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Snakes and articulated arms in an Hilbert space

Fernand Pelletier(1), Rebhia Saffidine(2)

ABSTRACT. — The purpose of this paper is to give an illustration of re-
sults on integrability of distributions and orbits of vector fields on Banach
manifolds obtained in [5] and [4]. Using arguments and results of these
papers, in the context of a separable Hilbert space, we give a generaliza-
tion of a Theorem of accessibility contained in [3] and [6] for articulated
arms and snakes in a finite dimensional Hilbert space.

RÉSUMÉ. — Le but de ce travail est de donner un exemple qui illustre
les résultats d’intégrabilité des distributions et des orbites de champs de
vecteurs sur des variétés banachiques établis dans [5] et [4] respectivement.
Ces travaux permettent, dans le cadre des espaces de Hilbert séparables,
de donner une généralisation des théorèmes d’accessibilité contenus dans
[3] et [6], en dimension finie, pour des bras articulés et des serpents.

1. Introduction

In finite dimension, a snake (of length L) is a continuous piecewise C1-
curve S : [0, L] → Rd, arc-length parameterized, such that S(0) = 0. Ac-
cording to [6], “Charming a snake” consists in finding a 1-parameter de-
formation St of S so that the corresponding head St(L) describes a given
C1-curve c : [0, 1] → Rd: that is St(L) = c(t). More precisely, each snake S
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of length L in Rd can be given by a piecewise C0-curve u : [0, L] → Sd−1

such that S(t) =
∫ t
0
u(τ)dτ . The set Conf of snakes can be parametrized

by such type piecewise C0-curves and so can be provided with a Banach
manifold structure. So we have to build some C1-curve t → ut in Conf
such that the associated family St of snakes satisfies St(L) = c(t) for all
t ∈ [0, 1]. The “snake charmer algorithm” proposed in [6] consists in build-
ing an appropriate “horizontal ” distribution D in Conf so that t → ut is
tangent to D. In fact, this approach remains to build a lift c̃ of c in Conf

so that the “infinitesimal kinematic energy”
1

2
|| ˙̃c(t)||2L2 is minimal for all

t ∈ [0, 1] (see subsection 4.1). Note that, for articulated arms (i.e. when
S is affine by parts), this algorithm is nothing but a generalization of an
analogue approach developed in [3].

The purpose of this paper is to give a generalization of this problem in
the context of separable Hilbert spaces. In more details, given a separable
Hilbert space H, we consider the smooth hypersurface S∞ of elements of
norm 1. As previously, a Hilbert snake of length L is a continuous piecewise
C1-curve S : [0, L] → H, arc-length parameterized, such that S(0) = 0. An
articulated arm corresponds to the particular case where u is affine in each
part. Then a snake is also given by a piecewise C0-curve u : [0, L] → S∞ such

that S(t) =
∫ t
0
u(τ)dτ . If we fix a partition P of [0, L], the set CLP of such

curves will be called the configuration set and carries a natural structure of
Banach manifold. For articulated arms, the configuration space is the subset
ALP of u which are constant on each subinterval associated to the partition.
In fact, ALP is a weak Hilbert submanifold of CLP . To any “configuration”

u ∈ CLP is naturally associated the “end map” E(u) =

∫ L

0

u(s)ds. This map

is smooth and we put on CLP a natural (weak) Riemannian metric G. The
orthogonal of kerTE gives rise to a closed distribution D on CLP . As in finite
dimension, for any curve t → ut in CLP , defined on [0, 1], we can associate
a family St of snakes whose head St(L) describes a curve c : t → St(L) for
t ∈ [0, 1]. The curve c̃ : t → ut is called a “lift ” of c in CLP . When c̃ is
tangent to D, it is called a “horizontal lift”.

So the problem for the head of the Hilbert snake to join an initial state
x0 to a final state x1 gives rise to the following “accessibility problem”:

Given an initial (resp. final) configuration u0 (resp. u1) in CLP , such that
E(ui) = xi, i = 0, 1, find a horizontal piecewise C1-curve γ : [0, T ] → CLP
(i.e. γ is tangent to D) and which joins u0 to u1.
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Now, given any configuration u ∈ CLP we look for the accessibility set
A(u) of all configurations v ∈ CLP which can be joined from u by a horizontal
piecewise C1-curve. In the context of finite dimension, in [3] and [6], by using
arguments about the action of the Möbius group on CLP , it can be shown that
A(u) is the maximal integral manifold of a finite dimensional distribution
on ALP and CLP . Unfortunately, in our context, the same argument does not
work. Moreover, as we are in the context of infinite dimension for S∞, we
cannot hope to get a finite dimensional distribution whose maximal integral
manifold is A(u).

However, our principal result is to construct a canonical distribution D̄
modeled on a Hilbert space, which is integrable and such that the accessi-
bility set A(u) is a dense subset of the maximal integral manifold through
u of D̄. Moreover this distribution is minimal in some natural sense (see
Remark 4.2). In fact, when H is finite dimensional, D̄ is exactly the finite
distribution obtained in [6] whose leaves are the accessibility sets.

The arguments used in our proof can be found in [5] and [4]. Moreover,
this Theorem of accessibility can be seen as an application of results ob-
tained in [4]; it also gives rise to an illustration of the “almost Banach Lie
algebroid structures” developed in [1] (see Appendix 5).

This paper is organized as follows. Section 2 contains all definitions and
results of [5] and [4] which are used in the proof about the accessibility sets.
At first, the reader can go directly to the section 3 , and he may refer to
this paragraph 2 only for a more detailed reading. In the first subsection
of paragraph 4 we expose the relation between “horizontal lift” and mini-
mizing the “infinitesimal kinematic energy”. But essentially, this paragraph
contains the principal result of accessibility (Theorem 4.1 in subsection 4.2).
The proof of this Theorem, which needs all definitions and results recalled
in section 2, is developed in subsections 4.3 and 4.4. We end this paper by
an appendix which gives an interpretation of the previous results in terms
of “almost Banach Lie algebroid” (cf. [1]). In particular, this appendix is
used as reference for an example developed in [1].

2. Preliminaries

2.1. Weak distributions on a Banach manifold

In this subsection, from [5] we recall all definitions, properties and results
we shall use later.

Let M be a connected Banach manifold modeled on a Banach space E.
We denote by X (M) the set of local vector fields on M . The flow of any
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X ∈ X (M) will be denoted by φXt . We then have the following definitions
and properties:

• A weak submanifold of M is a pair (N, f) where N is a connected
Banach manifold (modeled on a Banach space F ) and f : N → M is a
smooth map such that :

– there exists a continuous injective linear map i : F → E between these
two Banach spaces;

– f is injective and the tangent map Txf : TxN → Tf(x)M is injective
for all x ∈ N .

Note that for a weak submanifold f : N → M , on the subset f(N) of
M we have two topologies:

– the induced topology from M ;

– the topology for which f is a homeomorphism from N to f(N).

With this last topology, via f , we get a structure of Banach manifold
modeled on F . Moreover, the inclusion from f(N) into M is continuous as
a map from the Banach manifold f(N) to M . In particular, if U is an open
set of M , then f(N) ∩ U is an open set for the topology of the Banach
manifold on f(N).

• According to [5], a weak distribution on M is an assignment D :
x �→ Dx which, to every x ∈ M , associates a vector subspace Dx in TxM
(not necessarily closed) endowed with a norm || ||x such that (Dx, || ||x)
is a Banach space (denoted by D̃x) and such that the natural inclusion
ix : D̃x → TxM is continuous. Moreover, if the Banach structure on Dx is a
Hilbert structure, we say that D is a weak Hilbert distribution.

When Dx is closed, we have a natural Banach structure on D̃x, induced
by the Banach structure on TxM , and so we get the classical definition of a
distribution; in this case we will say that D is closed.

A (local) vector field Z on M is tangent to D, if for all x ∈ Dom(Z)(1),
Z(x) belongs to Dx. The set of local vector fields tangent to D will be
denoted by XD.

• We say that D is generated by a subset X ⊂ X (M) if, for every
x ∈ M , the vector space Dx is the linear hull of the set {Y (x), Y ∈ X , x ∈
Dom(Y )}.

(1) Dom(Z) is the maximal open set on which Z is defined
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For a weak distribution D on M we have the following definitions:

• an integral manifold of D through x is a weak submanifold f : N →
M such that there exists u0 ∈ N such that f(u0) = x and Tuf(TuN) =
Df(u) for all u ∈ N .

• D is called integrable if there exists an integral manifold N of D
through any x ∈ M .

• if D is generated by a set X of local vector fields, then D is called X -
invariant if for any X ∈ X , the tangent map Txφ

X
t sends Dx onto DφXt (x)

for all (x, t) ∈ ΩX . D is invariant if D is XD− invariant.

Now we introduce essential properties of “local triviality” which will play an
essential role through this paper:

• D is lower (locally) trivial if for each x ∈ M , there exists an open
neighborhood V of x, a smooth map Θ : D̃x × V → TM (called lower
trivialization) such that :

(i) Θ(D̃x × {y}) ⊂ Dy for each y ∈ V

(ii) for each y ∈ V , Θy ≡ Θ( , y) : D̃x → TyM is a continuous operator

and Θx : D̃x → TxM is the natural inclusion ix

(iii) there exists a continuous operator Θ̃y : D̃x → D̃y such that iy ◦ Θ̃y =

Θy, Θ̃y is an isomorphism from D̃x onto Θy(D̃x) and Θ̃x is the identity

of D̃x

• D is (locally) upper trivial if, for each x ∈ M , there exists an open
neighbourhood V of x, a Banach space F and a smooth map Ψ : F × V →
TM (called upper trivialization) such that :

(i) for each y ∈ V , Ψy ≡ Ψ( , y) : F → TyM is a continuous operator
with Ψy(F ) = Dy;

(ii) ker Ψx complemented in F ;

(iii) if F = ker Ψx ⊕ S, the restriction θy of Ψy to S is injective for any
y ∈ V ;

(iv) Θ(u, y) = (θy ◦ [θx]
−1(u), y) is a lower trivialization of D.

In this case the map Θ is called the associated lower trivialization.

An upper trivial weak distribution D is called Lie bracket invariant
if, for any x ∈ M , there exists an upper trivialization Φ : F × V → TM
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such that for any u ∈ F , there exists ε > 0, such that, for all 0 < τ < ε, we
have a smooth field of operators C : [−τ, τ ] → L(F, F ) with the following
property

[Xu, Zv](γ(t)) = Φ(C(t)[v], γ(t)) for any Zv = Φ(v, ) and any v ∈ F (2.1)

along the integral curve γ : t �→ φXut (x) on [−τ, τ ] of the lower section
Xu = Θ(Φ(u, x), ) .

With these definitions we have the following criterion of integrability:

Theorem 2.1. — Let D be a upper trivial weak distribution. Then D is
integrable if and only if D is Lie bracket invariant.

2.2. Orbit of a family of vector fields

In this subsection we expose the results of [4] which will be used for the proof
Theorem 4.1.

Notion of X -orbit.

Let X be a set of local vector fields on M . Given x ∈ M , we say that
X satisfies the condition (LBs) at x (Locally Bounded of order s), if there
exists a chart (Vx, φ) centered at x and a constant k > 0 such that:
for any X ∈ X , whose domain Dom(X) contains Vx, we have

sup{||Js[φ∗X](y)||, X ∈ X , y ∈ Vx} � k. (2.2)

For any finite or countable ordered set A of indexes, consider a family ξ =
{Xα}α∈A where the Xα are defined on a same open set V and satisfies the
condition (LBs) for s � 1. Given any bounded integrable map u = (uα)α∈A
from some interval I to l1(A) = {τ = (τα),

∑

α∈A
|τα| < ∞} we can associate

a time depending vector field of type

Z(x, t, u) =
∑

α∈A
uα(t)Xα(x),

For such a vector field there exists a flow Φξu(t, ) (see Theorem 2 of [4]).

Given some τ ∈ l1(A), we set ||τ ||1 =
∑

α∈A
|τα|. On the corresponding interval

[0, ||τ ||1], we consider the partition (tα)α∈A of this interval defined by, t0 = 0

and for α ∈ A, tα =

α∑

β=1

|τβ |. If we choose u = Γτ = (Γτα) where Γτα is the
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indicatrix function of ]tα, tα+1[, we can associate to (ξ, τ) a time depending
vector field Z(x, t, u) as previously. Under appropriate assumptions, for such
a Z, we get an associated flow, denoted by Φξτ (t, ) . Assume that the set
of all Dom(X) for X ∈ X is a covering of M and is bounded at each point,
i.e. the set of values {X(x), X ∈ X} ⊂ TxM is bounded for any x ∈ M .
We can enlarge X to the set X̂ given by

X̂ = {Z = Φ∗(νY ), Y ∈ X , Φ = φ
Xp
tp ◦ · · · ◦ φX1

t1 for X1, · · · , Xp ∈ X ; (2.3)

and appropriate ν ∈ R}

(see subsection 3.1 of [4]). Then X̂ satisfies the same previous properties as
X . From this set X̂ , we associate an appropriate pseudo-group GX of local
diffeomorphisms which are finite compositions of flows of type φXt with
X ∈ X and of type Φξu(||τ ||1, .) (as we have seen previously) or its inverse
for ξ ⊂ X̂ .

To GX is naturally associated the following equivalence relation on M :

x ≡ y if and only if there exists Φ ∈ GX such that Φ(x) = y

An equivalence class is called a X -orbit.

Proposition 2.2 [4]. — For each pair (x, y) in the same X -orbit either
we have a continuous piecewise smooth curve which joins x to y and whose
each smooth part is tangent to X or −X for some X ∈ X , or there exists
a sequence γk of such continuous piecewise smooth curves whose origin is x
(for all curves) and whose sequence of ends converges to y.

Integrability of weak distribution associated to an X -orbit.

Consider any set Y of local vector fields which contains X̂ . Assume that
there exists a weak distribution � generated by Y which is integrable on M
and, for each x ∈ M , there exists a lower trivialization Θ : F ×V → TM for
some Banach space F (which depends of x) and for some neighborhood V
of x in M . Let N be the union of all integral manifolds iL : L → M through
x0. Then iN : N → M is the maximal integral manifold of � through x0(see
Lemma 2.14 [5]).

Proposition 2.3 (see [4]). — As previously, let f : N → M be the
maximal integral manifold of � through x.

1. Let Z ∈ X (M) be such that Dom(Z) ∩ f(N) �= ∅ and Z is tangent
to �. Set ṼZ = f−1(Dom(Z) ∩ f(N)). Then ṼZ is an open set in N
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and there exists a vector field Z̃ on N such that Dom(Z̃) = ṼZ and
f∗Z̃ = Z ◦ f .

Moreover, if ]ax, bx[ is the maximal interval on which the integral
curve γ : t �→ φZ(t, x) is defined in M , then the integral curve γ̃ :

t → φZ̃(t, x̃) is also defined on ]ax, bx[ and we have

γ = f ◦ γ̃ (2.4)

2. Let be ξ = {Xβ , β ∈ B} ⊂ X̂ ⊂ Y which satisfies the conditions
(LBs) on a chart domain V centered at x ∈ f(N) and consider the
associated flow Φξτ . For some τ ∈ l1(B) let γ be the curve on [0, ||τ ||1]
defined by γ(t) = Φξτ (t, x). Then there exists a curve γ̃ : [0, ||τ ||1[→ N
such that

f ◦ γ̃ = γ on [0, ||τ ||1[ (2.5)

According to the properties of X we can associate to this set a weak
distribution D in the following way:

Dx = {Y =
∑

X∈X
λXX(x)} for any absolutely summable family {λX , X ∈

X , x ∈ Dom(X)}

In the same way we can also associate to X̂ a weak distribution D̂ which
contains X and which is X -invariant. Moreover, for a set Y of local vector
fields which contains X and which is bounded at each point, we can also
associate a weak distribution � of the previous type. If � is X invariant,
then D̂x ⊂ �x for any x ∈ M .

On the other hand, to the set X we can associate the sequences of families

X = X 1 ⊂ X 2 = X ∪ {[X,Y ], X, Y ∈ X} ⊂ · · · ⊂ X k
= X k−1 ∪ {[X,Y ], X ∈ X , Y ∈ X k−1} ⊂ · · ·

When X k is bounded at each point, as previously, we can also associate a
weak distribution Dk generated by X k.

Consider an ordered finite or countable set of indexes A and assume that
we have D̂ fulfilling the following conditions

1. for any x ∈ M there exists a upper trivialization Φ : l1(A)×V → TM
such that Φ(eα, .) = Yα(.) for each α ∈ A where {eα}λ∈A is the
canonical basis of l1(A);
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2. for any x ∈ M there exists a neighborhood V of x such that, V ⊂
∩α∈ADom(Yα), and a constant C > 0 such that we have

[Yα, Yβ ](y) =
∑

ν∈A
Cναβ(y)Yν(y) for any α, β ∈ A (2.6)

where each Cναβ is a smooth function on V , for any α, β, ν ∈ A and
we have ∑

α,β,ν∈A
|Cναβ(y)| � C

for any y ∈ V .

Then we have:

Theorem 2.4 ([4]). —

1. Under the previous assumptions, the distribution D̂ is integrable and
each X -orbit O is the union of the maximal integral manifolds which
meet O and such an integral manifold is dense in O.

2. If Dk is defined and satisfies the previous assumptions for some k � 2,
then we have Dk = D̂ and Dk is integrable.

3. Hilbert snakes and Hilbert articulated arms

3.1. The configuration space

Let H be a separable Hilbert space and < , > (resp. || ||) the inner
product (resp. the norm) on H. We consider a fixed hilbertian basis {ei}i∈N
in H. Any x ∈ H will be written as a serie x =

∑

i∈N
xiei where xi = 〈x, ei〉

is the ithcoordinate of x. We denote by S∞ = {x ∈ H : ‖x‖ = 1} the unit
sphere in H. Note that S∞ is a codimension one hypersurface in H.

A curve γ : [a, b] → M (not necessary continuous) is called Ck -piecewise
if there exists a finite set P={a = s0 < s1 < ... < sN = b} such that, for all
i = 0, ..., N −1, the restriction of γ to the interval ]si, si+1[ can be extended
to a curve of class Ck on the closed interval [si, si+1].

Given any metric space (X, d), we denote by C ([a, b] , X) the set of con-
tinuous curves u : [a, b] → X. Recall that on C ([a, b] , X) we have the usual
distance d∞ defined by

d∞(u1, u2) = sup
t∈[a,b]

d(u1(t), u2(t))

and C ([a, b] , X) , d∞) is a complete metric space.
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For a given partition P={a = s0 < s1 < ... < sN = b} of [a, b], let be
CkP ([a, b] ,S∞) (resp. CkP ([a, b] ,H) the set of curves u ∈ C ([a, b] ,S∞) (resp.
u ∈ C ([a, b] ,H)) which are Ck-piecewise relatively to P for k ∈ N.

Throughout this paper, we fix a real number L > 0 and P is a given fixed
partition of [0, L].

A Hilbert snake is a continuous piecewise C1-curve S : [0, L] → H,
such that ||Ṡ(t)|| = 1 and S(0) = 0. When S is affine by part, we call this
snake an affine snake or a Hilbert articulated arm.

In fact, a snake is characterized by u(t) = Ṡ(t) and of course we have

S(t) =

∫ t

0

u(s)ds where u : [0, L] → S∞ is a piecewise C0-curve associated

to the partition P. Moreover, this snake is affine if and only if u is constant
on each subinterval of P.

The set CLP = C0
P ([0, L] ,S∞) is called the configuration space of the

snakes in H of length L relative to the partition P. We can also put on CLP
the distance d∞ defined by

d∞(u1, u2) = sup
t∈[a,b]

||(u1(t), u2(t))||

Note that the subset

ALP = {u ∈ CLP , such that u is constant on each subinterval [si−1, si[, i =
1, · · ·N}

is the configuration space of Hilbert articulated arms in H of length L rel-
ative to the partition P.

The natural map

h : CLP →
N−1∏

i=0

C0([si, si+1],S∞)

u �→ (u |[s0,s1], ..., u |[si,si+1], u |[sN−1,sN ]) (3.1)

is a homeomorphism. In particular, (CLP , d∞) is a complete metric space.
Note that the restriction of h to ALP is a homeomorphism onto [S∞]N .
Moreover as in finite dimension we have (see [6])

Proposition 3.1. — CLP has a structure of Banach manifold and ac-
cording to (3.1) the natural map

h : CLP →
N−1∏

i=0

C0([si, si+1],S∞)
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is a diffeomorphism. Moreover ALP is a weak Hilbert submanifold diffeomor-
phic to [S∞]N and the topology associated to this structure and the topology
induced by CLP coincide.

The tangent space TuCLP can be identified with the set

{v ∈ C0
P([0, L],H) such that < u(s), v(s) >= 0 for all s ∈ [0, L]}

This space is naturally provided with the induced norm || ||∞. On the other
hand, note that any v ∈ C0

P([0, L],H) is integrable on [0, L] and so we get a
inner product on this space given by:

< v,w >L2=

∫ L

0

< v(s), w(s) > ds (3.2)

This inner product induces a natural norm || ||L2 on TuCLP given by:

||v||L2 = [

∫ L

0

< v(s), v(s) > ds]
1
2

and we have the following inequality

||u||L2 �
√
L||u||∞. (3.3)

In the same way the tangent space TuALP can be identified with the set
v = (v1, · · · , vN ) ∈ HN such that < vi, ui >= 0 for i = 1 · · ·N if u =
(u1, · · · , uN ). Of course, this vector space can be also considered as a sub-
space of TuCLP . Note that this subspace in closed in TuCLP .

Remark 3.2. — As (TuCLP , || ||L2) is not complete, the norm || ||∞ and
|| ||L2 are not equivalent (on each TuCLP). So the inner product defined by
(3.2) gives rise only to a weak Riemannian G metric on TCLP .

As ALP is diffeomorphic to [S∞]N , the tangent TuALP can be identified
with

Tx1S∞ × · · · × TxNS∞

for u = (x1, · · · , xN ) ∈ [S∞]N . So the canonical inner product on HN ,
induces an natural inner product on TuALP .
On the other hand, the inner product < , >L2 on TuCLP induces an inner
product on TuALP as subspace of TuCLP . In fact these inner products are
proportional and moreover, the norm || ||∞ and || ||L2 induce equivalent
norm on TuALP .
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3.2. The horizontal distribution associated to a Hilbert snake

For any u ∈ CLP consider the map Su : [0, L] → H given by:

Su(t) =

∫ t

0

u(s)ds (3.4)

called the Hilbert snake associated to u. On the other hand, to each
configuration u ∈ CLP we can associate the endpoint map:

E : CLP → H
u → Su(L) (3.5)

As E is the restriction to CLP of the linear map u →
∫ L

0

u(s)ds defined

on C0
P([0, L],H) it follows that E is smooth and we have:

TuE(v) =

∫ L

0

v(s)ds (3.6)

Note that E [CLP ] is the closed ball BL = {x ∈ H such that ||x|| � L}.

Lemma 3.3. —

1. The subspace kerTuE ⊂ TuCLP is a Banach space for each induced
norm || ||∞ and || ||L2 .

2. The orthogonal of kerTuE (for the inner product < , ‖| >L2 on TuCLP),
denoted Du, is a closed space in each normed spaces (TuCLP , ||.||L2)
and (TuCLP , || ||∞) and we have the decomposition

TuCLP = Du ⊕ kerTuE . (3.7)

3. In the Banach space (TuCLP , || ||∞), the restriction of TuE to Du is a
continuous injective morphism into H

The proof of this Lemma used the same argument as in [6].

Definition 3.4. —

1. The family u �→ Du is a (closed) distribution on CLP called the hori-
zontal distribution.

2. Each vector field X on CLP which is tangent to D is called a horizon-
tal vector field.
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On ALP , the intersection Du ∩ TuALP gives rise to a (closed) Hilbert dis-
tribution DA. Note that we can also define DA directly as the orthogonal
of kerTuE ∩TuALP relatively to one of the equivalent inner products defined
on TuALP (see Remark 3.2). When no confusion is possible, this distribu-
tion DA on ALP will be also denoted by D and also called the horizontal
distribution on ALP .

The inner product on H gives rise to a Riemannian metric g on TH ≡
H × H given by gx(u, v) =< u, v >. Let φ : H → R be a smooth function.
The usual gradient of φ on H is the vector field

grad(φ) = (g�)−1(dφ)

where g� is the canonical isomorphism of bundle from TH to its dual bundle
T ∗H, corresponding to the Riesz representation i.e. g�(v)(w) =< v,w >. So
grad(φ) is characterized by:

g(grad(φ), v) =< grad(φ), v >= dφ(v) (3.8)

for any v ∈ H.

On the opposite, on TCLP , the Riemannian metric G is only weak (see
Remark 3.2) and we cannot define in the same way the gradient of any
smooth function on CLP . However let be
G� : TCLP → T ∗CLP the morphism bundle defined by:

G�u(v)(w) = Gu(v, w)

for any v and w in TuCLP . Then we have

Lemma 3.5. — Let φ : H → R be a smooth function. Then ker d(φ ◦ E)
contains kerTE and belongs to G�u(TuCLP). Moreover,

∇φ = (G�)−1(d(φ ◦ E)) (3.9)

is tangent to Du, and we have

∇φ(u)(s) = grad(φ)(E(u))− < grad(φ)(E(u)), u(s) > u(s) (3.10)

Remark 3.6. — When H is finite dimensional, the relation (3.10) is ex-
actly the definition of ∇φ given in [6].

Definition 3.7. — For any smooth function φ : H→ R, the vector field
∇φ is called horizontal gradient of φ.
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To each vector x ∈ H, we can associate the linear form x∗ such that
x∗(z) =< z, x >. So from Lemma 3.5 the horizontal gradient ∇x∗ is well
defined. In particular, to each vector ei, i ∈ N, of the Hilbert basis, we can
associate the horizontal vector field Ei = ∇e∗i . Then as in [6] we have:

Lemma 3.8. — The family {Ei}i∈N of vector fields generates the distri-
bution D.

Proof . — Let u ∈ CLP be; we can write

u(s) =
∑

i∈N
ui(s)ei

Denote by �u the closed subspace generated by the family {Ei(u)}i∈N in the
normed space (TuCLP , || ||L2). A vector v ∈ TuCLP belongs to the orthogonal
of �u (relatively to G) if and only if G(v,Ei(u)) = 0 for all i ∈ N . But as
< v(s), u(s) >= 0 we have:

G(v,Ei) =

∫ L

0

< v(s), ei − ui(s)u(s)> ds =<

∫ L

0

v(s), ei > for all i ∈ N(3.11)

According to (3.11) v is orthogonal to �u if and only if v ∈ kerTuE . As Du
is also closed in (TuCLP , || ||L2) , we get �u = Du. �

Remark 3.9. —

1. As in finite dimension (see [6]), for φ = e∗i using the left member of
(3.10), for any i ∈ N we have

Ei(s) = ei− < ei, u(s) > u(s)

So, each Ei(u) can be considered as a vector field on S∞ along u :
[0, L] → S∞. In this way, Ei(u) is nothing but the orthogonal projec-
tion of ei onto the tangent space to S∞ along u([0, L]).

2. On ALP the induced inner product < , >L2 induces a (strong) Rie-
mannian metric on the horizontal distribution D. In the same way,
to the Hilbert basis {ei, i ∈ N} of H we can associate a family of
global vector fields (again denoted) {Ei, i ∈ N} on ALP . In fact these
vector fields are only the restriction to ALP of the family defined on
the whole manifold CLP . if we identify TALP with [TS∞]N (see Remark
3.2), the vector field Ei at u = (x1, · · · , xN ) is

(ei− < x1, ei > x1, · · · ei− < xN , e1 > xN ).

If there is no ambiguity, we also denote these family in the same way.
Of course, on ALP , the distribution D is also generated by this family
of vector fields.
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3.3. Set of critical values and set of singular points of the endpoint
map

As the continuous linear map TuE : TuCLP → TE(u)H ≡ H is closed (see
[2] section 8.7), it follows that ρu = TuE|Du is an isomorphism from Du
to the closed subset ρu(Du) of H. Consider a point u ∈ CLP . According to
remarks 3.2 1., the annulator of ρu(Du) = TuE(Du) is

[ρu(Du)]0 = {z ∈ TE(u)H ≡ H such that < z, ρu(v) >= 0, ∀v ∈ Du}

So, u is a singular point of E if and only if [ρu(Du)]0 �= {0} .

On the other hand, as the family {Ei(u)}i∈N generates Du, any z ∈ H
belongs to [ρu(Du)]0 if and only if we have

< z,

∫ L

0

Ei(u)(s)ds >= 0, ∀i ∈ N (3.12)

Consider the decompositions z =
∑

i∈N
ziei and u(s) =

∑

i∈N
ui(s)ei. Then

(3.12) is equivalent to

Lzi =
∑

j∈N

∫ L

0

ui(s)uj(s)zjds ∀i ∈ N (3.13)

Let Γu be the endomorphism defined by matrix of general term

(
∫ L
0

ui(s)uj(s)ds). Note that Γu is self-adjoint. The endomorphism Au =
L.Id− Γu is also self-adjoint and, in fact, its matrix in the basis {ei}i∈N is

(Lδij −
∫ L
0

ui(s)uj(s)ds). So (3.13) is equivalent to

Au(z) = 0 (3.14)

So u is a singular point if and only if L is an eigenvalue of Γu.

The proof of the following result is an adaptation of the argument used
in finite dimension (see [6])

Lemma 3.10. — A point u ∈ CLP is a singular point of E in and only if
the vector space generated by u([0, L]) is 1-dimensional.

Summarized proof . — At first, note that for any unitary automorphism
U of H we have

UΓuU
∗ = ΓU(u) (3.15)
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On the other hand, we have

E ◦ U(u) = U(E(u)) (3.16)

If u([0, L]) generates a 1-dimensional space then we have u(s) = ±x ∈ S∞.
Using (3.15), without loss of generality, we can suppose that u(s) = ±e1

for any s ∈ [0, L]. In this case, using the relation obtained by derivation of
(3.16) we show that e1 is an eigenvector associated to the eigenvalue L of
Γu and so ker(L.Id− Γu) = kerAu �= {0}.

On the other hand, if u is a singular point of E , there exists a vector
x ∈ S∞ which is an eigenvector associated to the eigenvalue L of Γu. If U
is an unitary automorphism such that U(x) = e1 then e1 is an eigenvector
associated to L for UΓuU

∗ = ΓU(u). If we set ū = U(u) then we get Γū(e1) =

Le1. So, for the decomposition ū(s) =
∑

i∈N
ūi(s)ei, we get

∫ L

0

[ū1]
2 = L and

ūi(s) ≡ 0 for all i > 1. It follows that ū(s) = ±e1 and so u(s) = ±x. �

According to Lemma 3.10, a point u ∈ CLP is singular if and only if the
restriction to [si−1, si] is equal to ±x for some x ∈ S∞. It follows that the
set of singular points Σ(E) of E is diffeomorphic to the projective space
a P∞ of H.

On the other hand, let u ∈ Σ(E) be with u(s) ≡ x ∈ S∞. For any
v ∈ C0

P([0, L],H) such that
< u(s), v(s) >= 0 for all s ∈ [0, L] we consider

ūn =
1

n
v(s) + x

As ||x|| = 1, for n large enough, we have ||ūn(s)|| �
1

2
and un(s) =

ūn
||ūn(s)||

belongs to CLP \ Σ(E). Moreover we have

lim
n→∞

un = u

So the set CLP \Σ(E) of regular points of E is an open dense subset of CLP .

Recall that the image of E is the closed ball B(0, L) in H. As in fi-
nite dimension, when P = {0, L} the set of critical values of E is then
the boundary of B(0, L) i.e. the sphere S(0, L) and {0}. In the general
case, P = {a = s0 < s1 < ... < sN = b}, the same argument applied to each
subinterval [si−1, si] gives that the set of critical values of E is the union
of spheres S(0, Lj) for j = 1, · · ·n with 0 � Lj � L.
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Remark 3.11. —

1. Recall that ρu = TuE|Du is an isomorphism from Du to ρu(Du), which
is a closed subspace of H. So on Du, the norm induced by || ||∞ is
equivalent the norm || ||H; moreover, ρu is an isometry between Du
and ρu(Du) endowed with the Hilbert induced norm. In particular,

for any regular point u, the inverse of ρu is given by
1

L
∇v∗ and

according to (3.11) we have ρu(
1

L
∇v∗) = v. So {Ei(u), i ∈ N} is

then a Hilbert basis of Du according to this isometry. If now, u is
a singular point of E, according to the previous proof, there exists a
Hilbert basis {e′i, i ∈ N} of H such that e′1 = u(s) for all s ∈ [0, L].
So, ρu is an isomorphism from Du to {e′1}⊥. It follows that, on Du,
the norm induced by || ||∞ is equivalent to the norm || ||H so that
ρu is an isometry between Du and {e′1}⊥. Then, the family {E′i(u) =
∇(e′i)

∗(u), i > 1} is a Hilbert basis of Du.

2. According to the beginning of this section, as G(Ei(u), Ej(u)) = Lδij−∫ L
0

ui(s)uj(s)ds, the matrix of G in the basis {Ei(u), i ∈ N} is the
matrix of Au = L.Id − Γu. But Au is a self-adjoint endomorphism
of H which is compact. So the sequence {λi, i ∈ N} of eigenvalues
of Au is bounded and converges to 0 and there exists a Hilbert ba-
sis {e′i, i ∈ N} of eigenvectors of Au. In this basis, the matrix of
Au is diagonal and equal to (L− λiδij). So for the associated family
{E′i(u), i ∈ N} of generators of Du we have:

(1) if u is regular, the matrix of G in the basis {E′i(u), i ∈ N} is
(L−λi)δij. Note that 0 is not an eigenvalue of Au otherwise, it would
mean that u is an eigenvector of Γu associated to the eigenvalue L.
As the sequence {λi, i ∈ N} is bounded and converges to 0, there
exists K > 0 so that 1

K � L − λi � K for any i ∈ N. It follows that
the norm associated to G and the norm associated to the isometry ρu
are equivalents.

(2) if u is singular, according to the proof of Lemma 3.10, we can
choose e′1 so that u = ±e′1 and then, by the same arguments as the
ones used in (1) but applied to the restriction of Au to {e′1}⊥ we again
obtain that the norm associated to G and the norm associated to the
isometry ρu are equivalent.
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Finally we obtain the following result :

Proposition 3.12. —

1. The set R(E) (resp. V(E)) of regular values (resp. points) of E is an
open dense subset of CLP (resp. H).

2. For any u ∈ R(E) the linear map ρu : Du → {E(u)} × H is an
isomorphism and on Du, the inner product induced by < , >L2) and
the inner product defined ρu from H are equivalent. Moreover the
distribution D|R(E) is a weal Hilbert distribution which is a trivial
Hilbert bundle over R(E)

3. The distribution D|Σ(E) is a weak Hilbert distribution which is iso-
metrically isomorphic to TP∞

Proof. — We have to prove only the properties of D|R(E) and D|Σ(E).
Consider the map F : CLP × l2(N) → CLP × C0

P([0, L],H) defined by

F (u, σ) =
∑

i∈N
σiEi(u)

It is easy to see that the family of smooth vector fields {Ei, i ∈ N} satisfies
the condition (LBs) for any s ∈ N at any point and as F is linear in σ, it
follows that F is a smooth map. According to Lemma 3.8 and Remark 3.11,
the range of F is D. Again, from Remark 3.11, {Ei(u), i ∈ N} is an Hilbert
basis of Du for u ∈ R(E). So, the restriction of F to R(E)× l2(N) is a global
trivialization of D|R(E). The same argument can be used for the restriction
of F to Σ(E). �

4. An control problem for a Hilbert snake

4.1. A problem of optimality and control

Recall that given any continuous piecewise Ck-curve c : [0, T ] → H,
a lift of c is a continuous piecewise Ck-curve γ : [0, T ] → CLP such that
E(γ(t)) = c(t). When such a lift γ is tangent to D we say that γ is a
horizontal lift. By construction of D and the weak Riemannian metric G
on TuCLP (cf subsection 3.2), if v ∈ TuCLP is such that TE(v) = ċ(t) then

the the quantity
1

2
||v||2L2 =

1

2

∫ L

0

||v(s)||2ds =
1

2
G(v, v) is minimal if and

only if v belongs to Du. It follows that a lift γ of c is horizontal, if and

only γ for each t ∈ [0, 1], the quantity
1

2
G(γ̇(t), γ̇(t)) is minimal in the set
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{1

2
G(v, v) : v ∈ Tγ(t)CLP}. So we can consider a kind of optimal problem

for a Hilbert snake which can be formulated in the following way:

given any continuous piecewise Ck-curve c : [0, T ] → H, we look for a
lift γ : [0, 1] → CLP , say t → ut, such that, for all t ∈ [0, 1],

– the associated family St =

∫ L

0

ut(s)ds of snakes satisfies St(L) = c(t)

for all t ∈ [0, 1]:

– the infinitesimal kinematic energy:
1

2
||γ̇(t)||L2 =

1

2
G(γ̇(t), γ̇(t)) is

minimal.

Then such a type of optimal problem has a solution if and only if the
curve c has a horizontal lift. We shall say that such a horizontal lift is an
optimal control.

On the other hand, we can also ask when two positions x0 and x1 of
the “head” of the snake can be joined by a continuous piecewise smooth
curve c which has an optimal control γ as lift. As in finite dimension, the
accessibility set A(u), for some u ∈ CLP , is the set of endpoints γ(T ) for
any piecewise smooth horizontal curve γ : [0, T ] → CLP such that γ(0) = u.
In this case if x0 = Su(L) then any z = Su′(L) can be joined from x0 by an
absolutely continuous curve c which has an optimal control when u′ belongs
to A(u).

4.2. Properties of the accessibility sets

In finite dimension, given any horizontal distribution D on a finite di-
mension manifold M , the famous Sussmann’s Theorem (see [7]) asserts that
each accessibility set is a smooth immersed manifold which is an integral
manifold of a distribution D̂ which contains D (i.e. Dx ⊂ D̂x for any x ∈ M)
and characterized by:

D̂ is the smallest distribution which contains D and which is invariant
by the flow of any (local) vector field tangent to D.

In the context of Banach manifolds the reader can find some generaliza-
tion of this result in [4]. However, in our context, we will use the results of
this paper to give some density results on accessibility sets, with analogue
construction as in finite dimension case.

Precisely, according to subsection 2.2, we will associate to each Hilbert
basis {ei, i ∈ N} of H, the family X = {Ei, i ∈ N} of (global) vector fields
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on CLP (cf Lemma 3.8). According to the definition of a X -orbit (cf subsection
2.2) each accessibility set A(u) is contained in the X -orbit through u. On
the other hand, we can enlarge X into a set fields X̂ (cf (2.3)), and under
some assumptions, we can show that the the distribution D̂ generated by
X̂ is integrable (see [4] section 4) and each X -orbit is dense in a maximal
integral manifold of D̂. Unfortunately, in our context in infinite dimension
these assumptions are not satisfied.

However, instead of D̂, we shall build a weak distribution D̄ which will
give some analogue properties for the accessibility sets. More precisely, we
extend this family X = {Ei, i ∈ N} to a family {Ei, [Ej , Ek], i, j, k ∈ N, k <
l} which generates a weak Hilbert distribution D̄ on CLP with the following
properties:

(i) D̄ does not depend on the choice of the basis {ei, i ∈ N};

(ii) D̂x is dense in D̄x for all x ∈ M ;

(iii) D̄ is integrable and each maximal integral manifold of D̄ contains
the {Ei, i ∈ N}-orbit for any choice of basis {ei, i ∈ N} of H;

(iv) the accessibility set of a point in any maximal integral manifold N
of D̄ is a dense subset of N .

In this way we obtain:

Theorem 4.1. — Let {ei, i ∈ N} be a Hilbert basis of H and {Ei, i ∈ N}
the associate family of vector fields on CLP . The vector space

D̄u = {
∑

i∈N
xiEi(u)+

∑

j,l∈N,j<l
ξij [Ei, Ej ](u) :

∑
(xi)

2 < ∞,
∑

(ξij)
2 < ∞}

is a well defined subspace of TuCLP and carries a natural structure of Hilbert
space such that the inclusion of D̄u in TuCLP is continuous and gives rise
to a weak Hilbert distribution on CLP . This distribution has the following
properties:

(1) D̄ does not depend on the choice of the Hilbert basis {ei} of H.

(2) The distribution D̄ is integrable. Moreover, for each u ∈ CLP , the ac-
cessibility set A(u) is a dense subset of the maximal integral manifold
N of D̄ through u

(3) on the manifold ALP , each subspace D̄u ∩ TuALP induces a closed dis-
tribution (again denoted by D̄) which satisfies the two previous prop-
erties and moreover, in this case, each integral maximal manifold of
this distribution is a Hilbert submanifold of ALP .
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Remark 4.2. — Recall that a horizontal curve γ is an absolutely contin-
uous curve in CLP which is almost everywhere tangent to D. Given u ∈ CLP ,
we denote by Hu ⊂ TuCLP the set of tangent vectors at u of a horizontal
curve through u which has a tangent vector at u. If X and Y are vector
fields on CLP whose domain contains u, the curve

t → ΦXt ◦ ΦYt ◦ ΦX−t ◦ ΦY−t(u)

is a horizontal curve and it is well known that its tangent vector at u is
[X,Y ](u). So, if we look for the smallest (weak) manifold of CLP which con-
tains the accessibility set A(u), its tangent space must contain Hu. In partic-
ular, this tangent space must contain the family {Ei(u), [Ej , El](u), i, j, l ∈
N}. Note that from Theorem 4.1, it follows that D̄u contains Hu. On one
hand, if we consider the closed distribution generated by X = {Ei, [Ej , El],
i, j, l ∈ N}, we can show that this distribution satisfies properties (i) and (ii)
before Theorem 4.1 and also some property of type “upper local triviality”
but not in terms in our definition (see section 2.1), in particular we can not
prove that this distribution is integrable. In fact we do not know if this last
distribution is integrable or not.

On the other hand, according to the following subsection, the l1- weak
distribution �1 generated by X satisfies property (2), but not property (1)
and so �1

u does not contain Hu. So, in this sense the distribution D̄ is the
“smallest” weak distribution which is integrable and such that the maximal
integral manifold through u contains A(u). Moreover, from property (1)
of Theorem 4.1, any maximal integral manifold N , for any family X ′ =
{E′i, i ∈ N} (associated to any t basis {e′i, i ∈ N}), the X ′-orbit of u is
contained in N .

Finally, when H is a finite dimensional space, we have D̂ = D̄, this
distribution is closed, and D̄ is the “smallest” distribution whose leaves are
the accessibility sets, as it is proved in [4] (see Example 4.5). We get another
proof of the result of [6].

According to our problem of optimality for the head of the snake, we
know that if u is a configuration, and N is the maximal integral manifold of
D̄ through u, for all other configuration v ∈ N there exists a sequences (γn)
of horizontal curves in N whose origin u and whose sequence extremities
converges to v. So, if E(u) = x and E(v) = y, the family of curves cn = E ◦γn
are optimal (in the sense of subsection 4.1). The origin of each such curve
cn is x , and, the sequence of extremities yn of cn converges to y.

So, for each maximal integral manifold N of D̄, denote by N ′ the range
N ′ = E(N). Then for each pair (x, y) ∈ N ′ there exists a family of optimal
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curves cn which have x for origin, and, the sequence of extremities yn of cn
converges to y.

4.3. Construction of the distribution D̄

For the construction of D̄ we need the following result whose proof is
the same as in the case of a finite dimensional Hilbert space H (see [6]).
According to Remark 3.9, each Ei can be considered as a vector field on
S∞. In these way, we have

Lemma 4.3. — The brackets of vector fields of the family {Ei}i∈N satisfy
the following relations:

[Ei, Ej ](u) =< ej , u > Ei(u)− < ei, u > Ej(u) for any u ∈ CLP and any
i, j ∈ N;

[Ei[Ej , Ek]] = δijEk − δikEj for any i, j, k ∈ N

[[Ei, Ej ], [Ek, El]] = δil[Ej , Ek]+δjk[Ei, El]−δik[Ej , El]−δjl[Ei, Ek] for any
i, j, k, l ∈ N.

We consider the countable set of indexes Λ = {(i, j), i, j ∈ N, i < j}
and let G1 (resp G2) be the Banach space l1(N)⊕ l1(Λ) (resp. l2(N)⊕ l2(Λ)).
We then have the following result:

Lemma 4.4. —

1. For p = 1, 2, the map Ψp from the trivial bundle CLP × Gp to TCLP
characterized by:

Ψpu(σ, ξ) =
∑

i∈N
σiEi(u) +

∑

(i,j)∈Λ

ξij [Ei, Ej ](u), (4.1)

σ = (σi) ∈ lp(N), ξ = (ξij) ∈ lp(Λ)

is well defined and each Ψpu is a continuous linear map.

2. For each u ∈ CLP , let Vu be the Hilbert subspace of H generated by the
set

{u(t) − u(0), t ∈ [0, L]}
For p = 1, 2, if the kernel of Ψpu is not {0} then Vu �= H

3. For p = 1, 2, the distribution �p defined by �pu = Ψpu(Gp) is a weak
distribution and the map Ψp defines a (global) upper trivialization of
�p.
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4. The distribution �2 do not depend of the choice the Hilbert basis (ei)
in H and contains D (i.e. Du ⊂ �2

u)

Proof of Lemma 4.4. — Proof of part 1: For any σ ∈ lp(N) the vector∑

i∈N
σiei belongs to H and for any s ∈ [0, L] the vector

∑

i∈N
σiEi(u(s)) is the

orthogonal projection on Tu(s)S∞ of
∑

i∈N
σiei. So we have

||
∑

i∈N
σiEi(u)||∞ � [

∑

i∈N
(σi)

2]1/2 = ||σ||2 (4.2)

If σ belongs to l1(N), as ||σ||2 � |σ||1 in this case we get

||
∑

i∈N
σiEi(u)||∞ � ||σ||1

On the other hand as [Ek, El](u) = ulEk(u) − ukEl(u), in the same way,
for any s ∈ [0, L], the vector

∑
(k,l)∈Λ ξkl[Ek, El](u(s)) is the orthogonal

projection of
∑

(k,l)∈Λ

ξkl(ul(s)ek − uk(s)el) on Tu(s)S∞.

But we have:

∑

(k,l)∈Λ

ξklul(s)ek =
∑

k∈N
[
∑

l>k

ξklul(s)]ek]

So we get

||
∑

(k,l)∈Λ

ξklul(s)ek||2 =
∑

k∈N
[
∑

l>k

ξklul](s)]
2

Using the fact that |uj(s)| � ||u(s)|| = 1, from Cauchy -Schwartz inequality
we get:

|
∑

l>k

ξklul](s)| � [
∑

l>k

(ξkl)
2]1/2

Finally we obtain

||
∑

(k,l)∈Λ

ξklul(s)ek||2 �
∑

(k,l)∈Λ

(ξkl)
2 = (||ξ||2)2

By same argument we get

||
∑

(k,l)∈Λ

ξkluk(s)el||2 �
∑

(k,l)∈Λ

(ξkj)
2 = (||ξ||2)2
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So we obtain
||

∑

(k,l)∈Λ

ξkl[Ek, El](u)||∞ � 2||ξ||2

If ξ ∈ l1(Λ) by same argument as previously we also get:

||
∑

(k,l)∈Λ

ξkl[Ek, El](u)||∞ � 2||ξ||1

Finally we get :

||Ψpu(σ, ξ)||∞ � 2||(σ, ξ)||p for p = 1, 2 (4.3)

It follows that Ψp is well defined. From its expression, it is easy to see
that Ψpu is linear and continuous from (4.3). This ends the proof of part 1.

Proof of part 2. — At first, note that as the natural inclusion I : G1 ↪→
G2 is continuous and with dense range, we have Ψ2

u ◦ I = Ψ1
u, the closure

of ker Ψ1
u in G2 is equal to ker Ψ2

u. So ker Ψ1
u �= 0 if and only if ker Ψ2

u �= 0.
Assume that ker Ψ1

u �= {0}.

Let be (σ, ξ) ∈ ker Ψ1
u. According to (4.1), and Remark 3.9, we must

have
∑

i∈N
σiEi(u(s)) +

∑

(i,j)∈Λ

ξij [ui(s)Ej(u(s)) − uj(s)Ei(s)] = 0 for any s ∈ [0, L](4.4)

We set ξ̄kj =
ξkj
2

(resp. ξ̄kj = −ξkj
2

) for j < k (resp j > k) and ξ̄jj = 0.

Then (4.4) can be written:

∑

i∈N
[
∑

j∈N
(ξ̄ijuj(s) + σi]Ei(u(s)) = 0 for any s ∈ [0, L] (4.5)

Given any ξ ∈ l1(Λ), denote Ξ the endomorphism of l1(N) whose matrix in
the canonical basis is precisely (ξ̄ij , i, j ∈ N). So, (4.5) is equivalent to

Ξu(s) = −σ for any s ∈ [0, L] (4.6)

So, σ must belong to the range of Ξ.

According to the definition of Vu, (4.6) is equivalent to

Ξu(0) = −σ and Vu ⊂ ker Ξ.
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Proof of part 3. — From part 1, �pu = Φpu(Gp) gives rise to a well defined
distribution on CLP . On the other hand, denote by Ψ̂pu the canonical bijection
induced by Ψpu:

Ψ̂pu : Gp/ ker Ψpu → �pu
So we can put on �pu the Banach structure so that Ψ̂pu is an isometry. In
this way, �p is then a weak distribution. On the other hand, the family of
smooth vector field {Ei, i ∈ N} satisfies the condition (LBs) for any s ∈ N
at any point, and as Ψ1

u is linear with Lipschitz constant independent of u,
the map (u, (σ, ξ)) �→ Ψpu(σ, ξ) is smooth.

It remains to show that ker Ψpu is complemented in Gp for each u ∈ CLP .
At first, for p = 2, as G2 is a Hilbert space, it is always true. In particular,
the previous Banach structure on each �2

u is a Hilbert structure. However,
we shall show this result for each case p = 1 and p = 2.

Assume that u ∈ R(E)
If ker Ψpu = {0} there is nothing to prove. Now assume that ker Ψpu �= {0}.
At first, suppose that we have a partition N = A∪B such that {ea, a ∈ A}
(resp. {eb, b ∈ B}) is a Hilbert basis of [Vu]⊥ (resp. Vu). By construction,
each component ua is constant, for all a ∈ A. So the Lie brackets [Ea, Ea′ ],
for a, a′ ∈ A, belongs to Du. Let be

K = {ξ ∈ lp(Λ) such that ξij = 0 if i or j ∈ B}

According to the notations of the proof of part 2, for any ξ ∈ K if we denote
again by Ξ the associated endomorphism of H, ker Ξ contains Vu and if
σ = −Ξu(0) then (σ, ξ) belongs to ker Ψpu. So, the subspace

K̂ = {(σ, ξ) ∈ lp(N) ⊕ lp(Λ), ξ ∈ K, σ = −Ξu(0)}

is contained in ker Ψpu.

On the other hand, if (σ, ξ) belongs to ker Ψpu, from the proof of part 2
and we have σ = −Ξu(0) and Vu ⊂ ker Ξ and, as {eb} is a basis of Vu, we

then have (σ, ξ) ∈ K̂. It follows that ker Ψ1
u is complemented:

if we denote by L is the subspace of {ξ ∈ l1(Λ), ξij = 0 for all i, j ∈ A},
then the subspace lp(N) ⊕ L is a complement subspace of ker Ψpu.

In the general case, choose a Hilbert basis {e′a, a ∈ A} (resp e′b, b ∈ B})
of [Vu]⊥ (resp. Vu). There exists a linear isometry T of H such that T (e′a) =
ea for a ∈ A and T (e′b) = eb for b ∈ B. Denote by E′j = ∇(e′j)

∗ the associated

vector field on CLP (see Lemma 3.5). The map T̃ : (z, v) → (z, T (v)) is an
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isomorphism of TH such that T̃ (E′j)(u) = Ej(u) for any j ∈ N. Consider

the map Ψ′ : G1 × CLP → TCLP defined by

Ψ′u(σ, ξ) =
∑

i∈N
σiE

′
i(u)+

∑

(i,j)∈Λ

ξij [E
′
i, E
′
j ](u), σ = (σi) ∈ lp(N), ξ = (ξij) ∈ lp(Λ)

Of course, we have
Ψpu = Ψ′u ◦ T

But in the new basis, for Ψ′u we are in the previous situation. So, it follows
that ker Ψpu is complemented, which ends the proof of part 3.

Assume now that u ∈ Σ(E).
According to the proof of Lemma 3.10, then u(t) = ±x ∈ S∞ for any
t ∈ [0, L], there exists an Hilbert basis {e′i, i ∈ N} such that x = e′1, the
associated family {E′i(u), i > 1} is a basis of �u and we have E′1(u) = 0
(see Remark 3.8). Moreover, as the components of u are constant, from
Lemma 4.3, all brackets [E′j , E

′
l ](u) belongs to Du for i > 1 and j > 1 and

[E′1, E
′j] = −xiEj also belongs to �u. As previously, we can consider the

map

Ψ′u(σ, ξ) =
∑

i∈N
σiE

′
i(u)+

∑

(k,l)∈Λ

ξkj [E
′
i, E
′
j ](u), σ = (σi) ∈ lp(N), ξ = (ξij) ∈ lp(Λ)

Its kernel is Re′1 ⊕ lp(Λ). From the same argument as previously, we obtain
that the ker Ψpu is complemented. Moreover, the restriction of Ψpu to lP (N)
has a kernel of dimension 1 and the restriction of Ψp to the orthogonal
[ker Ψpu] in l1(N) is an isomorphism onto �pu.

Proof of part 4. — Now, we must show that the range of Ψ2
u does not

depend on the choice of the Hilbert basis (ei) of H. So given any other
Hilbert basis (e′j) of H, denote again by E′j = ∇(e′j)

∗ the associated vector

field on CLP . So we have the decomposition:

E′i =
∑

j∈N
ajiEj and

[E′j , E
′
k] =

∑

l,m∈N
alja

m
k [El, Em] =

∑

(l,m)∈Λ

(alja
m
k − amj alk)[El, Em] (4.7)

Let T be the isometry of H defined by T (ei) = e′i. Let l2BA(H) be the
set of Hilbert-Schmidt bilinear antisymmetric maps. Then {e∗i ∧ e∗j , (i, j) ∈
Λ} is a Hilbert basis of l2BA(H). Denote by T 2 the isometry of l2BA(H)
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induced by T on l2BA(H). Then matrix of T 2 in this basis is precisely [(aki a
l
j−

akj a
l
i)](i,j),(k,l)∈Λ. It follows that T (resp. T 2) is an isometry of l2(N) (resp.

l2(Λ))

On the other hand, to the choice (e′i) of a basis of H is naturally associ-

ated the map Ψ′2 : CLP ×Gp → TCLP characterized by:

Ψ′
2
u(σ, ξ) =

∑

i∈N
σiE

′
a(u) +

∑

(j,k)∈Λ

ξjk[E
′
j , E

′
k](u)

According to (4.7) we have:

Ψ2
u(σ, ξ) = Ψ′

2
u(Tσ, T 2ξ)

So we have Ψ′2u(G2) = �2
u for any u ∈ CLP .

On the other hand, according to Lemma 3.8, it is clear that Du is con-
tained in �2

u. According to Remark 3.11, We can note that ψ2
u(l

2(N) = Du
and from the proof of part 3, Ψ2(l2(Λ)) is a complemented space of Du in
�2
u �

4.4. Proof of Theorem 4.1

Claim 1. — The distributions �1 and �2 = D̄ are integrable.

Proof. — According to Lemma 4.4 , we have D̄u = �2
u and so D̄ is a

well defined weak Hilbert distribution on CLP which does not depend on the
choice of the Hilbert basis {ei, i ∈ N} of H.
We take place in the context of the proof of Lemma 4.4. According to
Lemma 4.3, Lemma 4.4 and Theorem 2.1, it follows that the distribution
�1 is integrable. On the other hand, according to Lemma 4.3, Lemma 4.4
and Theorem 2.1 we also get that D̄ = �2 is integrable. We again denote
by X the family {Ei, i ∈ N} of vector fields.

Claim 2. — Any X -orbit is contained in a maximal integral manifold
of D̄.

Proof. — For the sake of simplicity, we only denote by G the previous
Hilbert space G2. As the distribution D̄ is integrable, let f : N → CLP be any
maximal integral manifold of D̄. Without loss of generality, we can identify
N with f(N) and take f = iN the natural inclusion of N (with its Hilbert
manifold structure) into CLP . Consider the pull-back bundle f∗(CLP ×G) over
N . Note that f∗(CLP ×G) can be identified with N ×G. As the range of Ψu
is D̄u, for any u, the bundle morphism Ψ : CLP ×G→ TCLP induces a bundle
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morphism Ψ̃ from N ×G to TN which is onto. Moreover, the orthogonal of
ker Ψ̃u in {u} ×G, gives rises to a Hilbert sub-bundle of N ×G. Denote by
N this sub-bundle and by Π the natural orthogonal projection of N ×G on
N . Now, we have Π◦Ψ̃ = Ψ̃ and the restriction of Ψ̃ to N is an isomorphism
from N onto TN and we have

Tf ◦ Ψ̃ = Ψ ◦ (Id× f) (4.8)

Now, given the canonical Hilbert basis {εi, ωjl, i ∈ N, (j, l) ∈ Λ} of G, we

set Êi(u) = Ψ̃u(εi) and Êjl(u) = Ψ̃u(ωjl). In fact, Êi and Êjl are smooth
global vector fields on N . On the other hand, we have Ψv(εi)(u) = Ei(u)
and Ψv(ωjl) = [Ej , El](v) for any v ∈ f(N).

According to proposition 2.3, there exist (global) vector fields Ẽi on N such
that f∗Ẽi = Ei and so f∗[Ẽj , Ẽl] = [Ej , El]. It follows from (4.8) that

Êi = Ẽi and Êjl = [Ẽj , Ẽl].

Let X̃ be the induced family {Ẽi, [Ẽj , Ẽl], i, j, l ∈ N, j < l}. As Ψ (resp.

Ψ̃) is a (global) upper trivialization for D̄ on CLP (resp TN on N), it follows
that, for any u ∈ CLP (resp.u ∈ N), there exists an open neighborhood
U ⊂ CLP (resp. Ũ ⊂ N) of u such that X (resp. X̃ ) satisfies the condition
(LBs) on U (resp. Ũ) for s > 3 (see [4], proof of Theorem 6, part 2).
Consider any family ξ = {Xα, α ∈ A} ⊂ X and let ξ̃ = {X̃α, α ∈ A} be the
corresponding family on a maximal integral manifold N . Given u ∈ f(N),
consider some flow Φξτ associated to ξ and let γ(t) = Φξτ (t, u) be the integral
curve defined on [0, ||τ ||1]. From proposition 2.3, there exists a curve γ̃ :
[0, ||τ ||1[→ N such that f ◦ γ̃ = γ on [0, ||τ ||1[. We set v = γ(||τ ||1).

We shall show that v also belongs to f(N), or equivalently, Φξτ (||τ ||1, u) =
φξτ (u) belongs to N .

Consider a maximal integral manifold g ≡ iM : M → CLP of D̄ through v
and set ṽ = (iM )−1(v). As, we have already seen, if X ′ is the family of vector
fields {E′i, [E′i, E′l ], i, j, l,∈ N, j < l} on M such that g∗E′i = Ei, then X ′
satisfies the condition (LBs). On N , we also have a family ξ′ = {X ′α, α ∈ A}
defined on a neighborhood of v and so g∗X ′α = Xα. Then ξ′ also satisfies
the condition (LBs) for s > 3. So, from Theorem 2 of [4], there exists η > 0

such that, for τ ′ ∈ l1(A) with ||τ ′||1 � η, the corresponding flow Φξ
′

τ ′(., .)

is defined on a neighborhood Ṽ of ṽ = g−1(v) in M . Now coming back
to the original flow Φξτ on CLP , if τ = (τα)α∈A, there exists α0 such that∑

α�α0

|τα| < η. Then, given any a ∈ A with a � α0, we set τa = (τ ′α) with

τ ′α = 0 for α < a and τ ′α = τα for α � a. The corresponding flows Φξ
′
τa and
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Φ̂ξ
′
τa are defined on M . Moreover, we have

g ◦ Φξ
′
τa(t, z̃) = Φξτa(t, g(z̃)) and g ◦ Φ̂ξ

′
τa(t, z̃) = Φ̂ξτa(t, g(z̃)) (4.9)

for any z̃ ∈ Ṽ .
By construction of the flow Φξτ we have

Φξτa(||τa||1, γ(τa)) = v and so Φ̂ξτa(||τa||1, v) = γ(τa)

For any a � α0, in CLP consider the curve γ̂a(s) = Φ̂ξta(||τa||1−s, v). This
curve is defined on [0, ||τa||1] and joins v to γ(τa). In the same way, in M ,
consider the curve γ̂′a(s) = Φ̂ξ

′
τa(||τa||1 − s, v). This curve is also defined on

[0, ||τa||1] and joins ṽ to ṽa in N . According to (4.9) we have

g ◦ γ̂′a = γ̂a.

In particular, we get g(ṽ) = γ(τa). But γ(τa) belongs to f(N) ≡ N and
to g(M) ≡ M as subsets of CLP . But, (N, f ≡ iN ) and (M, g ≡ iM ) are
maximal integral manifolds of D̄. So, as N ∩M �= ∅, we must have N = M
and so we can extend γ̃ to the closed interval [0, ||τ ||1] and, in particular,
φξτ (u) = Φξτ (||τ ||1, u) belongs to N .

Now if we have v = Φ(u) for some Φ ∈ GX (see subsection 2.2), then
Φ is a finite composition of local diffeomorphisms of type φξτ or [φξτ ]

−1 or
of type ΦXt for some X ∈ X . From the previous argument, if u ∈ N , then
φξτ (u) and [φξτ ]

−1(u) belong to N and from Lemma 2.3, part 1, ΦXt (u) also
belongs to N . By induction we obtain that v = Φ(u) belongs to N . So the
X -orbit O(u) of u is contained in N .

Claim 3. — If N is a maximal integral manifold of D̄, the accessibility
set A(u) of u ∈ N is a dense subset of N .

Proof. — From Theorem 2.4, O(u) contains the maximal integral man-
ifold N1 of �1 through u and N1 is dense in O(u) (for the topology
of CLP), and so N1 and O(u) have the same closure in CLP . But we have
N1 ⊂ O(u) ⊂ N . As the inclusion of N in CLP is continuous we obtain that
O(u) is dense in N .

From proposition 2.2 the set A(u) is a dense subset of O(u). On the
other hand, according to proposition 2.3, we see that A(u) is contained in
N . So we obtain that A(u) is dense in N .

End of the proof of Theorem 4.4.. — Now, it remains to show that the
same results are true on ALP . It is easy to see (and it is left to the reader)
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that all the proofs of Lemma 4.4 work in the same way on the manifold
ALP . So the previous arguments work too in this context. But, in ALP , the
corresponding distribution D̄ is closed. So each maximal integral manifold
of D̄ is a weak Hilbert manifold whose topology is the topology induced by
the topology of the Hilbert manifold ALP . So, such a manifold must be a
Hilbert submanifold of ALP . �

5. Appendix: Almost Lie algebroid structures

The purpose of this appendix is to construct some (almost) Lie Banach
algebroid on CLP and also on each maximal integral manifold of D̄ and some
properties of horizontal lifts in this last structures. These result are used
in [1].

Structures on CLP
According to Lemma 4.4, for p = 1, 2, on Gp we define a Lie algebra

structure in the following way:

let be (εi)i∈N (resp. (εij)(i,j)∈Λ the canonical basis of (lp(N) (resp. (lp(Λ));

according to Lemma 4.3, we then define:

[εi, εj ] = ωij , for all i, j ∈ N

[εi, ωjk] = δijεk − δikεj , for all i ∈ N and (j, k) ∈ Λ

[ωij , ωkl] = δilωjk + δjkωil − δikωjl − δjlωik , for all (i, j)(kl) ∈ Λ.

For any x =
∑

xiαi, y =
∑

yjεj in lp(N) and ξ =
∑

ξijωij , η =∑
ηklβkl in lp(Λ), naturally we can define:

[σ, σ′] =
∑

i,j∈N
σiσ
′
j [εi, εj ]

[σ, η] =
∑

i∈N,(k,l)∈Λ

σiηkl[εi, ωkl]

[ξ, η] =
∑

(i,j)∈Λ,(k,l)∈Λ

ξijηkl[ωij , ωkl].

Now, according to Lemma 4.4, the map Ψp : CLP×Gp → TCLP is morphism
bundle over CLP . Moreover, each section ϕ of the trivial bundle CLP×G→ CLP
can be identified with a map ϕ : CLP → Gp. So, on the set Γ(Gp) of section
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of this trivial bundle we can define a Lie bracket by:

[ϕ,ϕ′](u) = [ϕ(u), ϕ′(u)] + dϕ(Ψp(u, ϕ′(u)) − dϕ′(Ψpu, ϕ(u))

According to [5] section 4 or [1], it follows that (Gp × CLP Ψ, CLP , [ , ]) has a
Banach Lie algebroid structure on CLP

In Gp let be π : Gp → lp(N) the canonical projection whose kernel
is lp(Λ) and denote again by π : CLP × Gp → CLP × lp(N) the associated
projection bundle. Again any section of the trivial bundle CLP × lp(N) → CLP
can be identified with a map from CLP to lp(N). Of course the set Γ(lp(N))
of such sections is contained in Γ(Gp). So, according to [1], on Γ(lp(N)), we
can define an almost Banach Lie bracket by:

[[ϕ,ϕ′]](u) = π([ϕ,ϕ′](u)).

So, if we denote by θp the restriction of Ψp to CLP × lp(N) we get an almost
Banach Lie algebroid structure (CLP × lp(N),Ψ,CLP , [ , ]) on CLP .

Moreover, again, according to [1] subsection 4.3, the inner product on
l2(N) gives rise to strong Riemaniann metric on (CLP×l2(N),Ψ2, CLP , [ , ]).
Note that, according to Remark 3.11, the induced inner product on Du is
equivalent to the inner product associated to the Riemaniann metric G.

Structures on a maximal integral manifold N of D̄

Given a maximal integral manifold (f,N) of D̄, the pull back f∗(CLP ×
l2(N)) and f∗(CLP × G2) can be identified with N × l2(N) and N × G re-
spectively. Then, θ2 and Ψ2 induces anchors θN : N × l2(N) → TN and
ΨN : N × G2 → TN and the almost bracket [[ , ]] induces an almost
bracket again denoted [[ , ]]. So (N × l2(N), θN , N, [[ , ]]) is an almost
Banach Lie algebroid on N and (N ×G2,ΨN , N, [[ , ]]) is a Banach Lie
algebroid on N . Moreover the canonical scalar product on l2(N) (resp. G2)
gives rise to a strong Riemannian metric on (N × l2(N), θN , N, [[ , ]]) (resp.
on (N ×G2,ΨN , N, [[ , ]])).

Essentially from the proof of Lemma 4.4 we get the following result (used
in [1])

Proposition 5.1. — Fix some u ∈ N . Then we have the following pro-
perties

(1) Assume that u ∈ Σ(E) then N = Σ(E). Let be Lv the 1-codimensional
Hilbert subspace [ker θN ]⊥v ⊂ {v} × l2(N) for any v ∈ N . Then L =
∪v∈NLv is a 1-codimensional Hilbert sub-bundle of N× l2(N) and the
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restriction ψN of ΨN to L is an isomorphism onto TN and we have
D|N = TN .

(2) Assume that u ∈ R(E). Let be Vu the Hilbert subspace of H generated
by the set

{u(t) − u(0), t ∈ [0, L]}
and choose an Hilbert basis {e′a, a ∈ A} (resp e′b, b ∈ B}) of [Vu]⊥
(resp. Vu) (see the proof of part 3 of Lemma 4.4 ). If Λu is the set
of pair (i, j) ∈ Λ such that that i or j do not belongs to A, then N
is an Hilbert manifold modeled on l2(N)⊕ l2(Λu) and is contained in
R(E) .
Let be Lv the orthogonal of ker[ΨN ]v ⊂ {v}×G2. Then L = ∪v∈NLv
is a Hilbert sub-bundle of N ×G2 which contains N × l2(N) and the
restriction of ψN of ΨN to L is an isomorphism on TN
Moreover, L contains N×l2(N) and the restriction of θN to N×l2(N)
is an isomorphism on D|N

(3) Let be γ an horizontal piecewise Ck-curve in N . Then there ex-
ists an unique piecewise Ck−1 section (γ, σ) of L over γ such that
ψN (γ(t)), σ(t)) = γ̇(t) for all t.

Proof. — From the proof of part 3 of Lemma 4.4 for p = 2 , we get that
D̄u = Du for any u ∈ Σ(E). So Σ(E) is an integral manifold of D̄. On the
other hand, from the proof of part 3 of Lemma 4.4 for p = 2, taking u ∈ R(E)
we get that the tangent space to N is modeled on l2(N) ⊕ l2(Λu) (with the
notations introduced in part (2)). As for u ∈ R(E), we have D �= D̄, it
follows that Σ(E) is a maximal integral manifold of D̄, and, for u ∈ R(E),
so N is contained in R(E).

As ΨN : N × G2 → TN is a surjective Hilbert bundle morphism, the
kernel of this morphism is an Hilbert sub-bundle K of N × G2. It follows
that L is also an Hilbert sub-bundle of N×G2 and the restriction ψN of ΨN
to each L is an isomorphism onto TN . Given u ∈ N , if u ∈ R(E), according
to notations in (2), by the same arguments used in proof of part 4 of Lemma
4.4, we can show that l2(N) is contained in Lu. Now, if we identify H with
l2(N), for u ∈ Σ(E), the kernel of Ψ2

u in {u} ×G2 is R.E(u) ⊕ l2(Λ). So the
vector space Lu is the orthogonal of ker[ΨN ]u in l2(N) (see the proof of part
3 of Lemma 4.4).

Let be γ : [0, T ] → N a horizontal piecewise Ck-curve for k � 1. Assume
that N ⊂ R(E). On one hand, ψN : L → TN is an isomorphism and on the
other hand ψN (N × l2(N)) = D|N for u ∈ R(E) (resp. ψN (L = D|N for u ∈
Σ(E). So the restriction θN of ψN to N × l2(N) is an isomorphism of bundle
onto D|N . As γ is horizontal, the curve (γ(t), x(t)) = (γ(t), [θN ]−1(ġ(t)) is
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a well defined piecewise Ck−1-curve which satisfies the conclusion in (3).
Finally, when N = Σ(E), ψN is an isomorphism from L on TN (see part
(1)) so conclusion (3) is clear in this case. �
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