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Annales de la Faculté des Sciences de Toulouse Vol. XXI, n◦ 4, 2012
pp. 651–743

Stability for a certain class of numerical methods –
abstract approach and application to the stationary

Navier-Stokes equations

Elżbieta Motyl(1)

ABSTRACT. — We consider some abstract nonlinear equations in a sepa-
rable Hilbert space H and some class of approximate equations on closed
linear subspaces of H. The main result concerns stability with respect to
the approximation of the space H. We prove that, generically, the set of
all solutions of the exact equation is the limit in the sense of the Hausdorff
metric over H of the sets of approximate solutions, over some filterbase
on the family of all closed linear subspaces of H. The abstract results
are applied to the classical Galerkin method and to the Holly method for
the stationary Navier-Stokes equations for incompressible fluid in 2 and
3-dimensional bounded domains.

RÉSUMÉ. — On considère certaines équations non linéaires abstraites
dans un espace de Hilbert séparable H et certaines classes d’équations
approchées dans les sous-espaces vectoriels fermés de H. Le résultat prin-
cipal concerne la stabilité relativement à l’approximation de l’espace H.
On prouve que l’ensemble de toutes les solutions de l’équation exacte
est la limite dans la métrique de Hausdorff des ensembles des solutions
approchées, relativement à certaine base filtrée sur la famille des sous-
espaces vectoriels fermés de H. Les résultats généraux sont appliqués à
la méthode de Galerkin et à la méthode de Holly pour les équations de
Navier-Stokes stationnaires dans domaines bornés de dimension 2 et 3.
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0. Introduction

We consider an abstract (nonlinear) equation of the form

µu+ T (u) = g (∗)

in a real separable Hilbert space, where (µ, g) ∈]0,∞[×H and a mapping
T : H → H of class C1 are given while u is unknown.

On every closed linear subspace M ⊂ H of H let us consider equation
of the form

µw + TM (w) = gM , (∗M )

where gM ∈ M and TM : M → M of class C1 are given and w is looked
for. Relations between mappings T and TM are described in assumptions
(A.1)-(A.6) in Section 2. If H �= M , then equation (∗M ) will be interpreted
as the approximate equation of (∗).

Let S(H) be the family of all closed linear subspaces of H. We consider
the topology on S(H) induced by some filterbase B introduced by K. Holly
in [7]. In this way we have the notion on convergence in S(H). We recall
this construction in Preliminaries (see Section 1.3).

In the present paper, we investigate stability with respect to approxima-
tion of the space H. More precisely, let us denote

R(µ, g) - the set of all solutions of the equation (∗)
RM (µ, gM ) - the set of all solutions of the equation (∗M )

We prove that for the data (µ, g) from a certain set O ⊂]0,∞[×H

lim
M�B

RM (µ, gM ) = R(µ, g) in the Hausdorff metric over H,

whenever limM�B gM = g, where the limit is taken over the filterbase B on
the family S(H) (see Theorem 2.10). Let us mention that the solutions of
the considered equations may be non-unique. Set O is defined by

O := {(µ, g) ∈]0,∞[×H : g is a regular value

of the mapping H  u �→ µu+ T (u) ∈ H}.

Moreover, the set O is open and dense in ]0,∞[×H (see Theorem 2.9). This
problem has been investigated in the paper [12], Section 3 and we recall it
in Appendix C.

Then we say that the numerical method expressed in an abstract way
as the family of the equations {(∗M ), M ∈ S(H)} is generically stable
with respect to the approximation of the space H.
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The technique of analysis is based on the methods of functional analysis,
especially on the theory of Fredholm mappings (see Appendix C). Moreover,
the crucial point is the application of a certain version of the implicit func-
tion theorem for the space with filterbase (see Theorem 2.7).

The above abstract considerations arised on the base of investigation
some numerical methods in the stationary Navier-Stokes equations. Main
results of this paper are generalizations of the results of paper [12]. The
present approach has been deduced from the concrete numerical methods
and put into an abstract framework (see [7] and [12]).

In the second part of the present paper, we apply the abstract framework
for

• the classical Galerkin method (see Section 4.2)

• and for the method introduced by Holly (see Section 6.2).

for stationary Navier-Stokes equations.

Consider the stationary Navier-Stokes equations for incompressible fluid
filling a bounded domain Ω ⊂ Rn, where n ∈ {2, 3}, i.e.





∑n
i=1 vi

∂v
∂xi

= ν∆v + f −∇p,
divv = 0,
v|∂Ω = 0.

Here ν > 0 (viscosity) and f : Ω → Rn (external forces) are given while
v : Ω → Rn (velocity) and p : Ω → R (pressure) are looked for. We are
interested in weak solutions of the above problem (see Definition 3.1). Ev-
ery internal approximation of the space V of all divergence-free vector fields
enables us to look for a stationary velocity of the fluid with the aid of the
Galerkin method without any limitations on viscosity and external forces
(see e.g. [10], [19]). However, there arises the problem of numerical construc-
tion of the approximation of V . Difficulties with the approximation are an
incentive to look for other methods (see [6], [19]).

K. Holly introduced a new numerical method of finding velocity v in the
stationary Navier-Stokes problem. The construction of the solution is based
on the internal approximation of the whole Sobolev space H1

0 , which is in
practice well approximated, e.g. by splines in the finite element method (see
[6], [19], [12]). We present this method in Section 5. Moreover, we provide
an analysis of the pressure in this method.
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Motivation of the present approach. Let us again consider the ab-
stract equation (*) in the separable Hilbert space H. General ideas of con-
struction of a solution of (*) by using a numerical metod are as follows

• Consider a sequence (HN )N∈N of finite-dimensional subspaces of H
such that for every h ∈ H, the corresponding sequence of distances
dist(h,HN ), N ∈ N of h from HN tends to zero as N → ∞. The
sequence (HN )N∈N is called an internal approximation of H.

• For each N ∈ N, consider appropriate approximate equation (depen-
dent on the chosen method) in the subspace HN and prove existence
of a solution uN ∈ HN .

• Prove that (uN )n∈N contains a convergent subsequence and that the
limit is a solution od equation (*).

There arises one more problem which we call the problem of stability
with respect to approximation of the space H, and which is the main
topic of the present paper. This problem is important from the numerical
point of view, because in practice, the internal approximation (HN )N∈N of
H is numerically computed. For each N ∈ N, the subspace HN is determined
by its Hamel base. Vectors of this base are usually numerically computed
(for example, this base may be constructed with the aid of splines in the
finite element method). Thus, even “very small” perturbation of this vec-
tors changes the subspace HN . This reflects in the perturbation of the set
of solutions of the approximate equation corresponding to the perturbated
subspace HN . Roughly speaking, the question is whether “small” perturba-
tions of the subspaces HN call ”small” perturbations of the corresponding
sets of solutions. However, if we want to describe this effect precisely, we
need some topology (and notion of convergence) on the family of linear sub-
spaces of S(H). We consider topology induced by some filterbase on the
family S(H) of all closed linear subspaces of H. It is described in Prelim-
inaries. In the space of sets of solutions we consider the Hausdorff metric.
The main result concernig stability with respect to approximation of the
space states that if (µ, g) belong to some open and dense set O, then the
sets of approximate solutions corresponding to subpaces of the space H con-
verge to the set R(µ, g) in the Hausdorff metric over H when the spaces
converge over the filterbase. Then we say that the method is generically
stable with respect to approximation of the space H.

The present paper is organised as follows. In Preliminaries, we recall
the concept of the filterbase and the notion of convergence in the sense
of the filterbase. Next, we deal with the construction and properties of
the filterbase on the family of all closed linear subspaces of a separable
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Hilbert space. Auxiliary results about filterbases are put in the Appendix
A in Section 8. Section 2 contains the abstract framework concernig the
problem of stability. In Sections 3, 4, 5 and 6 we consider the stationary
Navier-Stokes equations. In Section 4 we illustrate the abstract approach
of Section 2 on the example of the classical Galerkin method. Section 5
is devoted to the presentation of the Holly method and in Section 6 we
apply the abstract framework to prove stability of this method. The last
four sections are appendices. In Appendix B, we consider a certain version
of the fixed point theorem in the finite-dimensional Hilbert space (Theorem
9.2) proved by J.L. Lions and its generalization to the case of the infinite-
dimensional Hilbert space (Theorem 9.4). In Appendix C, we recall in details
the problem of generic properties of the set of solutions of equation (*).
We use these results in Section 2. At the end of this appendix, there are
some generalizations, which we apply in Section 6 to the Holly method.
In Appendix D, we recall the results about the divdiv∗-operator and its
inversion based on the von Neumann lemma. These results are of crucial
importance in the Holly method.
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1. Preliminaries

1.1. Notations

Let
(
X, | · |X

)
,
(
Y, | · |Y

)
be real normed spaces. Then KX(x0, r) := {x ∈

X : |x − x0| < r} is the open ball with center at x0 and radius r, and
KX(x0, r) is the appropriate closed ball. Moreover, KX(r) := KX(0, r). If
no confusion seems likely, we omit the index X.

The symbol L(X,Y ) stands for the linear space of all continuous linear
operators from X to Y . Epi(X,Y ) is the subspace of all epimorphisms ,i.e.,
the family of all A ∈ L(X,Y ) such that A(X) = Y and Mono(X,Y ) – the
subspace of all monomorphisms , i.e. the family of all injections in L(X,Y ).
Moreover,

Iso(X,Y ) := {A ∈ L(X,Y ) : A is bijective and A−1 ∈ L(Y,X)}

is the family of all isomorphisms. In particular, the space L(X,X) =: EndX
is called the space of endomorphisms of X and Iso(X,X) =: AutX is
called the space of authomorphisms of X. Moreover, EpiX := Epi(X,X)
and MonoX := Mono(X,X). If Y = R, then X ′ := L(X,R) is called the
dual space of X and its elements are called continuous linear functionals
of X. The identity mapping on a set X is denoted by idX ; if no confusion
seems likely, we omit the index X.

The topology of a topological space Z is denoted by topZ. The symbol
cotopZ denotes the family of all closed subsets of Z, i.e. cotopZ := {Z \O :
O ∈ topZ}.

1.2. Filterbases – definitions and notations

Let S be a nonempty set. The symbol 2S stands for the family of all
subsets of S.

Definition 1.1. — A subfamily B ⊂ 2S is called a filterbase on S iff it
is nonempty, empty set does not belong to B and

for every A,B ∈ B there exists C ∈ B (1.1)

such that C ⊂ A ∩B.

We will assume that
⋂B :=

⋂
B∈B B �= ∅.
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Example. — Let S = N := N ∪ {∞}. Then the family

{[N,∞] ∩ N; N ∈ N}

is a filterbase. Notice that
⋂
n∈N

(
[N,∞] ∩ N

)
= {∞}.

Filterbase induces topology on S in the following way. For fixed ω0 ∈⋂B, the family

B(ω0) := {{ω}; ω0 �= ω ∈ S} ∪ {
k⋂

i=1

Bi; k ∈ N, Bi ∈ B}

has properties of the topological base, i.e. S =
⋃B(ω0) and for every A,B ∈

B(ω0) and every ω ∈ A∩B there exists C ∈ B(ω0) such that ω ∈ C ⊂ A∩B.
Thus

topS := {
⋃
U ; U ⊂ B(ω0)}

is a topology on S.

Now, we recall notion of the convergence over the filterbase. Let ψ : S →
Z, where Z is a topological space.

Definition 1.2. — An element z0 ∈ Z is a limit of the function ψ over
the filterbase B iff for every U ∈ F(z0) there exists B ∈ B such that ψ(B) ⊂
U . Then we write

lim
ω�B

ψ(ω) = z0 or ψ(ω) → z0 as ω ! B.

(The symbol F(z0) denotes the filter of all neighbourhoods of z0.)

Definition 1.3. — The filterbase B is of countable type iff there exists
a countable family B0 = {B1

0 , B
2
0 , . . .} such that

for every B ∈ B there exists B0 ∈ B0 such that B0 ⊂ B. (1.2)

Then we write B0 ! B.

1.3. Filterbase on the family of all closed linear subspaces of a
Hilbert space.

We recall construction of a filterbase introduced by K. Holly in [7] as well
as some of its properties. Let

(
H, (·|·)

)
be a real separable Hilbert space.

The norm induced by the scalar product (·|·) is denoted by | · |. Consider
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the family S(H) of all closed linear subspaces of H. For a finite-dimensional
subspace W ∈ S(H) and for δ > 0 let us define

BW,δ := {M ∈ S(H) : W ∩ σ(1) ⊂M +K(δ)}, (1.3)

where K(δ) := {x ∈ H : |x| � δ and σ(1) := ∂K(1) := {x ∈ H : |x| = 1}.
Then the family

B :=
{
BW,δ; W ∈ S(H) ∩ {dim <∞}, δ > 0

}
(1.4)

is a filterbase on S(H).

Let us note that condition (1.1) is satisfied, because for every W1,W2 ∈
S(H) ∩ {dim <∞} and every δ1, δ2 > 0

BW,δ ⊂ BW1,δ1 ∩BW2,δ2 ,

where W = W1 + W2 and δ = min{δ1, δ2}. Indeed, let M ∈ BW,δ. Then
(W1 +W2) ∩ σ(1) ⊂M +K(δ). Thus, in particular

Wi ∩ σ(1) ⊂M +K(δ) ⊂M +K(δi), i = 1, 2

which means that M ∈ BWi,δi , i = 1, 2.

For a subspace M ∈ S(H) let PM : H →M denote the (·|·) - orthogonal
projection onto M .

Remark 1.4 (Remark 1.21 in [7]). — Let M ∈ S(H). Then

M ∈ BW,δ ⇔ |x− PMx| � δ|x| for every x ∈W.

Proof. — Ad.“⇒”. Let x ∈W . We may assume that x �= 0. Then

x

|x| ∈W ∩ σ(1) ⊂M +K(δ).

Thus dist
(
x
|x| ,M

)
� δ. On the other hand,

dist
( x

|x| ,M
)

=
∣∣∣ x|x| − PM

( x

|x|
)∣∣∣

In conclusion, |x− PMx| � δ|x|.

Ad.“⇐”. We have to check that W ∩σ(1) ⊂M+K(δ). Let x ∈W ∩σ(1).
Then dist(x,M) = |x− PMx| � δ. Hence

x ∈ K(PMx, δ) = PMx+K(δ) ⊂M +K(δ).

Thus M ∈ BW,δ. �
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Corollary 1.5 (Corollary 1.22 in [7]). —

lim
M�B

PM (x) = x, x ∈ H.

Proof. — We will use Definition 1.2. Let us fix x ∈ H and let

ψ(M) := PM (x), M ∈ S(H).

Let U be a neighbourhood of x in the space H. Then, there exists ε > 0
such that K(ε) ⊂ U . We will check that ψ(BW,δ) ⊂ U for W := R · x and
δ := ε

|x| . Indeed, let M ∈ BW,δ. By Remark 1.4, |z−PM (z)| � δ|z| for every

z ∈W . Since W = R · x, z = rx for some r ∈ R. Hence

|z − PM (z)| = |rx− rPM (x)| � δr|x| = εr.

Thus |x − PM (x)| � ε, which means that ψ(M) = PM (x) ∈ K(x, ε) ⊂ U .
�

Definition 1.6. — A sequence (Wk)k∈N of finite-dimensional linear
subspaces of H is called an internal appoximation of H iff

lim
k→∞

|x− PWk
(x)| = 0, x ∈ H.

Corollary 1.7 (Corollary 1.23 in [7]). — Let (Wk) be an internal ap-
proximation of H and let (δk)k∈N be a sequence of positive real numbers
such that limk→∞ δk = 0. Then

(a) for every subspace W ∈ S(H) ∩ {dim <∞} and every δ > 0

BWk,δk ⊂ BW,δ for almost all k ∈ N;

(b) if (Mk) ∈ X∞k=1BWk,δk , then

lim
k→∞

|x− PMk
(x)| = 0, x ∈ H.

Proof. — Ad. (a). Let us fix a subspace W ∈ S(H)∩ {dim <∞} and a
number δ > 0. Since δk → 0, there exists k̃1 ∈ N such that δk <

δ
2 for each

k � k̃1. Let the vectors e1, . . . , el form an orthonormal base in W . Since
(Wk) is internal approximation of W , then for each i ∈ {1, . . . , l} there
exists ki ∈ N such that

|ei − PWk
(ei)| �

δ

2l
for each k � ki.
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Let k0 := max{k̃1, k1, . . . , kl}. We assert that

BWk,δk ⊂ BW,δ for each k � k0.

Indeed, let M ∈ BWk,δk . We have to prove that W ∩ σ(1) ⊂M +K(δ). Let
x ∈W ∩ σ(1). By Remark 1.4, it is sufficient to show that |x− PM (x)| � δ
(because |x| = 1). Let us write the following inequality

|x− PM (x)| � |x− PWk
(x)|+ |PWk

(x)− PM (x)|.

Since x ∈W ∩σ(1), x =
∑l

i=1 λiei for some λi ∈ R and
∑l

i=1 λ
2
i = 1. Hence

|x− PWk
(x)| = |

l∑

i=1

λi
(
ei − PWk

(ei)
)
| �

l∑

i=1

|λi| · |ei − PWk
(ei)|

�
( l∑

i=1

λ2
i

) 1
2

·
( l∑

i=1

|ei − PWk
(ei)|2

) 1
2

=

( l∑

i=1

|ei − PWk
(ei)|2

) 1
2

� δ

2
.

Since M ∈ BWk,δk , then by Remark 1.4,

|PWk
(x)− PM (x)| � δk|PWk

(x)| < δ

2
.

In conclusion, |x− PM (x)| � δ.

Ad. (b) Let x ∈ H and let ε > 0. According to Corollary 1.5,
limM�B PM (x) = x. Thus, there exists W ∈ S(H) ∩ {dim <∞} and δ > 0
such that ψ(BW,δ) ⊂ K(x, ε), where ψ(M) := PM (x), M ∈ S(H). Due to
assertion (a)

Mk ∈ BWk,δk ⊂ BW,δ for almost all k ∈ N.

Thus, in particular, ψ(Mk) ∈ K(x, ε) which means that |x − PMk
(x)| � ε

for almost all k ∈ N and ends the proof. �

Using this Corollary, we deduce that the filterbase B is of countable type,
because condition (1.2) holds with B0 = {BWk,δk , k ∈ N}.
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Since Wk ∈ BWk,δk , Corollary 1.7 (a) yields the following

Corollary 1.8. — If (Wk) is an internal approximation of the space
H, then for every subspace W ∈ S(H) ∩ {dim <∞} and every δ > 0

Wk ∈ BW,δ for almost all k ∈ N.

Remark 1.9. — Let (Wk), (δk) be like in Corrollary 1.7 and let Mk ∈
BWk,δk , k ∈ N. If ψ : S(H) → Z is a mapping such that limM�B ψ(M) = z0,
where z0 ∈ Z and Z is a topological space, then

lim
k→∞

ψ(Mk) = z0.

Proof. — Let us fix a neighbourhood U ∈ F(z0). Since ψ(M) → z0 as
M ! B, there exists B ∈ B such that ψ(B) ⊂ U . By the construction of the
filterbase B, we deduce that B = BW,δ for some W ∈ S(H) ∩ {dim < ∞}
and δ > 0. Corollary 1.7 (a) yields that Mk ∈ BW,δ for almost all k ∈ N.
Thus ψ(Mk) ∈ U for almost all k ∈ N. �

Further auxiliary results concerning filterbases are proven in Appendix A.

2. Abstract results

2.1. Statement of the problem

Let us consider the following equation in the space H

µu+ T (u) = g, (∗)

where µ ∈]0,∞[, g ∈ H and T : H → H is a C1 - mapping.

For every subspace M ∈ S(H), we consider an analogous equation in M

µw + TM (w) = gM , (∗M )

where gM ∈ M and TM : M → M is a C1 - mapping. If M �= H, then we
interprete (∗M ) as the approximate equation of the equation (*).

For fixed data (µ, g) ∈]0,∞[×H let us denote

R(µ, g) - the set of all solutions of the equation (*), i.e.

R(µ, g) := {u ∈ H : µu+ T (u) = g}. (2.1)
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For fixed subspace M ∈ S(H) \H and data (µ, gM ) ∈]0,∞[×M :

RM (µ, gM ) - the set of all solutions of the equation (∗M ), i.e.

RM (µ, gM ) := {w ∈M : µw + TM (w) = gM}. (2.2)

Assumptions:

(A.1) For every M ∈ S(H) \ H and every (µ, gM ) ∈]0,∞[×M the set
RM (µ, gM ) is nonempty.

(A.2) For every M ∈ S(H) there exists a C1- mapping T̃M : H → H such
that TM ⊂ T̃M (i.e. {(u, TM (u)), u ∈M} ⊂ {(u, T̃M (u)), u ∈ H}),
T̃H = T and RM (µ, gM ) = {u ∈ H : µu+ T̃M (u) = gM}.

(A.3) There exists a continuous function κ :]0,∞[×[0,∞[→ [0,∞[ such
that for every M ∈ S(H) and every w ∈ RM (µ, gM ) the following
inequality holds

|w| � κ(µ, |gM |).

(A.4) For every u ∈ H

T̃M (u) → T (u) in H as M ! B.

(A.5) If (Wk) is an internal approximation of H and (δk) is a sequence of
positive real numbers such that limk→∞ δk = 0, then for every (Mk)
such that Mk ∈ BWk,δk , k ∈ N and every (uk) weakly convergent to
u in H

T̃Mk
(uk) → T (u) in H as k →∞.

(A.6) For every u0 ∈ H the Fréchet differentials

duT̃M → du0T in EndH as (M,u) ! B×F(u0),

where F(u0) denotes the filter of all neighbourhoods of u0 in the
norm-topology of H.

Notice that in (A.1), we assume the existence of the solution of the equa-
tion (∗M ) for every M ∈ S(H) different from H, whereas condition (A.3)
concernes a priori estimates of the solutions. Notice also that assumption
(A.5) is satisfied in the case when
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(A.5’) for every u0 ∈ H

T̃M (u) → T (u0) in H as (M,u) ! B×Fweak(u0),

where Fweak(u0) denotes the filter of all neighbourhoods of u0 in the
weak topology of H.

Proof. — Assume that condition (A.5’) holds. We will check that con-
dition (A.5) is satisfied. Let (Wk) be an internal approximation of H and
let 0 < δk → 0. Suppose that Mk ∈ BWk,δk , k ∈ N and uk → u weakly in
H. Putting u0 := u in (A.5’), we infer that given ε > 0, there exist X ∈ B
and U ∈ Fweak(u) such that

|T̃M (w)− T (u)| < ε, (M,w) ∈ X × U .

Since uk → u weakly in H, there exists k1 ∈ N such that uk ∈ U for k � k1.
From the construction of the filterbase B,there follows that

X = BW,δ for some W ∈ S(H) ∩ {dim <∞} and δ > 0.

By Corollary 1.7, we infer that there exists k2 ∈ N such that BWk,δk ⊂ BW,δ

for each k � k2. Hence, in particular,

|T̃Mk
(uk)− T (u)| < ε for each k � k0 := max(k1, k2),

which ends the proof. �

2.2. The convergence result

Now, we will prove some convergence result which states that from a
sequence of approximate solutions we can choose a convergent subsequence
and its limit is a solution of the equation (*).

Theorem 2.1 (Convergence). — Suppose that conditions (A.1) - (A.5)
hold. Let (Wk) be an internal approximation of H, 0 < δk → 0 and Mk ∈
BWk,δk , k ∈ N. If gk ∈ Mk and gk → g in H and uk ∈ RMk

(µ, gk), k ∈ N
then, there exist an infinite subset N ⊂ N and an element u ∈ H such that

lim
N�k→∞

|uk − u| = 0

and u ∈ R(µ, g).

Proof. — By condition (A.3), we deduce that

|uk| � κ(µ, |gk|) � max{κ(µ, |g|), κ(µ, |gl|), l = 1, 2, . . .} <∞,
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because the set {(µ, g), (µ, gl), l = 1, 2, . . .} is compact and κ is continuous.
Thus, the sequence (uk) is bounded. By the Banach-Alaoglu theorem, there
exist an infinite subset N ⊂ N and an element u ∈ H such that

uk → u weakly in H as N  k →∞.

We assert that the subsequence (uk)k∈N is strongly convergent to u and
u ∈ R(µ, g). Indeed, since uk ∈ RMk

(µ, gMk
),

uk = −T̃Mk
(uk) + gk. (2.3)

From (A.5), there follows that

T̃Mk
(uk) → T (u) in H as N  k →∞. (2.4)

Thus, taking into account equality (2.3), we infer that (uk)k∈N is convergent
in the sense of norm to u and u+ T (u) = g. �

Corollary 2.2. — The set R(µ, g) is nonempty for every
(µ, g) ∈]0,∞[×H.

Digression. — Let us note that directly from the proof of Theorem 2.1,
there follows some weaker version of the convergence result if we replace
condition (A.5) with the following one

if a sequence (Mk) is an internal approximation of H (2.5)

and wk → w weakly in H, then

T̃Mk
(wk) → T (w) weakly in H as k →∞.

Theorem 2.3. — Assume that conditions (A.1) - (A.4) and (2.5) hold.
Let (Mk) be an internal approximation of H, gk ∈ Mk, gk → g weakly in
H and uk ∈ RMk

(µ, gk). Then, there exist an infinite subset N ⊂ N and an
element u ∈ H such that

uk → u weakly in H as N  k →∞

and u ∈ R(µ, g).

Thus, here we have weak convergence only. Condition (A.5) guaranties
convergence in the norm of some sequence of approximate solutions. Con-
dition (A.5) will be also crucial in the further investigations about stability.
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2.3. Properties of the operator T and TM

We will use the technique of Fredholm mappings. Results investigated
in [12], Section 3 will be of great importance. For the convenience of the
reader we recall them in Appendix C.

Now, we will concentrate on some properties of the mappings T and TM
and of the sets R(µ, g) and RM (µ, gM ). Since T̃H = T and H ∈ BW,δ for
all W ∈ S(H) ∩ {dim <∞} and δ > 0, condition (A.5) implies that

if uk → u weakly in H, then T (uk) → T (u) in H as k →∞. (2.6)

Thus, in particular,

the mapping T is completely continuous. (2.7)

By (A.3) (withM := H), we deduce that for every u ∈ R(µ, g), the following
estimate holds

|u| � κ(µ, |g|). (2.8)

Thus, by (2.6) and (2.8), mapping T satisfies assumptions (10.4) - (10.5) in
Appendix C.

We will use the following notations

Eµ : H  u �→ µu+ T (u) ∈ H, µ ∈]0,∞[

Eµ,M : M  u �→ µu+ TM (u) ∈M, µ ∈]0,∞[, M ∈ S(H) \H.
Let us note that for every (µ, g) ∈]0,∞[×H:

R(µ, g) = E−1
µ ({g}) (2.9)

and for every M ∈ S(H) \H and every (µ, gM ) ∈]0,∞[×M :

RM (µ, gM ) = E−1
µ,M ({gM}). (2.10)

By (10.7) and Proposition 10.8 mapping Eµ has the following properties.

Remark 2.4. — The mapping Eµ
(1) is a Fredholm mapping of index 0,

(2) is proper, i.e. the preimage of a compact subset is compact.

By Remark 2.4 (1), we infer that for every u ∈ H:

duEµ ∈ EpiH ⇔ duEµ ∈MonoH ⇔ duEµ ∈ AutH. (2.11)
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In view of the relation (2.9) and Remark 2.4 (2), we have

Corollary 2.5. — The set R(µ, g) is a compact subset of H for every
pair (µ, g) ∈]0,∞[×H.

By the continuity of the mapping Eµ,M , inequality (2.8) and relation
(2.10), we infer that

Corollary 2.6. — The set RM (µ, gM ) is a closed bounded subset of M
for every subspace M ∈ S(H) and every pair (µ, gM ) ∈]0,∞[×M .

Proof. — Since {gM} is closed and Eµ,M is continuous, thus RM (µ, gM )
is closed as the preimage of a closed set by continuous mapping. By the
inequality in assumption (A.3),

|w| � κ(µ, |gM |)

for every w ∈ RM (µ, gM ). Thus RM (µ, gM ) is bounded. �

2.4. The implicit function theorem – version for the space with
filterbase

In the sequel we will use the following version of the implicit function
theorem proven in [7].

Theorem 2.7. — (Th. 1.20 in [7]). Let B be a filterbase on a set X and
let x0 ∈

⋂B. Consider Banach spaces Y,Z and a point y0 ∈ Y . Suppose
that a mapping F : X × Y → Z satisfies the following conditions

(i) F (x0, y0) = 0 ;

(ii) for every (x, y) ∈ X × Y there exists the Fréchet differential

dII(x,y)F := dyF (x, ·) ∈ L(Y,Z);

(iii) dII(x0,y0)F ∈ Iso(Y,Z);

(iv) for every y ∈ Y : limx�B F (x, y) = F (x0, y);

(v) dII(x,y)F → dII(x0,y0)F in L(Y,Z) as (x, y) ! B×F(y0),

where B×F(y0) := {B × U , B ∈ B, U ∈ F(y0)}.
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Then, there exist X ∈ B and Y ∈ F(y0) such that the relation

η := {F = 0}∩ (X ×Y) is a function from X to Y and limx�B∩̄X η(x) = y0,

where B∩̄X := {B ∈ B : B ⊂ X}.

(F(y0) denotes the filter of all neighbourhoods of y0 in Y .)

2.5. The stability problem

Using the above version of the implicit function theorem with

F : S(H)×H  (M,u) �→ µu+ T̃M (u)− gM ∈ H (2.12)

and (x0, y0) := (H,u0), where u0 ∈ R(µ, g), we obtain the following lemma.

Lemma 2.8. — Assume that the conditions (A.1) - (A.6) hold. Let (µ, g) ∈
]0,∞[×H, u0 ∈ R(µ, g) and du0Eµ ∈ EpiH. Let gM → g as M ! B. Then,
there exist X ∈ B and Y ∈ F(u0) such that

(i) #
(
Y ∩RM (µ, gM )

)
= 1 for every M ∈ X ;

(ii) limM�B∩̄X |uM − u0| = 0, where {uM} := Y ∩RM (µ, gM ).

Proof. — We will check that the mapping (2.12) satisfies the assump-
tions of Theorem 2.7. Indeed, since u0 ∈ R(µ, g),

F (H,u0) = µu0 + T (u0)− g = 0.

For every (M,u) ∈ S(H)×H:

dII(M,u)F = µid + duT̃M ∈ EndH.

Hence, by (A.2) and (2.11), we infer that

dII(H,u0)F = µid + du0
T = du0

Eµ ∈ AutH,

i.e. condition (iii) is fulfielled. Condition (iv) is satified due to assumption
(A.4) and condition (v) follows from (A.6).

Thus, there exist X ∈ B and Y ∈ F(y0) such that the relation η := {F =
0} ∩ (X ×Y) is a function from X to Y and limM�B∩̄X |η(M)− η(H)| = 0.
In particular, for every M ∈ X there exists the unique uM ∈ Y such that
η(M) = uM . Since η ⊂ {F = 0}, F (M,uM ) = 0. Thus uM ∈ Y∩RM (µ, gM ),
by (A.2). To infer (ii), it is sufficient to note that η(H) = u0. �
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In the forthcoming considerations we will need set O introduced while
investigating generic properties of the set of solutions R(µ, g). Here we col-
lect properties of this set O (see Appendix C).

Let us consider the set

O := {(µ, g) ∈]0,∞[×H : g is a regular value

of the mapping H  u �→ µu+ T (u) ∈ H}. (2.13)

In Appendix C, we have proven that the function

O  (µ, g) �→ R(µ, g) ⊂ H

is continuous if we consider the Hausdorff metric on the family of all nonempty
closed and bounded subsets of H. Moreover, #R(µ, g) < ∞ for (µ, g) ∈ O
(see Theorem 10.11 in Appendix C). Furthermore, we have the following

Theorem 2.9. — The set O defined by (2.13) is open and dense in
]0,∞[×H.

(See Theorem 10.12 in Appendix C.) Thus, we can say that the set R(µ, g),
generically, depends continuously on the data (µ, g).

Now, we move to the stability problem. We prove that for tha data
(µ, g) from the same set O, the set R(µ, g) can be approximated by the sets
RM (µ, gM ) in the Hausdorff metric over H, i. e. that

RM (µ, gM ) → R(µ, g) in the Hausdorff metric over H

as M ! B. Then we say that the method, understood as the class of equa-
tions {(∗)M , M ∈ S(H)} is, generically, stable with respect to approxima-
tion. The main result concerning stability with respect to approximation is
expressed in the following

Theorem 2.10 (stability). — Assume that conditions (A.1)-(A.6) hold.
Let (µ, g) ∈ O and gM → g as M ! B. Then for every ε > 0 there exist
W ∈ S(H) ∩ {dim <∞} and δ > 0 such that

(i) d
(
RM (µ, gM ),R(µ, g)

)
� ε,

(ii) #RM (µ, gM ) = #R(µ, g) <∞,

whenever M ∈ BW,δ.

(The letter d stands for the Hausdorff metric over H.)
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Proof. — Let (µ, g) ∈ O. Due to Remark 2.4 (1), Eµ is a Fredholm
mapping of index 0. Hence, the Smale theorem yields that the set R(µ, g)
is discrete. On the other hand, it is compact, by Corollary 2.5. Thus, it is
finite.

Let us fix u ∈ R(µ, g). Then (µid + duT ) ∈ EpiH. By Lemma 2.8, there
exist (dependent on u) subset X (u) ∈ B and a neighbourhood Y(u) of u
such that

(1) #
(
Y(u) ∩R(µ, g)

)
= 1 for every M ∈ X (u);

(2) limM�B∩̄X (u) |uM − u| = 0 , where {uM} := Y(u) ∩RM (µ, gM ).

Since the set R(µ, g) is finite, there exists a number r > 0 such that the
closed balls

{K̄H(u, r), u ∈ R(µ, g)} are pairwise disjoint.

Moreover, by (1.1), there exists X1 ∈ B such that X1 ⊂ ⋂{X (u), u ∈
R(µ, g)}. Taking into account (2), we infer that

lim
M�B∩̄X1

max{|uM − u|, u ∈ R(µ, g)} = 0. (2.14)

In particular, there exists X2 ∈ B∩̄X1 such that uM ∈ K̄(u, r) whenever
M ∈ X2. This implies that the function

R(µ, g)  u �→ uM ∈ RM (µ, gM )

is injective for M ∈ X2. In particular, #R(µ, g) � #RM (µ, gM ). We assert
that

there exists X̃ ∈ B∩̄X2 such that

#R(µ, g) = #RM (µ, gM ) for M ∈ X̃ . (2.15)

Suppose, contrary to our claim, that

for every Z ∈ B∩̄X2 there exists M ∈ Z
such that #R(µ, g) < #RM (µ, gM ). (2.16)

Let (Wk) be an internal approximation of the space H and let 0 < δk → 0.
By Corollary 1.7 (a), we infer that there exists k0 ∈ N such that

BWk,δk ⊂ Z for each k � k0.

Let k � k0. By (2.16), there exists Mk ∈ BWk,δk such that

#R(µ, g) < #RMk
(µ, gMk

).
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The set {uMk
, u ∈ R(µ, g)} has exactly #R(µ, g) elements. Thus, it is not

the whole set RMk
(µ, gMk

). Let us select

ak ∈ RMk
(µ, gMk

) \ {uMk
, u ∈ R(µ, g)}.

Then ak /∈ ⋃{Y(u), u ∈ R(µ, g). Since ak ∈ RMk
(µ, gMk

) and gMk
→ g,

Theorem 2.1 yields that there exist an infinite subset N ⊂ N and an element
a ∈ H such that ak → a as N  k →∞. Moreover, a ∈ R(µ, g). This leads
to a contradiction

⋃
{Y(u), u ∈ R(µ, g)} ⊃ R(µ, g)  a /∈

⋃
{Y(u), u ∈ R(µ, g)}

Thus, (2.15) holds. At the same time equality in assertion (ii) holds for
M ∈ X̃ .

To prove (i), let us fix ε > 0. From (2.14) and (2.15), there follows that
there exists X ∈ B∩̄X̃ such that

max{|uM − u|, u ∈ R(µ, g)} � ε

whenever M ∈ X . Thus

R(µ, g) ⊂ RM (µ, gM ) + K̄(ε), M ∈ X . (2.17)

We will show that

RM (µ, gM ) ⊂ R(µ, g) + K̄(ε), M ∈ X . (2.18)

Indeed, let w ∈ RM (µ, gM ). Then w = uM for some u ∈ R(µ, g). Hence
|w − u| = |uM − u| � ε and

w ∈ {u}+ K̄(ε) ⊂ R(µ, g) + K̄(ε).

Inclusions (2.17), (2.18) mean that the Hausdorff distance between R(µ, g)
and RM (µ, gM ) is not greater than ε. To complete the proof, let us remark
that from the construction of the filterbase B, there follows that X = BW,δ

for some W ∈ S(H) ∩ {dim <∞} and δ > 0. �

3. The stationary Navier-Stokes equations.

We consider the stationary Navier-Stokes equations for viscous incom-
pressible fluid filling the bounded domain Ω ⊂ Rn with the Lipschitian
boundary ∂Ω, where n ∈ {2, 3, 4}

∂vv = ν∆v + f −∇p (3.1)

divv = 0 (3.2)
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with the homogeneous boundary condition

v∂Ω = 0. (3.3)

For any differentiable vector fields

u = (u1, . . . , un) : Ω → Rn, w = (w1, . . . , wn) : Ω → Rn

the symbol ∂uw stands for the vector field

n∑

i=1

ui
∂w

∂xi
.

Let us also recall that

divu =

n∑

i=1

∂ui
∂xi

.

Vector fields satisfying (3.2) are called solenoidal or divergence-free. The
number ν ∈]0,∞[ (kinematic viscosity) and f : Ω → Rn (external forces)
are given, while v : Ω → Rn (velocity) and p : Ω → R (pressure) are looked
for. We will consider weak solutions of the problem (3.1) - (3.3).

Sobolev spaces. Let Y ∈ {R,Rn}. The symbol D(Ω, Y ) stands for
the space of all test functions φ : Ω → Y , i.e., C∞-mappings with compact
support contained in Ω. We will consider the Sobolev space

H1(Ω, Y ) := {u ∈ L2(Ω, Y ) : there exist ∂u
∂xi

in the weak sense

and ∂u
∂xi

∈ L2(Ω, Y ) for each 1 � i � n},

which is a Hilbert space with the scalar product

(u,w) �→ (u|w)L2(Ω,Y ) + ((u|w)),

where ((u|w)) :=
∑n

i=1

(
∂u
∂xi
| ∂w∂xi

)
L2(Ω,Y )

. The symbol H1
0 (Ω, Y ) stands for

the closure of D(Ω, Y ) in H1(Ω, Y ). From the well-known Poincaré inequal-
ity, it follows that the form ((·|·)) is a scalar product inH1

0 (Ω, Y ) inducing the
topology inherited from H1(Ω, Y ). It is called the Dirichlet scalar product .

In the sequal, we will consider H1
0 := H1

0 (Ω,Rn) equipped with the
Dirichlet scalar product ((·|·)).

From the Sobolev embedding theorem (see Th. 5.4 in [1]), it follows that

H1
0 (Ω, Y ) ⊂ Lr(n)(Ω, Y ) and the embedding

H1
0 (Ω, Y ) ↪→ Lr(n)(Ω, Y ) is continuous,
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where

r(n) :=

{
2n
n−2 if n � 3,
any number in ]1,∞[ if n = 2.

In particular, for n ∈ {2, 3, 4}, the embedding

H1
0 (Ω, Y ) ↪→ L4(Ω, Y ) (3.4)

is well defined and continuous. By the Rellich-Kondrashev theorem (see Th.
6.2 in [1]), the embedding H1

0 (Ω, Y ) ↪→ L2(Ω, Y ) is completely continuous.
If n ∈ {2, 3}, then the embedding

H1
0 (Ω, Y ) ↪→ L6(Ω, Y ) (3.5)

is well defined and continuous and the embedding

ι : H1
0 ↪→ L4 (3.6)

is completely continuous (see Th. 6.2 in [1]).

Let V := D(Ω,Rn)∩{div = 0} denote the space of all divergence-free test
vector fields on Ω, and let V be its closure in the Hilbert space

(
H1

0 , ((·|·))
)
.

Let us recall the weak formulation of the problem (3.1)-(3.3) due to J. Leray.

Definition 3.1. — Suppose that n ∈ {2, 3, 4} and f ∈ (H1
0 )
′
. A vector

field v ∈ V is a (weak) solution of the problem (3.1) - (3.3) iff for all φ ∈ V :
∫

Ω

(
∂vv

)
φdm = −ν((v|φ)) + f(φ). (3.7)

It is well-known that there exists at least one solution of the problem
(3.1)-(3.3). For example, J.L. Lions, using the Galerkin method, has proven
the existence of a weak solution (see [10], Sect. I, Th. 7.1 and [19], Ch.II,
Th. 1.2).

The Leray idea of the choice of divergence-free test vector fields φ ∈ V
separates the problem of finding the velocity v and the pressure p. However,
it is well known that the pressure can be recovered, in general, as a dis-
tribution, by applying the de Rham theorem, see Temam [19]. To be more
specific, there exists a scalar-valued distribution P ∈ D′(Ω) such that the
pair (v, P ) satisfies the Navier-Stokes equation

∂vv = ν∆v + f −∇P

in the distribution sense. In fact, P is a regular distribution generated by a
unique p ∈ L2(Ω) with

∫
Ω
p(x) dx = 0, i.e. P = [p].
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4. Stability of the Galerkin method with respect to the
approximation of the space V

4.1. Basic facts and notations.

Let us consider the following three-linear form

b : V 3  (u,w, φ) �→
∫

Ω

(
∂uw

)
φdm ∈ R. (4.1)

Since divu = 0 for u ∈ V , we have

n∑

i=1

∂

∂xi
(uiw) =

( n∑

i=1

∂ui
∂xi

)
w +

n∑

i=1

ui
∂w

∂xi
= (divu)w + ∂uw = ∂uw,

Hence, by the integration by parts formula,

b(u,w, φ) =

∫

Ω

(
∂uw

)
φdx =

n∑

i=1

∫

Ω

∂

∂xi
(uiw)φdx = −

n∑

i=1

∫

Ω

uiw
∂φ

∂xi
dx

= −
∫

Ω

( n∑

i=1

ui
∂φ

∂xi

)
w dx = −

∫

Ω

(
∂uφ

)
w dx = −b(u, φ, w).

Thus
b(u,w, φ) = −b(u, φ, w), u, w, φ ∈ V. (4.2)

In particular,
b(u, φ, φ) = 0 u, φ ∈ V. (4.3)

(See [19], Chapter II, Lemma 1.3). By the Sobolev embedding theorem and
the Hőlder inequality, it is easy to obtain the following inequalities

|b(u,w, φ)| = |b(u, φ, w)| � ‖u‖L4‖w‖L4‖φ‖V (4.4)

� |ι|2‖u‖V ‖w‖V ‖φ‖V , (4.5)

where |ι| stands for the norm of the embedding ι : H1
0 (Ω,Rn) ↪→ L4(Ω,Rn).

Thus, the form b is continuous. (See [19], Chapter II, Lemma 1.2). Moreover,
if B(u,w) := b(u,w, ·) ∈ V ′, then by (4.4) and (4.5), we have the following
inequalities

|B(u,w)|V ′ � ‖u‖L4‖w‖L4 � |ι|2‖u‖V ‖w‖V , u, v ∈ V. (4.6)

Thus, the mapping B : V × V → V ′ is bilinear and continuous.

Since for fixed v ∈ V , b(v, v, ·) ∈ V ′, thus by the Riesz representation
theorem, there exists a unique element Q(v) ∈ V such that

b(v, v, φ) = ((Q(v)|φ)) for all φ ∈ V.
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Using RV - the Riesz isomorphism in the space V , we have the following
relation

Q(v) = R−1
V B(v, v), v ∈ V. (4.7)

Similarly, there exists a unique element c ∈ V such that

f|V (φ) = ((c|φ)), φ ∈ V.
In this way, the variational equality (3.7) can be written in the form

νv +Q(v) = c. (4.8)

Now, let us concentrate on some properties of the mapping Q. By (4.3), we
have

((Q(v)|v)) = 0, v ∈ V. (4.9)

It is easy to verify that in the case of n ∈ {2, 3, 4} the mapping Q maps
weakly convergent sequences into weakly convergent sequences, i.e.

if vk → v weakly in V, then (4.10)

Q(vk) → Q(v) weakly in V as k →∞. (4.11)

(see [19], Chapter II, Lemma 1.5). However, if n ∈ {2, 3}, then we can prove
a stronger result. In fact, we have the following

Lemma 4.1. — Assume that n ∈ {2, 3}. If two sequences (uk) and (wk)
tend weakly in V to u and w, respectively as k →∞, then

lim
k→∞

|B(uk, wk)−B(u,w)|V ′ = 0. (4.12)

Proof. — Using the first inequality in (4.6), we obtain

|B(uk, wk)−B(u,w)|V ′ � |B(uk, wk − w)|V ′ + |B(uk − u,w)|V ′
� ‖uk‖L4 · ‖wk − w‖L4 + ‖uk − u‖L4 · ‖w‖L4 .

Since the embedding ι : H1
0 ↪→ L4 is completely continuous, thus ι maps

sequences weakly convergent in H1
0 into sequences convergent in the norm

of L4. The proof is thus complete. �

Corollary 4.2. — Assume that n ∈ {2, 3}. If sequence (vk) tends weakly
in V to v as k →∞, then

lim
k→∞

‖Q(vk)−Q(v)‖V = 0. (4.13)

In particular, the mapping Q is completely continuous.

Proof. — By the relation (4.7) the assertion follows directly from Lemma
4.1. �
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4.2. Stability of the Galerkin method – application of the abstract
framework.

Assume that n ∈ {2, 3}. Recall that using the Riesz representations of
appropriate functionals on Hilbert space V , the variational equality (3.7) in
Definition 3.1 has been written as the following equation in the space V

νv +Q(v) = c. (4.14)

In particular, the set of solutions of the Navier-Stokes problem (3.1) - (3.3)
coincides with the set of solutions of equation (4.14).

Let M be a closed linear subspace of V . Using the ((·|·)) - orthogonal
projection PM : V →M , consider the Galerkin equation induced by (4.14)
on the subspace M , i.e.

u+ PMQ(u) = PMc (4.15)

and let us denote

S(ν, c) := the set of all solutions of equation (4.14) (4.16)

SM (ν, c) := the set of all solutions of equation (4.15), (4.17)

where ν > 0 and c ∈ V are given.

We begin with some auxiliary result. Using the fixed point theorem in
the version of Theorem 9.4 in Appendix B, we will prove the following

Proposition 4.3. — Let M be a closed linear subspace of V . Then for
every µ > 0 and every gM ∈M there exists w ∈M such that

µw + PMQ(w) = gM . (4.18)

Moreover,

‖w‖V �
‖gM‖V

µ
. (4.19)

Proof. — Let us fix µ > 0 and gM ∈ M . We begin with proving in-
equality (4.19). Suppose that w ∈M satisfies equation (4.18). Multiply the
equation (4.18) scalarly in V by w to obtain

µ‖w‖2V +
((
PMQ(w)|w

))
=

((
gM |w

))
.

Since the projection PM is selfadjoint and PMw = w, we obtain

µ‖w‖2V +
((
Q(w)|w

))
=

((
gM |w

))
.
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Since
((
Q(w)|w

))
= 0, then by the Schwarz inequality, we get

µ‖w‖2V =
((
gM |w

))
� ‖gM‖V · ‖w‖V .

Thus ‖w‖V �
‖gM‖V

µ , i.e. inequality (4.19) holds.

To prove the first part of the statement, let us consider the ball K̄M (R)
:= {x ∈M : ‖x‖V � R}. We assert that the mapping

F : M ⊃ K̄M (R)  u �→ u+
1

µ
PMQ(u)− 1

µ
gM ∈M

satisfies the assumptions of Theorem 9.4 in Appendix B with R :=
‖gM‖V

µ .

Indeed, let ζ ∈ ∂K̄M (R), i.e. ‖ζ‖V = R. We calculate

((F (ζ)|ζ)) =
((
ζ +

1

µ
PMQ(ζ)− gM

µ
|ζ

))
= ‖ζ‖2V +

1

µ

((
Q(ζ)|ζ

))
− 1

µ

((
gM |ζ

))

= ‖ζ‖2V −
1

µ

((
gM |ζ

))
.

Since ‖ζ‖V =
‖gM‖V

µ and 1
µ

((
gM |ζ

)
� ‖gM‖Vµ ‖ζ‖V = ‖ζ‖2V , we infer that

((F (ζ)|ζ)) � 0.

By Corollary 4.2, the mapping Q is completely continuous. Thus, also
the mapping

idM − F =
1

µ
gM − 1

µ
PM ◦Q

is completely continuous. In particular, the set (idM − F )(K̄M (R)) is rel-
atively compact in M . Consequently, Theorem 9.4 implies that the set
{F = 0} is nonempty, or equivalently, that the set of solutions of equa-
tion (4.18) is nonempty. �

Consider the set

G := {(ν, c) ∈]0,∞[×V : c is a regular value of the

mapping V  φ �→ νφ+Q(φ) ∈ V } (4.20)

Consider the family S(V ) of all closed linear subspaces of V and let B denote
the filterbase on S(V ) described in Preliminaries (see (1.3) and (1.4)). Then
we have the corresponding family of equations (4.15) for every subspace
M ∈ S(V ). Using the abstract framework from Section 2, we prove the
following result.
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Theorem 4.4 (stability of the Galerkin method). — Assume that
(ν, c) ∈ G. Then, for every ε > 0 there exist W ∈ S(V ) ∩ {dim < ∞} and
δ > 0 such that

(i) d
(
SM (ν, c),S(ν, c)

)
� ε,

(ii) #SM (ν, c) = #S(ν, c) <∞ ,

whenever M ∈ BW,δ. (Here d stands for the Hausdorff metric over V .)

In particular, assertion (i) quarantees that

lim
M�B

SM (ν, c) = S(ν, c) in the Hausdorff metric over V,

i.e. that the sets of solutions of the Galerkin equations tend to the set of the
Navier-Stokes equation in the Hausdorff metric over V as M approaches V
in the sense of the filterbase B.

Proof of Theorem 4.4. — We apply the abstract framework from Section
2 to the Hilbert space

(
V, ((·|·))

)
and the mappings

T (u) := Q(u), u ∈ V

and
TM (w) := PMQ(w), w ∈M,

where M ∈ S(V ).

To apply Theorem 2.10, we will check that the mappings T and TM
satisfy conditions (A.1)-(A.6) of Section 2.1.

Ad. (A.1). Condition (A.1) is satisfied due to Proposition 4.3.

Ad. (A.2). It is sufficient to take

T̃M (u) := PMQ(w), u ∈ V,

i.e. T̃M is given by the same formula as TM , but T̃M is considered as the
mapping on the whole space V .

Let gM ∈M and denote

RM (µ, gM ) := {w ∈M : µw + TM (w) = gM},
R̃M (µ, gM ) := {u ∈ V : µu+ T̃M (u) = gM}.

It is clear that RM (µ, gM ) ⊂ R̃M (µ, gM ). On the other hand, since gM ∈M
and T̃M (V ) = (PM ◦ Q)(V ) ⊂ M , we infer that also R̃M (µ, gM ) ⊂ M ∩
RM (µ, gM ) ⊂ RM (µ, gM ).
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Ad. (A.3). By inequality (4.19) in Proposition 4.3, condition (A.3) holds
with

κ :]0,∞[×[0,∞[ (µ, r) �→ r

µ
∈ [0,∞[.

Ad. (A.4). Let u ∈ V . By Corollary 1.5

lim
M�B

‖PMQ(u)−Q(u)‖V = 0,

thus condition (A.4) is satisfied.

Ad. (A.5). Let (Wk) be an internal approximation of V , (see Definition
1.6), let 0 < δk → 0 and Mk ∈ BWk,δk , k ∈ N. Suppose that uk → u weakly
in V . We have

‖T̃Mk
(uk)− T (u)‖V = ‖PMk

Q(uk)−Q(u)‖V
� ‖PMk

(
Q(uk)−Q(u)

)
‖V + ‖PMk

Q(u)−Q(u)‖V
� ‖Q(uk)−Q(u)‖V + ‖PMk

Q(u)−Q(u)‖V .

By Corollary 4.2, limk→∞ ‖Q(uk)−Q(u)‖V = 0 and by Corollary 1.7 (b),

limk→∞ ‖PMk
Q(u) − Q(u)‖V = 0. Thus limk→∞ ‖T̃Mk

(uk) − T (u)‖V = 0
and condition (A.5) is satisfied.

Ad. (A.6). Let us fix u0 ∈ V and let u ∈ V . Let us calculate the Fréchet
differentials

duT̃M = PM ◦ duQ, M ∈ S(V )

du0
T = du0

Q.

We have to prove that

duT̃M → du0
T in EndV as (M,u) ! B × F(u0),

where F(u0) denotes the filter of all neighbourhoods of u0 in the norm
topology of V . We have

∣∣duT̃M − du0T
∣∣
EndV =

∣∣PMduQ− du0Q
∣∣
EndV

�
∣∣PM

(
duQ− du0Q

)∣∣
EndV +

∣∣PMdu0Q− du0Q
∣∣
EndV

�
∣∣duQ− du0Q

∣∣
EndV +

∣∣PMdu0Q− du0Q
∣∣
EndV .

By Corollary 4.2, the mapping Q is completely continuous, thus its Fréchet
differential du0Q is a completely continuous linear operator. Since the pro-
jections PM tend to the identity operator idV pointwise on V as M ! B
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(see Corollary 1.5), thus by Lemma 8.4 in Appendix A limM�B
∣∣PMdu0

Q−
du0

Q
∣∣
EndV = 0. It is sufficient to prove that

lim
u→u0

∣∣duQ− du0Q
∣∣
EndV = 0,

or equivalently,

lim
u→u0

∣∣RV ◦ duQ−RV ◦ du0
Q

∣∣
L(V,V ′)

= 0. (4.21)

By (4.7), RV ◦ duQ = du
(
RV ◦Q

)
= d(u,u)B. Since the mapping

B : V × V  (u,w) �→ B(u,w) ∈ V ′

is bilinear and continuous (see (4.6)), thus

du
(
RV ◦Q

)
(h) = B(u, h) +B(h, u), h ∈ V.

Then by (4.6)
∣∣du

(
RV ◦Q

)
(h)− du0

(
RV ◦Q

)
(h)

∣∣
V ′

=
∣∣B(u, h) +B(h, u)−B(u0, h)−B(h, u0)

∣∣
V ′

�
∣∣B(u− u0, h)

∣∣
V ′

+
∣∣B(h, u− u0)

∣∣
V ′
� 2|ι|2‖u− u0‖V ‖h‖V .

Thus
∣∣du

(
RV ◦Q

)
− du0

(
RV ◦Q

)∣∣
L(V,V ′)

� 2|ι|2‖u− u0‖V .

Hence
lim
u→u0

∣∣du
(
RV ◦Q

)
− du0

(
RV ◦Q

)∣∣
L(V,V ′)

= 0

and (4.21) holds. At the same time, this guaranties that condition (A.6) is
fulfilled.

Let us fix (ν, c) ∈ G and note that the sets S(ν, c) and SM (ν, c) corre-
spond to the following sets from the abstract setting

S(ν, c) = R(µ, g) and SM (ν, c) = RM (µ, gM ) (4.22)

for µ := ν, g := c and gM := PMc (compare (2.1) and (2.2) in Section 2.1
with (4.16 ) and (4.17 )). Now, the assertion follows from Theorem 2.10.

Directly by Theorem 2.9, we obtain

Corollary 4.5. — The set G defined by (4.20) is open and dense in
]0,∞[×V .

In view of Theorem 4.4 and Corollary 4.5, we can say that the Galerkin
method is generically stable with respect to approximation of the space V .
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5. The Holly method

Holly introduced a new method of finding approximate velocity in the
problem (3.1) - (3.3). The approximate solutions are constructed in the
subspaces of the whole Sobolev space H1

0 . In the sequel, we will write the
integral identity (3.7) in the equivalent form, as some operator equation of
the type (∗) of Section 2.1, in the space H1

0 . To this aim, we consider first
the acceleration functional and its properties.

5.1. The acceleration functional

Proposition 5.1 (Lemma 2.7 in [12]). — Assume that n ∈ {2, 3, 4}.
Then

(a) For any u,w ∈ H1
0 the functional

Au,w : H1
0  φ �→

∫

Ω

(
∂uw +

divu

2
w

)
φdx ∈ R (5.1)

is well-defined linear continuous and the following inequality holds

|Au,w|(H1
0 )′ �

3

2
|ι|2‖u‖H1

0
‖w‖H1

0
(5.2)

The symbol |ι| stands for the norm of the embedding ι : H1
0 ↪→ L4.

Moreover,

Au,w(φ) = −Au,φ(w) for any φ ∈ H1
0 . (5.3)

In particular
Au,w(w) = 0. (5.4)

(b) The mapping

A : H1
0 ×H1

0  (u,w) �→ Au,w ∈ (H1
0 )
′

(5.5)

is bilinear and continuous.

The functional defined by (5.1) is called the acceleration functional.
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Proof. — By the Schwarz and the Hölder inequalities, we obtain

|Au,w(φ)| =
∣∣
∫

Ω

(
∂uw +

divu

2
w

)
φdx

∣∣

�
∫

Ω

|(∂uw)φ|dx+
1

2

∫

Ω

|(divu)wφ|dx

�
∫

Ω

n∑

i=1

|ui
∂w

∂xi
φ|dx+

1

2

∫

Ω

|(divu)wφ|dx

�
∫

Ω

|u|(
n∑

i=1

| ∂w
∂xi

|2) 1
2 |φ|dx+

1

2
||divu||L2‖w‖L4‖φ‖L4

� ‖u‖L4‖w‖H1
0
‖φ‖L4 +

1

2
‖u‖H1

0
‖w‖L4‖φ‖L4 .

Because of the continuity of the embedding ι : H1
0 → L4, we have

|Au,w(φ)| � 3

2
|ι|‖u‖H1

0
‖w‖H1

0
‖φ‖L4 �

3

2
|ι|2‖u‖H1

0
‖w‖H1

0
‖φ‖H1

0
. (5.6)

Thus Au,w ∈ (H1
0 )
′
and

|Au,w|(H1
0 )′ �

3

2
|ι|2‖u‖H1

0
‖w‖H1

0
.

Integrating by parts, we can write the functional (5.1) in the form

Au,w(φ) =

∫

Ω

(
∂uw +

divu

2
w

)
φdx =

∫

Ω

(∂uw)φdx+
1

2

∫

Ω

n∑

i=1

∂ui
∂xi

wφdx

=

∫

Ω

(∂uw)φdx− 1

2

∫

Ω

n∑

i=1

ui
∂w

∂xi
φdx− 1

2

∫

Ω

n∑

i=1

ui
∂φ

∂xi
wdx

=
1

2

∫

Ω

(
(∂uw)φ− (∂uφ)w

)
dx.

As a consequence of the above equality, we obtain (5.3) and (5.4).

Assertion (b) follows immediately from inequality (5.2). �

Using the acceleration functional we can rewrite the weak formulation of
the Navier-Stokes problem (see (3.7)) as the operator equation in the space
H1

0 .

Let PV : H1
0 → V denote the ((·|·))-orthogonal projection and let R

denote the Riesz isomorphism in the space
(
H1

0 , ((·|·))
)
, i.e.

R : H1
0  u �→ ((u|·)) ∈ (H1

0 )
′
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We have the following

Proposition 5.2. — Suppose ν ∈]0,∞[, f ∈ (H1
0 )
′
, v ∈ H1

0 . Then the
following conditions are equivalent

(i) v ∈ V and v satisfies identity (3.7) for every φ ∈ V , i.e.
∫

Ω

(
∂vv

)
φdm = −ν((v|φ)) + f(φ).

(ii) v satisfies the following equation

νv + PVR−1Av,PV v = PVR−1f.

Proof. — To prove the implication (i) ⇒ (ii), let ψ ∈ H1
0 . Putting

φ = PV ψ in the identity (i), and using the fact that v ∈ V , thus PV v = v,
we have

0 =

∫

Ω

(∂vv)φdx− f(φ) + ν((v|φ)) = ((R−1(Av,v − f)|φ)) + ((νv|φ))

= ((PVR−1(Av,v − f)|ψ)) + ((νv|ψ)) = ((PVR−1(Av,PV v − f) + νv|ψ)).

Since ψ was chosen in an arbitrary way, we obtain (ii).

To prove that (i) follows from (ii), let us first remark that v is an el-
ement of V , because v belongs to the image of the projection PV . Scalar
multiplication of the equation in (ii) by φ ∈ V yields

ν((v|φ)) = ((PVR−1(f −Av,PV v)|φ)) = ((R−1(f −Av,v)|φ))

= f(φ)−Av,v(φ) = f(φ)−
∫

Ω

(∂vv)φdx.

Thus v satisfies the integral identity in (i). �

Proposition 5.2 enables us to write the integral identity (3.7) in the
definition of the solution of the Navier-Stokes equations in an equivalent
form as the equation

νu+ PVR−1Au,PV u = PVR−1f (5.7)

in the space H1
0 . This means in particular that the set of elements satisfying

identity (3.7) is equal to the set of solutions to the equation (5.7). Note that
there is one subtle point here, i.e. we consider (5.7) as the equation in H1

0 .
However, its solutions belong, in fact, to the subspace V . This follows from
the fact that, if u is a solution of (5.7), then

u =
1

ν
PVR−1

(
f −Au,PV u

)
.

Hence u lies in the image of the projection PV , thus in V .

– 683 –
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5.2. Further properties of the acceleration functional

In this subsection, we will prove that mapping A introduced in Propo-
sition 5.5 is completely continuous. First, we prove the following lemma.

Lemma 5.3. — Assume that n ∈ {2, 3}. Then

(a) the following inequality holds

|Au,w −Au0,w0 |
(H1

0 )′ �
3

2
|ι|‖u‖H1

0
‖w − w0‖L4 + |ι|‖w0‖H1

0
‖u− u0‖L4

(5.8)
for any u,w, u0, w0 ∈ H1

0 , where ι : H1
0 ↪→ L4.

(b) If two sequences (uk) and (wk) tend weakly in H1
0 to u0 and w0,

respectively as k →∞, then

lim
k→∞

∣∣Auk,wk −Au0,w0

∣∣
(H1

0 )′
= 0.

Proof. — Ad.(a). It is easy to see that

n∑

i=1

ai
∂b

∂xi
+

diva

2
b =

n∑

i=1

∂

∂xi
(aib)−

diva

2
b

for every vector fields a = (a1, . . . , an), b = (b1, . . . , bn) ∈ H1
0 . Let φ ∈ H1

0 .
Using the above equality and the integration by parts formula, we obtain

Au,w(φ)−Au0,w0(φ)

=

∫

Ω

( n∑

i=1

∂

∂xi
(uiw)− divu

2
w

)
φdx−

∫

Ω

( n∑

i=1

∂

∂xi
(u0

iw
0)− divu0

2
w0

)
φdx

=

∫

Ω

( n∑

i=1

∂

∂xi
(uiw − u0

iw
0)

)
φdx− 1

2

∫

Ω

(
(divu)w − (divu0)w0

)
φdx

= −
∫

Ω

n∑

i=1

(
ui(w − w0) + (u− u0)iw

0
) ∂φ

∂xi
dx

−1

2

∫

Ω

(
(divu)(w − w0) +

(
div(u− u0)

)
w0

)
φdx

= −
∫

Ω

n∑

i=1

ui(w − w0)
∂φ

∂xi
dx−

∫

Ω

n∑

i=1

(u− u0)iw
0 ∂φ

∂xi
dx

−1

2

∫

Ω

(divu)(w − w0)φdx− 1

2

∫

Ω

div(u− u0)w0φdx.
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Next, integrating by parts the last term in the above equality, we obtain

∫

Ω

div(u− u0)w0φdx =

∫

Ω

n∑

i=1

∂(u− u0)i
∂xi

w0φdx

= −
∫

Ω

n∑

i=1

(u− u0)i
∂

∂xi
(w0φ) dx

= −
∫

Ω

n∑

i=1

(u− u0)i
∂w0

∂xi
φdx

−
∫

Ω

n∑

i=1

(u− u0)iw
0 ∂φ

∂xi
dx.

Hence

−
∫

Ω

n∑

i=1

(u− u0)iw
0 ∂φ

∂xi
dx− 1

2

∫

Ω

div(u− u0)w0φdx

=
1

2

∫

Ω

n∑

i=1

(u− u0)i
∂w0

∂xi
φdx− 1

2

∫

Ω

n∑

i=1

(u− u0)iw
0 ∂φ

∂xi
dx.

Consequently

Au,w(φ)−Au0,w0(φ) = −
∫

Ω

n∑

i=1

ui(w − w0)
∂φ

∂xi
dx− 1

2

∫

Ω

(divu)(w − w0)φdx

+
1

2

∫

Ω

n∑

i=1

(u− u0)i
∂w0

∂xi
φdx

−1

2

∫

Ω

n∑

i=1

(u− u0)iw
0 ∂φ

∂xi
dx.

The Hőlder inequality and continuity of the embedding ι : H1
0 ↪→ L4 yields

the following inequalities

|Au,w(φ)−Au0,w0(φ)| � ‖u‖L4‖w − w0‖L4‖φ‖H1
0

+
1

2
‖divu‖L2‖w − w0‖L4‖φ‖L4

+
1

2
‖u− u0‖L4‖w0‖H1

0
‖φ‖L4 +

1

2
‖u− u0‖L4‖w0‖L4‖φ‖H1

0

�
(3

2
|ι|‖u‖H1

0
‖w − w0‖L4 + |ι|‖w0‖H1

0
‖u− u0‖L4

)
‖φ‖H1

0
.

Hence

|Au,w −Au0,w0 |
(H1

0 )′ �
3
2 |ι|‖u‖H1

0
‖w − w0‖L4 + |ι|‖w0‖H1

0
‖u− u0‖L4 .
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Ad.(b). Since the embedding ι : H1
0 ↪→ L4 is completely continuous, we

infer that

if vk → 0 weakly in H1
0 then ι(vk) → 0 in L4 as k →∞.

Thus, by virtue of the estimate in assertion (a) we conclude that

lim
k→∞

|Auk,wk −Au0,w0 |
(H1

0 )′ = 0,

because ‖uk − u0‖L4 → 0, ‖wk − w0‖L4 → 0 as k → ∞ and the sequence
(‖uk‖H1

0
)
k∈N

is bounded. �

By assertion (b) of Lemma 5.3, we have the following

Corollary 5.4. — If n ∈ {2, 3}, then the mapping

A : H1
0 ×H1

0  (u,w) �→ Au,w ∈ (H1
0 )
′

defined by (5.5) is completely continuous.

5.3. First step of the approximation of the Navier-Stokes equa-
tions

The Holly method is split into two steps. In the first step, equation (5.7),
i.e.

νu+ PVR−1Au,PV u = PVR−1f

in the space H1
0 is approximated by some equation in H1

0 . The second step
involves discretization. However, first we have to consider some operators.
To be more specific, we will approximate the projection PV . The crucial
point is the equality

PV u = u− div∗(divdiv∗)−1
divu

(see (11.11) in Appendix D) and inversion of the divdiv∗-operator recalled
with details in Appendix D (see Theorem 11.17). Here, div∗ : L2(Ω) → H1

0

is the adjoint of the divergence operator div : H1
0 → L2(Ω).

Operators Ps
V. For s ∈ N, let

P s
V u := u− div∗

( s∑

j=0

(id− divdiv∗)j
)
divu, u ∈ H1

0 ,

Directly from the above formula, it follows that P s
V ψ = ψ for every ψ ∈ V .
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Remark 5.5 Operators P s
V , s ∈ N have the following properties

(a) P s
V is a selfadjoint operator of the space H1

0 .

(b) |P s
V − PV |EndH1

0
� 1

θ (1− θ)
s+1

and PV � P s
V � idH1

0
,

(c) ||divP s
V u||L2(Ω) � 1

θ (1− θ)
s+1||divu||L2(Ω) � 1

θ (1− θ)
s+1||u||H1

0
for

every u ∈ H1
0

for some constant θ ∈]0, 1[ dependent on Ω only.

Proof. — Ad. (a) Assertion (a) follows directly from the definitions of
P s
V .

Ad. (b) By (11.11), we have

P s
V − PV = PV ⊥ − P s

V ⊥ (5.9)

= div∗
(

(divdiv∗)−1 −
n∑

i=1

(id− divdiv∗)i
)

div

By Theorem 11.12 and Theorem 11.17, we obtain

|P s
V − PV |End{∫=0}

�
∣∣∣∣(divdiv∗)−1 −

n∑

i=1

(id− divdiv∗)i
∣∣∣∣
End{∫=0}

� 1

θ
(1− θ)(s+1).

The second part of assertion (b) is a consequence of the inequality 0 �
divdiv∗ � id (see Corollary 11.13).

Ad. (c) Since div(PV u) = 0, thus (5.9), Theorem 11.12 and Theorem
11.17 (b) yield

‖divP s
V (u)‖L2(Ω) = ‖div(P s

V − PV )(u)‖L2(Ω) � ‖(P s
V − PV )(u)‖H1

0

� 1

θ
(1− θ)

(s+1)‖divu‖L2(Ω) �
1

θ
(1− θ)

(s+1)‖u‖H1
0
,

which completes the proof. �

Let us recall that Proposition 5.2 enables us to write the integral identity
(3.7) in the definition of the solution of the Navier-Stokes equations in an
equivalent form as the equation

νu+ PVR−1Au,PV u = PVR−1f (5.10)
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in the space H1
0 , where ν > 0 and f ∈ (H1

0 )
′

are given. This means in
particular that the set of elements satisfying identity (3.7) is equal to the
set of solutions to the equation (5.10).

In the first step of the Holly method, the equation (5.10) is approximated
by the equations of the form

νu+ P s
VR−1Au,P s

V
u = P s

VR−1fs (5.11)

for s ∈ N. Here fs ∈ (H1
0 )
′

and fs tends to f in the dual space (H1
0 )
′

as
s→∞.

Note that the equation (5.11 ) is still an equation in the space H1
0 . It

needs discretization. This will be done in the second step which involves
approximation of the equation (5.11) for fixed s, by some equations on the
closed linear subspaces M of H1

0 (in particular, on finite-dimensional ones).

5.4. Second step of the approximation of the Navier-Stokes equa-
tions – discretization.

Let M be a closed linear subspace of H1
0 and let PM : H1

0 → M be the
((·|·))-orthogonal projection . We introduce some operators div∗M , R−1

M and

P s,M
V which will approximate, respectively, the operators div∗, R−1 and P s

V .

Operators div∗M. Let div∗M be the adjoint operator to the restriction

div|M : M → L2(Ω).

of the divergence operator to the subspace M .

Consider the family S(H1
0 ) of all closed linear subspaces of the Sobolev

space H1
0 and let B denote the filterbase on S(H1

0 ) defined in Preliminaries
(see (1.3) and (1.4)).

Remark 5.6. —

(a) For every M ∈ S(H1
0 ):

div∗M = PM ◦ div∗ and div∗M ∈ L(L2(Ω), H1
0 ).

(b) For every q ∈ L2(Ω):

lim
M�B

‖div∗Mq − div∗q‖H1
0

= 0. (5.12)
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Proof. — Assertion (a) follows from the fact that for q ∈ L2(Ω), div∗Mq
is the ((·|·)) - Riesz representation of the functional

M  φ �→
∫

Ω

q(divφ) dm ∈ R.

Thus
(divφ|q)L2(Ω) = ((φ|div∗Mq))

On the other hand

(divφ|q)L2(Ω) = ((φ|div∗q)) = ((PMφ|div∗q)) = ((φ|PMdiv∗q)),

which completes the proof of (a). Assertion (b) follows immediately from
(a) and Corollary 1.5. �

Operators R−1
M . For a functional l ∈ (H1

0 )
′
, letR−1

M (l) denote the ((·|·))
- Riesz representation of the restriction of l to the subspace M .

Remark 5.7. —

(a) R−1
M = PM ◦ R−1 and R−1

M ∈ L((H1
0 )
′
, H1

0 ).

(b) For every l ∈ (H1
0 )
′

lim
M�B

‖R−1
M (l)−R−1(l)‖H1

0
= 0. (5.13)

The proof is based on similar reasoning as in the proof of Remark 5.6.

Operators Ps,M
V . For fixed s ∈ N, let us denote

P s,M
V ⊥ := div∗M ◦

( s∑

j=0

(id− divdiv∗M )
j) ◦ div ◦ PM ,

P s,M
V := id− P s,M

V ⊥ .

In the following Remark, we collect properties of the operators P s,M
V .

Remark 5.8. —

(a) P s,M
V is a selfadjoint endomorphism of the space H1

0 .

(b) Subspace M is invariant with respect to P s,M
V , i.e.

P s,M
V (M) ⊂M. (5.14)
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(c) The family of norms {|P s,M
V |EndH1

0
; M ∈ S(H1

0 )} is bounded, i.e.,

there exists a constant C > 0 such that

|P s,M
V |EndH1

0
� C, M ∈ S(H1

0 ). (5.15)

(d) For every u ∈ H1
0

lim
M�B

‖P s,M
V (u)− P s

V (u)‖H1
0

= 0. (5.16)

Proof. — Assertions (a) and (b) follow directly from the definition of

P s,M
V and from Remark 5.6 (a).

Since, by Remark 5.6 (a) div∗M = PM ◦ div∗ and since |PM |EndH1
0

= 1,

we infere that (c) holds.

By Remark 5.6 (b), the operators div∗M tend to div∗ pointwise over the
filterbase B. Due to Corollary 1.5, the projections PM tend over B pointwise
to the identity mapping. Then, assertion (d) follows from Lemma 8.3 in

Appendix A, because P s,M
V is a finite sum of compositions of operators

pointwise convergent over B. �

Using the above operators, we consider the following equation

νw + P s,M
V R−1

M Aw,P s,M
V

w = P s,M
V R−1

M fs. (5.17)

on the subspace M , which approximates equation (5.11) for fixed s ∈ N.

6. Stability of the Holly method - application of the abstract
framework

Assume that ν > 0, f ∈ (H1
0 )
′

and (fs)s∈N tends to f in (H1
0 )
′

as
s → ∞. Let us recall that by Proposition 5.2 the integral identity (3.7) in
the definition of the solution of the Navier-Stokes equations is equivalent to
the equation

νu+ PVR−1Au,PV u = PVR−1f (6.1)

in the space H1
0 . Let s ∈ N. In the first step, the above equation is approx-

imated by the equation

νu+ P s
VR−1Au,P s

V
u = P s

VR−1fs. (6.2)
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in the space H1
0 . Next, let M ∈ S(H1

0 ). In the second step, equation (6.2)
(for fixed s) is approximated by the equation

νw + P s,M
V R−1

M Aw,P s,M
V

w = P s,M
V R−1

M fs. (6.3)

in the subspace M . Let us denote

S(ν, f) - the set of all solutions of the equation (6.1), (6.4)

Ss(ν, fs) - the set of all solutions of equation (6.2), (6.5)

Ss,M (ν, fs) - the set of all solutions of equation (6.2). (6.6)

In this section we investigate behaviour of the sequence of sets Ss(ν, fs) as
s → ∞ which is called the problem of stability with respect to s. Next,
we fix s sufficiently large and consider the convergence of the family of sets
Ss,M (ν, fs) over the filter base B on S(H1

0 ).

We will prove that the Holly method is stable if the data (viscosity,
external forces) belong to the set

G := {(ν, f) ∈]0,∞[×(H1
0 )
′
: PVR−1f is a regular value

of the mapping H1
0  φ �→ νφ+ PVR−1Aφ,PV φ ∈ H1

0}. (6.7)

At last we prove that the set G is open and dense in ]0,∞[×(H1
0 )
′
.

6.1. Stability with respect to “s”

We will prove that that for (ν, f) ∈ G the sequence of sets Ss(ν, fs) tends
to S(ν, f) in the Hausdorff metric over H1

0 . Observe that here we have some
approximations of the mappings and no approximation of the space; all the
equations are in the space H1

0 .

Theorem 6.1. — Assume that (ν, f) ∈ G and (fs)s∈N tends to f in

(H1
0 )
′
as s→∞. Then

(i) for almost all s ∈ N: #Ss(ν, fs) = #S(ν, f) <∞.

(ii) lims→∞ Ss(ν, fs) = S(ν, f) in the Hausdorff metric over H1
0 .

Proof. — We apply the abstract results of Appendix C with

H := H1
0

T (v) := PVR−1Av,PV v, v ∈ H1
0

Ts(u) := P s
VR−1Au,P s

V
u, u ∈ H1

0 , s ∈ N.
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We will use Theorem 10.15. First, let us check that the mapping T satisfies
conditions (10.4)-(10.5) in Appendix C. To verify condition (10.4), let uk →
u weakly in H1

0 as k → ∞. Then by Lemma 5.3 (b) and continuity of the
projection PV

Auk,PV uk → Au,PV u in (H1
0 )
′
.

Thus by continuity of PV and of the Riesz isomorphism R, PVR−1Auk,PV uk

tends to PVR−1Au,PV u in H1
0 . This means that

lim
k→∞

‖T (uk)− T (u)‖H1
0

= 0,

i.e. condition (10.4) is fulfilled.

To verify condition (10.5), let us fix µ > 0 and g ∈ H1
0 . Multiply the

equation
µv + PVR−1Av,PV v = g

scalarly in H1
0 by v to obtain

µ‖v‖2
H1

0
+ ((PVR−1Av,PV v|v)) = ((g|v)).

Since by (5.4) in Proposition 5.1 (a)

((PVR−1Av,PV v|v)) = ((R−1Av,PV v|PV v)) = Av,PV v(PV v) = 0,

we infer that ‖v‖H1
0
�
‖g‖

H1
0

µ . Thus, condition (10.5) holds for

κ(µ, r) =
r

µ
, µ > 0, r > 0. (6.8)

Let us verify that the mappings Ts satisfy conditions (10.24)-(10.26) in
Appendix C. To verify condition (10.24), let us → u weakly in H1

0 as s→∞.
We claim that P s

V us → PV u weakly in H1
0 . Indeed, it is sufficient to check

that for every w ∈ H1
0

((P s
V us|w)) → ((PV u|w)) (6.9)

as s→∞. We have

|((P s
V us − PV u|w))| � |(((P s

V − PV )us|w))|+ |((PV (us − u)|w))|
� |P s

V − PV |EndH1
0
· ‖us‖H1

0
· ‖w‖H1

0
+ |((us − u|PV w))|.

Then (6.9) follows, because by Remark 5.5 (b), lims→∞ |P s
V −PV |EndH1

0
= 0.

By Lemma 5.3 (b),

Aus,P sV us
→ Au,PV u in (H1

0 )
′
.
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Thus, using again the fact that P s
V tends to PV in the space of endomor-

phisms of H1
0 , we conclude that

P s
VR−1Aus,P sV us

→ PVR−1Au,PV u in H1
0 ,

i.e. lims→∞ ‖Ts(us)− T (u)‖H1
0

= 0, which completes the proof of (10.24).

Let us move to verifying (10.25). Let ws → w in H1
0 as s → ∞. We

calculate the Fréchet differentials

dwT = PV ◦ R−1 ◦ dw
(
A ◦ (id/ PV )

)

dwsTs = P s
V ◦ R−1 ◦ dws

(
A ◦ (id/ P s

V )
)

Since P s
VR−1 → PVR−1 in L

(
(H1

0 )
′
, H1

0

)
, it is sufficient to prove that

dws
(
A ◦ (id/ P s

V )
)
→ dw

(
A ◦ (id/ PV )

)
in L

(
H1

0 , (H
1
0 )
′)

(6.10)

as s → ∞. Let h ∈ H1
0 . By Proposition 5.1 (b), the mapping A is bilinear

and continuous; thus

∣∣dws
(
A ◦ (id/ P s

V )
)
(h)− dw

(
A ◦ (id/ PV )

)
(h)

∣∣
(H1

0 )′

=
∣∣A(ws, P

s
V h) +A(h, P s

V ws)−A(w,PV h)−A(h, PV w)
∣∣
(H1

0 )′

�
∣∣Aws−w,P sV h

∣∣
(H1

0 )′
+

∣∣Aw,(P s
V
−PV )h

∣∣
(H1

0 )′
+

∣∣Ah,P s
V
ws−PV w

∣∣
(H1

0 )′

� 3

2
|ι|2

(
‖ws − w‖H1

0
+ ‖w‖H1

0
|P s
V − PV |EndH1

0
+ ‖P s

V ws − PV w‖H1
0

)
‖h‖H1

0

for any s ∈ N. To obtain the last inequality we have applied inequality (5.2)
in Proposition 5.1 (a) . Hence

∣∣dws
(
A ◦ (id/ P s

V )
)
− dw

(
A ◦ (id/ PV )

)∣∣
L
(
H1

0 ,(H
1
0 )′

)

� 3

2
|ι|2

(
‖ws − w‖H1

0
+ ‖w‖H1

0
|P s
V − PV |EndH1

0
+ ‖P s

V ws − PV w‖H1
0

)

Passing to the limit as s→∞, we obtain (6.10). Thus

lim
s→∞

∣∣dwsTs − dwT
∣∣
EndH1

0

= 0,

i.e. condition (10.25) is satisfied.

To check condition (10.26), let us fix µ > 0 and gs ∈ H1
0 . Scalar multi-

plication ((·|u)) of the equation

µu+ P s
VR−1Au,P s

V
u = gs
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yields

µ‖u‖2
H1

0
+ ((P s

VR−1Au,P s
V
u|u)) = ((gs|u)).

According to Remark 5.5 (a), P s
V is selfadjoint; thus

µ‖u‖2
H1

0
+Au,P s

V
u(P

s
V u) = ((gs|u)).

Since Au,P s
V
u(P

s
V u) = 0 (by (5.4) in Proposition 5.1 (a)), we conclude that

‖u‖H1
0
�
‖gs‖H1

0

µ
.

Hence, condition (10.26) holds for the same function κ defined by (6.8).

Let us fix (ν, f) ∈ G and observe that the sets S(ν, f) and Ss(ν, fs)
correspond to the following sets in the abstract setting

S(ν, f) = R(µ, g) and Ss(ν, fs) = R(s, µ, gs)

for µ := ν, g := PVR−1f and gs := P s
VR−1fs (Compare (6.4) and (6.5)

with (10.3) and (10.23)). Now the assertion follows from Theorem 10.15 in
Appendix C. �

6.2. Stability of the Holly method with respect to the approxima-
tion of the space H1

0

This problem of stability with respect to the approximation of the space
H1

0 concerns the second step. Here we will investigate behaviour of the family
of sets Ss,M (ν, fs), when s ∈ N is fixed and M various over the family of all
closed linear subspaces of H1

0 .

We begin with two auxiliary results. Using the fixed point theorem in
the version of Theorem 9.4 in Appendix B, we will prove the following

Proposition 6.2. — Let s ∈ N and M be a closed linear subspace of
H1

0 . Then for every µ > 0 and every gM ∈M there exists w ∈M such that

µw + P s,M
V R−1

M A(w,P s,M
V w) = gM . (6.11)

Moreover,

‖w‖H1
0
�
‖gM‖H1

0

µ
. (6.12)
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Proof. — Let us fix µ > 0 and gM ∈ M . We begin with proving in-
equality (6.12). Suppose that w ∈M satisfies equation (6.11). Multiply the
equation

µw + P s,M
V R−1

M A(w,P s,M
V w) = gM

scalarly in H1
0 by w to obtain

µ‖w‖2H1
0

+
((
P s,M
V R−1

M A(w,P s,M
V w)|w

))
=

((
gM |w

))

By Remark 5.8 (a), P s,M
V is selfadjoint. Thus, by Remark 5.7 (a) and Remark

5.8 (b), we calculate

((
P s,M
V R−1

M A(w,P s,M
V w)|w

))
=

((
PMR−1A(w,P s,M

V w)|P s,M
V w

))

=
((
R−1A(w,P s,M

V w)|PMP s,M
V w

))

= Aw,P s,M
V

w(P s,M
V w).

Thus

µ‖w‖2H1
0

+Aw,P s,M
V

w(P s,M
V w) =

((
gM |w

))
.

Since Aw,P s,M
V

w(P s,M
V w) = 0 (by (5.4) in Proposition 5.1 (a)), we obtain

µ‖w‖2H1
0

=
((
gM |w

))
� ‖gM‖H1

0
· ‖w‖H1

0
.

Thus ‖w‖H1
0
�
‖gM‖H1

0

µ , i.e. inequality (6.12) holds.

To prove the first part of the statement, let us consider K̄M (R) :=
{x ∈M : ‖x‖H1

0
� R}. We assert that the mapping

F : M ⊃ K̄M (R)  u �→ u− 1

µ
gM +

1

µ
P s,M
V R−1

M A(u, P s,M
V u) ∈M

satisfies the assumptions of Theorem 9.4 in Appendix B with R :=
‖gM‖H1

0

µ .

Indeed, let ζ ∈ ∂K̄M (R). Property (5.4) of the operator A together with

selfadjointness of P s,M
V (see Remark 5.8 (a)) imply that

((P s,M
V R−1

M A(ζ, P s,M
V ζ)|ζ))=((R−1

M Aζ,P s,M
V

ζ |P
s,M
V ζ))=Aζ,P s,M

V
ζ(P

s,M
V ζ)=0.

Moreover,
1

µ
((gM |ζ)) �

1

µ2
‖gM‖2H1

0
= ‖ζ‖2H1

0
.
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Thus

((F (ζ)|ζ)) = ‖ζ‖2H1
0
− 1

µ
((gM |ζ)) � 0.

By complete continuity of mapping A (see Corollary 5.4), the mapping

idM − F =
1

µ
gM − 1

µ
P s,M
V A ◦ (id�P s,M

V )

is completely continuous. In particular, the set (idM − F )(K̄M (R)) is rel-
atively compact. Consequently, Theorem 9.4 implies that the set {F = 0}
is nonempty, or equivalently, that the set of solutions of equation (6.11) is
nonempty. �

Remark 6.3. — If (ν, f) ∈ G, then P s
VR−1fs is a regular value of the

mapping
νid + P s

VR−1 ◦ A ◦ (id�P s
V ) : H1

0 → H1
0 ,

for almost all s ∈ N.

Proof. — Let us fix (ν, f) ∈ G. Let us denote

Kν(u) := νu+ PVR−1A(u, PV u), u ∈ H1
0

Kν,s(u) := νu+ P s
VR−1A(u, P s

V u), u ∈ H1
0 , s ∈ N.

Observe that

S(ν, f) = K−1
ν ({PVR−1f}), (6.13)

Ss(ν, fs) = K−1
ν,s({P s

VR−1fs}). (6.14)

(see (6.1), (6.2), (6.4) and (6.5)) According to the definition of the set G,
for every v ∈ S(ν, f), the Fréchet differential dvKν ∈ EpiH1

0 . Since Kν is
a Fredholm mapping (by Corollary 5.4), we infer that dvKν ∈ AutH1

0 . Fix
ε > 0. By Theorem 6.1, there exists s0 ∈ N such that for s � s0

(i) #Ss(ν, fs) = #S(ν, f) <∞;

(ii) the Hausdorff distance: d
(
Ss(ν, fs),S(ν, f)

)
< ε, i.e.

Ss(ν, fs) ⊂ S(ν, f) +K(0, ε) and S(ν, f) ⊂ Ss(ν, fs) +K(0, ε).

Therefore for each v ∈ S(ν, f) there exists a unique vs ∈ Ss(ν, fs) such that
‖v − vs‖H1

0
< ε. This means that vs tends to v in H1

0 as s→∞.

Let us fix v ∈ S(ν, f). Since the space of authomorphisms of H1
0 is open

in the space of all endomorphisms of H1
0 ,

there exists an open neighbourhood W(v) in EndH1
0

of the differential dvKν such that W(v) ⊂ AutH1
0 .
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Thus, if we show that

dvsKν,s → dvKν in the space EndH1
0 as s→∞, (6.15)

then dvsKν,s ⊂ AutH1
0 for sufficiently large s ∈ N.

We calculate the Fréchet differentials

dvKν = νid + PV ◦ R−1 ◦ dv
(
A ◦ (id/ PV )

)

dvsKν,s = νid + P s
V ◦ R−1 ◦ dvs

(
A ◦ (id/ P s

V )
)

Since P s
VR−1 → PVR−1 in L

(
(H1

0 )
′
, H1

0

)
and by (6.10)

dvs
(
A ◦ (id/ P s

V )
)
→ dv

(
A ◦ (id/ PV )

)
in L

(
H1

0 , (H
1
0 )
′)

as s → ∞, we infer that (6.15) holds. Since v was chosen in an arbitrary
way, the proof is complete. �

Consider the family S(H1
0 ) of all closed linear subspaces of H1

0 and let B
denote the filterbase on S(H1

0 ) defined in Preliminaries (see (1.3) and (1.4)).
Applying Theorem 2.10 of Section 2 we will prove the following theorem
expressing stability with respect to approximation of the space H1

0 for the
Holly method.

Theorem 6.4 (stability with respect to approximation of the
space H1

0). — Assume that (ν, f) ∈ G. Then, for almost all s ∈ N and
every ε > 0 there exist Ws ∈ S(H1

0 ) ∩ {dim <∞} and δs > 0 such that

(i) d
(
Ss,M (ν, fs),Ss(ν, fs)

)
� ε,

(ii) #Ss,M (ν, fs) = #Ss(ν, fs) <∞ ,

whenever M ∈ BWs,δs . (Here d stands for the Hausdorff metric over H1
0 .)

In particular, assertion (i) quarantees that

lim
M�B

Ss,M (ν, fs) = Ss(ν, fs) in the Hausdorff metric over H1
0 .

Proof of Theorem 6.4. — Let (ν, f) ∈ G. Let us fixed s ∈ N such that
P s
VR−1fs is a regular value of the mapping

νid + P s
VR−1 ◦ A ◦ (id�P s

V ) : H1
0 → H1

0 .
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We apply the abstract framework of Section 2 in the Hilbert space
(
H1

0 , ((·|·))
)

with

T (u) := P s
VR−1A(u, P s

V u), u ∈ H1
0

and

TM (w) := P s,M
V R−1

M A(w,P s,M
V w), w ∈M,

where M ∈ S(H1
0 ). To apply Theorem 2.10, we will check that the mappings

T and TM satisfy conditions (A.1)-(A.6) in Section 2.

Ad. (A.1). Condition (A.1) is satisfied due to Proposition 6.2.

Ad. (A.2). It is sufficient to take

T̃M (u) := P s,M
V R−1

M A(u, P s,M
V u), u ∈ H1

0 ,

i.e. T̃M is defined on the whole space H1
0 by the same formula as TM . Let

gM ∈M and denote

RM (µ, gM ) := {w ∈M : µw + TM (w) = gM},
R̃M (µ, gM ) := {u ∈ H1

0 : µu+ T̃M (u) = gM}.

It is clear that RM (µ, gM ) ⊂ R̃M (µ, gM ). On the other hand, since T̃M (H1
0 ) =

P s,M
V R−1

M A(H1
0 × P s,M

V H1
0 ) ⊂ M , we infer that also R̃M (µ, gM ) ⊂ M ∩

RM (µ, gM ) ⊂ RM (µ, gM ).

Ad. (A.3). By inequality (6.12) in Proposition 6.2, condition (A.3) holds
with

κ :]0,∞[×[0,∞[ (µ, r) �→ r

µ
∈ [0,∞[.

Ad. (A.4). Let u ∈ H1
0 . For M ∈ S(H1

0 ), we have

‖T̃M (u)− T (u)‖H1
0

= ‖P s,M
V R−1

M A(u, P s,M
V u)− P s

VR−1A(u, P s
V u)‖H1

0
(6.16)

� ‖P s,M
V

(
R−1
M A(u, P s,M

V u)−A(u, P s
V u)

)
‖
H1

0

+‖P s,M
V R−1

M A(u, P s
V u)− P s

VR−1A(u, P s
V u)‖H1

0

� |P s,M
V R−1

M |L((H1
0 )′,H1

0 )|A(u, P s,M
V u)−A(u, P s

V u)|(H1
0 )′

+‖P s,M
V R−1

M A(u, P s
V u)− P s

VR−1A(u, P s
V u)‖H1

0
.

In view of (5.13) and (5.16), by Lemma 8.3 in Appendix A

lim
ω�B

‖P s,M
V R−1

M (l)− P s
VR−1(l)‖H1

0
= 0, l ∈ (H1

0 )
′
. (6.17)
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Thus, the last term in inequality (6.16) tends to zero as M ! B. Since the

family of norms {|P s,M
V R−1

M |L((H1
0 )′,H1

0 ); M ∈ S(H1
0 )} is bounded, it is

sufficient to check that

|A(u, P s,M
V u)−A(u, P s

V u)|(H1
0 )′ → 0 as M ! B. (6.18)

However, by (5.2), we have

|A(u, P s,M
V u)−A(u, P s

V u)|(H1
0 )′ �

3

2
|ι|2‖u‖H1

0
‖P s,M

V u− P s
V u‖H1

0
.

Thus, (5.16), assertion (6.18) holds .

Ad. (A.5). Let (Wk) be an internal approximation of H1
0 , 0 < δk → 0

and Mk ∈ BWk,δk , k ∈ N. Suppose that uk → u weakly in H1
0 . We have

‖T̃Mk
(uk)− T (u)‖H1

0
(6.19)

= ‖P s,Mk

V R−1
Mk
A(uk, P

s,Mk

V )− P s
VR−1A(u, P s

V u)‖
H1

0

� ‖P s,Mk

V R−1
Mk

(
A(uk, P

s,Mk

V uk)−A(u, P s
V u)

)
‖
H1

0

+‖P s,Mk

V R−1
Mk
A(u, P s

V u)− P s
VR−1A(u, P s

V u)‖
H1

0

.

By Remark 1.9 and (5.16), we deduce that

lim
k→∞

‖P s,Mk

V R−1
Mk

(l)− P s
VR−1(l)‖

H1
0

= 0, for every l ∈ (H1
0 )
′
.

Thus, the last term in inequality (6.19) tends to zero as k →∞. Since

‖P s,Mk

V R−1
Mk

(
A(uk, P

s,Mk

V uk)−A(u, P s
V u)

)
‖
H1

0

� |P s,Mk

V R−1
Mk
|L((H1

0 )′,H1
0 )
|A(uk, P

s,Mk

V uk)−A(u, P s
V u)|(H1

0 )′

and the sequence
(
|P s,Mk

V R−1
Mk
|L((H1

0 )′,H1
0 )

)
k∈N

is bounded, it is sufficient to

prove that

|A(uk, P
s,Mk

V uk)−A(u, P s
V u)|(H1

0 )′ → 0 as k →∞.

Taking into consideration inequality (5.8) from Lemma 5.3, we obtain

|A(uk, P
s,Mk

V uk)−A(u, P s
V u)|(H1

0 )′

� 3

2
|ι|‖uk‖H1

0
‖P s,Mk

V uk − P s
V u‖L4 + |ι|‖P s

V u‖H1
0
‖uk − u‖L4 .
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Complete continuity of the embedding ι : H1
0 ↪→ L4 implies that

limk→∞ ‖uk − u‖L4 = 0. From Remark 1.9 and (5.16), we deduce that

P s,Mk

V → P s
V pointwise on H1

0 as k →∞.

Moreover, P s,Mk

V and P s
V are selfadjoint. Consequently,

P s,Mk

V uk → P s
V u weakly in H1

0 as k →∞.

Again, thanks to the complete continuity of embedding ι

lim
k→∞

‖P s,Mk

V uk − P s
V u‖L4 = 0.

Now the assertion follows.

Ad. (A.6). Let us fix u0 ∈ H1
0 and let u ∈ H1

0 . Let us calculate the
Fréchet differentials

duT̃M = P s,M
V R−1

M du
(
A ◦ (id�P s,M

V )
)
, M ∈ S(H1

0 )

du0T = P s
VR−1du0

(
A ◦ (id�P s

V )
)
.

By (5.4), A is completely continuous, thus

du0

(
A ◦ (id�P s

V )
)

is completely continuous.

Hence, by (6.17) and Corollary 8.5 in Appendix A, it is sufficient to prove
that

du
(
A ◦ (id�P s,M

V )
)
→ du0

(
A ◦ (id�P s

V )
)

in L(H1
0 (H1

0 )
′
)

as (M,u) ! B×F(u0). Since mapping A : H1
0 ×H1

0 → (H1
0 )
′
is bilinear and

it satisfies inequality (5.8) from Lemma 5.3, we obtain

|du
(
A ◦ (id�P s,M

V )
)
(h)− du0

(
A ◦ (id�P s

V )
)
(h)|

(H1
0 )′

= |A(u, P s,M
V h) +A(h, P s,M

V u)−A(u0, P
s
V h)−A(h, P s

V u0)|(H1
0 )′

� |A(u, P s,M
V h)−A(u0, P

s
V h)|(H1

0 )′ + |A(h, P s,M
V u)−A(h, P s

V u0)|(H1
0 )′

� 3

2
|ι|‖u‖H1

0
‖P s,M

V h− P s
V h‖L4 + |ι|‖P s

V h‖H1
0
‖u− u0‖L4

+
3

2
|ι|‖h‖H1

0
‖P s,M

V u− P s
V u0‖L4

� 3

2
|ι|‖u‖H1

0
|P s,M
V − P s

V |L(H1
0 ,L

4)‖h‖H1
0

+ |ι||P s
V |EndH1

0
‖h‖H1

0
‖u− u0‖L4

+
3

2
|ι|‖h‖H1

0
‖P s,M

V u− P s
V u0‖L4 , h ∈ H1

0 .
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Hence

∣∣du
(
A ◦ (id�P s,M

V )
)
− du0

(
A ◦ (id�P s

V )
)∣∣
L(H1

0 ,(H
1
0 )′)

� 3

2
|ι|‖u‖H1

0
|P s,M
V − P s

V |L(H1
0 ,L

4) + |ι||P s
V |EndH1

0
‖u− u0‖L4

+
3

2
|ι|‖P s,M

V u− P s
V u0‖L4 .

Applying Corollary 8.8 from Appendix A with

ψ : S(H1
0 ) M �→ P s,M

V ∈ EndH1
0 , K := ι : H1

0 ↪→ L4 and L : L4 ↪→ L2,

we deduce that

lim
M�B

∣∣P s,M
V − P s

V

∣∣
L(H1

0 ,L
4)

= lim
M�B

∣∣ι ◦ (P s,M
V − P s

V )
∣∣
L(H1

0 ,L
4)

= 0.

Moreover, taking into consideration Lemma 8.9 from Appendix A, we infer
that

‖P s,M
V (u)− P s

V (u0)‖L4 → 0 as (M,u) ! B×F(u0).

Note that the sets Ss(ν, fs) and Ss,M (ν, fs) correspond to the following sets
from the abstract setting

Ss(ν, fs) = R(µ, g) and Ss,M (ν, fs) = RM (µ, gM )

for µ := ν, g := P s
VR−1fs and gM := P s,M

V R−1fs (compare (2.1) and (2.2)
in Section 2.1 with (6.5) and (6.6)). Now the assertion follows from Theorem
2.10.

From Theorems 6.1 and 6.4 we have the following result.

Theorem 6.5 (stability). — Assume that (ν, f) ∈ G and (fs)s∈N tends

to f in (H1
0 )
′
as s → ∞. Let ε > 0. Then there exist s∗ ∈ N, a subspace

W ∈ S(H1
0 ) ∩ {dim <∞} and δ > 0 such that

(i) d
(
Ss∗,M (ν, fs∗),S(ν, f)

)
� ε,

(ii) #Ss∗,M (ν, fs∗) = #Ss∗(ν, fs∗) = #S(ν, f) <∞ ,

whenever M ∈ BW,δ. (Here d stands for the Hausdorff metric over H1
0 .)

Proof. — Let us fix (ν, f) ∈ G and ε > 0. By Theorem 6.1 there exists
s0 ∈ N such that for each s � s0

d(Ss(ν, fs),S(ν, f)) � ε

2
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and
#Ss(ν, fs) = #S(ν, f) <∞.

By Theorem 6.4, we can choose s∗ � s0, a finite-dimensional subspace
W ∈ S(H1

0 ) and δ > 0 such that

d(Ss∗,M (ν, fs∗),Ss∗(ν, fs∗)) �
ε

2

and
#Ss∗,M (ν, fs∗) = #Ss∗(ν, fs∗) <∞,

whenever M ∈ BW,δ. Then

d(Ss∗,M (ν, fs∗),S(ν, f))

� d(Ss∗,M (ν, fs∗),Ss∗(ν, fs∗)) + d(Ss∗(ν, fs∗),S(ν, f)) � ε
2 + ε

2 = ε

and
#Ss∗,M (ν, fs∗) = #Ss∗(ν, fs∗) = #S(ν, f) <∞,

whenever M ∈ BW,δ. �

Remark that in Theorems 6.1, 6.4 and 6.5, we have assumed that the
data (ν, f) belong to the set G defined by (6.7). Now, we will concentrate
on the properties of the set G.

6.3. Properties of the set G.

Lemma 6.6. — The set

G1 := {(ν, c) ∈]0,∞[×V : c is a regular value of the

mapping V  φ �→ νφ+ PVR−1Aφ,φ ∈ V }

is open and dense in ]0,∞[×V .

Proof. — We claim that conditions (10.4)-(10.5) in Appendix C are
satisfied if we take

H := V

T (φ) := PVR−1Aφ,φ, φ ∈ V.

To check condition (10.4) let φk → φ weakly in V ⊂ H1
0 . Then Aφk,φk →

Aφ,φ in (H1
0 )
′
, by Lemma 5.3 (b). Thus by continuity of PV and of the Riesz

isomorphism R

PVR−1Aφk,φk → PVR−1Aφ,φ in V.
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To verify condition (10.5) let us fix µ > 0 and g ∈ V . Next, multiply the
equation

µφ+ PVR−1Aφ,φ = g

scalarly by φ ∈ V to obtain

µ‖φ‖2H1
0

+ ((PVR−1Aφ,φ|φ)) = ((g|φ))

µ‖φ‖2H1
0

+Aφ,φ(φ) = ((g|φ)).

Since Aφ,φ(φ) = 0, we infer that ‖φ‖H1
0
�
‖g‖

H1
0

µ . This means that condition

(10.5) holds with

κ(µ, r) :=
r

µ
, µ > 0, r > 0.

In conclusion, by Theorem 10.12, the set G1 is open and dense in ]0,∞[×V .
�

Let us denote

Kν(u) := νu+ PVR−1A(u, PV u), u ∈ H1
0 . (6.20)

Remark 6.7. — If c ∈ V , then the following conditions are equivalent

(i) c is a regular value of the mapping Kν : H1
0 → H1

0 ,

(ii) c is a regular value of the mapping (Kν)|V : V → V .

Proof. — Since Kν(V ) ⊂ V , the mapping (Kν)|V is well defined. More-
over, for u ∈ V

du(Kν)|V = (duKν)|V . (6.21)

By complete continuity of the mappingA, both Kν and (Kν)|V are Fredholm
mappings of index 0. Hence, the Fréchet differentials of these mappings are
epimorphisms if and only if they are monomorphisms. Since c ∈ V ,

{u ∈ H1
0 : Kν(u) = c} = {v ∈ V : (Kν)|V (v) = c}. (6.22)

Let u ∈ K−1
ν ({c}).

To prove that (ii) follows from (i), it is sufficient to check that

du(Kν)|V ∈MonoV.

Let h ∈ V be such that
(
du(Kν)|V

)
(h) = 0. By (6.21), (duKν)(h) = 0. Since

c is a regular value of Kν , duKν ∈MonoH1
0 , and hence h = 0.
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Now, suppose that c is a regular value of the restriction (Kν)|V . Let

h ∈ H1
0 be such that (duKν)(h) = 0. Hence

νh = −(PV ◦ R−1 ◦ du
(
A ◦ (id/ PV ))

)
(h).

In particular, h ∈ V , and
(
du(Kν)|V

)
(h) = 0. Since du(Kν)|V is a monomor-

phism, h = 0. �

Now, we prove some simple topological result which we will need in the
proof of the main theorem of this subsection.

Remark 6.8. — Let X,Y be topological spaces. Assume that P : X → Y
is an open mapping and Q is a dense subset of Y . Then P−1(Q) is a dense
subset of X.

Proof. — It is sufficient to show that for any nonempty set A ∈ topX,
the intersection A ∩ P−1(Q) is nonempty. Since P is open, P (A) is a
nonempty open subset of Y . Then, the density of the set Q in the space
Y yields that P (A) ∩Q is nonempty. Hence, there exists an element a ∈ A
such that P (a) ∈ Q, or equivalently, a ∈ A ∩ P−1(Q). �

The main result concerning the properties of the set G is the following
theorem.

Theorem 6.9. — The set G is open and dense in ]0,∞[×(H1
0 )
′
.

Proof. — Let us observe that

G = (id× PVR−1)−1(G1). (6.23)

Indeed,

(ν, f) ∈ G ⇔ (ν, PVR−1f) ∈ G1 ⇔ (id× PVR−1)(ν, f) ∈ G1

⇔ (ν, f) ∈ (id× PVR−1)−1(G1).

The mapping

(id× PVR−1) :]0,∞[×(H1
0 )
′ →]0,∞[×V (6.24)

is open and continuous (its openness follows from the openness of the pro-
jection PV ). By Lemma 6.6, the set G1 is dense in ]0,∞[×V . The openness
of the mapping (6.24) and equality (6.23) yield, by Remark 6.8, that G is

dense in ]0,∞[×(H1
0 )
′
. Since G1 is open in ]0,∞[×V and the mapping (6.24)

is continuous, we infer by (6.23) that G is also open in ]0,∞[×(H1
0 )
′
. �
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6.4. Pressure in the Holly method

Calculation of the pressure p was considered in [13]. Theorem 3.1 in [13]
states that if v ∈ V , then we have the following representation for p ∈ L2(Ω)
with

∫
Ω
p(x) dx = 0

p = (divdiv∗)−1
divR−1

(
Av,v − f

)
. (6.25)

Let the pair (v, p) ∈ V × L2(Ω) be a solution od the N-S equations. With
the double approximation of the velocity we can associate a double approx-
imation of the pressure.

The first step of approximation of the pressure. Assume that
fs → f and ls → Av,v in (H1

0 )′ as s→∞. We may put, e.g. ls := AvsP sV vs,
,

where vs is a solution of equation (5.11). Let

ps :=

s∑

j=0

(id− divdiv∗)jdivR−1
(
ls − fs

)
. (6.26)

Then

lim
s→∞

‖ps − p‖L2(Ω) = 0,

see Theorem 3.2 in [13]. In conclusion, if we consider the sets of pairs (v, p)
and (vs, ps), i.e.

P(ν, f) :=
{
(v, p) : v ∈ S(ν, f)

}
,

Ps(ν, fs) :=
{
(vs, ps); vs ∈ Ss(ν, fs) and ps is defined by (6.26)

}
, s ∈ N,

(see (6.4) and (6.5)), then by Theorem 6.1 we obtain the following corollary

Corollary 6.10. — Under the assumptions of Theorem 6.1, we have

lim
s→∞

Ps(ν, fs) = P(ν, f) (6.27)

in the Hausdorff metric over H1
0 × L2(Ω).

The second step of approximation of the pressure. Let us now
fix s ∈ N and let M be a closed linear subspace of H1

0 . Let us put

ps,M :=

s∑

j=0

(id− divdiv∗M )
j
divR−1

M

(
ls − fs

)
. (6.28)
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In particular, if ls := AvsP sV vs,
, then we may approximate R−1

M (ls) by

Avs,M ,P s,M
V

vs,M ,, where vs,M is a solution of equation (5.17), see [13].

By Remarks 5.6, 5.7, 5.8 and Theorem 6.4 we infer that

lim
M�B

‖ps,M − ps‖L2(Ω) = 0. (6.29)

Let us consider the corresponding sets of pairs (vs,M , ps,M ), i.e.

Ps,M (ν, fs) :=
{
(vs,M , ps,M ); vs,M ∈Ss,M (ν, fs) and ps,M is defined by (6.28)

}
,

where s ∈ N and M ∈ S(H1
0 ), see (6.6). By Theorem 6.4 we obtain the

following conclusion

Corollary 6.11. — Under the assumptions of Theorem 6.4, we have
for sufficiently large s ∈ N

lim
M�B

Ps,M (ν, fs) = Ps(ν, fs). (6.30)

in the Hausdorff metric over H1
0 × L2(Ω).

7. Summary

In this paper we have considered an abstract nonlinear equation in a
real separable Hilbert space H and certain class of approximate equations
on closed linear subspaces of H. In Section 2 we have provided certain
approach to the problem of stability with respect to the approximation
of the space H. We have proven that, generically, the set of all solutions
of the exact equation is the limit in the Hausdorff metric of the sets of
approximate solutions, over some filterbase on the family of all closed linear
subspaces of H. The abstract results have been applied to the stationary
Navier-Stokes equations in two and three dimensional bounded domains.
Namely, we have proven that the classical Galerkin method is stable with
respect to the approximation of the space V of divergence-free vector fields.
Moreover, we have considered the Holly method of finding the velocity v in
the Navier-Stokes problem. Using the general approach of Section 2 we have
shown that this method is stable with respect to the approximation of the
Sobolev space H1

0 . Moreover, referring to the results of paper [13] we have
analysed behaviour of the pairs (v, p) and the corresponding sets of pairs of
approximate velocities and approximate pressures.

The present paper contains theoretical analysis of the problem of sta-
bility. The computational aspect of the Holly method, especially reduction
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of calculation of some operators (i.e. div∗, P s
V and P s,M

V ) to the Dirichlet
problem for the Poisson equation, and continuation of the results of papers
[8] and [12] will be considered in the forthcoming paper.

Acknowledgements. — The author would like to thank an anony-
mous referee for helpful comments and remarks.

8. Appendix A: Auxiliary results about filterbases

Most of the presented results are generalizations of the results from
functional analysis. We assume that we have a filterbase B of a countable
type on a set S. Using the Baire theorem, we will prove the following version
of the Banach-Steinhaus theorem.

Theorem 8.1. — Let X,Y be Banach spaces. Assume that a mapping
ψ : S → L(X,Y ) satisfies the following condition

for every x ∈ X there exists Bx ∈ B such that

the set {ψ(ω)(x), ω ∈ Bx} is bounded . (8.1)

Then there exists a set B ∈ B such that the set of norms {|ψ(ω)|L(X,Y ),

ω ∈ B} is bounded.

Proof. — Let

Zn,k := {x ∈ X : |ψ(ω)(x)|Y � n for ω ∈ Bk
0}, k, n ∈ N.

Then

X =

∞⋃

n,k=1

Zn,k. (8.2)

Indeed, it is sufficient to check that every element x ∈ X belongs to the set
on the right-hand side of (8.2) By (8.1), there exists Bx ∈ B and m ∈ N
such that the set {ψ(ω)(x), ω ∈ Bx} is contained in the ball KY (0,m).
By (1.2) there exists l ∈ N such that Bl

0 ⊂ Bx. Thus, for every ω ∈ Bl
0:

|ψ(ω)(x)|Y � m. This means that x ∈ Zm,l.

Since X is complete, it is a set of the second category of Baire. Thus the
Baire theorem yields that there exist n0, k0 ∈ N such that the set Zn0,k0

is not nowhere dense, i.e. intZn0,k0 - interior of the closure of Zn0,k0 , is
nonempty. By the continuity of the operators ψ(ω) and of the norm, the
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set Zn0,k0
is closed in X. Thus, there exist x0 ∈ X and r0 > 0 such that

KX(x0, r0) ⊂ Zn0,k0 , or equivalently,

ψ(ω)
(
KX(x0, r0)

)
⊂ KY (0, n0), ω ∈ Bk0

0 . (8.3)

We will prove that

sup{|ψ(ω)|L(X,Y ), ω ∈ Bk0
0 } <∞. (8.4)

Let x ∈ KX(0, 1) and ω ∈ Bk0
0 . Since KX(0, 1) = 1

r0

(
−x0 + KX(x0, r0)

)
,

x = − 1
r0
x0 + 1

r0
z for some z ∈ KX(x0, r0). Hence, by (8.3),

|ψ(ω)(x)|Y = | − 1
r0
ψ(ω)(x0) + 1

r0
ψ(ω)(z)|

Y

� | − 1
r0
ψ(ω)(x0)|Y + | 1

r0
ψ(ω)(z)|

Y
� 2n0

r0
.

Since x and ω are arbitrary, (8.4) holds. Thus, the assertion holds with
B := Bk0

0 . �

Corollary 8.2. — Let X,Y be Banach spaces. If a mapping ψ → L(X,Y )
satisfies the following condition

lim
ω�B

ψ(ω)(x) = A(x), x ∈ X (8.5)

for some A ∈ L(X,Y ), then there exists a set B ∈ B such that the set of
norms {|ψ(ω)|L(X,Y ), ω ∈ B} is bounded.

Proof. — Directly by Definition 1.2, condition (8.5) implies (8.1). Thus,
the assertion is an immediate consequence of Theorem 8.1. �

Lemma 8.3. — Assume that X,Y, Z are Banach spaces. Let the follow-
ing mappings be given

ψ1 : S → L(X,Y ) such that lim
ω�B

ψ1(ω)(x) = A1(x), x ∈ X,

ψ2 : S → L(Y,Z) such that lim
ω�B

ψ2(ω)(y) = A2(y), y ∈ Y

for some A1 ∈ L(X,Y ) , A2 ∈ L(Y,Z). Then

lim
ω�B

(
ψ2(ω) ◦ ψ1(ω)

)
(x) = (A2 ◦A1)(x), x ∈ X.
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Proof. — Let x ∈ X and ω ∈ S. Then

(
ψ2(ω) ◦ ψ1(ω)

)
(x)− (A2 ◦A1)(x)

=
(
ψ2(ω) ◦ ψ1(ω)

)
(x)−

(
ψ2(ω) ◦A1

)
(x) +

(
ψ2(ω) ◦A1

)
(x)− (A2 ◦A1)(x)

= ψ2(ω)
(
ψ1(ω)(x)−A1(x)

)
+

(
ψ2(ω)−A2

)(
A1(x)

)
.

Thus, it is sufficient to check that

ψ2(ω)
(
ψ1(ω)(x)−A1(x)

)
→ 0 as ω ! B. (8.6)

By Corollary 8.2, there exist a set B0 ∈ B and a constant C > 0 such that

sup{|ψ2(ω)|L(Y,Z), ω ∈ B0} � C. (8.7)

Let ε > 0. From the Definition 1.2, there follows that there exists B1 ∈ B
such that

|ψ1(ω)(x)−A1(x)|Y <
ε

C
, ω ∈ B1. (8.8)

By (1.1), there exists B ∈ B such that B ⊂ B0 ∩ B1. Then, by (8.7) and
(8.8), we have

|ψ2(ω)
(
ψ1(ω)(x)−A1(x)

)
|
Z
� |ψ2(ω)|L(Y,Z)|ψ1(ω)(x)−A1(x)|Y < ε, ω ∈ B,

which ends the proof. �

Lemma 8.4. — Let X,Y, Z be Banach spaces. Assume that A : X →
Y is a linear completely continuous operator. Let ψ : S → L(Y,Z) be a
mapping such that

lim
ω�B

ψ(ω)(y) = L(y), y ∈ Y (8.9)

for some L ∈ L(Y,Z). Then

lim
ω�B

(
ψ(ω) ◦A

)
= L ◦A in L(X,Z).

Proof. — By Corollary 8.2, there exist B1 ∈ B and C > 0 such that

sup{|ψ(ω)|L(Y,Z), ω ∈ B1} � C and |L|L(Y,Z) � C.

Let us fix ε > 0. Let y1, . . . , ys ∈ Y be a ε
3C - net of the set A(KX(0, 1)). Let

x ∈ KX(0, 1). Choose an index j ∈ {1, . . . , s} such that |A(x)− yj |Y � ε
3C .

Due to (8.9), there exists B2 ∈ B such that

|ψ(ω)(yj)− L(yj)|Z <
ε

3
, ω ∈ B2.
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By (1.1), there exists B ⊂ B1 ∩B2. Then

|
(
ψ(ω) ◦A

)
(x)− (L ◦A)(x)|

Z

� |ψ(ω)(A(x))− ψ(ω)(yj)|Z + |ψ(ω)(yj)− L(yj)|Z + |L(yj)− L(A(x))|Z
� |ψ(ω)|L(Y,Z)|A(x)−yj |Y +|ψ(ω)(yj)− L(yj)|Z+|L|L(Y,Z)|yj −A(x)|Y <ε

for ω ∈ B. Taking the supremum over all x ∈ KX(0, 1), we obtain

|ψ(ω) ◦A− L ◦A|L(X,Z) � ε, ω ∈ B,

which ends the proof. �

Corollary 8.5 Assume that X,Y, Z are Banach spaces. Let the fol-
lowing mappings be given

ψ1 : S → L(X,Y ) such that limω�B ψ1(ω) = A in L(X,Y ),

ψ2 : S → L(Y,Z) such that limω�B ψ2(ω)(y) = L(y), y ∈ Y

where A : X → Y is a linear completely continuous operator and L ∈
L(Y,Z). Then

lim
ω�B

(
ψ2(ω) ◦ ψ1(ω)

)
= L ◦A in L(X,Z).

Proof. — By virtue of the inequality

|ψ2(ω) ◦ ψ1(ω)− L ◦A|L(X,Z)

� |ψ2(ω)|L(Y,Z)|ψ1(ω)−A|L(X,Y ) + |ψ2(ω) ◦A− L ◦A|L(X,Z), ω ∈ S,

the assertion is a consequence of Corollary 8.2 and Lemma 8.4. �

Lemma 8.6. — Assume that H,H1 are Hilbert spaces and H1 is sepa-
rable. Let K : H → H1 be a linear completely continuous operator and let
ψ : S → EndH be a mapping such that

(i) ψ(ω) is selfadjoint , ω ∈ S,

(ii) limω�B ψ(ω)(x) = A(x), x ∈ H

for some A ∈ EndH. Then

lim
ω�B

(
K ◦ ψ(ω)

)
= K ◦A in L(H,H1).
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Proof. — Step 10. Assume that H1 := R. Then K is a linear functional
on H; denote K =: ξ ∈ H ′.

By the Riesz theorem, ξ = (·|a)H for some a ∈ H. Let x ∈ K̄H(0, 1). By
selfadjointness of the operators ψ(ω), we obtain

|(ξ ◦ ψ(ω))(x)− (ξ ◦A)(x)| = |ξ(ψ(ω)x)− ξ(Ax)|
= |(ψ(ω)x|a)H − (Ax|a)H | = |(x|ψ(ω)a)H − (x|Aa)H |
= |(x|ψ(ω)a−Aa)H | � |ψ(ω)a−Aa|H for ω ∈ S.

Therefore

|ξ ◦ ψ(ω)− ξ ◦A|H′ � |ψ(ω)a−Aa|H → 0 as ω ! B.

Step 20. Now, we assume that K(H) is a finite-dimensional subspace
of H1. Let b1, . . . , bn form a base of K(H), where n = dimK(H) and let
b∗1, . . . , b

∗
n be the dual basis. Then

K ◦ ψ(ω) =

n∑

i=1

Λi ◦ (ξi ◦ ψ(ω)), K ◦A =

n∑

i=1

Λi ◦ (ξi ◦A), (8.10)

where

ξi : H  x �→ (b∗i ◦K)(x) ∈ R,
Λi : R  r �→ r · bi ∈ H1, i = 1, . . . , n.

Indeed, let x ∈ H. Then

( n∑

i=1

Λi ◦ (ξi ◦ ψ(ω))

)
x =

n∑

i=1

Λi

(
ξi(ψ(ω)x)

)
=

n∑

i=1

Λi

(
b∗i ((K ◦ ψ(ω))x)

)

=

n∑

i=1

b∗i
(
(K ◦ ψ(ω))x

)
· bi = (K ◦ ψ(ω))x.

Since ψ(ω) → A pointwise as ω ! B and K is continuous, step 10 yields
that

ξi ◦ ψ(ω) → ξi ◦A in H ′ as ω ! B
and hence, by the continuity of the operators Λi

Λi ◦ (ξi ◦ ψ(ω)) → Λi ◦ (ξi ◦A) in L(H,H1) as ω ! B (8.11)

for any i ∈ {1, . . . , n}. Then, the assertion follows from (8.10) and (8.11) .
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Step 30.The general case. By virtue of Corollary 8.2, there exists B1 ∈ B
such that C := sup{|ψ(ω)|EndH ; ω ∈ B1} < ∞. Then also |A|EndH � C.
Let ε > 0. Since H1 is a separable Hilbert space, the subspace of all finite-
dimensional operators is dense in the space of all completely continuous
operators. Therefore, there exists a finite-dimensional operator L : H → H1

such that |K − L|L(H,H1)
� ε

4C . Then

|K ◦ ψ(ω)−K ◦A|L(H,H1)
� |K ◦ ψ(ω)− L ◦ ψ(ω)|L(H,H1)

+|L ◦ ψ(ω)− L ◦A|L(H,H1)
+ |L ◦A−K ◦A|L(H,H1)

� |K − L|L(H,H1)
|ψ(ω)|EndH + |L ◦ ψ(ω)− L ◦A|L(H,H1)

+|L−K|L(H,H1)
|A|EndH

� 2C|K − L|L(H,H1)
+ |L ◦ ψ(ω)− L ◦A|L(H,H1)

� ε

2
+ |L ◦ ψ(ω)− L ◦A|L(H,H1)

for ω ∈ B1.

Hence, by step 20, there exists B2 ∈ B such that

|L ◦ ψ(ω)− L ◦A|L(H,H1)
� ε

2
for ω ∈ B2.

Since B is a filterbase, there exists B ∈ B such that B ⊂ B1 ∩ B2. In
conclusion,

|K ◦ ψ(ω)−K ◦A|L(H,H1)
< ε for ω ∈ B,

which end the proof. �

We will use the following auxiliary Lemma.

Lemma 8.7 (Lions). — Let E,E1, E2 be Banach spaces. Assume that
A : E1 → E is a linear completely continuous operator and L : E → E2 is a
linear continuous monomorphism. Then for every α > 0 there exists β > 0
such that for every x ∈ E1

|A(x)|E � α|x|E1
+ β|(L ◦A)x|E2

.

In the case when A and L are embeddings, the above lemma is proved
in [11] (Theorem 3.3 in Section III).

Assume that

E is a Banach space such that there exist a separable Hilbert space H1

and a continuous linearmonomorphism L : E → H1. (8.12)

– 712 –



Stability for a certain class of numerical methods

Remark that the above assumption is satisfied if the Banach space E is
continuously imbedded in a separable Hilbert space.

Corollary 8.8 . — Assume (8.12). Let K : H → E be a linear com-
pletely continuous operator and let ψ : S → EndH be a mapping such that

(i) ψ(ω) is selfadjoint , ω ∈ S,

(ii) limω�B ψ(ω)(x) = A(x), x ∈ H

for some A ∈ EndH. Then

lim
ω�B

(
K ◦ ψ(ω)

)
= K ◦A in L(H,E).

Proof. — By Corollary 8.2, there exists B1 ∈ B such that
C := sup{|ψ(ω)|EndH ; ω ∈ B1} < ∞. Then also |A|EndH � C. Let ε > 0.
Let x ∈ K̄H(0, 1). By Lemma 8.7, there exists β > 0 such that

|(K ◦ ψ(ω))x− (K ◦A)x|E
� ε

4C
|ψ(ω)x−Ax|H + β|(L ◦K ◦ ψ(ω))x− (L ◦K ◦A)x|H1

� ε

2
+ β|L ◦K ◦ ψ(ω)− L ◦K ◦A|L(H,H1)

for ω ∈ B1.

Taking the supremum over x ∈ K̄H(0, 1), we obtain

|K ◦ ψ(ω)−K ◦A|L(H,E)

� ε

2
+ β|L ◦K ◦ ψ(ω)− L ◦K ◦A|L(H,H1)

for ω ∈ B1.

Since K is completely continuous, L ◦K : H → H1 is a completely contin-
uous operator between Hilbert spaces. Thus, by Lemma 8.6

L ◦K ◦ ψ(ω) → L ◦K ◦A in L(H,H1) as ω ! B.

Thus, there exists B2 ∈ B such that

|L ◦K ◦ ψ(ω)− L ◦K ◦A|L(H,H1)
<

ε

2β
for ω ∈ B2

Since B is a filterbase, there exists B ∈ B such that B ⊂ B1 ∩ B2. In
conclusion

|K ◦ ψ(ω)−K ◦A|L(H,E) < ε for ω ∈ B
which completes the proof. �
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Lemma 8.9. — Let X,Y be Banach spaces and let x0 ∈ X. Assume that
ψ : S → L(X,Y ) is a mapping such that

ψ(ω) → A in L(X,Y ) as ω ! B. (8.13)

Then
ψ(ω)x→ Ax0 as (ω, x) ! B×F(x0).

(Let us recall that B×F(x0) := {B × U ; B ∈ B, U ∈ F(x0)}.)

Proof. — By Corollary 8.2, there exist B1 ∈ B and C > 0 such that

sup{|ψ(ω)|L(X,Y ), ω ∈ B1} � C.

Let ε > 0. Let U := KX(x0,
ε

2C ). If x0 = 0, then

|ψ(ω)x−Ax0|Y = |ψ(ω)x|Y � |ψ(ω)|L(X,Y )|x|X < ε, ω ∈ B1, x ∈ U.

Assume that x0 �= 0. By the assumption (8.13), there exist B2 ∈ B such
that

|ψ(ω)−A|L(X,Y ) <
ε

2|x0|X
, ω ∈ B2.

By (1.1), there exists B ∈ B such that B ∈ B1 ∩B2. Then

|ψ(ω)x−Ax0|Y � |ψ(ω)x− ψ(ω)x0|Y + |ψ(ω)x0 −Ax0|Y
� |ψ(ω)|L(X,Y )|x− x0|X + |ψ(ω)−A|L(X,Y )|x0|X
< C

ε

2C
+

ε

2|x0|X
|x0|X = ε

for ω ∈ B and x ∈ U . �

9. Appendix B: A certain version of the Schauder fixed point
theorem

Let K̄ := K̄(0, R) be a closed ball in a Hilbert space (H, (·|·)), with
center at 0 and radius R > 0. The norm induced by the scalar product (·|·)
is denoted by | · |.

Theorem 9.1 (Brouwer). — Assume that dimH <∞. Then every con-
tinuous mapping f : K̄ → K̄ has a fixed point, i.e. there exists x0 ∈ K̄ such
that f(x0) = x0.

Using the Brouwer fixed point theorem, J.L. Lions has proven the fol-
lowing theorem.
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Theorem 9.2 (Lemma 4.3 in [10]). — Assume that dimH < ∞ and
F : K̄ → H is a continuous mapping such that

(
F (ζ)|ζ

)
� 0, ζ ∈ ∂K̄ := {x ∈ H : |x| = R}. (9.1)

Then, there exists z ∈ K̄ such that F (z) = 0.

Proof. — We recall the proof of Lions. The mapping

r : H  x �→
{
x, |x| � R
Rx
|x| , |x| > R

is a continuous mapping of the space H in the ball K̄. Thus, by the Brouwer
fixed point theorem, the mapping

f := r ◦ (id− F ) : K̄ → K̄,

has a fixed point, i.e. there exists x0 ∈ K̄ such that

r
(
x0 − F (x0)

)
= x0. (9.2)

We assert that (id−F )(x0) ∈ K̄. Indeed, suppose contrary to our claim that

|(id− F )(x0)| > R. Then |x0| =
∣∣∣R(x0−F (x0))
|x0−F (x0)|

∣∣∣ = R. In particular x0 ∈ ∂K̄.

Hence, by equality (9.2), we obtain

R

|x0 − F (x0)|
(
x0 − F (x0)|x0

)
= |x0|2.

Thus
(
F (x0)|x0

)
=

( R

|x0 − F (x0)|
− 1

)
|x0|2 < 0

which contradicts assumption (9.1). Thus (id − F )(x0) ⊂ K̄ and equality
(9.2) guarantees that F (x0) = 0. �

If dimH = ∞, we use the Schauder fixed point theorem.

Theorem 9.3 (Schauder). — Let f : K̄ → K̄ be a continuous mapping
such that f(K̄) is relatively compact. Then f has a fixed point.

Using the Schauder fixed point theorem, we can prove analogous version
of the Lions theorem for infinite dimensional Hilbert space.
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Theorem 9.4. — Let (H, (·|·)) be a real Hilbert space. Assume that F :
K̄ → H is a continuous mapping such that the set (id − F )(K̄) ⊂ H is
relatively compact and

(
F (ζ)|ζ

)
� 0, ζ ∈ ∂K̄.

Then, there exists z ∈ K̄ such that F (z) = 0.

Proof. — We assert that the mapping

f := r ◦ (id− F ) : K̄ → K̄,

where

r : H  x �→
{
x, |x| � R
Rx
|x| , |x| > R

satisfies the assumptions of the Schauder fixed point theorem. It is clear
that f is continuous. Thus, it is sufficient to establish that the set f(K̄) is
relatively compact. Remark that

f(K̄) = r
(
(id− F )(K̄)

)
⊂ r(Z),

where Z := (id− F )(K̄). Since Z is compact and r is continuous, r(Z) is
compact. Thus F (K̄) is relatively compact as a subset of the compact set
r(Z). The Schauder fixed point theorem implies the existence of x0 ∈ K̄
such that

f(x0) = x0.

Repeating the second part of the proof of Theorem 9.2, we deduce that
F (x0) = 0. �

10. Appendix C: Generic properties of some nonlinear problems
- abstract approach

We recall some topological approach to the problem of generic properties
of the set of solutions of an abstract (nonlinear) equation of the form

µu+ T (u) = g

in a separable Hilbert space H. Here µ ∈]0,∞[ and g ∈ H are given while
u is unknown. Under suitable assumptions, we point out some set O open
and dense in the space ]0,∞[×H such that the set R(µ, g) of all solutions
of the above equation is finite if (µ, g) ∈ O. Moreover, we prove that the
function

O  (µ, g) �→ R(µ, g) ⊂ H
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is continuous, when we consider the Hausdorff metric on the family of all
nonempty bounded and closed subsets of H.

Most of the presented results concerning generic properties have been
proven in [12].

10.1. Fredholm mappings

Let X,Y be two real separable Banach spaces. An operator L ∈ L(X,Y )
is called a Fredholm operator if

(a) dim kerL <∞,

(b) imL := L(X) ∈ cotopX,

(c) codimL := dimY /imL <∞.

If L is Fredholm, then its index is defined as follows: indL := dim kerL -
codimL.

A C1- mapping E : X → Y is called a Fredholm mapping if its Fréchet
differential dxE ∈ L(X,Y ) is a Fredholm operator for all x ∈ X. In such
case, the index of dxE is independent of x (Th.1.1 in [18] ), and, by definition

ind E = ind dxE .

A mapping T : X → Y is completely continuous if it is continuous and maps
bounded subsets of X into relatively compact subsets of Y .

Remark 10.1. — Let A : X → Y be a linear operator. Then the following
conditions are equivalent

(i) A is completely continuous ;

(ii) if xk → x weakly in X, then A(xk) → A(x) in Y .

Let us collect some results which follow from the theory of completely
continuous linear operators ([15], Section IV).

Remark 10.2. — If A ∈ EndX is completely continuous, then for any
λ �= 0

λid +A : X → X

is a Fredholm operator of index 0.
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Thus

λid +A ∈ EpiX ⇔ λid +A ∈MonoX ⇔ λid +A ∈ AutX. (10.1)

Lemma 10.3 (Lemma 2.7.1 in [14]). — If a C1-mapping T : X → Y
is completely continuous, then the Fréchet differential dxT ∈ L(X,Y ) is
completely continuous for all x ∈ X.

By virtue of Remark 10.2 and Lemma 10.3, we have

Corollary 10.4. — If a C1-mapping T : X → X is completely contin-
uous, then

λid + T : X → X

is a Fredholm mapping of index 0 for λ �= 0.

Let E : X → Y be a C1-mapping. An element x ∈ X is called a regular
point of E if dxE ∈ Epi(X,Y ) and x is singular if it is not regular. The images
of all singular points under E are called the singular values or critical values
and their complements - the regular values.

S. Smale has proved the following infinite-dimensional version of the Sard
theorem for Fredholm mappings. We recall this theorem in version given by
C.Foiaş and R.Temam in [4].

Theorem 10.5 (Smale). — Let E : X → Y be a Fredholm Cq-mapping,
where q > max(ind E , 0). Then the regular values of E form a dense Gδ

subset of Y .

If g ∈ Y is a regular value of E, then E−1({g}) is empty or it is a
manifold of dimension ind E.

In particular, if g ∈ Y is a regular value of E and ind E = 0, then
E−1({g}) is discrete.

Let us recall that a Gδ set is a countable intersection of open sets.

10.2. The implicit function theorem.

Theorem 10.6. — Let X,Y, Z be Banach spaces, (x0, y0) ∈ X × Y and
F : X × Y → Z be a Ck-mapping, where k � 1, satisfying the following
conditions

(i) F (x0, y0) = 0,
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(ii) dII(x0,y0)
F := dy0F (x0, ·) ∈ Iso(Y,Z).

Then there exists neighbourhoods X ∈ topX of x0 and Y ∈ topY of y0 such
that the relation η := {F = 0} ∩ (X ×Y) is a Ck-mapping from X to Y and

dxη = −
(
dII(x,η(x))F

)−1 ◦
(
dI(x,η(x))F

)
for x ∈ X .

Here {F = 0} := {(x, y) ∈ X × Y : F (x, y) = 0}.

10.3. Generic properties of the set of solutions

We assume that (H, (·|·)) is a separable Hilbert space. Let | · | be the
norm induced by the scalar product (·|·). Let T : H → H be a C1-mapping.
Consider the following equation

µu+ T (u) = g (10.2)

for a given (µ, g) ∈]0,∞[×H. Let

R(µ, g) := {u ∈ H : µu+ T (u) = g}, (10.3)

i.e. R(µ, g) stands for the set of all solutions of equation (10.2) for a given
(µ, g) ∈]0,∞[×H.

Assume that T satisfies the following conditions

If uk → u weakly in H, then T (uk) → T (u) in H as k →∞ (10.4)

There exists a continuous function κ :]0,∞[×[0,∞[→ [0,∞[ (10.5)

such that for any u ∈ R(µ, g) the following inequality holds :

|u| � κ(µ, |g|).

Note that, if T maps weakly convergent sequences into the sequences con-
vergent in the sense of norm, then T is completely continuous. Let us write
this as the following

Remark 10.7. — Mapping T is completely continuous.

By Remark 10.1, for linear mappings, the condition (10.4) is equivalent
to the complete continuity of T . In general, there exist (nonlinear) com-
pletely continuous mappings that do not satisfy the condition (10.4) (see
Example 3.2 in [12]).

– 719 –
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We will use the following notation

Eµ : H  u �→ µu+ T (u) ∈ H.

Let us remark that for any (µ, g) ∈]0,∞[×H:

R(µ, g) = E−1
µ ({g}). (10.6)

Since the mapping T is completely continuous, thus, by Corollary 10.4

Eµ is the Fredholm mapping of index 0. (10.7)

Hence, by (10.1), for any u ∈ H

duEµ ∈ EpiH ⇔ duEµ ∈MonoH ⇔ duEµ ∈ AutH. (10.8)

Proposition 10.8. — The mapping Eµ is proper, i.e. the preimage of a
compact subset is compact.

Proof. — Let K be a compact subset of H. It is sufficient to show that
any sequence (uk) of elements of the set E−1

µ (K) contains a subsequence
convergent to some element of this set. Let gk = Eµ(uk). By (10.6), uk ∈
R(µ, gk). Thus, by (10.5)

|uk| � κ(µ, |gk|), k ∈ N.

Since κ is continuous and K is compact, we infer that the sequence (uk) is
bounded. Thus, by the Banach-Alaoglu theorem

there exist an infinite subset N1 ⊂ N and an element u ∈ H
such that uk → u weakly in H as N1  k →∞. (10.9)

Again, by the compactness of K,

there exist an infinite subset N2 ⊂ N1 and an element g ∈ K
such that gk → g in H as N2  k →∞. (10.10)

We will show that (uk)k∈N2
contains a subsequence convergent to u in the

sense of norm and that u ∈ E−1
µ ({g}). Indeed, since (uk)k∈N 2

is bounded
and T is completely continuous, the set {T (uk)}k∈N2

is relatively compact.
Thus

there exist an infinite subset N ⊂ N2 such that(
T (uk)

)
k∈N is convergent in H. (10.11)
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Since uk ∈ R(µ, gk), we have

µuk = −T (uk) + gk. (10.12)

Thus, by (10.11), (10.10), we infer that the subsequence (uk)k∈N is con-
vergent in H (in the sense of norm). At the same time u is a weak limit
of (uk)k∈N . Hence |uk − u| → 0 as N  k → ∞. Since T is continuous,
T (uk) → T (u) as N  k → ∞. Thus passing to the limit in (10.12) as
N  k →∞ gives

µu = −T (u) + g,

which means that u ∈ R(µ, g) = E−1
µ ({g}). �

Combining Proposition 10.8 with the equality (10.6), we obtain the fol-
lowing

Corollary 10.9. — The set R(µ, g) is a compact subset of H for any
pair (µ, g) ∈]0,∞[×H.

Lemma 10.10 (Lemma 3.4 in [12]). — Assume that (µ0, g0) ∈]0,∞[×H,

u0 ∈ R(µ0, g0) and the Fréchet differential du0Eµ0 is an epimorphism of
H. Then, there exist a neighbourhood X ∈ top(]0,∞[×H) of (µ0, g0) and a
neighbourhood Y ∈ topH of u0 such that

(i) #
(
Y ∩R(µ, g))

)
= 1 for (µ, g) ∈ X ,

(ii) the function X  (µ, g) �→ uµg ∈ Y is of class C1, where {uµg} :=
Y ∩R(µ, g).

(For the set X, the symbol #X denotes its cardinal number).

Proof. — It is sufficient to apply the implicit function theorem (Th.
10.6) to the mapping

F : (]0,∞[×H)×H 
(
(µ, g), u

)
�→ µu+ T (u)− g ∈ H

with respect to the pair
(
(µ0, g0), u0

)
. �

Let us consider a set

O := {(µ, g) ∈]0,∞[×H : g is a regular value of (10.13)

the mapping: H  u �→ µu+ T (u) → H}.

The result concerning the continuous dependence of the set of the solutions
of the equation (10.2) is expressed in the following
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Elżbieta Motyl

Theorem 10.11. — Assume (10.4)-(10.5). Let (µ0, g0) ∈ O. Then

(i) there exists a neighbourhood X ∈ top(]0,∞[×H) of (µ0, g0) such that

#R(µ, g) = #R(µ0, g0) <∞ for any (µ, g) ∈ X .

(ii) lim R(µ, g) = R(µ0, g0) in the Hausdorff metric over H
as (µ, g) → (µ0, g0) in ]0,∞[×H.

Proof. — Due to (10.7), Eµ0
: H → H is a Fredholm mapping of index 0.

By virtue of the Smale theorem (see Th. 10.5), the set R(µ, g) = E−1
µ0

({g0})
is discrete. On the other hand, by Corollary 10.9, this set is compact. Thus,
it is finite.

Ad. (i). Let u ∈ R(µ0, g0). By Lemma 10.10, there exist (dependent on
u) neighbourhoods X (u) ∈ top(]0,∞[×H) of (µ0, g0) and Y(u) of u such
that

(1) #
(
Y(u) ∩R(µ, g)

)
= 1 for (µ, g) ∈ X (u),

(2) the function X (u)  (µ, g) �→ uµg ∈ Y(u) is of class C1, where
{uµg} := Y(u) ∩R(µ, g).

Let us choose ε > 0. Since the set R(µ0, g0) is finite, we may assume that
ε is so small that the balls {B(u, ε), u ∈ R(µ0, g0)} are pairwise disjoint
and B(u, ε) ⊂ Y(u) ( u ∈ R(µ0, g0)). By continuity of the function in (2),
we infer that there exists a neighbourhood X1(u) ⊂ X (u) of (µ0, g0) in
]0,∞[×H such that uµg ∈ B(u, ε), for (µ, g) ∈ X1(u). Thus putting X1 :=⋂{X1(u), u ∈ R(µ0, g0)}, we infer that if (µ, g) ∈ X1, then the function

R(µ0, g0)  u �→ uµg ∈ Y(u) ∩R(µ, g)

is an injection and, as a consequence,

#R(µ0, g0) � #R(µ, g).

Analogously to the proof of Theorem 2.10 we show that there exists a neigh-
bourhood X ∈ top(]0,∞[×H) of (µ0, g0) such that

#R(µ0, g0) = #R(µ, g) for (µ, g) ∈ X . (10.14)

Ad. (ii). Let us remark that from the previous considerations, it follows
that for any (µ, g) ∈ X

R(µ, g) = {uµg, u ∈ R(µ0, g0)} ⊂ R(µ0, g0) +K(0, ε) (10.15)
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and
R(µ0, g0) ⊂ R(µ, g) +K(0, ε). (10.16)

The inclusions (10.15),(10.16) mean that the Hausdorff distance between
R(µ, g) and R(µ0, g0) is smaller than ε for (µ, g) ∈ X , which end the proof
of Theorem. �

Note that Theorem 10.11 states that the function

O  (µ, g) �→ R(µ, g) ⊂ H

is continuous if we consider the Hausdorff metric over H. In particular, the
function

O  (µ, g) �→ #R(µ, g) ∈ Z
is constant on every connected component of O.

As far as the properties of the set O are concerned we have the following
theorem.

Theorem 10.12 (see Theorem 3.6 in [12]). — Assume (10.4)-(10.5). Then
the set O defined by (10.13) is open and dense in ]0,∞[×H.

Proof. — We begin with the openess of O. Let us fix (µ0, g0) ∈ O.
Directly from the definition of O, it follows that duEµ0

∈ EpiH for any
u ∈ R(µ0, g0). Then, by (10.8), duEµ0

∈ AutH.

Let us fix u ∈ R(µ0, g0). It is well known that the subspace AutH is
open in the space EndH. Therefore

there exists a neighbourhood W(u) ∈ top(EndH)

of duEµ0 such that W(u) ⊂ AutH. (10.17)

Since the mapping T is of class C1, the mapping

(]0,∞[×H)×H  ((µ, g), u) �→ duEµ ∈ EndH

is, in particular, continuous at ((µ0, g0), u). Hence

there exist a neighbourhood X1(u) ∈ top(]0,∞[×H)

of (µ0, g0) and a neighbourhood U(u) ∈ topH of u (10.18)

such that dwEµ ∈ W(u) for ((µ, g), w) ∈ X1(u)× U(u).

By Theorem 10.11

there exists a neighbourhood X2 ∈ top(]0,∞[×H) of (µ0, g0)

such that #R(µ, g) = #R(µ0, g0) <∞ for (µ, g) ∈ X2
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and, by the proof of this theorem, we know that

R(µ, g) = {uµg, u ∈ R(µ0, g0)}. (10.19)

By Lemma 10.10 (ii ), the functions

X2  (µ, g) �→ uµg ∈ Y(u), u ∈ R(µ0, g0)

are continuous. Thus

there exists a neighbourhood X3(u) ∈ top(]0,∞[×H) of (µ0, g0)

such that uµg ∈ U(u) for (µ, g) ∈ X3(u). (10.20)

Putting X := X2 ∩
⋂{X1(u) ∩ X3(u), u ∈ R(µ0, g0)}, we infer by (10.6),

(10.17), (10.18), (10.19) (10.20) that for (µ, g) ∈ X

E−1
µ ({g}) = R(µ, g) = {uµg, u ∈ R(µ0, g0)}

and duµgEµ ∈ W(u) ⊂ AutH

This means that X is the neighbourhood of (µ0, g0) ∈]0,∞[×H contained
in O.

We move to the proof of densiness. First, we establish that for a fixed
µ ∈]0,∞[

the set Oµ := {g ∈ H : g is a regular value

of the mapping Eµ} is dense in H. (10.21)

Indeed, by (10.7), Eµ is a Fredholm mapping. Thus, by the Smale theorem,
statement (10.21) holds. To prove densiness of the set O in ]0,∞[×H, it is
sufficient to show that

A ∩ O �= ∅ for any ∅ �= A ∈ top(]0,∞[×H).

We may assume that A =]a, b[×C for some a, b ∈ R such that 0 < a < b
and for some nonempty set C ∈ topH. Let us choose an arbitrary µ ∈]a, b[.
By (10.21), the intersection C ∩Oµ is nonempty. Let us choose g ∈ C ∩Oµ.
In particular, (µ, g) ∈]a, b[×C. Since g ∈ Oµ, g is a regular value of the
mapping Eµ. By the definition of the set O, this means that (µ, g) ∈ O. In
conclusion, (µ, g) ∈ O ∩ (]a, b[×C), which ends the proof. �

10.4. Some generalizations.

Let Ts : H → H, s ∈ N, be a sequence of C1-mappings. Consider the
sequence of equations

µu+ Ts(u) = gs, s ∈ N (10.22)
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in the Hilbert space H, where gs ∈ H and gs → g in H as s→∞. Let

R(s, µ, gs) := {u ∈ H : µu+ Ts(u) = gs}. (10.23)

In addition to assumptions (10.4)-(10.5) on the mapping T , we assume the
following conditions on Ts.

If us → u weakly in H, then Ts(us) → T (u) in H as s→∞ (10.24)

If ws → u in H, then the Fréchet differential (10.25)

dwsTs → dwT in EndH as s→∞

For each s ∈ N and for every u ∈ R(s, µ, gs): |u| � κ(µ, |gs|) (10.26)

for some continuous function κ :]0,∞[×[0,∞[→ [0,∞[

In the sequel, we will use the following version of the implicit function
theorem.

Theorem 10.13 (Th. 1.15 in [7]). — Consider a topological space X
and Banach spaces Y,Z. Let (x0, y0) ∈ X × Y . Assume that a mapping
F : X × Y → Z satisfies the following conditions

(i) F (x0, y0) = 0,

(ii) for all (x, y) ∈ X × Y there exists dII(x,y)F := dyF (x, ·) ∈ L(Y,Z),

(iii) dII(x0,y0)
F ∈ Iso(Y,Z),

(iv) for all y ∈ Y , the mapping F (·, y) : X → Z is continuous,

(v) the mapping dIIF : X×Y  (x, y) �→ dII(x,y)F ∈ L(Y,Z) is continuous

at (x0, y0).

Then there exist neighbourhoods X ∈ topX of x0 and Y ∈ topY of y0 such
that the relation η := {F = 0} ∩ (X × Y) is a continuous function from X
to Y.

Let us denote

Eµ(u) := µu+ T (u), u ∈ H
Eµ,s(u) := µu+ Ts(u), u ∈ H.
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Observe that

R(µ, g) = E−1
µ ({g}) and R(s, µ, gs) = E−1

µ,s({gs}).

Lemma 10.14 If u ∈ R(µ, g) and the Fréchet differential duEµ is epi-
morphism from H onto H, then there exists a neighbourhood Y ∈ topH of
u such that

(i) #
(
Y ∩R(s, µ, gs)

)
= 1 for almost all s ∈ N,

(ii) lims→∞ |us − u| = 0, where {us} = Y ∩R(s, µ, gs).

Proof. — The assertion follows from the Implicit Function Theorem
10.13 applied to X = N := N ∪ {∞}, Y = Z = H,

F : N×H  (s, w) �→
{
Eµ,s(w)− gs for s <∞
Eµ(w)− g for s = ∞ (10.27)

with respect to (x0, y0) := (∞, u). �

The main result about convergence of the sequence of sets (R(s, µ, gs))s
as s→∞ is the following

Theorem 10.15 Assume (10.4)-(10.5) and (10.24)-(10.26). Let gs → g
in H as s→∞. If (µ, g) ∈ O, then

(i) for almost all s ∈ N: #R(s, µ, gs) = #R(µ, g) <∞;

(ii) lims→∞R(s, µ, gs) = R(µ, g) in the Hausdorff metric;

Proof. — Let (µ, g) ∈ O and let u ∈ R(µ, g). By the definition of the
set O, see(10.13), duEµ ∈ EpiH. From Lemma 10.14, it follows that there
exist s(u) ∈ N and a neighbourhood Y(u) ∈ topH – of u such that

(i) #
(
Y(u) ∩R(s, µ, gs)

)
= 1 for s > s(u) ,

(ii) lims→∞ |us − u| = 0, where {us} = Y(u) ∩R(s, µ, gs).

By Theorem 10.11, the set R(µ, g) is finite. Thus, if s > s∗ := max{s(u), u ∈
R(µ, g)}, then #

(
Y(u) ∩R(s, µ, gs)

)
= 1 for every u ∈ R(µ, g). Moreover,

there exists δ > 0 such that the balls {K(u, δ), u ∈ R(µ, g)} (in the space
H) are pairwise disjoint and K(u, δ) ⊂ Y(u) for every u ∈ R(µ, g).
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Since, by (ii) and finiteness of the set R(µ, g),

lim
s→∞

max{|us − u|, u ∈ R(µ, g)} = 0, (10.28)

there exists s(δ) ∈ N such that s(δ) > s∗ and for any s > s(δ)

max{|us − u|, u ∈ R(µ, g)} � δ.

Hence, if s > s(δ), then the function

R(µ, g)  u �→ us ∈ R(s, µ, gs)

is an injection. In particular

#R(µ, g) � R(s, µ, gs).

Arguing similarly to the proof of Theorem 2.10 we show that the set

S := {s ∈ N : s > s(δ) and #R(µ, g) < #R(s, µ, gs)}
is finite. Then for any s > s∗∗ := max{s(δ), supS}:

#R(s, µ, gs) = #R(µ, g). (10.29)

Let us now prove statement (ii). Let ε > 0. There exists s ∈ N such that
s > s∗∗ and

max{|us − u|, u ∈ R(µ, g)} � ε for s > s. (10.30)

Let s > s. Thus, by (10.29) and (10.30)

R(s, µ, gs) ⊂ R(µ, g) +K(ε) (10.31)

and
R(µ, g) ⊂ R(s, µ, gs) +K(ε). (10.32)

The above two inclusions mean that the Hausdorff distance between R(s, µ, gs)
and R(µ, g) is not greater than ε (for s > s), which completes the proof.
�

11. Appendix D: Inversion of the divdiv∗ operator
and some auxiliary results

In this Appendix, we will be concerned with the divdiv∗ – operator
considered in paper [8]. Properties of this operator will be of fundamen-
tal importance in the further consideration concerning construction of the
approximate solution. For the convenience of the reader, we recall them.
However, first we recall some elementary facts of the theory of distributions
and of the Friedrichs theory.
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11.1. Elements of the theory of distributions

Let Ω ⊂ Rn be an open subset of Rn. Let Y ∈ {R,Rn}. The symbol
D(Ω, Y ) stands for the space of all test functions φ : Ω → Y , i.e. C∞ -
mappings with compact support suppφ contained in Ω. Let us recall that a
linear mapping

Λ : D(Ω,R) → Y

is called a Y - valued distribution on Ω if it is continuous in the usual topol-
ogy on D(Ω,R). Then we write Λ ∈ D′(Ω, Y ). (Recall that the topology on
D(Ω,R) has the following property: A sequence (φk) ⊂ D(Ω,R) is conver-
gent to φ in D(Ω,R) iff

(i) there exists a compact subset K ⊂ Ω such that suppφk ⊂ K, k ∈ N.

(ii) (φk) converges to φ uniformly on K as k →∞.)

A locally integrable function u ∈ L1
loc(Ω, Y ) induces the regular distribution

which we denote by [u], i.e.

[u](ϕ) :=

∫

Ω

u(x)ϕ(x) dx, ϕ ∈ D(Ω,R).

For a multiindex α = (α1, . . . , αn) ∈ Nn, the α -derivative of Λ is defined
by

(DαΛ)(ϕ) := (−1)
|α|

Λ(Dαϕ), ϕ ∈ D(Ω,R),

where |α| := ∑n
i=1 αi.

Let Λ ∈ D′(Ω, Y ) and let φ ∈ D(Ω, Y ). If Y = Rn then Λ = (Λ1, . . . ,Λn)
for some R- valued distributions Λi ∈ D′(Ω,R) and φ = (φ1, . . . , φn) for
some φi ∈ D(Ω,R) (i = 1, . . . , n). We will use the following notation

(Λ|φ)L2 :=

n∑

i=1

Λi(φi). (11.1)

The following proposition contains basic properties of the operation defined
by (11.1).

Proposition 11.1. — We have the following properties.

(a) The operation

D′(Ω, Y )×D(Ω, Y )  (Λ, φ) �→ (Λ|φ)L2 ∈ R

is bilinear.
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(b) If u ∈ L1
loc(Ω, Y ) then

([u]|φ)L2 =

∫

Ω

u(x) · φ(x) dx,

here, dot ”·” denotes the scalar product in Rn.

(c) For each α ∈ Nn

(DαΛ|φ)L2 = (−1)
|α|

(Λ|Dαφ)L2

(d) If V ∈ D′(Ω,Rn) then

(Λ|∇ϕ)L2 = −(divΛ)(ϕ), ϕ ∈ D(Ω,R),

where divΛ :=
∑n

i=1
∂
∂xi

Λi.

(e) If V ∈ D′(Ω,R) and φ ∈ D(Ω,Rn) then

(∇V |φ)L2(Ω) = −V (divφ).

Proofs of these facts follow immediately from definitions.

11.2. Elements of the Friedrichs theory

Let
(
X, (·|·)

)
X

(
Z, (·|·)

)
Z

be a real Hilbert spaces and let A : X ⊃
D(A) → Z be a linear operator. Assume that A is densely defined, i.e. the
closure D(A) = X. Let us recall the notion of the adjoint operator. (Note
that we do not assume that A is bounded). Let

D(A∗) := {z ∈ Z : the functional D(A)  x �→ (Ax|z) is continuous}.

(Note that D(A∗) = Z if A is bounded.) Let z ∈ D(A∗). By the Riesz
theorem, there exists the unique A∗z ∈ X such that

(Ax|z) = (x|A∗z), x ∈ D(A), .

Definition 11.2. — The operator

A∗ : D(A∗)  z �→ A∗z ∈ X

is called the adjoint operator of A.

Assume that X = Z. We omit the index X at the symbol of the scalar
product of X, i.e. (·|·)X = (·|·).
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Definition 11.3. — We say that operator A is

• symmetric if A ⊂ A∗, i.e. D(A) ⊂ D(A∗) and (Ax|y) = (x|Ay) for
every x, y ∈ D(A);

• selfadjoint if A = A∗;

• strictly positive if it is symmetric and there exists a positive real
number µ such that

(Ax|x) � µ‖x‖2. (11.2)

The biggest of such numbers µ is called the infimum of A and is
denoted by inf A.

It is easy to see that

inf A = inf{(Ax|x), x ∈ D(A), ‖x‖ = 1}. (11.3)

We recall the notion of the Friedrichs space. These results are based on
Section VI in [9].

Theorem 11.4. — Assume that A : D(A) → X is strictly positive. Then

(a) there exists the unique Hilbert space
(
XA, (·|·)A

)
such that

(i) D(A) ⊂ XA ⊂ X;

(ii) D(A) is dense in XA and the inclusion j : XA ↪→ X is contin-
uous;

(iii) for every x ∈ D(A): |x|2A = (Ax|x), where | · |2A = (·|·)A.

(b) The norm of the inclusion j : XA ↪→ X is equal to (inf A)
− 1

2 and

(Ax|y) = (x|y)A, x ∈ D(A), y ∈ XA.

The pair
(
XA, (·|·)A

)
is called the Friedrichs space of the operator A.

Now we recall the Friedrichs extension of the strictly positive operator
A to the selfadjoint operator Ã. Let us consider the inclusion

j : XA ↪→ X

and its adjoint
j∗ : X → XA.

Since A is strictly positive, the operator j∗ is injective. LetD(Ã) := j∗(X) ⊂
XA and let

Ã := (j∗)−1
: D(Ã) → X.

Operator Ã is called the Friedrichs extension of A.
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Theorem 11.5 (Friedrichs). — Operator Ã :
(
D(Ã), | · |

)
→ X is self-

adjoint strictly positive and inf Ã = inf A. Moreover

(Ãx|y) = (x|y)A, x ∈ D(Ã), y ∈ XA.

11.3. The Friedrichs extension of the Laplace operator

Let X = L2(Ω, Y ), where Ω ⊂ Rn is a bounded domain, Y ∈ {R,Rn}
and let

A0 : L2(Ω, Y ) ⊃ D(Ω, Y )  φ �→ −∆φ ∈ L2(Ω, Y ).

Operator A0 is strictly positive, because

(A0φ|φ)L2 = (∇φ|∇φ)L2 = ‖φ‖2H1
0
, φ ∈ D(Ω, Y ).

From Theorem 11.4, there follows that the Sobolev space
(
H1

0 (Ω, Y ), ((·|·))
)

is the Friedrichs space of A0. Theorem 11.5 yields that

D(A) = {u ∈ H1
0 (Ω, Y ) : there exists ∆u in the weak sense

and ∆u ∈ L2(Ω, Y )}

is the domain of the Friedrichs extension A of A0. Moreover

Au = −∆u, u ∈ D(A). (11.4)

For arbitrary f ∈ L2(Ω, Y ), the function u := A−1(f) is called the general-
ized solution of the boundary value problem

{
−∆u = f
u|∂Ω = 0.

11.4. The divdiv∗ operator

Assume that Ω ⊂ Rn is an open and bounded subset of Rn. Let us
consider the divergence operator

div : H1
0 → L2(Ω),

i.e. divu :=
∑n

i=1
∂ui
∂xi

for u = (u1, . . . , un) ∈ H1
0 . It is linear and continuous

(see Theorem 11.12). Let

div∗ : L2(Ω) → H1
0

be its adjoint. Thus

(divu|p)L2(Ω) = ((u|div∗p)), u ∈ H1
0 , p ∈ L2(Ω).
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Let R denote the canonical Riesz isomorphism in the space
(
H1

0 , ((·|·))
)
, i.e.

R : H1
0  u �→ ((u|·)) ∈ (H1

0 )
′
.

Let A denote the Friedrichs extension of the Laplace operator in the space
L2(Ω,Rn).

For p ∈ L2(Ω) the linear functional

D  φ �→ (∇[p]|φ)L2

is H1
0 - continuous. Its extension to H1

0 is denoted by (∇[p]|·)L2 . The oper-
ator

N : L2(Ω)  p �→ (∇[p]|·)L2 ∈ (H1
0 )
′

is called the Nečas operator.

We investigate some properties of the div∗ operator.

Proposition 11.6. — We have

(a) R−1 ◦N = −div∗

(b) If p ∈ H1(Ω), then −div∗p = A−1(∇p).

Moreover, if p ∈ L2(Ω) and div∗p ∈ D(A), then p ∈ H1(Ω).

Proof. — Ad.(a). Let p ∈ L2(Ω) and let u := (R−1 ◦N)(p). For every
φ ∈ D, we have

((u|φ)) = (((R−1 ◦N)(p)|φ)) = N(p)(φ) = (∇[p]|·)L2(φ) = (∇[p]|φ)L2

= −[p](divφ) = −(p|divφ)L2 = ((div∗p|φ))

Since D is dense in H1
0 , we have u = −div∗p.

Ad.(b). Assume that p ∈ H1(Ω). It is sufficient to show that (R−1 ◦
N)(p) = A−1(∇p). Let u := A−1(∇p). Then, for every φ ∈ D we have

R(u)(φ) = ((u|φ)) = (Au|φ)L2 = (∇p|φ)L2 = N(p)(φ)

which ends the proof of assertion (b).

To prove the last implication let u := −div∗p = R−1(N(p)). Then we
have

(∇[p]|·)L2 = N(p) = R(u) = (−∆[u]|·)L2 .
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Since −∆u = Au ∈ L2, −∆[u] = −[∆u]. Thus

∇[p] = −∆[u] = −[∆u],

which means that there exists ∇p in the weak sense and ∇p ∈ L2. Thus
p ∈ H1(Ω). �

Proposition 11.6 (b) states that computation of the values of div∗p for
p ∈ H1(Ω) can be reduced to the homogeneous Dirichlet boundary value
problem for the Poisson equation

{
∆u = ∇p
u|∂Ω = 0.

Let S be the family of all connected components of Ω. (It is at most
countable).

Remark 11.7. — We have

(a) ker div∗ = {p ∈ L2(Ω) : pS = const for every S ∈ S},

(b) (ker div∗)⊥ = {q ∈ L2(Ω) :
∫
S
qdx = 0 for every S ∈ S}

(the orthogonal complement in L2(Ω)).

Proof. — Ad.(a). Since R−1 ◦ N = −div∗, by the lemma of du Bois-
Reymond we have

p ∈ ker div∗ ⇔ div∗p = 0 ⇔ Np = const ⇔ ∇[p] = 0

⇔ pS = const for every S ∈ S.

Ad.(b). “⊃”. Let q ∈ L2(Ω) be an element such that
∫
S
qdx = 0 for every

S ∈ S}. Let p ∈ ker div∗. Then pS = const for every S ∈ S. Thus

(q|p)L2 =
∑

S∈S

∫

S

pSq dx =
∑

S∈S
pS

∫

S

q dx = 0.

“⊂”. Let q ∈ (ker div∗)⊥. Let us fix a component S0 ∈ S. By assertion (a),
χS0 ∈ ker div∗. Hence

0 =

∫

Ω

χS0q dx =

∫

S0

q dx.

�
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Some notations. Let V := D(Ω,Rn) ∩ {div = 0} denote the space
of all divergence-free test vector fields on Ω, V denote its closure in the
Hilbert space

(
H1

0 , ((·|·))
)

and V ⊥ - its ((·|·)) - orthogonal complement in
H1

0 . The symbols PV : H1
0 → V , PV ⊥ : H1

0 → V ⊥ stand for the ((·|·)) -
orthogonal projections onto V and V ⊥, respectively. Moreover, {∫ = 0} :=
{q ∈ L2(Ω) :

∫
Ω
q(x) dx = 0} is a closed hyperplane in L2(Ω). In particular,

the pair ({∫ = 0}, (·|·)L2(Ω)) is a Hilbert space.

Remark 11.8. — Assume that the image imdiv of the divergence operator
is closed, i.e. imdiv ∈ cotopL2(Ω).

(a) If Ω is connected then imdiv = {∫ = 0}.
(b) imdiv∗ = V ⊥ ⇔ V = ker div.

Proof. — Ad.(a). “⊂”. Let φ ∈ D. Then
∫

Ω

divφdx = [1](divφ) = (−∇[1]|φ)L2 = 0.

Let u ∈ H1
0 . There exists a sequence (φk) ∈ DN such that

‖φk − u‖H1
0
→ 0 as k →∞.

Then
‖divφk − divu‖L2(Ω) → 0 as k →∞.

Hence

0 =

∫

Ω

divφk dx→
∫

Ω

divu dx as k →∞.

“⊃”. Let X be the orthogonal complement of the image imdiv in the space
{∫ = 0}. Let p ∈ X, ϕ ∈ D(Ω) and i ∈ {1, . . . , n}. Then

0 = (p|div(0, . . . , ϕ, . . . , 0))L2 =
(
p| ∂ϕ∂xi

)
L2

= [p]
(
∂ϕ
∂xi

)
=

(
− ∂
∂xi

[p]
)
(ϕ)

Thus ∇[p] = 0. Hence p = const by the lemma of du Bois-Reymond. Since
0 =

∫
Ω
p dx = p |Ω|, where |Ω| stands for the n - dimensional measure in

Rn, thus p = 0 and X = {0}. Hence imdiv = {∫ = 0}.

Ad.(b). “⇐”. Since imdiv∗ ∈ cotopH1
0 ,

imdiv∗ = imdiv∗ = (ker div∗∗)⊥ = (ker div)
⊥
.

“⇒”. It is clear that V ⊂ ker div. In order to obtain the inverse inclusion, let
u ∈ ker div∩V ⊥. Since u ∈ V ⊥, there exists p ∈ L2(Ω) such that u = div∗p.
Then

((u|u)) = ((u|div∗p)) = (divu|p)L2(Ω) = 0.

Hence u = 0. �
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Now we will concentrate on some properties of the div and div∗ opera-
tors.

Lemma 11.9. — If p ∈ L2(Ω), then ∆[p] = ∆[divdiv∗p].

In other words, function p− divdiv∗p induces a harmonic distribution.

Proof. — Let u := div∗p. By Proposition 11.6(a),

R(u) = −N(p) = −(∇[p]|·)L2 .

On the other hand

R(u) = ((u|·)) = (−∆[u]|·)L2 .

Hence ∆[u] = ∇[p]. Since u ∈ H1
0 ,

∆[p] = div∆[u] = ∆[divu] = ∆[divdiv∗p].

�

Lemma 11.10. — Let q be a weakly differentiable element of the space
L1
loc(Ω). Moreover, assume that ∇q ∈ D(A) (= {u ∈ H1

0 : ∆u ∈ L2}).
Then

p := −∆q ∈ H1(Ω) and A−1(∇p) = ∇q. (11.5)

In particular,
div∗div∇q = ∇q. (11.6)

Proof. — Since ∇q ∈ D(A) ⊂ H1
0 , then p = −div(∇q) ∈ L2(Ω).

On the other hand, denote here by A the Friedrichs extension of the
Laplace operator in the space L2(Ω,R). Since ∇q ∈ D(A),

e∗i (∇q) ∈ D(A) and A
(
e∗i (∇q)

)
= (e∗i ◦A)(∇q),

i.e. ∂q
∂xi

∈ D(A) and A
(
∂q
∂xi

)
=

(
A(∇q)

)
i

for each i ∈ {1, . . . , }. Here
e∗1, . . . , e

∗
n is the dual base of the canonical base e1, . . . , en in Rn. By stan-

dard calculation we obtain

∂[p]

∂xi
= ∂

∂xi
[−∆q] = − ∂

∂xi
∆[q] = −∆ ∂

∂xi
[q] = −∆

[
∂q
∂xi

]
=

[
A

(
∂q
∂xi

)]
.

This means that there exists ∂p
∂xi

in the weak sense and ∂p
∂xi

∈ L2(Ω). Hence

p ∈ H1(Ω) and A(∇q) = ∇p. Moreover, Prop. 11.6 (b) application yields

div∗div(∇q) = div∗(∆q) = −div∗p = A−1(∇p) = ∇q.
�
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Theorem 11.11. — The following statements hold.

(a) The operator divdiv∗ = id on the subspace ∆H2
0 and

divdiv∗{∆ = 0} ⊂
(
{∆ = 0} ∩ {∫ = 0}

)
.

(b) Gradient ∇ : H2
0 (Ω) → ∇H2

0 (Ω) ⊂ H1
0 is an isometry in the norm

‖∆(·)‖L2(Ω) in its domain and the norm ‖ · ‖H1
0

in the subspace ∇H2
0 (Ω).

(c) Divergence div : ∇H2
0 (Ω) → ∆H2

0 (Ω) is an isometry; its inverse is
equal to div∗|∆H2

0 (Ω).

Proof. — Ad.(a). Let q ∈ D(Ω). By Lemma 11.10, div∗(∆q) = ∇q.
Applying the operator div to both sides of this equality, we obtain

divdiv∗∆q = ∆q.

Since the endomorphisms divdiv∗ and id of the space L2(Ω) are equal on
the subspace ∆D(Ω) dense in ∆H2

0 (Ω), the first part of statement (a) holds.

In order to prove the inclusion, choose h ∈ {∆ = 0}. The proof of (a) will
be completed as we show that divdiv∗h is harmonic function. Let ϕ ∈ D(Ω).
Then by using the fact that the operator divdiv∗ is self-adjoint and by the
first part of statement (a), we have

(
∆[divdiv∗h]

)
(ϕ) = [divdiv∗h](∆ϕ) = (divdiv∗h|∆ϕ)L2

= (h|divdiv∗∆ϕ)L2 = (h|∆ϕ)L2 = (∆[h])(ϕ) = 0.

Ad.(b). Let ϕ ∈ D(Ω). The integration by parts formula gives

‖∇ϕ‖2H1
0

=
(
∇(∇ϕ)|∇(∇ϕ)

)
L2 = −

(
∇ϕ|∆(∇ϕ)

)
L2 = −

(
∇ϕ|∇(∆ϕ)

)
L2

= (∆ϕ|∆ϕ)L2(Ω) = ‖∆ϕ‖2L2(Ω).

Thus gradient ∇ : H2
0 (Ω) → ∇H2

0 (Ω) is an isometry as a continuous exten-
sion of an isometry on the subspace D(Ω) dense in

(
H2

0 (Ω), ‖∆(·)‖L2(Ω)

)
.

Ad.(c). Let us denote by g and L the following homeomorphisms

g : H2
0 (Ω)  ϕ �→ ∇ϕ ∈ ∇H2

0 (Ω) (⊂ H1
0 )

L : H2
0 (Ω)  ϕ �→ ∆ϕ ∈ ∆H2

0 (Ω) (⊂ L2(Ω)).

We have
div = L ◦ g−1 : ∇H2

0 (Ω) → ∆H2
0 (Ω).

According to Lemma 11.10, div∗(∆q) = ∇q for every q ∈ D(Ω). Thus the

operators div∗ and
(
div∇H2

0 (Ω)

)−1
are equal on the subspace ∆D(Ω) dense

in ∆H2
0 (Ω). �
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Theorem 11.12. — The divergence operator div : H1
0 → L2(Ω) is of

norm 1, i.e. |div|L(H1
0 ,L

2(Ω)) = 1.

Proof. — Let u = (u1, . . . , un) ∈ H1
0 . We have

‖divu‖2L2(Ω) =

∥∥∥∥
n∑

i=1

∂ui
∂xi

∥∥∥∥
2

L2(Ω)

=

( n∑

i=1

∂ui
∂xi

|
n∑

j=1

∂uj
∂xj

)

L2(Ω)

=

n∑

i,j=1

(
∂ui
∂xi

|∂uj
∂xj

)

L2(Ω)

=

n∑

i,j=1

(
∂ui
∂xj

|∂uj
∂xi

)

L2(Ω)

�
n∑

i,j=1

∥∥∥∥
∂ui
∂xj

∥∥∥∥
L2(Ω)

·
∥∥∥∥
∂uj
∂xi

∥∥∥∥
L2(Ω)

�
( n∑

i,j=1

∥∥∥∥
∂ui
∂xj

∥∥∥∥
2

L2(Ω)

) 1
2

·
( n∑

i,j=1

∥∥∥∥
∂uj
∂xi

∥∥∥∥
2

L2(Ω)

) 1
2

= ‖u‖2H1
0
.

Hence |div|L(H1
0 ,L

2(Ω)) � 1. Now we will prove that |div|L(H1
0 ,L

2(Ω)) � 1.

Indeed, by Theorem 11.11

div :
(
∇H2

0 (Ω), ‖ · ‖H1
0

)
→

(
∆H2

0 (Ω), ‖ · ‖L2(Ω)

)

is isometrical. Thus ‖div(∇ψ)‖L2(Ω) = ‖∇ψ‖H1
0

for every ψ ∈ H2
0 (Ω). Let

us choose ψ0 ∈ H2
0 (Ω) such that ‖∆ψ0‖L2(Ω) = 1. Then

‖∇ψ0‖H1
0

= ‖div(∇ψ0)‖L2(Ω) = ‖∆ψ0‖L2(Ω) = 1

and |div|L(H1
0 ,L

2(Ω)) � 1. �

Corollary 11.13. —

|divdiv∗|L(L2(Ω)) = 1.

Moreover 0 � divdiv∗ � idL2(Ω).

Proof. — Since |div∗|L(L2(Ω),H1
0 ) = |div|L(H1

0 ,L
2(Ω)) = 1,

|divdiv∗|L(L2(Ω)) � |div|L(H1
0 ,L

2(Ω)) · |div∗|L(L2(Ω),H1
0 ) = 1.

On the other hand divdiv∗ = id on ∆H2
0 (Ω) by Th. 11.11 (a). Thus

|divdiv∗|L(L2(Ω)) = 1 which ends the proof of the first part of the statement.
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Let p ∈ L2(Ω). Then

(divdiv∗p|p)L2(Ω) = ((div∗p|div∗p)) = ‖div∗p‖2H1
0
� 0.

On the other hand

(divdiv∗p|p)L2(Ω) = ‖div∗p‖2H1
0
� |div∗|2L(L2(Ω),H1

0 ) · ‖p‖
2
L2(Ω)

= ‖p‖2L2(Ω) = (p|p)L2(Ω).

Thus
0 � (divdiv∗p|p)L2(Ω) �

(
idL2(Ω)(p)|p

)
L2 .

�

Now, we will be concerned with the invariance of the space H1(Ω) with
respect to the divdiv∗ - operator.

Proposition 11.14. — Assume that D(A) ⊂ H2(Ω,Rn). Then

(a) divdiv∗
(
H1(Ω)

)
⊂ H1(Ω) and divdiv∗|H1(Ω) ∈ EndH1(Ω).

(b) If, in addition, Ω is connected and H⊥ = ∇H1(Ω) then

divdiv∗
(
H1

0 (Ω) ∩ {∫ = 0}
)
∈ cotopH1(Ω).

Proof. — Ad.(a). It is clear that the operator div : H2 → H1(Ω) is
continuous, D(A) = H1

0 ∩ H2 is a closed subset of H2 and the injection
D(A) ↪→ H2 is continuous. Finally, by Proposition 11.6 (b), div∗

(
H1(Ω)

)
⊂

D(A) and ‖div∗p‖D(A) := ‖Adiv∗p‖L2 = ‖∇p‖L2 for every p ∈ H1(Ω). Since

divdiv∗|H1(Ω) is a composition of the following three operators

H1(Ω)div∗−→D(A) ↪→ H2div−→H1(Ω),

the first part of the statement holds.

Ad.(b). By Lemma 11.9, the function h := divdiv∗ϕ−ϕ is harmonic for
every ϕ ∈ D(Ω). Thus, integrating by parts, we obtain

(∇divdiv∗ϕ|∇ϕ)L2 = (∇h|∇ϕ)L2 + (∇ϕ|∇ϕ)L2

= −(∆h|ϕ)L2 + ‖∇ϕ‖2L2 = ‖∇ϕ‖2L2 .

Hence

‖∇ϕ‖2L2 = |(∇divdiv∗ϕ|∇ϕ)L2 | � ‖∇divdiv∗ϕ‖L2 · ‖∇ϕ‖L2
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and
‖∇divdiv∗ϕ‖L2 � ‖∇ϕ‖L2 .

Since the Poincaré inner product (·|·)P ((p|q)P :=
∫
Ω
p dx·

∫
Ω
q dx+(∇p|∇q)L2)

is admissible in H1(Ω) and D(Ω) ∩ {∫ = 0} is dense in H1
0 (Ω) ∩ {∫ = 0},

the last inequality yields that the operator

divdiv∗ : H1
0 (Ω) ∩ {∫ = 0} → H1(Ω)

is of positive infimum in the Poincaré norm. Thus its image is a closed
subspace of H1(Ω). �

Assume that

imdiv ∈ cotopL2(Ω) and V = ker div. (11.7)

Then by Remark 11.7 (b) (ker div∗)⊥ = {∫ = 0}. Moreover, imdiv =
div(V ⊥) = {∫ = 0} and imdiv∗ = div∗({∫ = 0}) = V ⊥ by Remark 11.8.
Since a linear operator is a monomorphism on the orthogonal complement
of its kernel, we infer that div|V ⊥ and div∗|{∫=0} are monomorphisms. Since
their images form closed subspaces, div|V ⊥ and div∗|{∫=0} are isomorphisms
on their images, by the open mapping theorem. Thus

div|V ⊥ : V ⊥
∼→{∫ = 0}

div∗|{∫=0} : {∫ = 0} ∼→V ⊥.

Hence
divdiv∗ : {∫ = 0} ∼→{∫ = 0}. (11.8)

The projections PV ⊥ and PV can be represented by using the autho-
morphism (divdiv∗)−1

. Indeed, let u ∈ H1
0 . Since PV ⊥u ∈ V ⊥, there exists

q ∈ {∫ = 0} such that PV ⊥u = div∗q. Applying the divergence operator, we
obtain

divPV ⊥u = divdiv∗q. (11.9)

Since V  PV u = u− PV ⊥u, divu = divPV ⊥u. Hence, by (11.8),

(divdiv∗)−1
divu = q.

Thus
PV ⊥u = div∗(divdiv∗)−1

divu. (11.10)

Because of the decomposition u = PV u+ PV ⊥u, we obtain

PV u = u− div∗(divdiv∗)−1
divu. (11.11)
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11.5. Inversion of the divdiv∗ operator

Now we will be concerned with inverting the authomorphism divdiv∗ in
the space {∫ = 0}. We will use the von Neumann lemma so let us recall it
as well as some other auxiliary results.

Lemma 11.15 (von Neumann). — Assume that (X, ‖ · ‖) is a Banach
space, A : X → X is a linear bounded operator of norm |A| < 1 in the space
of all endomorphisms of X. Then the operator (id−A) is invertible and its
inversion is given by the von Neumann series

(id−A)
−1

=

∞∑

j=0

Aj

Moreover, for each s ∈ N
∣∣∣∣(id−A)

−1 −
s∑

j=0

Aj
∣∣∣∣
EndX

� |A|s+1

1− |A| .

(as usual id stands for the identity on X).

We will use the following auxiliary lemma.

Lemma 11.16. — Let
(
X, (·|·)

)
be a Hilbert space. Let A : X → X be

a bounded nonnegative selfadjoint linear operator such that |A| = 1 and
inf A � 1. Then id−A is selfadjoint and its norm is given by the formula

|id−A| = 1− inf A.

Proof. — Since A = A∗, thus (id−A)
∗

= id−A. Then

|id−A| = sup{|((id−A)x|x)|, ‖x‖ = 1}
= sup{|‖x‖2 − (Ax|x)|, ‖x‖ = 1}
= sup{1− (Ax|x), ‖x‖ = 1}
= 1− inf{(Ax|x), ‖x‖ = 1} = 1− inf A.

�

Theorem 11.17. — Assume that Ω is connected and conditions (11.7)
are satisfied. Then
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(a) For every s ∈ N we have

∣∣∣∣(divdiv∗)−1 −
s∑

j=0

(id− divdiv∗)j
∣∣∣∣
End{∫=0}

� 1

θ
(1− θ)

s+1

where the constant θ = θ(Ω) ∈]0, 1[ depends on Ω only.

(b) For every s ∈ N and for every u ∈ H1
0 we have

∥∥∥∥PV ⊥u− div∗
s∑

j=0

(id− divdiv∗)jdivu

∥∥∥∥
H1

0

�
‖divu‖L2(Ω)

θ
(1− θ)

s+1
.

Proof. — Ad.(a). By (11.8)

divdiv∗ : {∫ = 0} ∼→{∫ = 0},

i.e. divdiv∗ ∈ Aut({∫ = 0}). Moreover divdiv∗ is selfadjoint, 0 � divdiv∗ �
idL2(Ω) and |divdiv∗|End{∫=0} = 1. Thus

|id− divdiv∗|End{∫=0} = 1− inf(divdiv∗),

by Lemma 11.16 . We will prove that θ := inf(divdiv∗) ∈]0, 1[.

Indeed, since divdiv∗ ∈ Aut({∫ = 0}),

inf(divdiv∗) =
1

|(divdiv∗)−1|End{∫=0}
> 0.

We will show that θ < 1. Indeed, let

p(x) := x1 −
1

|Ω|

∫

Ω

y1 dy.

Its clear that p ∈ H1(Ω) ∩ {∫ = 0} and ∇p = e1, where ei, i = 1, . . . n form
the canonical base of Rn. Let u := div∗p. We will show that u2 = . . . =
un = 0. Indeed, for every ϕ ∈ D(Ω) and for each i ∈ {2, . . . , n} we have

((ϕ|ui)) = ((ϕ · ei|u)) = ((ϕ · ei|div∗p)) = (div(ϕ · ei)|p)L2(Ω)

=
( ∂ϕ
∂xi

|p
)
L2(Ω)

= −
(
ϕ| ∂p
∂xi

)
L2(Ω)

= 0.

Hence ui = 0. Thus ‖divu‖2L2(Ω) = ‖∂u1

∂x1
‖2
L2(Ω)

. On the other hand

‖u‖2H1
0

= ‖∇u1‖2L2 =

n∑

i=1

‖∂u1

∂xi
‖
2

L2

� ‖∂u1

∂x1
‖
2

L2

+ ‖∂u1

∂x2
‖
2

L2

.
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Suppose that ‖∂u1

∂x2
‖
L2

= 0. Then must be ‖u1‖L2(Ω) = 0. However, then

u = 0 and p = 0 which is not true, because ‖∇p‖L2 > 0. Thus ‖∂u1

∂x2
‖
L2

> 0
and

‖u‖2H1
0
> ‖divu‖2L2(Ω).

The von Neumann Lemma application with A := id− divdiv∗ yields

(divdiv∗)−1
=

∞∑

j=0

(id− divdiv∗)j

which completes proof of assertion (a).

Ad.(b). Let u ∈ H1
0 . Using representation (11.10), we infer that

∥∥∥∥PV ⊥u− div∗
s∑

j=0

(id− divdiv∗)jdivu

∥∥∥∥
H1

0

=

∥∥∥∥div∗(divdiv∗)−1
divu− div∗

s∑

j=0

(id− divdiv∗)jdivu

∥∥∥∥
H1

0

�
∥∥∥∥(divdiv∗)−1

divu−
s∑

j=0

(id− divdiv∗)jdivu

∥∥∥∥
L2(Ω)

�
∣∣∣∣(divdiv∗)−1 −

s∑

j=0

(id− divdiv∗)j
∣∣∣∣
End{∫=0}

· ‖divu‖L2(Ω)

�
‖divu‖L2(Ω)

θ
(1− θ)

s+1
.

�
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