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Bourgain’s discretization theorem

Ohad Giladi(1), Assaf Naor(2)

and Gideon Schechtman(3)

ABSTRACT. — Bourgain’s discretization theorem asserts that there exists
a universal constant C ∈ (0,∞) with the following property. Let X,Y

be Banach spaces with dimX = n. Fix D ∈ (1,∞) and set δ = e−n
Cn

.
Assume that N is a δ-net in the unit ball of X and that N admits a bi-
Lipschitz embedding into Y with distortion at most D. Then the entire
space X admits a bi-Lipschitz embedding into Y with distortion at most
CD. This mostly expository article is devoted to a detailed presentation
of a proof of Bourgain’s theorem.
We also obtain an improvement of Bourgain’s theorem in the important
case when Y = Lp for some p ∈ [1,∞): in this case it suffices to take
δ = C−1n−5/2 for the same conclusion to hold true. The case p = 1
of this improved discretization result has the following consequence. For
arbitrarily large n ∈ N there exists a family Y of n-point subsets of
{1, . . . , n}2 ⊆ R2 such that if we write |Y | = N then any L1 embedding
of Y , equipped with the Earthmover metric (a.k.a. transportation cost
metric or minimumum weight matching metric) incurs distortion at least

a constant multiple of
√

log logN ; the previously best known lower bound

for this problem was a constant multiple of
√

log log logN .
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(1) Institut de Mathématiques de Jussieu, Université Paris VI
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Bourgain’s discretization theorem

RÉSUMÉ. — Le théorème de discrétisation de Bourgain affirme qu’il ex-
iste une constante universelle C ∈ (0,∞) avec la propriété suivante. Soient
X,Y des espaces de Banach avec dimX = n. Considérons D ∈ (1,∞)

fixé et posons δ = e−n
Cn

. Supposons que N est un δ-réseau dans la
boule unité X et que N admet un plongement bi-Lipschitz dans Y de
distorsion au plus D. Alors l’espace tout entier X admet un plongement
bi-Lipschitz dans Y de distorsion au plus CD. Cet article, d’exposition
pour l’essentiel, est consacré à une présentation détaillée d’une preuve du
théorème de Bourgain.
Nous obtenons aussi une amélioration du théorème de Bourgain dans le
cas important où Y = Lp pour un p ∈ [1,∞): dans ce cas il suffit de pren-
dre δ = C−1n−5/2 pour que la même conclusion soit valable. Le cas p = 1
de ce résultat de discrétisation amélioré a la conséquence suivante. Pour
n ∈ N arbitrairement grand, il existe une famille Y de sous-ensembles à n
points de {1, . . . , n}2 ⊆ R2 telle que si nous écrivons |Y | = N alors tout
plongement dans L1 de Y , muni de la métrique du coût du transport (ou
métrique de l’appariement de poids minimal), a nécessairement une dis-

torsion au moins égale à une constante fois
√

log logN . Jusqu’à présent,
la meilleure minoration connue pour ce problème était par un multiple de√

log log logN .

1. Introduction

If (X, dX) and (Y, dY ) are metric spaces then the (bi-Lipschitz) dis-
tortion of X in Y , denoted cY (X), is the infimum over those D ∈ [1,∞]
such that there exists f : X → Y and s ∈ (0,∞) satisfying sdX(x, y) �
dY (f(x), f(y)) � DsdX(x, y) for all x, y ∈ X. Assume now that X,Y are
Banach spaces, with unit balls BX , BY , respectively. Assume furthermore
that X is finite dimensional. It then follows from general principles that
for every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that for every δ-net Nδ in
BX (recall that a δ-net is a maximal δ-separated subset of BX) we have
cY (Nδ) � (1 − ε)cY (X). Indeed, set D = cY (X) and assume that for
all k ∈ N there is a 1/k-net N1/k of BX and fk : N1/k → Y satisfying
‖x− y‖X � ‖fk(x) − fk(y)‖Y � (1 − ε)D‖x− y‖X for all x, y ∈ N1/k. For
each x ∈ BX fix some zk(x) ∈ N1/k satisfying ‖x − zk(x)‖X � 1/k. Let
U be a free ultrafilter on N. Consider the ultrapower YU, i.e., the space of
equivalence classes of bounded Y -valued sequences modulo the equivalence
relation (xk)

∞
k=1 ∼ (yk)

∞
k=1 ⇐⇒ limk→U ‖xk − yk‖Y = 0, equipped with

the norm ‖(xk)∞k=1/ ∼ ‖YU = limk→U ‖xk‖Y . Define fU : BX → YU by fU(x) =
(fk(zk(x))∞k=1)/ ∼. Then ‖x−y‖X � ‖fU(x)−fU(y)‖YU � (1−ε)D‖x−y‖X for
all x, y ∈ X. By a (nontrivial) w∗-Gâteaux differentiability argument due to
Heinrich and Mankiewicz [14] it now follows that there exists a linear map-
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ping T1 : X → (YU)∗∗ satisfying ‖x‖X � ‖T1x‖(YU)∗∗ � (1− ε/2)D‖x‖X for
all x ∈ X. Since X, and hence also T1X, is finite dimensional, the Principle
of Local Reflexivity [19] says there exists a linear mapping T2 : T1X → YU
satisfying ‖y‖(YU)∗∗ � ‖T2y‖YU � (1+ε/5)‖y‖(YU)∗∗ for all y ∈ T1X. By gen-
eral properties of ultrapowers (see [13]) there exists a linear mapping T3 :
T2T1X → Y satisfying ‖y‖YU � ‖T3y‖Y � (1+ε/5)‖y‖YU for all y ∈ T2T1X.

By considering T3T2T1 : X → Y we have D = cY (X) � (1−ε/2)(1+ε/5)2D,
a contradiction.

The argument sketched above is due to Heinrich and Mankiewicz [14].
An earlier and different argument establishing the existence of δ is due to
important work of Ribe [22]. See the book [5] for a detailed exposition of
both arguments. These proofs do not give a concrete estimate on δ. The first
purpose of the present article, which is mainly expository, is to present in
detail a different approach due to Bourgain [7] which does yield an estimate
on δ. Before stating Bourgain’s theorem, it will be convenient to introduce
the following quantity.

Definition 1.1 (Discretization modulus). — For ε ∈ (0, 1) let δX↪→Y (ε)
be the supremum over those δ ∈ (0, 1) such that every δ-net Nδ in BX sat-
isfies cY (Nδ) � (1− ε)cY (X).

Theorem 1.2 (Bourgain’s discretization theorem). — There exists C ∈
(0,∞) such that for every two Banach spaces X,Y with dimX = n < ∞
and dimY =∞, and every ε ∈ (0, 1), we have

δX↪→Y (ε) � e−(n/ε)Cn . (1.1)

Theorem 1.2 was proved by Bourgain in [7] for some fixed ε0 ∈ (0, 1).
The above statement requires small technical modifications of Bourgain’s
argument, but these are minor and all the conceptual ideas presented in
the proof of Theorem 1.2 below are due to Bourgain. Readers might notice
that our presentation of the proof of Theorem 1.2 seems somewhat different
from [7], but this impression is superficial; the exposition below is merely a
restructuring of Bourgain’s argument.

We note that it is possible to refine the estimate (1.1) so as to depend
on the distortion cY (X). Specifically, we have the bound

δX↪→Y (ε) � e−(cY (X)/ε)Cn . (1.2)

The estimate (1.2) implies (1.1) since due to Dvoretzky’s theorem [12]
cY (�n2 ) = 1, and therefore cY (X) � √n by John’s theorem [16]. If we do
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not assume that dimY =∞ then we necessarily have dimY � n since oth-
erwise cY (X) = ∞, making (1.2) hold vacuously. Thus, by John’s theorem
once more, cY (X) � n, and again we see that (1.2) implies (1.1). The proof
below will establish (1.2), and not only the slightly weaker statement (1.1).
We remark that Bourgain’s discretization theorem is often quoted with the
conclusion that if δ is at most as large as the right hand side of (1.2) and Nδ

is a δ-net of BX then Y admits a linear embedding into Y whose distortion
is at most cY (Nδ)/(1 − ε). The Heinrich-Mankiewicz argument described
above shows that for finite dimensional spaces X, a bound on cY (X) imme-
diately implies the same bound when the bi-Lipschitz embedding is required
to be linear. For this reason we ignore the distinction between linear and
nonlinear bi-Lipschitz embeddings, noting also that for certain applications
(e.g., in computer science), one does not need to know that embeddings are
linear.

We do not know how close is the estimate (1.1) to being asymptotically
optimal, though we conjecture that it can be improved. The issue of finding
examples showing that δX↪→Y (ε) must be small has not been sufficiently
investigated in the literature. The known upper bounds on δX↪→Y (ε) are
very far from (1.1). For example, the metric space (�n1 ,

√
‖x− y‖1) embeds

isometrically into L2 (see [11]). It follows that any δ-net in B
n1
embeds

into L2 with distortion at most
√

2/δ. Contrasting this with cL2
(�n1 ) =

√
n

shows that δ
n1 ↪→L2
(ε) � 2/

(
(1− ε)2n

)
.

It turns out that a method that was introduced by Johnson, Maurey and
Schechtman [17] (for a different purpose) can be used to obtain improved
bounds on δX↪→Y (ε) for certain Banach spaces Y , including all Lp spaces,
p ∈ [1,∞); the second purpose of this article is to present this result. To
state our result recall that if (Ω, ν) is a measure space and (Z, ‖ · ‖X) is a
Banach space then for p ∈ [1,∞] the vector valued Lp space Lp(ν, Z) is the
space of all equivalence classes of measurable functions f : Ω→ Z such that
‖f‖pLp(ν,Z) =

∫
Ω
‖f‖pZdν <∞ (and ‖f‖L∞(ν,Z) = esssupω∈Ω‖f(ω)‖Y ).

Theorem 1.3. — There exists a universal constant κ ∈ (0,∞) with the
following property. Assume that δ, ε ∈ (0, 1) and D ∈ [1,∞) satisfy δ �
κε2/(n2D). Let X,Y be Banach spaces with dimX = n < ∞, and let Nδ

be a δ-net in BX . Assume that cY (Nδ) � D. Then there exists a separable
probability space (Ω, ν), a finite dimensional linear subspace Z ⊆ Y , and a
linear operator T : X → L∞(ν, Z) satisfying

∀x ∈ X,
1− ε

D
‖x‖X � ‖Tx‖L1(ν,Z) � ‖Tx‖L∞(ν,Z) � (1 + ε)‖x‖X .
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Theorem 1.3 is proved in Section 5; as we mentioned above, its proof
builds heavily on ideas from [17]. Because ν is a probability measure, for
all p ∈ [1,∞] and all h ∈ L∞(ν, Y ) we have ‖h‖L1(ν,Y ) � ‖h‖Lp(ν,Y ) �
‖h‖L∞(ν,Y ). Therefore, the following statement is a consequence of Theo-
rem 1.3.

δ � κε2

n2cY (Nδ)
=⇒ ∀p ∈ [1,∞), cY (Nδ) �

1− ε

1 + ε
cLp(ν,Y )(X). (1.3)

We explained above that if Y is infinite dimensional then cY (Nδ) �
√
n. It

therefore follows from (1.3) that if Lp(ν, Y ) admits an isometric embedding
into Y , as is the case when Y = Lp, then δX↪→Y (ε) � κε2/(n5/2). This is
recorded for future reference as the following corollary.

Corollary 1.4. — There exists a universal constant κ ∈ (0,∞) such
that for every p ∈ [1,∞) and ε ∈ (0, 1), for every n-dimensional Banach
space X we have

δX↪→Lp(ε) �
κε2

n5/2
. (1.4)

There is a direct application of the case p = 1 of Corollary 1.4 to the
minimum cost matching metric on R2. Given n ∈ N, consider the following
metric τ on the set of all n-point subsets of R2, known as the minimum cost
matching metric.

τ(A,B) = min

{∑

a∈A
‖a− f(a)‖2 : f : A→ B is a bijection

}
.

Corollary 1.5. — There exists a universal constant c ∈ (0,∞) with
the following property. For arbitrarily large n ∈ N there exists a family Y

of n-point subsets of {1, . . . , n}2 ⊆ R2 such that if we write |Y | = N then
cL1(Y , τ) � c

√
log logN.

The previously best known lower bound in the context of Corollary 1.5,
due to [20], was cL1

(Y , τ) � c
√

log log logN . We refer to [20] for an expla-
nation of the relevance of such problems to theoretical computer science.
The deduction of Corollary 1.5 from Corollary 1.4 follows mutatis mutandis
from the argument in [20, Sec. 3.1], the only difference being the use of the
estimate (1.4) when p = 1 rather than the estimate (1.1) when Y = L1.

For an infinite dimensional Banach space Y define

δn(Y )
def
= inf {δX↪→Y (1/2) : X is an n dimensional Banach space} ,
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and set

δn
def
= inf {δn(Y ) : Y is an infinite dimensional Banach space} .

Theorem 1.2 raises natural geometric questions. Specifically, what is the
asymptotic behavior of δn as n→∞? The difficulty of this question does not
necessarily arise from the need to consider all, potentially “exotic”, Banach
spaces Y . In fact, the above discussion shows that Ω(1/n5/2) � δn(L2) �
O(1/n), so we ask explicitly what is the asymptotic behavior of δn(L2) as
n→∞? For applications to computer science (see e.g. [20]) it is especially
important to bound δn(L1), so we also single out the problem of evaluating
the asymptotic behavior of δn(L1) as n → ∞. Recently, two alternative
proofs of Theorem 1.2 that work for certain special classes of spaces Y
were obtained in [18, 15], using different techniques than those presented
here (one based on a quantitative differentiation theorem, and the other on
vector-valued Littlewood-Paley theory). These new proofs yield, however,
the same bound as (1.1). The proof of Theorem 1.2 presented below is the
only known proof of Theorem 1.2 that works in full generality.

Remark 1.6. — The questions presented above are part of a more gen-
eral discretization problem in embedding theory. One often needs to prove
nonembeddability results for finite spaces, where the distortion is related
to their cardinality. In many cases it is, however, easier to prove nonem-
beddability results for infinite spaces, using techniques that are available
for continuous objects. It is natural to then prove a discretization theorem,
i.e., a statement that transfers a nonembeddability theorem from a contin-
uous object to its finite nets, with control on their cardinality. This general
scheme was used several times in the literature, especially in connection to
applications of embedding theory to computer science; see for example [20],
where Bourgain’s discretization theorem plays an explicit role, and also, in
a different context, [9]. The latter example deals with the Heisenberg group
rather than Banach spaces, the discretization in question being of an infini-
tary nonembeddability theorem of Cheeger and Kleiner [8]. It would be of
interest to study the analogue of Bourgain’s discretization theorem in the
context of Carnot groups. This can be viewed as asking for a quantitative
version of a classical theorem of Pansu [21]. In the special case of embed-
dings of the Heisenberg group into Hilbert space, a different approach was
used in [2] to obtain a sharp result of this type.

Remark 1.7. — A Banach space Z is said to be finitely representable in a
Banach space Y if there exists K ∈ [1,∞) such that for every finite dimen-
sional subspace X ⊆ Z there exists an injective linear operator T : X → Y
satisfying ‖T‖ · ‖T−1‖ � K. A theorem of Ribe [22] states that if Z and Y
are uniformly homeomorphic, i.e., there exists a homeomorphism f : Z → Y
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such that both f and f−1 are uniformly continuous, then Z is finitely rep-
resentable in Y and vice versa. This rigidity phenomenon suggests that
isomorphic invariants of Banach spaces which are defined using statements
about finitely many vectors are preserved under uniform homemorphisms,
and as such one might hope to reformulate them in a way that is explicitly
nonlinear, i.e., while only making use of the metric structure and without
making any reference to the linear structure. Once this (usually nontriv-
ial) task is achieved, one can hope to transfer some of the linear theory
of Banach spaces to the context of general metric spaces. This so called
“Ribe program” was put forth by Bourgain in [6]; a research program that
attracted the work of many mathematicians in the past 25 years, and has
had far reaching consequences in areas such as metric geometry, theoretical
computer science, and group theory. The argument that we presented for
the positivity of δX↪→Y (ε) implies Ribe’s rigidity theorem. Indeed, it is a
classical observation [10] that if f : Z → Y is a uniform homeomorphism
then it is bi-Lipschitz for large distances, i.e., for every d ∈ (0,∞) there
exists L ∈ (0,∞) such that L−1‖x − y‖Z � ‖f(x) − f(y)‖Y � L‖x − y‖Z
whenever x, y ∈ Z satisfy ‖x− y‖Z � d. Consequently, if X ⊆ Z is a finite
dimensional subspace then d-nets in rBX embed into Y with distortion at
most L2 for every r > d. By rescaling, the same assertion holds for δ-nets
in BX for every δ ∈ (0, 1). Hence X admits a linear embedding into Y with
distortion is at most 2L2. For this reason, in [7] Bourgain calls his discretiza-
tion theorem a quantitative version of Ribe’s finite representability theorem.
Sufficiently good improved lower bounds on δX↪→Y (ε) are expected to have
impact on the Ribe program.

2. The strategy of the proof of Theorem 1.2

From now on (X, ‖ · ‖X) will be a fixed n-dimensional normed space
(n > 1), with unit ball BX = {x ∈ X : ‖x‖X � 1} and unit sphere
SX = {x ∈ X : ‖x‖X = 1}. We will identify X with Rn, and by John’s
theorem [16] we will assume without loss of generality that the standard
Euclidean norm ‖ · ‖2 on Rn satisfies

∀ x ∈ X,
1√
n
‖x‖2 � ‖x‖X � ‖x‖2. (2.1)

Fix ε, δ ∈ (0, 1/8) and let Nδ be a fixed δ-net in BX . We also fix D ∈
(1,∞), a Banach space (Y, ‖ · ‖Y ), and a mapping f : Nδ → Y satisfying

∀ x, y ∈ Nδ,
1

D
‖x− y‖X � ‖f(x)− f(y)‖Y � ‖x− y‖X . (2.2)

By translating f , we assume without loss of generality that f(Nδ) ⊆ 2BY .
Our goal will be to show that provided δ is small enough, namely δ �
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e−(D/ε)Cn , there exists an injective linear operator T : X → Y satisfying
‖T‖ · ‖T−1‖ � (1 + 12ε)D.

The first step is to construct a mapping F : Rn → Y that is a Lipschitz
almost-extension of f , i.e., it is Lipschitz and on Nδ it takes values that are
close to the corresponding values of f . The statement below is a refinement
of a result of Bourgain [7]. The proof of Bourgain’s almost extension theorem
has been significantly simplified by Begun [4], and our proof of Lemma 2.1
below follows Begun’s argument; see Section 3.

Lemma 2.1. — If δ < ε
4n then there exists a mapping F : Rn → Y that

is differentiable almost everywhere on Rn, is differentiable everywhere on
1
2BX , and has the following properties.

• F is supported on 3BX .

• ‖F (x)− F (y)‖Y � 6‖x− y‖X for all x, y ∈ Rn.
• ‖F (x)− F (y)‖Y � (1 + ε) ‖x− y‖X for all x, y ∈ 1

2BX .

• ‖F (x)− f(x)‖Y � 9nδ
ε for all x ∈ Nδ.

In what follows, the volume of a Lebesgue measurable set A ⊆ Rn will
be denoted vol(A). For t ∈ (0,∞) the Poisson kernel Pt : Rn → [0,∞) is
given by

Pt(x) =
cnt

(t2 + ‖x‖22)
n+1

2

,

where cn is the normalization factor ensuring that
∫
Rn Pt(x)dx = 1. Thus

cn = Γ
(
n+1

2

)
/π

n+1
2 , as computed for example in [23, Sec. X.3]. We will use

repeatedly the standard semigroup property Pt ∗Ps = Pt+s, where as usual
f ∗ g(x) =

∫
Rn f(y)g(y − x)dx for f, g ∈ L1(Rn).

Assume from now on that δ < ε
4n and fix a mapping F : Rn → Y

satisfying the conclusion of Lemma 2.1. We will consider the evolutes of F
under the Poisson semigroup, i.e., the functions Pt ∗ F : Rn → Y given
by Pt ∗ F (x) =

∫
Rn Pt(y − x)F (y)dy. Our goal is to show that there exists

t0 ∈ (0,∞) and x ∈ Rn such that the derivative T = (Pt0 ∗F )′(x) is injective
and satisfies ‖T‖ · ‖T−1‖ � (1+10ε)D. Intuitively, one might expect this to
happen for every small enough t, since in this case Pt ∗F is close to F , and
F itself is close to a bi-Lipschitz map when restricted to the δ-net Nδ. In
reality, proving the existence of t0 requires work; the existence of t0 will be
proved by contradiction, i.e., we will show that it cannot not exist, without
pinpointing a concrete t0 for which (Pt0 ∗F )′(x) has the desired properties.
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Lemma 2.2. — Let µ be a Borel probability measure on SX . Fix R,A ∈
(0,∞) and m ∈ N. Then there exists t ∈ (0,∞) satisfying

A

(R + 1)m+1
� t � A, (2.3)

such that
∫

SX

∫

Rn
‖∂a(Pt ∗ F )(x)‖Y dxdµ(a)

�
∫

SX

∫

Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dxdµ(a) +

6vol(3BX)

m
. (2.4)

Proof. — If (2.4) fails for all t satisfying (2.3) then for every k ∈
{0, . . . ,m + 1} we have

∫

SX

∫

Rn

∥∥∂a
(
PA(R+1)k−m−1 ∗ F

)
(x)

∥∥
Y
dxdµ(a)

>

∫

SX

∫

Rn

∥∥∂a
(
PA(R+1)k−m ∗ F

)
(x)

∥∥
Y
dxdµ(a) +

6vol(3BX)

m
. (2.5)

By iterating (2.5) we get the estimate
∫

SX

∫

Rn

∥∥∂a
(
PA(R+1)−m−1 ∗ F

)
(x)

∥∥
Y
dxdµ(a)

>

∫

SX

∫

Rn

∥∥∂a
(
PA(R+1) ∗ F

)
(x)

∥∥
Y
dxdµ(a) +

6(m + 1)vol(3BX)

m
. (2.6)

At the same time, since F is differentiable almost everywhere and 6-
Lipschitz, for every a ∈ SX we have ‖∂aF‖Y � 6 almost everywhere. Since
F is supported on 3BX , it follows that

∫

Rn

∥∥∂a
(
PA(R+1)−m−1 ∗ F

)
(x)

∥∥
Y
dx =

∫

Rn

∥∥(
PA(R+1)−m−1 ∗ ∂aF

)
(x)

∥∥
Y
dx

�
∫

Rn

∫

Rn
PA(R+1)−m−1(x− y)‖∂aF (y)‖Y dxdy

=

∫

3BX

‖∂aF (y)‖Y dy � 6vol(3BX). (2.7)

If we integrate (2.7) with respect to µ, then since µ is a probability measure
we obtain a contradiction to (2.6) �

In order to apply Lemma 2.2, we will contrast it with the following key
statement (proved in Section 4), which asserts that the directional deriva-
tives of Pt ∗ F are large after an appropriate averaging.
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Lemma 2.3. — Assume that t ∈ (0, 1/2], R ∈ (0,∞) and δ ∈ (0, ε/(4n))
satisfy

δ � εt log(7/t)

2
√
n

� ε4

6n5/2(80D)2
, (2.8)

and
720n3/2D2 log(7/t)

ε2
� R � ε

32t
√
n
. (2.9)

Then for every x ∈ 1
8BX and a ∈ SX we have

(‖∂a(Pt ∗ F )‖Y ∗ PRt) (x) � 1− ε

D
. (2.10)

We record one more (simpler) fact about the evolutes of F under the
Poisson semigroup.

Lemma 2.4. — Assume that 0 < t < ε
25
√
n
. Then for every x, y ∈ 1

4BX

we have

‖Pt ∗ F (x)− Pt ∗ F (y)‖Y � (1 + 2ε)‖x− y‖X .

With the above tools at hand, we will now show how to conclude the
proof of Theorem 1.2. It will then remain to prove Lemma 2.1 (in Section 3),
Lemma 2.3 (Section 4) and Lemma 2.4 (also in Section 4).

Proof. — [Proof of Theorem 1.2] Assume that δ ∈ (0, 1) satisfies

δ �
( ε

cD

)12(cD/ε)n+1

, (2.11)

where c = 300 (this is an overestimate for the ensuing calculation). Fix an
(ε/D)-net F in SX with |F| � (3D/ε)n (for the existence of nets of this
size, see e.g. [1, Lem. 12.3.1]). Let µ be the uniform probability measure on
F . Define

A =
( ε

cD

)5n

, R =

(
cD

ε

)4n

− 1, m =

⌊(
cD

ε

)n+1
⌋
− 1. (2.12)

Apply Lemma 2.2 with the above parameters, obtaining some t ∈ (0,∞)
satisfying

( ε

cD

)12(cD/ε)n+1

� t �
( ε

cD

)5n

, (2.13)
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such that∑

a∈F

∫

Rn
‖∂a(Pt ∗ F )(x)‖Y dx �

∑

a∈F

∫

Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dx +

6|F|vol(3BX)

m
. (2.14)

One checks that for δ satisfying (2.11), R as in (2.12), and any t sat-
isfying (2.13), inequalities (2.8) and (2.9) are satisfied. Thus the conclu-
sion (2.10) of Lemma 2.3 holds true for all a ∈ SX and x ∈ 1

8BX .

Note that by convexity we have for every a ∈ SX and almost every
x ∈ Rn,

‖∂a(P(R+1)t∗F )(x)‖Y =‖ (PRt ∗ (∂a(Pt∗F ))) (x)‖Y �(‖∂a(Pt∗F )‖Y ∗PRt) (x).

Thus ‖∂a(Pt ∗F )‖Y ∗PRt−‖∂a(P(R+1)t ∗F )‖Y � 0, so we may use Markov’s
inequality as follows.

vol

({
x ∈ 1

8
BX : (‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)− ‖∂a(P(R+1)t ∗ F )(x)‖Y �

ε

D

})

� D

ε

(∫

Rn

(
(‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)− ‖∂a(P(R+1)t ∗ F )(x)‖Y

)
dx

)

=
D

ε

(∫

Rn
‖∂a(Pt ∗ F )(x)‖Y dx−

∫

Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dx

)
.(2.15)

Hence,

vol

({
x∈ 1

8
BX :∃a∈F , (‖∂a(Pt∗F )‖Y ∗PRt) (x)−‖∂a(P(R+1)t∗F )(x)‖Y �

ε

D

})

(2.15)

� D

ε

(∑

a∈F

∫

Rn
‖∂a(Pt ∗ F )(x)‖Y dx−

∑

a∈F

∫

Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dx

)

(2.14)

� D

ε
· 6|F|vol(3BX)

m
(2.12)

� 12D

ε

(
3D

ε

)n ( ε

cD

)n+1

(24)nvol

(
1

8
BX

)

=
6n

25n+1
vol

(
1

8
BX

)
< vol

(
1

8
BX

)
.

Consequently, there exists x ∈ 1
8BX satisfying

∀a ∈ F , (‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)−‖∂a(P(R+1)t ∗F )(x)‖Y <
ε

D
. (2.16)
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But we already argued that (2.10) holds as well, so (2.16) implies that

∀a ∈ F , ‖∂a(P(R+1)t ∗ F )(x)‖Y �
1− 2ε

D
. (2.17)

Note that by (2.12) and (2.13) we have (R + 1)t � (ε/(cD))n < ε/ (25
√
n).

Hence, if we define T = (P(R+1)t ∗ F )′(x) then by Lemma 2.4 we have
‖T‖ � 1 + 2ε. By (2.17), ‖Ta‖Y � (1 − 2ε)/D for all a ∈ F . For z ∈ SX
take a ∈ F such that ‖z − a‖X � ε/D. Then,

‖Tz‖ � ‖Ta‖ − ‖T‖ · ‖z − a‖X �
1− 2ε

D
− (1 + 2ε)

ε

D
� 1− 4ε

D
.

Hence T is invertible and ‖T−1‖ � D/(1− 4ε).
Thus ‖T‖ · ‖T−1‖ � 1+2ε

1−4εD � (1 + 12ε)D. �

3. Proof of Lemma 2.1

We will use the following lemma of Begun [4].

Lemma 3.1. — Let K ⊆ Rn be a convex set and fix τ, η, L ∈ (0,∞).
Assume that we are given a mapping h : K + τBX → Y satisfying ‖h(x)−
h(y)‖Y � L (‖x− y‖X + η) for all x, y ∈ K + τBX . Define H : K → Y by

H(x) =
1

τnvol(BX)

∫

τBX

h(x− y)dy.

Then ‖H(x)−H(y)‖Y � L
(
1 + nη

2τ

)
‖x− y‖X for all x, y ∈ K.

We refer to [4] for an elegant proof of Lemma 3.1. The deduction of
Lemma 2.1 from Lemma 3.1 is via the following simple partition of unity
argument. Let {φp : Rn → [0, 1]}p∈Nδ be a family of smooth functions
satisfying

∑
p∈Nδ φp(x) = 1 for all x ∈ BX and φp(x) = 0 for all (p, x) ∈

Nδ × Rn with ‖x − p‖X � 2δ. A standard construction of such functions
can be obtained by taking a smooth ψ : Rn → [0, 1] which is equals 1
on BX and vanishes outside 2BX , and defining ψp(x) = ψ((x − p)/δ) for
(p, x) ∈ Nδ × Rn. If we then write Nδ = {p1, p2, . . . , pN}, define φp1

= ψp1

and φpj = ψpj
∏j−1

i=1 (1 − ψpi) for j ∈ {2, . . . , N}. Then
∑

p∈Nδ φp = 1 −∏
p∈Nδ(1 − ψp) = 1 on BX since every x ∈ BX satisfies ‖x − p‖X � δ for

some p ∈ Nδ.

Now define g : BX → Y by g(x) =
∑

p∈Nδ φp(x)f(p). Setting β(t) =
max{0, 2− t} for t ∈ [0,∞), consider the mapping h : Rn → Y given by

h(x) =

{
g(x) if x ∈ BX ,
β(‖x‖X)g (x/‖x‖X) if x ∈ Rn \BX .

(3.1)
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Observe that if x, y ∈ BX then

h(x)− h(y) = g(x)− g(y) =
∑

p∈Nδ∩(x+2δBX)

φp(x)f(p)−
∑

q∈Nδ∩(y+2δBX)

φq(y)f(q)

=
∑

p∈Nδ∩(x+2δBX)
q∈Nδ∩(y+2δBX)

φp(x)φq(y) [f(p)− f(q)] .

This identity implies that

∀x, y ∈ BX , ‖h(x)− h(y)‖Y � ‖x− y‖X + 4δ (3.2)

If x ∈ BX and y ∈ Rn \BX then using f(Nδ) ⊆ 2BY and the fact that β is
1-Lipschitz,

‖h(x)− h(y)‖Y �
∥∥∥∥g(x)− g

(
y

‖y‖X

)∥∥∥∥
Y

+ (1− β(‖y‖X))

∥∥∥∥g
(

y

‖y‖X

)∥∥∥∥
Y

(3.2)

�
∥∥∥∥x−

y

‖y‖X

∥∥∥∥
X

+ 4δ + (‖y‖X − 1) sup
p∈Nδ

‖f(p)‖Y

� ‖x− y‖X + 3(‖y‖X − 1) + 4δ.

Since ‖y‖X − 1 � ‖x− y‖X + ‖x‖X − 1 � ‖x− y‖X , it follows that

∀x ∈ BX ,∀y ∈ Rn \BX , ‖h(x)− h(y)‖Y � 4(‖x− y‖X + δ). (3.3)

If x, y ∈ Rn \BX then

‖h(x)− h(y)‖Y �
∥∥∥∥g

(
x

‖x‖X

)
− g

(
y

‖y‖X

)∥∥∥∥
Y

β(‖x‖)

+

∥∥∥∥g
(

y

‖y‖X

)∥∥∥∥
Y

|β(‖x‖X)− β(‖y‖X)|

(3.2)

�
∥∥∥∥

x

‖x‖X
− y

‖y‖X

∥∥∥∥
X

+ 4δ + 2 ‖x− y‖X � 4(‖x− y‖X + δ). (3.4)

Set τ = 2nδ/ε ∈ (0, 1/2) and define for x ∈ Rn,

F (x) =
1

τnvol(BX)

∫

τBX

h(x− y)dy. (3.5)

It follows from the definition (3.1) that h is differentiable almost everywhere
on Rn; in fact, it can only be non-differentiable on SX ∪ (2SX). Since h is
differentiable on BX \ SX and τ ∈ (0, 1/2), it follows from (3.5) that F is
differentiable almost everywhere on Rn, and is differentiable everywhere on
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1
2BX . Clearly F is supported on (2 + τ)BX ⊆ 3BX , i.e., the first assertion
of Lemma 2.1 holds. Due to (3.2), (3.3), (3.4), an application of Lemma 3.1
with K = Rn, L = 4 and η = δ shows that F is 4 (1 + ε/2)-Lipschitz on
Rn, proving the second assertion of Lemma 2.1. Due to (3.2), an application
of Lemma 3.1 with K = (1 − τ)BX shows that F is (1 + ε)-Lipschitz on
(1 − τ)BX ⊇ 1

2BX . This establishes the third assertion of Lemma 2.1. To
prove the fourth assertion of Lemma 2.1, fix x ∈ Nδ. Then,

‖F (x)− h(x)‖Y � 1

τnvol(BX)

∫

τBX

‖h(x− y)− h(x)‖Y dy

(3.2)∧(3.3)

� 4(τ + δ). (3.6)

Also,

‖h(x)− f(x)‖Y �
∑

p∈Nδ
‖f(x)− f(p)‖Y φp(x)

� max
p∈Nδ∩(x+2δBX)

‖f(x)− f(p)‖Y � 2δ. (3.7)

Recalling that τ = 2nδ/ε, the fourth assertion on Lemma 2.1 follows from (3.6)
and (3.7).

4. Proof of Lemma 2.4 and Lemma 2.3

We will need the following standard estimate, which holds for all r, t ∈
(0,∞). ∫

Rn\(rBX)

Pt(x)dx � t
√
n

r
. (4.1)

To check (4.1), letting sn−1 denote the surface area of the unit Euclidean
sphere Sn−1, and recalling that Pt(x) = t−nP1(x/t), we have

∫

‖x‖X�r
Pt(x)dx

(2.1)

�
∫

‖x‖2�r
Pt(x)dx =

∫

‖x‖2�r/t
P1(x)dx

= cnsn−1

∫ ∞

r/t

sn−1

(1 + s2)
n+1

2

ds � cnsn−1

∫ ∞

r/t

ds

s2
=

cnsn−1t

r
.

It remains to recall that cn = Γ
(
n+1

2

)
/π

n+1
2 and sn−1 = nπ

n
2 /Γ

(
n
2 + 1

)

(see e.g. [3, Sec. 1]), and, using Stirling’s formula, to obtain the estimate
cnsn−1 �

√
2n/π.

Another standard estimate that we will use is that for every y ∈ Rn we
have ∫

Rn
|Pt(x)− Pt(x + y)| dx �

√
n‖y‖2
t

. (4.2)
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Since Pt(x) = t−nP1(x/t) it suffices to check (4.2) when t = 1. Now,

∫

Rn
|P1(x)− P1(x + y)| dx =

∫

Rn

∣∣∣∣
∫ 1

0

〈∇P1(x + sy), y〉ds
∣∣∣∣ dx

� ‖y‖2
∫

Rn
‖∇P1(x)‖2 dx = (n + 1)cn‖y‖2

∫

Rn

‖x‖2
(1 + ‖x‖22)

n+3
2

dx

= (n + 1)cnsn−1‖y‖2
∫ ∞

0

rn

(1 + r2)
n+3

2

dr = cnsn−1‖y‖2,

where we used the fact that the derivative of rn+1/(1 + r2)
n+1

2 equals (n +

1)rn/(1 + r2)
n+3

2 . The required estimate (4.2) now follows from Stirling’s
formula.

Proof of Lemma 2.4. — We have,

‖Pt ∗ F (x)− Pt ∗ F (y)‖Y �
∫

Rn
Pt(z)‖F (x− z)− F (y − z)‖Y dz

(∗)
�

(
(1 + ε)

∫

1
4BX

Pt(z)dz + 6

∫

Rn\( 1
4BX)
Pt(z)dz

)
‖x− y‖X

(4.1)

�
(
1 + ε + 24t

√
n
)
‖x− y‖X ,

where in (∗) we used the fact that F is (1 + ε)-Lipschitz on 1
2BX and 6-

Lipschitz on Rn. �

Lemma 4.1. — For every t ∈ (0, 1/2] and every x ∈ BX we have

‖Pt ∗ F (x)− F (x)‖Y � 8
√
nt log

(
7

t

)
.

Proof. — Since F is supported on 3BX ,

‖Pt ∗ F (x)− F (x)‖Y (4.3)

�
∫

x+3BX

‖F (y − x)− F (x)‖Y Pt(y)dy + ‖F (x)‖Y
∫

y∈Rn\(x+3BX)

Pt(y)dy.

Since F is 6-Lipschitz and it vanishes outside 3BX , we have ‖F (x)‖Y � 18.
Moreover, if ‖y−x‖X � 3 then ‖y‖X � ‖x−y‖X−‖x‖X � 2, and therefore

‖F (x)‖Y
∫

y∈Rn\(x+3BX)

Pt(y)dy � 18

∫

Rn\(2BX)

Pt(y)dy
(4.1)

� 9t
√
n. (4.4)
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To bound the first term in the right hand side of (4.3) note that if ‖y−x‖X �
3 then ‖y‖2 �

√
n‖y‖X � 4

√
n. Moreover, ‖F (y − x)− F (x)‖X � 6‖y‖X �

6‖y‖2. Hence,
∫

x+3BX

‖F (y − x)− F (x)‖Y Pt(y)dy � 6

∫

‖y‖2�4
√
n

‖y‖2Pt(y)dy

= 6t

∫

‖y‖2� 4
√
n
t

‖y‖2P1(y)dy = 6tcnsn−1

∫ 4
√
n
t

0

sn

(1 + s2)
n+1

2

ds (4.5)

Direct differentiation shows that the maximum of sn/(1+s2)
n+1

2 is attained

when s =
√
n, and therefore sn/(1 + s2)

n+1
2 � min{1/√en, 1/s} for all

s ∈ (0,∞). Hence,

∫ 4
√
n
t

0

sn

(1 + s2)
n+1

2

ds � 1 +

∫ 4
√
n
t

√
en

ds

s
= 1 + log

(
4

t
√
e

)
. (4.6)

The required result now follows from substituting (4.4), (4.5), (4.6) into (4.3),
and using the fact that t � 1/2 and cnsn−1 �

√
n. �

Proof of Lemma 2.3. — Define

Θ =
100D

√
nt log(7/t)

ε
. (4.7)

For w, y ∈ 1
2BX let p, q ∈ Nδ ∩ ( 1

2BX) satisfy ‖p − w‖X , ‖q − y‖Y � 2δ.
Assume that ‖w − y‖X � Θ. Using the third and fourth assertions of
Lemma 2.1, together with Lemma 4.1, we have

‖(Pt ∗ F )(w)− (Pt ∗ F )(y)‖Y � ‖f(p)− f(q)‖Y − ‖F (p)− f(p)‖Y
−‖F (q)− f(q)‖Y − ‖F (w)− F (p)‖Y − ‖F (y)− F (q)‖Y
−‖(Pt ∗ F )(w)− F (w)‖Y − ‖(Pt ∗ F )(y)− F (y)‖Y

(2.2)

� ‖p− q‖Y
D

− 18nδ

ε
− 4(1 + ε)δ − 16

√
nt log

(
7

t

)

� ‖w − y‖X − 4δ

D
− 18nδ

ε
− 4(1 + ε)δ − 16

√
nt log

(
7

t

)

� 1− ε/3

D
‖w − y‖X , (4.8)

where (4.8) uses the assumptions ‖w − y‖X � Θ and (2.8).

Note that the second inequality in (2.8) implies that Θ � 1/4. Therefore,
since ‖a‖X = 1 it follows from (4.8) that for every z ∈ 1

4BX ,

1− ε/3

D
Θ � ‖Pt ∗ F (z + Θa)− Pt ∗ F (z)‖Y
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=

∥∥∥∥∥

∫ Θ

0

∂a(Pt ∗ F )(z + sa)ds

∥∥∥∥∥
Y

�
∫ Θ

0

‖∂a(Pt ∗ F )(z + sa)‖Y ds.(4.9)

Since in the statement of Lemma 2.3 we are assuming that ‖x‖X � 1/8,

1

Θ

∫ Θ

0

∫

Rn
‖∂a(Pt ∗ F )(x + sa− y)‖Y PRt(y)dyds

(4.9)

� 1− ε/3

D

∫

1
8BX

PRt(y)dy

(4.1)

� 1− ε/3

D

(
1− 8Rt

√
n
) (2.9)

� (1− ε/3)(1− ε/4)

D
� 1− 7ε/12

D
. (4.10)

Since F is 6-Lipschitz, ‖∂aF‖Y � 6 almost everywhere, and therefore ‖∂a(Pt∗
F )‖Y � 6 almost everywhere. Hence,

∫ Θ

0

∫

Rn
‖∂a(Pt ∗ F )(x− y)‖Y (PRt(y + sa)− PRt(y)) dyds

� 6

∫ Θ

0

∫

Rn
|PRt(y + sa)− PRt(y)| dyds

(4.2)

� 6
√
n‖a‖2
Rt

· Θ
2

2

(2.1)

� 3nΘ2

Rt

(2.9)∧(4.7)

� 5εΘ

12D
. (4.11)

We can now conclude the proof of Lemma 2.3 as follows.

(‖∂a(Pt ∗ F )‖Y ∗ PRt) (x) =
1

Θ

∫ Θ

0

∫

Rn
‖∂a(Pt ∗ F )(x + sa− y)‖Y PRt(y)dyds

− 1

Θ

∫ Θ

0

∫

Rn
‖∂a(Pt ∗ F )(x− y)‖Y (PRt(y + sa)− PRt(y)) dyds

(4.10)∧(4.11)

� 1− ε

D
.

�

5. Proof of Theorem 1.3

The following general lemma will be used later; compare to [17, Prop. 1].

Lemma 5.1. — Let (V, ‖ · ‖V ) be a Banach space and U = (Rn, ‖ · ‖U )
be an n-dimensional Banach space. Assume that g : BU → V is continuous
and everywhere differentiable on the interior of BU . Then

∥∥∥∥
1

vol(BU )

∫

BU

g′(u)du

∥∥∥∥
U→V

� n‖g‖L∞(SU ). (5.1)
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Proof. — We may assume without loss of generality that vol(BU ) = 1.
Fix y ∈ Rn with ‖y‖2 = 1. For every u ∈ y⊥ ∩ (BU \ SU ) there are unique
au, bu ∈ R satisfying au < bu and ‖u + auy‖U = ‖u + buy‖U = 1. Hence,

∥∥∥∥
∫

BU

g′(u)(y)du

∥∥∥∥
V

=

∥∥∥∥∥

∫

y⊥∩BU

∫ bu

au

d

ds
g(u + sy)dsdu

∥∥∥∥∥
V

(5.2)

=

∥∥∥∥
∫

y⊥∩BU
(g(u + buy)− g(u + auy)) du

∥∥∥∥
V

�2‖g‖L∞(SU ) · voln−1(y
⊥ ∩BU ).

Let K be the convex hull of
(
y⊥ ∩BU

)
∪ {y/‖y‖U}. Then K is a subset of

the intersection of BU with one of the two half spaces corresponding to the
hyperplane y⊥. Since vol(BU ) = 1,

voln−1(y
⊥ ∩BU )

n‖y‖U
= vol(K) � 1

2
. (5.3)

The desired estimate (5.1) follows from substituting the upper bound on
voln−1(y

⊥ ∩BU ) that follows from (5.3) into (5.2). �

Fix ε, δ ∈ (0, 1/2) and let Nδ be a δ-net in BX ⊆ Rn. Fixing also D ∈
(1,∞), assume that f : Nδ → Y satisfies ‖x− y‖X/D � ‖f(x)− f(y)‖Y �
‖x − y‖X for all x, y ∈ Nδ. Define Z = span (f(Nδ)). Thus Z is a finite
dimensional subspace of Y . Assume that

δ � ε2

30n2D
. (5.4)

Since consequently δ < ε/(4n), there exists F : X → Z that is differentiable
everywhere on 1

2BX and satisfies the conclusion of Lemma 2.1. Let ν be
the normalized Lebesgue measure on 1

2BX and define a linear operator
T : X → L∞(ν, Z) by

(Ty)(x) = F ′(x)(y). (5.5)

Since F is (1 + ε)-Lipschitz on 1
2BX we have the operator norm bound

‖T‖X→L∞(ν,Z) � 1 + ε. Theorem 1.3 will therefore be proven once we show
that for all y ∈ X we have

1− ε

D
‖y‖X � ‖Ty‖L1(ν,Z) =

1

vol
(

1
2BX

)
∫

1
2BX

‖F ′(x)(y)‖Y dx. (5.6)

To prove (5.6), let J : X → �∞ be a linear isometric embedding. By the
nonlinear Hahn-Banach theorem (see e.g. [5, Ch. 1]) there exists a mapping
G : Z → �∞ satisfying

∀x ∈ Nδ, G(f(x)) = J(x) (5.7)
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and G is D-Lipschitz; we are extending here the mapping J ◦
(
f−1|f(Nδ)

)
:

f(Nδ)→ �∞ while preserving its Lipschitz constant. By convolving G with
a smooth bump function whose integral on Y equals 1 and whose support
has a small diameter, we can find H : Z → �∞ with Lipschitz constant at
most D and satisfying

∀z ∈ F (BX), ‖H(z)−G(z)‖
∞ �
nDδ

ε
. (5.8)

Define a linear operator S : L1(ν, Z)→ �∞ by setting for h ∈ L1(ν, Z),

Sh =

∫

1
2BX

H ′(F (x))(h(x))dν(x). (5.9)

Since H is D-Lipschitz and ν is a probability measure, we have the operator
norm bound

‖S‖L1(ν,Z)→
∞ � D. (5.10)

By the chain rule, for every y ∈ X we have

ST (y)
(5.5)∧(5.9)

=

∫

1
2BX

H ′(F (x))(F ′(x)(y))dν(x)

=

∫

1
2BX

(H ◦ F )
′
(x)(y)dν(x). (5.11)

Note that if y ∈ Nδ then

‖H(F (y))− Jy‖
∞
(5.7)
= ‖H(F (y))−G(f(y))‖
∞
� ‖H(F (y))−G(F (y))‖
∞ + ‖G(F (y))−G(f(y))‖
∞

(5.8)

� nDδ

ε
+ D‖F (y)− f(y)‖Y

� nDδ

ε
+ D · 9nδ

ε
� 10nDδ

ε
, (5.12)

where in the penultimate inequality in (5.12) we used the fact that ‖F (y)−
f(y)‖Y � 9nδ/ε for all y ∈ Nδ, due to Lemma 2.1. If x ∈ 1

2BX then there
exists y ∈ Nδ ∩

(
1
2BX

)
satisfying ‖x− y‖X � 2δ. Using the fact that H ◦F

is (1 + ε)D-Lipschitz on 1
2BX , it follows that

‖H(F (x))− Jx‖
∞ � ‖H(F (y))− Jy‖
∞ + ‖H(F (x))−H(F (y))‖
∞

+‖Jx− Jy‖
∞
(5.12)

� 10nDδ

ε
+ (1 + ε)D · 2δ + 2δ � 15nDδ

ε
. (5.13)
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Bourgain’s discretization theorem

By Lemma 5.1 with V = �∞, ‖ · ‖U = 2‖ · ‖X and g = H ◦ F − J , it follows
from (5.13) that

‖ST − J‖X→
∞
(5.11)
=

∥∥∥∥∥

∫

1
2BX

(H ◦ F )′(x)dν(x)− J

∥∥∥∥∥
X→
∞

� 30n2Dδ

ε

(5.4)

� ε. (5.14)

It follows that for all y ∈ X,

D‖Ty‖L1(ν,Z)

(5.10)

� ‖STy‖
∞ � ‖Jy‖
∞−‖ST−J‖X→
∞ ·‖y‖X
(5.14)

� (1−ε)‖y‖X .

This concludes the proof of (5.6), and hence the proof of Theorem 1.3 is
complete. �
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