ 0)(α) = 0, i.e.,
πα(d∨ 0) = 0. The second equality in 9.1.B[†] shows that πα(d)�

α
0, which

(since d = a∨ b) yields πα(a), πα(b)�
α
0. We get πα(a∨ 0) = πα(b∨ 0) = 0,

i.e., (a)−(α) = (b)−(α) = 0.

For the second implication, the assumption amounts to πα(d∨ 0)>α0,
which implies πα(d)>α0. The conclusion to be proved amounts to πα(a)>α0
or πα(b)>α0, which obviously follows from the second equality in 9.1.B[†]
applied with d = a∨ b. �

As a consequence of Theorem 9.3 and of previous results, we have:

Proposition 9.4. — Let A be a semi-real ring, let A denote its real
closure (in the sense of Prestel-Schwartz [16]), and let ι : A−→A be the
natural map. Then,

(1) The spectral hull Sp(G
A
) of the real semigroup G

A
is canonically

isomorphic to G
A
, the RS associated to A.

(2) The canonical embedding η
GA

of G
A

into Sp(G
A
) (cf. 4.1(ii)) is in-

duced by the RS-morphism ι : G
A
−→ G

A
given by the ring morphism ι.
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Proof. — The result is a consequence of the following observations:

– The fact that Sper (A) = Sper (A) (cf. [16], p. 264) entails Sp(G
A
) =

Sp(G
A
); indeed, both these RSs consist of the spectral characters of the

space X = Sper (A) = Sper (A) into 3sp (1.3).

– By Theorem 5.3(i) we have a commutative diagram

The previous observation and uniqueness of factorization in 5.3(i) entail
that Sp(ι) is the identity of Sp(G

A
) = Sp(G

A
) (the reader can easily check

that this identity makes the above diagram commute). Since A (ordered by

A
2
) is a 5-ring (in fact, a reduced f -ring), 9.3 implies that G

A
is a spectral

RS. Corollary 4.6 entails, then, that η
G
A

is an isomorphism of RSs.

Let ϕ : Sp(G
A
)−→G

A
be the map ϕ := η−1

G
A

◦ Sp(ι). By the preceding

observation, ϕ is an isomorphism of RSs, which proves (1). Commutativity
of the diagram above then gives η

GA
= ϕ−1 ◦ ι, which proves (2). �

Remark 9.5. — The well-known Delzell-Madden example of a heredi-
tarily normal spectral space that is not homeomorphic to the real spectrum
of any ring, [5], also yields an example of a spectral RS not realizable by
a ring: if X denotes this space, the duality RS/ARS ([8], Thm. 4.1) and
Proposition 3.7(2) show that Sp(X) is not isomorphic to G

A
for any ring A.

Further, in [14], p. 177, Marshall observes, using a dual terminology, that

Sp(X) cannot even be of the form G
A,T

for a ring A and a preorder T of A.
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