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Freeness of hyperplane arrangements
and related topics

Masahiko Yoshinaga(1)

ABSTRACT. — These are the expanded notes of the lecture by the author
in “Arrangements in Pyrénées”, June 2012. We are discussing relations of
freeness and splitting problems of vector bundles, several techniques prov-
ing freeness of hyperplane arrangements, K. Saito’s theory of primitive
derivations for Coxeter arrangements, their application to combinatorial
problems and related conjectures.

RÉSUMÉ. — Cet article est un développement des notes de l’exposé
donnée par l’auteur à la conférence « Arrangements en Pyrénées », en
juin 2012. Nous discutons les relations entre les problèmes de liberté et
ceux de décomposabilité pour les fibrés vectoriels, plusieurs techniques
qui prouvent la liberté pour des arrangements d’hyperplans, la théorie de
K. Saito des dérivations primitives pour les arrangements de Coxeter, leur
application à des problèmes combinatoires et quelques conjectures liées.

0. Introduction

Roughly speaking, there are two kind of objects in mathematics: general
objects and specialized objects. In the study of general objects, individual
objects are not so important, the totality of general objects is rather inter-
esting (e.g. stable algebraic curves and moduli spaces). On the other hand,
specialized objects are isolated, tend to be studied individually.

Let us fix a manifold (algebraic, complex analytic, whatever) X. Then
the divisors on X are general objects. In 1970’s Kyoji Saito [24] introduced

(1) Department of Mathematics, Hokkaido University, N 10 W 8 Sapporo 060-0810,
Japan
yoshinaga@math.sci.hokudai.ac.jp

– 483 –



Masahiko Yoshinaga

the notion of free divisors with the motivation to compute Gauss-Manin
connections for universal unfolding of isolated singularities. It was proved
that the discriminant in the parameter space of the universal unfolding is
a free divisor. Free divisors are specialized objects. The discriminant for a
simple singularity is obtained as a quotient of the union of hyperplanes of fi-
nite reflection group, which implies that the union of reflecting hyperplanes
(Coxeter arrangement) is also a free divisor (free arrangement). He also
studied Coxeter arrangements in terms of invariant theory and found deep
structures related to freeness. This has made deep impact on combinatorics
of Coxeter arrangements (which is summarized in §2). Subsequently Terao
developed basic techniques and laid the foundations of the theory of free ar-
rangements. Now this becomes a rich area which is related to combinatorics
and algebraic geometry.

The purpose of this article is to survey the aspects of free arrangements.
§1 is devoted to describe techniques proving freeness. In early days, the free-
ness of arrangements was studied mainly from algebraic and combinatorial
view point. It was pointed out by Silvotti [32] and Schenck [28, 19] that
the freeness is equivalent to splitting of a reflexive sheaf on the projective
space Pn into sum of line bundles (“splitting problem”). This point of view
has been a source of ideas of several recent studies on freeness of arrange-
ments. The importance of multiarrangements emerged in these researches,
and the general theory of free multiarrangements has been developed in the
last decade. We are trying to depict them in §1.

In §2, we summarize the theory of primitive derivation for Coxeter ar-
rangements. I recommend [27] for full details.

§3 is devoted to the problems concerning truncated affine Weyl arrange-
ments. As an application of results in previous sections, it is proved that the
so-called extended Catalan and extended Shi arrangements are free, which
has also combinatorial consequences via Terao’s factorization theorem [39]
and Solomon-Terao’s formula [34]. This settled the conjecture by Edelman
and Reiner [12]. We also try to convince that some open problems (including
“Riemann Hypothesis” by Postnikov and Stanley [23]) seems to be related
to the algebraic structures studied in §2.

The author would like to thank Takuro Abe, Daniele Faenzi and Michele
Torielli for comments and sharing unpublished ideas concerning this article.
He also thanks organizers of the school “Arrangements in Pyrénées”, Pau,
June 2012.
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1. Splitting v.s. Freeness

In this section, we discuss relations of freeness of divisors (especially
hyperplane arrangements) and splitting problems of vector bundles. We
emphasize parallelism and subtle differences.

1.1. Splitting problems

First let us recall the correspondence between graded modules and co-
herent sheaves on the projective space. (Basic reference is [17, Chap II §5])
Let S = C[x1, x2, . . . , x�] be the polynomial ring and P�−1

C = ProjS the pro-

jective (� − 1)-space (denote P�−1 for simplicity). P�−1 is covered by open
subsets Uxi (i = 1, . . . , �), where Uxi is an open subset defined by {xi �= 0}.

Let M be a graded S-module. Then M induces a sheaf M̃ on P�−1, with
sections

Γ(Uxi , M̃) = (Mxi)0,

where Mxi = M ⊗S S[ 1
xi

] is the localization by xi and (−)d denotes the
degree d component of the graded module. For k ∈ Z, define the graded
module M [k] by shifting degrees by k, namely, M [k]d = Md+k. Denote

O = S̃. The sheaf S̃[k] is a rank one module over O, which is denoted by
O(k).

Using the natural map Γ(P�−1, E) × Γ(P�−1,F) −→ Γ(P�−1, E ⊗ F), we
can define a graded ring structure on Γ∗(O) :=

⊕
d∈Z Γ(P�−1,O(d)), which

is isomorphic to S. More generally, for any sheaf (O-module) F on P�−1,

Γ∗(F) :=
⊕

d∈Z
Γ(Pn,F ⊗ O(d))

has a graded S-module structure. For a graded S-module M , Γ∗(M̃) is
expressed as

Γ∗(M̃) = {(f1, . . . , f�) | fi ∈ Mxi , fi = fj in Mxixj}
= {f ∈ Mx1x2...x� | ∃N � 0, xNi f ∈ M,∀i = 1, . . . , �}.

Hence there is a natural homomorphism α : M −→ Γ∗(M̃). The above map
α is not necessarily isomorphic.

Definition 1.1. — A sheaf of O-modules F on Pn is said to be splitting
if there exist integers d1, . . . , dr ∈ Z such that

F � O(d1) ⊕ . . . ⊕ O(dr).

(Note that if we pose d1 � d2 � . . . � dr, the degrees are uniquely deter-
mined.)
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Let E be an O-module. Denote by E∨ = HomO(E ,O) the dual module
of E . An O-module E is called reflexive if the natural map E −→ E∨∨ is an
isomorphism. E is called a vector bundle if it is locally free.

A torsion free O-module on P1 is always splitting.

Theorem 1.2 (Grothendieck’s splitting theorem). — Let E be a vector
bundle on P1. Then E is splitting.

A vector bundle E on Pn, with n � 2 is non-splitting in general. For
example, the tangent bundle TPn is irreducible rank n vector bundle on Pn
for n � 2, i.e. not a sum of proper sub-bundles.

Let E be a torsion free sheaf. Let H be a hyperplane defined by a linear
form α. Since α ∈ Γ(Pn,O(1)), we have the following short exact sequence

0 −→ E(−1)
α·−→ E −→ E|H −→ 0. (1.1)

The short exact sequence (1.1) plays a crucial role in splitting problems.

Let E be a rank r vector bundle on Pn. Then det E :=
∧r E is a line

bundle and is called the determinant bundle. The first Chern number of E
is the integer c1 ∈ Z satisfying det E = O(c1).

Proposition 1.3. — Let E be a rank r vector bundle on Pn with n � 2.

(i) Let δi ∈ Γ(E ⊗ O(−di)) for certain di ∈ Z, i = 1, . . . , r. Assume
that δ1, . . . , δr are linearly independent over rational function field
(or equivalently, δ1 ∧ . . . ∧ δr ∈ Γ(det E ⊗ O(−d1 − . . . − dr)) is non-
zero) and

∑r
i=1 di = c1(E). Then E is splitting and E =

⊕r
i=1 O(di).

(ii) Let H ⊂ Pn be a hyperplane. If the restriction E|H to H is splitting
and the induced map

Γ∗(E) −→ Γ∗(E|H)

is surjective, then E is also splitting.

Proof. — (i) Let F =
⊕r

i=1 O(di). Then (δ1, . . . , δr) determines a ho-
momorphism

F −→ E : (f1, . . . , fr) �−→ f1δ1 + . . . + frδr.

The Jacobian of this map is an element of Γ(Hom(O(d1+. . .+dr),O(c1))) =
Γ(O) = C. By assumption, the Jacobian is nowhere vanishing, hence F � E .
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(ii) Suppose that E|H =
⊕r

i=1 Fi and Fi � OH(di). Then by the surjec-
tivity assumption, there is δi ∈ Γ(E ⊗ O(−di)) such that δi|H is a nowhere
vanishing section of Γ(H,Fi⊗O(−di)) = C. Since δ1|H , . . . , δr|H are linearly
independent, so are δ1, . . . , δr. Then by (i), E is also splitting. �

Remark 1.4. — Comments to those who are already familiar with free
arrangements: (i) and (ii) in Proposition 1.3 are analogies of Saito’s and
Ziegler’s criteria respectively. See Theorem 1.14 and Corollary 1.35.

Here we present some criteria for splitting.

Theorem 1.5. — Let F be a vector bundle on Pn.

(1) (Horrocks) Assume that n � 2. F is splitting ⇐⇒ Hi(F(d)) = 0, for
any 0 < i < n and d ∈ Z ⇐⇒ H1(F(d)) = 0, for any d ∈ Z.

(2) (Horrocks) Assume that n � 3. Fix a hyperplane H ⊂ Pn. Then F is
splitting ⇐⇒ F|H is splitting.

(3) (Elencwajg-Forster, [14]) Assume that n � 2. Let L ⊂ Pn be a generic
line and set E|L = OL(d1) ⊕ . . . ⊕ OL(dr). Then

c2(E) �
∑

i<j

didj ,

and E is splitting if and only if the equality holds.

Proof. — Here we give the proof for (1). The direction =⇒ is well-
known (Hi(Pn,O(d)) = 0, for 0 < i < n and ∀d ∈ Z). Let us assume
that H1(Pn,F(d)) = 0 for d ∈ Z. Let us first consider the case n = 2.
By Grothendieck’s splitting theorem, F|H is splitting. By the long ex-
act sequence associated with (1.1), we have the surjectivity of Γ∗(F) −→
Γ∗(F|H). Hence by Proposition 1.3 (i), F is splitting. For n � 3, it is proved
by induction. �

Remark 1.6. — Horrocks’ restriction criterion (2) is generalized to re-
flexive sheaves ([4]). Later we will give a refinement of (3) for n = r = 2
(see Theorem 1.45).

1.2. Basics of arrangements

Let V be an �-dimensional vector space. A finite set of affine hyperplanes
A = {H1, . . . , Hn} is called a hyperplane arrangement. For each hyperplane
Hi we fix a defining equation αi such that Hi = α−1

i (0). An arrangement
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A is called central if each Hi passes the origin 0 ∈ V . In this case, the
defining equation αi ∈ V ∗ is linear homogeneous. Let L(A) be the set of
non-empty intersections of elements of A. Define a partial order on L(A)
by X � Y ⇐⇒ Y ⊆ X for X,Y ∈ L(A). Note that this is reverse inclusion.

Define a rank function on L(A) by r(X) = codimX. Denote Lp(A) =
{X ∈ L(A)| r(X) = p}. We call A essential if L�(A) �= ∅.

Let µ : L(A) → Z be the Möbius function of L(A) defined by

µ(X) =

{
1 for X = V
− ∑

Y <X µ(Y ), for X > V.

The characteristic polynomial of A is χ(A, t) =
∑

X∈L(A) µ(X)tdimX . The
characteristic polynomial is characterized by the following recursive rela-
tions.

Proposition 1.7. — Let A = {H1, . . . , Hn} be a hyperplane arrange-
ment in V . Let A′ = {H1, . . . , Hn−1} and A′′ = Hn ∩ A′ the induced ar-
rangement on Hn. Then

• in case A is empty, χ(∅, t) = tdimV , and

• χ(A, t) = χ(A′, t) − χ(A′′, t).

We also define the i-th Betti number bi(A) (i = 1, . . . , �) by the formula

χ(A, t) =
∑�

i=0
(−1)ibi(A)t�−i.

This naming and the importance of the characteristic polynomial in combi-
natorics would be justified by the following result.

Theorem 1.8. — (1) If A is an arrangement in F�q (vector space over

a finite field Fq), then |F�q \ ⋃
H∈AH| = χ(A, q).

(2) If A is an arrangement in C�, then the topological i-th Betti number
of the complement is bi(C� \ ⋃

H∈AH) = bi(A).

(3) If A is an arrangement in R�, then |χ(A,−1)| is the number of
chambers and |χ(A, 1)| is the number of bounded chambers.

(1) of the above theorem can be used for the computation of χ(A, t) for
A defined over Q. It is sometimes called “Finite field method”. Athanasiadis
pointed out that we may drop the assumption “field”.
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Theorem 1.9. — Let A be a hyperplane arrangement such that each
H ∈ A is defined by a linear form αH of Z-coefficients. For a positive
integer m > 0, consider H = {x ∈ (Z/mZ)� | αH(x) ≡ 0m}. There exists a
positive integer N which depends only on A such that if m > N and m is
coprime to N , then

|(Z/mZ)n \
⋃

H∈A
H| = χ(A,m).

Athanasiadis systematically used this result to compute characteristic
polynomials. (See [8, 9].)

1.3. Basics of free arrangements

Let V = C� be a complex vector space with coordinate (x1, · · · , x�), A =
{H1, . . . , Hn} be a central hyperplane arrangement, namely, 0 ∈ Hi for all

i = 1, . . . , n. We denote by DerV =
⊕�

i=1 S
∂
∂xi

the set of polynomial vector

fields on V (or S-derivations) and by Ωp
V =

⊕
i1<...<ip

Sdxi1 ∧ . . .∧dxip the
set of polynomial differential p-forms.

Definition 1.10. — Let θ =
∑�

i=1 fi∂xi be a polynomial vector field. θ
is said to be homogeneous of polynomial degree d when f1, . . . , f� are homo-
geneous polynomial of degree d. It is denoted by pdeg θ = d.

Remark 1.11. — Usually the degree of θ is considered to be deg fi − 1
which is one less than pdeg θ. To avoid confusion, we use the notation
pdeg θ.

Let us denote by S = S(V ∗) = C[x1, . . . , x�] the polynomial ring and fix
αi ∈ V ∗ a defining equation of Hi, i.e., Hi = α−1

i (0).

Definition 1.12. — A multiarrangement is a pair (A,m) of an ar-
rangement A with a map m : A → Z�0, called the multiplicity.

An arrangement A can be identified with a multiarrangement with con-
stant multiplicity m ≡ 1, which is sometimes called a simple arrange-
ment. With this notation, the main object is the following module of S-
derivations which has contact to each hyperplane of order m. We also put

Q = Q(A,m) =
∏n

i=1 α
m(Hi)
i and |m| =

∑
H∈Am(H).

Definition 1.13. — Let (A,m) be a multiarrangement, and define the
module of vector fields logarithmic tangent to A with multiplicity m (loga-
rithmic vector field) by

D(A,m) = {δ ∈ DerV |δαi ∈ (αi)
m(Hi),∀i},
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and differential forms with logarithmic poles along A (logarithmic forms) by

Ωp(A,m) =

{
ω ∈ 1

Q
Ωp
V

∣∣∣∣ dαi ∧ ω does not have pole along Hi,∀i
}

.

The module D(A,m) is obviously a graded S-module. It is proved in
[24] that D(A,m) and Ω1(A,m) are dual modules to each other. Therefore,
they are reflexive modules. A multiarrangement (A,m) is said to be free
with exponents (e1, . . . , e�) if and only if D(A,m) is an S-free module and
there exists a basis δ1, . . . , δ� ∈ D(A,m) such that pdeg δi = ei. When
m ≡ 1, D(A, 1) and Ωp(A, 1) is denoted by D(A) and Ωp(A) for simplicity.
An arrangement A is said to be free if (A, 1) is free. The Euler vector field

θE =
∑�

i=1 xi∂i is always contained in D(A) for simple case.

Let δ1, . . . , δ� ∈ D(A,m). Then δ1 ∧· · ·∧δ� is divisible by Q(A,m) ∂
∂x1

∧
. . . ∧ ∂

∂x�
. The determinant of coefficient matrix of δ1, . . . , δ� can be used to

characterize freeness.

Theorem 1.14 (Saito’s criterion, [24]). — Let δ1, . . . , δ� ∈ D(A,m).
Then the following are equivalent:

(i) D(A,m) is free with basis δ1, . . . , δ�, i. e., D(A,m) = S·δ1⊕. . .⊕S·δ�.

(ii) δ1 ∧ · · · ∧ δ� = c · Q(A,m) · ∂
∂z1

∧ · · · ∧ ∂
∂z�

, where c ∈ C∗.

(iii) δ1, . . . , δ� are linearly independent over S and
∑�

i−1 pdeg δi = |m| =∑
H∈Am(H).

From Saito’s criterion, we also obtain that if a multiarrangement (A,m)

is free with exponents (e1, . . . , e�), then |m| =
∑�

i=1 ei.

Proposition 1.15. — If A is free, then A is locally free, i.e., AX =
{H ∈ A | X ⊂ H} is free for any X ∈ L(A), X �= 0.

For simple arrangement case, there is a good connection of these mod-
ules with the characteristic polynomial. The following result shows that the
graded module structure of D(A) determines the characteristic polynomial
χ(A, t).

Theorem 1.16 (Solomon-Terao’s formula [34]). — Denote by Hilb(Ωp(A),
x) ∈ Z[[x]][x−1] the Hilbert series of the graded module Ωp(A). Define

Φ(A;x, y) =

�∑

p=0

Hilb(Ωp(A), x)yp. (1.2)
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Then

χ(A, t) = lim
x→1

Φ(A;x, t(1 − x) − 1). (1.3)

In particular, for free arrangements, we have the following beautiful for-
mula, which is known as Terao’s factorization theorem.

Theorem 1.17 ([39]). — Suppose that A is a free arrangement with
exponents (e1, . . . , e�). Then

χ(A, t) =

�∏

i=1

(t − ei). (1.4)

Remark 1.18. — There is a notion of the characteristic polynomial of a
multiarrangement (A,m) [3]. However it can not be defined combinatorially,
rather by the Solomon-Terao’s formula for Ωp(A,m).

Example 1.19. — (Braid arrangement or An−1-type arrangement) Let
Hij = {(x1, . . . , x�) ∈ C� | xi = xj}. Consider the arrangement A = {Hij |
1 � i < j � n}. In other words Q(A) =

∏
i<j(xi − xj).

The characteristic polynomial of this arrangement is easily computed by
the finite field method. For the complement with ⊗Fq is expressed as

{(x1, . . . , xn) ∈ Fnq | xi �= xj , for i �= j}.

It is naturally bijective to (ordered) choices of n distinct elements from Fq.
Hence the cardinality is

|Fnq \
⋃

i<j

Hij | = q(q − 1) . . . (q − n + 1),

then we have χ(A, t) = t(t − 1)(t − 2) . . . (t − n + 1).

Furthermore, A is a free arrangement. Indeed set

δ0 = ∂x1
+ ∂x2

+ . . . + ∂xn ,

δ1 = x1∂x1 + x2∂x2 + . . . + xn∂xn ,

δ2 = x2
1∂x1 + x2

2∂x2 + . . . + x2
n∂xn ,

. . .

δn−1 = xn−1
1 ∂x1 + xn−1

2 ∂x2 + . . . + xn−1
n ∂xn .

Then δk(xi−xj) = xki −xkj , which is divisible by (xi−xj). Hence δk ∈ D(A).
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Furthermore, by Vandermonde’s formula

det




1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...
xn−1

1 xn−1
2 . . . xn−1

n




=
∏

1�i<j�n
(xj − xi),

and by Saito’s criterion, we may conclude that δ0, . . . , δn−1 is a basis of
D(A). Hence A is free with exponents (0, 1, . . . , n − 1).

To conclude this section, we note that the module of logarithmic vector
fields is recovered from the sheafification:

D(A,m)

−→ Γ∗( ˜D(A,m)). (1.5)

Therefore freeness of (A,m) is equivalent to the splitting of D(A,m).

Proposition 1.20. — (A,m) is free with exponents (d1, . . . , d�) if and

only if ˜D(A,m) � O(−d1) ⊕ O(−d2) ⊕ . . . ⊕ O(−d�).

1.4. 2-multiarrangements

A simple arrangement A = {H1, . . . , Hn} in dimension two is always free
with exponents (1, n − 1). We can construct an example of basis explicitly
as follows:

δ1 = x∂x + y∂y, δ2 = (∂yQ)∂x − (∂xQ)∂y.

The multiarrangement (A,m) in dimension two is also always free. There
are two ways to prove it. First idea is based on D(A,m) being a reflexive
module. Then 2-dimensional and reflexivity implies freeness. Another idea
is based on the isomorphism

D(A,m)

−→ Γ∗( ˜D(A,m)).

If A is in dimension two, the sheafification ˜D(A,m) is a torsion free sheaf
on P1. By Grothendieck splitting theorem, we conclude D(A,m) is free. We
have the following.

Proposition 1.21. — Let (A,m) be a 2-multiarrangement. Then it is
free and the exponents (d1, d2) satisfy d1 + d2 = |m|.

The determination of exponents of 2-multiarrangements is difficult, but
it is an important problem because it is related to the freeness of 3-arrange-
ments (see §1.5). The following lemma is useful for the computation of the
exponents.
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Lemma 1.22. — Let (A,m) be a 2-multiarrangement. Let δ ∈ D(A,m).

Assume that d = pdeg δ � |m|
2 and no nontrivial divisor of δ is contained

in D(A,m). Then exp(A,m) = (d, |m| − d).

Proof. — Suppose that exp(A,m) = (d1, d2) with d1 � d2. Then clearly

d1 � d. There exists δ1 of pdeg δ1 = d1. Since d � |m|
2 = d1+d2

2 , we have
d1 � d � d2. If d1 < d, then we have d1 < d < d2. Hence δ can be expressed
as δ = F · δ1 with some polynomial F of degF > 0. But this contradicts
the assumption that no nontrivial divisor of δ is contained in D(A,m). So
degF = 0 and we have d1 = d, d2 = |m| − d. �

For the following cases we can determine the exponents combinatorially.

Proposition 1.23. — Let (A,m) be a 2-multiarrangement. We may
assume that mi = m(Hi) satisfies m1 � m2 � . . . � mn > 0. Set m =∑n

i=1 mi.

(i) If m1 � m
2 , then the exponents are exp(A,m) = (m1,m − m1).

(ii) if n � m
2 + 1, then exp(A,m) = (m − n + 1, n − 1).

(iii) If m1 = m2 = . . . = mn = 2, then exp(A,m) = (n, n).

(iv) If n = 3 and m1 � m2 + m3, then

exp(A,m) =

{
(k, k), if |m| = 2k,
(k, k + 1), if |m| = 2k + 1.

Proof. — (i) We can set coordinates (x, y) such that H1 = {x = 0}, in
other words, α1 = x. Set δ = (

∏n
i=2 α

mi) ·∂y. Then δx = 0 and δαi ∈ (αi)
mi

for i � 2. Hence δ ∈ D(A,m). We also have

pdeg δ = m2 + . . .mn = |m| − m1 �
|m|
2

,

and no divisor of δ is not contained in D(A,m). From Lemma 1.22, exp(A,m)
= (m1, |m| − m1).

(ii) Let us define δ as

δ =

∏n
i=1 α

mi
i∏n

i=1 αi
· θE ,

where θE = x∂x + y∂y is the Euler vector field. Then since θEα = α for any
linear form α, δ ∈ D(A,m). From the assumption, we have

pdeg δ = |m| − n + 1 � n − 1.
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Since (|m| − n + 1) + (n − 1) = |m|, we have |m| − n + 1 = pdeg δ � |m|2 .
It is also easily checked that δ does not have non trivial divisor which is
contained in D(A,m). Hence we have exp(A,m) = (|m| − n + 1, n − 1).

(iii) and (iv) are proved by explicit constructions of basis. See [44,
Exapmple 2.2] and [43] respectively. (Both are highly nontrivial.) In §1.8
we present an alternative proof of (iii) given by T. Abe. �

Thus if either max{m(H) | H ∈ A} is large (not less than the half
of |m| =

∑
m(H)) or the number of lines n = |A| is large (not less than

|m|
2 +1), then the exponents are combinatorially determined. This motivates

us to give the following definition.

Definition 1.24. — The multiplicity m : A → Z�0 is said to be bal-

anced if m(H) �
∑

H∈Am(H)

2 for all H ∈ A.

As we have seen, if the multiplicity is not balanced, then the exponents
are combinatorially determined. However the exponents are not combinato-
rially determined for balanced cases in general.

Example 1.25. — Let (At,m) be a multiarrangement defined by

Q(At,m) = x3y3(x + y)1(tx − y)1,

where t ∈ C \ {0,−1}. Then exponents are

exp(At,m) =

{
(3, 5), if t = 1,
(4, 4), if t �= 1.

Indeed, it is easily seen that

δ1 = x3∂x + y3∂y,

δ2 = x5∂x + y5∂y,

form a basis of D(A1,m). For t �= 1 (and t �= 0,−1), δ1 /∈ D(At,m).
But (tx − y)δ1 ∈ D(At,m) with pdeg = 4. If there exists an element of
D(At,m) of pdeg = 3, it should be a divisor of (tx − y)δ1. It is impossible.
Thus exponents for other cases are (4, 4).

We may observe that any 4-lines can be moved by PGL2(C)-action to
xy(x + y)(tx − y) with t ∈ C \ {0,−1}. On a Zariski open subset of the
parameter space C \ {0, 1,−1} ⊂ C \ {0,−1}, the exponents are (4, 4) and
at t = 1, they become (3, 5). This generally happens. We shall prove the
upper-semicontinuity on the parameter space of the following function.
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Definition 1.26. — Put exp(A,m) = (d1, d2). Then we denote

∆(A,m) = |d1 − d2|.

The difference of exponents ∆(A,m) is a function on A and m. We first
fix the multiplicity m. The parameter space of A can be described as

Mn = {(H1, . . . , Hn) ∈ (P1∗)n | Hi �= Hj , for i �= j}

Proposition 1.27. — Fix the multiplicity m : {1, . . . , n} → Z>0. Then

∆ : Mn −→ Z>0, (A �−→ ∆(A,m))

is upper semi-continuous, i. e., the subset {∆ < k} ⊂ Mn is a Zariski open
subset for any k ∈ R.

Proof. — It suffices to prove that {∆ � k} is Zariski closed in Mn.
Since d1 + d2 = |m|, ∆(A,m) � k if and only if there exists δ ∈ D(A,m)

such that pdeg δ � " |m|2 − k
2 #. Thus we consider when δ ∈ D(A,m) of

pdeg δ = " |m|2 − k
2 # exists. Put d = " |m|2 − k

2 #, αi = pix + qiy and

δ = (a0x
d + a1x

d−1y + . . . + ady
d)∂x + (b0x

d + b1x
d−1y + . . . + bdy

d)∂y.

The assertion δαi ∈ (αmi
i ) is equivalent to

δαi = (pix + qiy)
mi(c0x

d−mi + c1x
d−mi−1y + . . . cd−mi

yd−mi), (1.6)

for some c0, c1, . . .. Hence the existence of δ ∈ D(A,m) of degree d is equiv-
alent to the existence of the solution to the system (1.6) of linear equations
on ai, bi and ci. It is a Zariski closed condition on the parameters pi and
qi. �

The following are the two fundamental results on exponents of 2-multi-
arrangements.

Theorem 1.28. — Let m : {1, . . . , n} −→ Z>0 be a balanced multiplicity
and A = {H1, . . . , Hn} a 2-arrangement.

(i) (Wakefield-Yuzvinsky [44]) For generic A, ∆(A,m) � 1.

(ii) (Abe [1]) ∆(A,m) � n − 2.

The proof of (i) is a careful extension of that of upper semicontinuity
(Proposition 1.27). See cited papers for proof. The proof of (ii) is of a very
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different nature. Abe ([1] and Abe-Numata [2]) first fix A and then consider
∆ as a function from the set of multiplicities Zn>0 to Z�0,

∆ : Zn>0 −→ Z�0, m �−→ ∆(A,m).

They studied the structure of this function in great detail. The proof of (ii)
is based on this.

(i) tells the generic behavior of the function ∆. (ii) tells the upper bound
of ∆ for balanced multiplicities. As far as the author knows, the examples
(A,m) attaining the upper bound of ∆ are related to interesting free ar-
rangements of rank 3. Abe found a class of free arrangements which are
combinatorially characterizable [1]. See Example 1.42.

Problem 1.29. — Give a unified proof for Theorem 1.28 (i) and (ii).

1.5. Multiarrangements and free arrangements

Multiarrangements appear as restrictions of simple arrangements. Namely,
let A be an arrangement in V of dimV = �. For H ∈ A let us denote by
AH the induced arrangement on H.

Definition 1.30. — Define the function mH : AH −→ Z>0 by

X ∈ AH �−→ /{H ′ ∈ A | H ′ ⊃ X} − 1.

We call (AH ,mH) the Ziegler’s multirestriction.

Example 1.31. — Let V = C3 with coordinates x, y, z. Put H1 = {z =
0}, H2 = {x = 0}, H3 = {y = 0}, H4 = {x− z = 0}, H5 = {x+ z = 0}, H6 =
{y − z = 0}, H7 = {y + z = 0}, H8 = {x − y = 0}, H9 = {x + y = 0}. Then
A = {H1, . . . , H9} is free with exponents (1, 3, 5). Ziegler’s multirestriction
to (AH1 ,mH1) is x3y3(x − y)(x + y). (See Figure 1)

Figure 1. — A = {H1, . . . , H9} and (AH1 ,mH1 )
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Definition 1.32. — Fix a hyperplane H1 ∈ A. Then we define a sub-
module D1(A) of D(A) by

D1(A) = {δ ∈ D(A) | δαH1 = 0}.

Lemma 1.33. — Under the above notations, D(A) = S · θE ⊕ D1(A).

Proof. — Let δ ∈ D(A). Since δ− δαH1

αH1
·θE is in D1(A), δ =

δαH1

αH1
·θE +(

δ − δαH1

αH1
· θE

)
gives the desired decomposition. �

Theorem 1.34 (Ziegler [54]). — Notations as above.

(i) If δ ∈ D1(A), then δ|H1 ∈ D(AH1 ,mH1).

(ii) If A is free with exponents (1, d2, . . . , d�), then (AH1 ,mH1) is free
with exponents (d2, . . . , d�).

Proof. — We can choose coordinates x1, . . . , x� in such a way that x1 =
αH1 . Let X ∈ AH1 and put

AX = {H ∈ A | H ⊃ X} = {H1, Hi1 , Hi2 , . . . , Him}.

Since H ∩ Hi1 = . . . = H ∩ Him = X, the restriction αip |x1=0 determines
the same hyperplane. Thus we may assume that αip have the form

αi1(x1, . . . x�) = c1x1 + α′(x2, . . . , x�)

αi2(x1, . . . x�) = c2x1 + α′(x2, . . . , x�)

. . . . . .

αim(x1, . . . x�) = cmx1 + α′(x2, . . . , x�),

where c1, . . . , cm are mutually distinct. Let δ ∈ D1(A). By definition,

δ(ckx1 + α′(x2, . . . , x�)) ∈ (ckx1 + α′(x2, . . . , x�)).

Then since δx1 = 0, δα′(x2, . . . , x�) is divisible by ckx1 + α′(x2, . . . , x�) for
all k = 1, . . . ,m. Hence it is divisible by

m∏

k=1

(ckx1 + α′(x2, . . . , x�)).

Now we restrict to x1 = 0. Then δ|x1=0α
′ is divisible by (α′)m. Thus (i) is

proved.

(ii) Let δ1 = θE , δ2, . . . , δ� be a basis of D(A) such that δ2, . . . , δ� ∈
D1(A). Let us set δi =

∑�
j=2 fij∂xi . We will prove that δ2|x1=0, . . . , δ�|x1=0
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are linearly independent over S/x1S = C[x2, . . . , x�]. Indeed by Saito’s cri-
terion, the determinant

det




x1 x2 . . . x�
0 f22 . . . f2n
...

...
. . .

...
0 fn2 . . . fnn


 = x1 · det




f22 . . . f2n
...

. . .
...

fn2 . . . fnn




is divisible by x1 just once. Hence det(fij) is not divisible by x1, which
implies that δ2|x1=0, . . . , δ�|x1=0 are linearly independent over S/x1S =
C[x2, . . . , x�]. Furthermore, we have

�∑

i=2

pdeg δi|x1=0 = |A| − 1 =
∑

X∈AH1

mH1(X).

By Saito’s criterion, they form a free basis of D(AH1 ,mH1). �

It seems natural to pay attention to the exact sequence

0 −→ D1(A)
x1·−→ D1(A)

ρ−→ D(AH1 ,mH1). (1.7)

From the above proof, we know that if A is free, then the restriction map ρ
is surjective.

Corollary 1.35. — If the restriction map ρ is surjective, and
D(AH1 ,mH1) is free with exponents (d2, . . . , d�), then A is free with ex-
ponents (1, d2, . . . , d�).

Proof. — By the assumption, there exists δ2, . . . , δ� ∈ D1(A) such that
ρ(δ2) = δ2|x1=0, . . . , ρ(δ�) = δ�|x1=0 are basis of D(AH1 ,mH1). As in the
previous proof, δ2, . . . , δ� and θE are linearly independent and the sum
of pdeg is |A|. Hence by Saito’s criterion, (θE , δ2, . . . , δ�) is a basis of
D(A). �

Generally, ρ is not surjective. However, local freeness implies local sur-
jectivity.

Definition 1.36. — Let A be an arrangement and H1 ∈ A. Then A is
said to be locally free along H1 if AX = {H ∈ A | X ⊂ H} is free for all
X ∈ L(A) with X ⊂ H1 and X �= 0.

Local freeness along H1 implies

0 −→ D1(AX)
x1·−→ D1(AX)

ρ−→ D(AH1

X ,mH1

X ) −→ 0
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for all X ∈ L(A), X �= 0 with X ⊂ H1. Thus we have an exact sequence of
sheaves over P�−1.

0 −→ ˜D1(A)(−1)
x1·−→ ˜D1(A)

ρ−→ ˜D(AH1 ,mH1) −→ 0. (1.8)

Thus we obtain a relation between Ziegler’s multirestriction and restriction
of the sheaf D1(A).

Proposition 1.37. — If A is locally free along H1, then

˜D1(A)|H1 = ˜D(AH1 ,mH1).

By the above proposition combined with Proposition 1.20 and Horrocks
criterion (Theorem 1.5 (2), see also subsequent Remark 1.6), we have the
following criterion for freeness.

Theorem 1.38 ([47]). — Assume that � � 4. Then A is free with ex-
ponents (1, d2, . . . , d�) if and only if the following conditions are satisfied.

• A is locally free along H1,

• Ziegler’s multirestriction (AH1 ,mH1) is free with exponents (d2, . . . , d�).

The above criterion is not valid for � = 3. Indeed for � = 3, both con-
ditions are automatically satisfied, however, there exist non free 3-arrange-
ments. For characterizing freeness of 3-arrangements, we need characteristic
polynomials.

Theorem 1.39 ([48]). — Let A be a 3-arrangement. Set χ(A, t) = (t−
1)(t2 − b1t + b2) and exp(AH1 ,mH1) = (d1, d2). Then

(i) b2 � d1d2, furthermore
b2 − d1d2 = dim Coker(ρ : D1(A) → D(AH1 ,mH1)).

(ii) If b2 = d1d2, then A is free with exponents (1, d1, d2).

The proof is based on an analysis of Solomon-Terao’s formula. Theorem
1.39 is also a corollary of a result in the next section (Theorem 1.45).

By combining Theorem 1.38 and 1.39, we recently obtained the following
criterion for � � 4.

Theorem 1.40 (Abe-Yoshinaga [6]). — Assume that � � 4 and the
multirestriction is free with exp(AH1 ,mH1) = (d2, . . . , d�). Put χ(A, t) =
(t − 1)(t�−1 − b1t

�−2 + b2t
�−3 − . . .). Then

b2 �
∑

2�i<j��

didj ,

and A is free if and only if the equality holds.
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Remark 1.41. — At a glance, this result is similar to that of Elencwajg-
Forster (Theorem 1.5 (3) and see Bertone-Roggero [10] for torsion free case).
However at this moment, we can not find any (simple) logical implications.

Example 1.42. — Let A = {H0, H1, . . . , H18} be the cone of the G2-

Catalan arrangement G
[−1,1]
2 (see Figure 1.42), where H0 is corresponding to

the line at infinity. Using Abe’s inequality (Theorem 1.28 (ii)) and Theorem
1.39, we can prove the freeness of A as follows. First the characteristic
polynomial is

χ(A, t) = (t − 1)(t − 7)(t − 11).

Let us consider the multirestriction (AH0 ,mH0). Put the exponents
exp(AH0 ,mH0) = (d1, d2). Then by Theorem 1.39,

d1d2 � 77.

Since the multirestriction is balanced, by Abe’s inequality, we have

|d1 − d2| � 6 − 2 = 4.

Combining these two inequalities, we have d1d2 = 77 hence A is free with
exponents (1, 7, 11).

Figure 2. — G
[−1,1]
2 and restriction of its cone cG

[−1,1]
2 to H0

We emphasise that in the above example, only the computation of char-
acteristic polynomial is enough to prove freeness.
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1.6. Characteristic polynomials and Chern polynomials

Let A be an arrangement in V of dimV = �. By Terao’s factorization
theorem, if A is free with exponents (d1, . . . , d�), then

χ(A, t) =

�∏

i=1

(t − di).

On the other hand, the sheafification splits D̃(A) = OP�−1(−d1) ⊕ . . . ⊕
OP�−1(−d1). The Chern polynomial of this sheaf is

ct(D̃(A)) =

�−1∑

i=1

ci(D̃(A))ti (1.9)

≡
�∏

i=1

(1 − dit)t
�,

where ci(−) is i-th Chern number. It is easily seen that these two polyno-
mials are related by the following formula

t� · χ(A,
1

t
) = ct(D̃(A))t�. (1.10)

Note that the left hand side of (1.10) is computed by Solomon-Terao’s for-
mula (Theorem 1.16). Mustaţǎ and Schenck proved that a similar formula
computes the Chern polynomial for arbitrary vector bundle on the projec-
tive space.

Theorem 1.43 (Mustaţǎ and Schenck [19]). — Let E be a vector bundle
over Pn of rank r. Then

ct(E) = lim
x→1

(−t)r(1 − x)n+1−r
r∑

i=0

Hilb(Γ∗(
i∧

E), x)

(
x − 1

t
− 1

)i

.

As a corollary, we have:

Corollary 1.44. — Let A be a locally free arrangement. Then the for-
mula (1.10) holds.

Using Mustaţǎ-Schenck, we can prove the following.

Theorem 1.45. — Let E be a rank two vector bundle on P2. Let L ⊂ P2

be a line. Put E|L = OL(d1) ⊕ OL(d2). Then c2(E) � d1d2, furthermore

c2(E) − d1d2 = dim Coker(Γ∗(E) −→ Γ∗(E|L)).

E is splitting if and only if c2(E) = d1d2.
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Proof. — By Theorem 1.43, the second Chern class is

c2(E) = lim
x→1

(
1

(1 − x)2
− (1 − x)Hilb(Γ∗(E), x) +

x−c1(E)

(1 − x)2

)
.

On the other hand, c1(E) = d1 + d2 and

d1d2 = lim
x→1

(
1

(1 − x)2
− x−d1 + x−d2

(1 − x)2
+

x−d1−d2

(1 − x)2

)
.

Hence

c2(E) − d1d2 = lim
x→1

(
x−d1 + x−d2

(1 − x)2
− (1 − x)Hilb(Γ∗(E), x)

)

= lim
x→1

(Hilb(Γ∗(E|L), x) − Hilb(Im(Γ∗(E) → Γ∗(E|L)), x))

= dim Coker(Γ∗(E) −→ Γ∗(E|L)).

�

1.7. Around Terao Conjecture

In [40], Terao posed the following problem.

Problem 1.46. — Let A1,A2 be arrangements in V s. t. L(A1) � L(A2).
Assume that A1 is free. Then is A2 also free?

It is obviously true in dimension 2. However the cases � � 3 are still
open. In view of Theorem 1.39, if the exponents of multirestriction were
determined combinatorially, the freeness is also determined combinatorially.

Proposition 1.47. — Let A1,A2 be in V of dimV = � = 3 such that
L(A1) � L(A2). Assume that A1 is free. If there exists a hyperplane H ∈
A such that the multirestriction (AH ,mH) satisfies one of conditions in
Proposition 1.23, then A2 is also free.

Thus the difficulty of Terao’s conjecture for � = 3 is equivalent to the
difficulty of determining exponents of 2-multiarrangements.

A possible approach to Terao’s conjecture is to look at the set of ar-
rangements which have prescribed intersection lattice, and then analyze the
freeness on the set. We first introduce such a set, the parameter space of
arrangements having the fixed lattice. Let � � 3, n � 1. Fix a poset L. Then
define the set M�,n(L) of arrangements with lattice L by

M�,n(L) = {A = (H1, . . . , Hn) ∈ (P�−1∗)n | Hi �= Hj , L(A) � L}.
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Terao’s conjecture is equivalent to the preservation of the freeness/nonfree-
ness on M�,n(L). Yuzvinsky proved that free arrangements form a Zariski
open subset in M�,n(L).

Theorem 1.48 (Yuzvinsky [51, 52, 53]). —

M�,n(L)free = {A ∈ M�,n(L) | A is free }
is a Zariski open subset of M�,n(L).

In his proof, Yuzvinsky defines lattice cohomology using the structure
of L(A) and D(A). Then he characterizes the freeness of A via vanishings
of these cohomology groups. The statement looks very similar to that of
Horrocks (Theorem 1.5 (1)).

Problem 1.49. — Establish the relation between Yuzvinsky’s and Hor-
rocks’ criteria for freeness. (More precisely, establish the relation between
Yuzvinsky’s lattice cohomology and sheaf cohomology on Pn.)

Here we recover (slightly modified version of) Yuzvinsky’s openness re-
sult for � = 3 by using upper semicontinuity of exponents of 2-multiarrange-
ments. Similar to M�,n(L), we introduce the following set of arrangements
which have prescribed characteristic polynomial. Let f(t) ∈ Z[t].

C�,n(f) = {A = (H1, . . . , Hn) ∈ (P�−1∗)n | Hi �= Hj , χ(A, t) = f(t)}.
Theorem 1.50. — The set

C�,n(f)free = {A ∈ C�,n(f) | A is free}
is a Zariski open subset of C�,n(f).

Proof. — By Terao’s factorization theorem, if f(t) is not split, then
C�,n(f)free is empty. We may assume that f(t) = (t − 1)(t − d1)(t − d2).

Fix H1 ∈ A and set exp(AH1 ,mH1) = (dH1
1 , dH1

2 ). Then by Theorem 1.39,
|dH1

1 −dH1
2 | � |d1 −d2| and A is free if and only if the equality holds. By the

upper semicontinuity (Proposition 1.27) of the difference ∆(AH1 ,mH1) =
|dH1

1 − dH1
2 |, the free locus {A | ∆ < |d1 − d2| + 1

2} is a Zariski open subset
of C�,n(f). �

Let L be a poset, and f(t) be the corresponding characteristic polyno-
mial. Then M�,n(L) ⊂ C�,n(f). Since M�,n(L)free = M�,n(L) ∩ C�,n(f)free.
We have obtained Yuzvinsky’s openness result for � = 3.

We conclude this section with an observation. Lots of free arrangements
which are not inductively free are rigid. It seems natural to ask whether or
not the following (which is stronger than Terao conjecture) holds:

{Free arrangements} ⊂ {Inductively free} ∪ {Rigid}. (1.11)
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1.8. Affine connection ∇

Definition 1.51. — Let δ, θ ∈ DerV . Set θ =
∑

i fi∂xi . Define ∇δθ ∈
DerV by

∇δθ =
∑

i

(δfi)∂xi .

It is easily seen that for any linear form α ∈ V ∗,

(∇δθ)α = δ(θα). (1.12)

Using this we have the following.

Proposition 1.52. — Let (A,m) be a multiarrangement with m(H) >
0,∀H ∈ A. Let δ ∈ D(A,m) and η ∈ DerV . Then ∇ηδ ∈ D(A,m − 1).

Proof. — By the assumption, we may write δαH = α
m(H)
H F . Then ap-

plying (1.12) we have

(∇ηδ)αH = η(α
m(H)
H F ) = m(H)α

m(H)−1
H η(αH)F + α

m(H)
H η(F ),

which is divisible by α
m(H)−1
H . �

The use of the connection ∇ goes back to K. Saito [26, 27]. He studied
discriminant in the Coxeter group quotient V/W . The space V/W admits a
degenerate metric induced from the W -invariant metric I on V . The connec-
tion ∇ is originally defined as the Levi-Civita connection for the degenerate
metric. Since I is flat on V , it is nothing but the connection above (see also
§2). It has been gradually recognized that ∇ is useful for the construction
of various vector fields [1, 5, 35, 41, 42, 46].

Here we give a proof of Proposition 1.23 (iii).

Proposition 1.53. — Let A = {H1, . . . , Hn} be a 2-arrangement. Then
the multiarrangement (A, 2) is free with exponents (d1, d2) = (n, n).

Proof. — Since d1 + d2 = 2n, it is sufficient to show that there does
not exist δ ∈ D(A, 2) with pdeg δ = n − 1. Suppose that it exists. Then by
Proposition 1.52, ∇∂x1

δ,∇∂x2
δ ∈ D(A, 1) and pdeg ∇∂x1

δ = pdeg ∇∂x2
δ =

n−2. Since (A, 1) is free with exponents (1, n−1) and the degrees of ∇∂x1
δ

and ∇∂x2
δ are smaller than n−1, they are multiples of the Euler vector field

θE (Lemma 1.22). We have expressions ∇∂x1
δ = F1 · θE ,∇∂x2

δ = F2 · θE
with degF1 = degF2 = n − 3. On the other hand,

(pdeg δ) · δ = ∇θEδ = x1∇∂x1
δ + x2∇∂x2

δ = (x1F1 + x2F2)θE .
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Hence (x1F1 + x2F2)θEαH = (x1F1 + x2F2)αH is divisible by α2
H for all

H ∈ A, equivalently, x1F1 + x2F2 is divisible by
∏n

i=1 αHi . However it
contradicts deg(x1F1 + x2F2) = n − 2. �

2. K. Saito’s theory of primitive derivation

Let V = R�. Let W be a finite reflection group which is generated by
reflections in V and acts irreducibly on V . The set of reflecting hyperplanes
A(W ) is called the Coxeter arrangement. There exists, unique up to a con-
stant factor, a W -invariant symmetric bilinear form I : V × V −→ R. The
bilinear form I induces a linear isomorphism I : V ∗ −→ V . Let S = S(V ∗)
be the symmetric product. Since DerV = S ⊗V and ΩV = S ⊗V ∗, the map
I can be extended to an S-isomorphism I : ΩV −→ DerV .

We first observe that a W -invariant vector field δ ∈ DerWV is logarithmi-
cally tangent to A. Indeed, let αH ∈ V ∗ be a defining linear form of H ∈ A
and rH ∈ W be the reflection with respect to H. Then rH(αH) = −αH

and we have rH(δαH) = −δαH . It is easily seen that if a polynomial f ∈ S
satisfies rH(f) = −f , then f is divisible by αH . Therefore δαH is divisible
by αH . Hence DerWV ⊂ D(A)W .

The ring SW of invariant polynomials is known to be isomorphic to a
polynomial ring R[P1, P2, . . . , P�] (Chevalley [11]). We can choose the poly-
nomials P1, . . . , P� to be homogeneous, with degrees 2 = degP1 < degP2 �
. . . � degP�−1 < degP�. The numbers ei = degPi − 1, i = 1, . . . , � are
called the exponents and h = degP� the Coxeter number. The Coxeter ar-
rangement A is free. Furthermore, the basis of D(A) can be constructed
explicitly by using basic invariants P1, . . . , P�.

Theorem 2.1 ([24, 26, 27]). — D(A)W = DerWV =
⊕�

i=1 S
W · I(dPi)

D(A) = DerWV ⊗SW S =
⊕�

i=1 S · I(dPi).

In particular, the Coxeter arrangement A is free with exp(A) = (e1, . . . , e�).

Proof. — We shall give the proof of the second equality. From the above
remarks, the inclusions

D(A) ⊃ DerWV ⊗SW S ⊃
�⊕

i=1

S · I(dPi), (2.1)

are clear. Fix a coordinate system (x1, . . . , x�). Recall that the Jacobian of
the basic invariant

∆ :=
∂(P1, . . . , P�)

∂(x1, . . . , x�)
=

∏

H∈A
αH ,
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is the product of linear forms of reflecting hyperplanes up to non-zero con-
stant factors. Hence by Saito’s criterion (Theorem 1.14), I(dP1), . . . , I(dP�)
form a basis of D(A). Thus the left hand side and right hand side in (2.1)
are equal. �

Fix a system of basic invariants P1, . . . , P� and a coordinate system
x1, . . . , x�. Since degPi < degP� (i = 1, . . . , � − 1), the rational vector
field

D =
∂

∂P�
=

1

∆
det




∂P1

∂x1
· · · ∂P�−1

∂x1

∂
∂x1

∂P1

∂x2
· · · ∂P�−1

∂x2

∂
∂x2

...
. . .

...
...

∂P1

∂x�
· · · ∂P�−1

∂x�
∂
∂x�




(2.2)

is uniquely determined up to constant factor, and it is also characterized by

DPi =

{
1 i = �,
0 i �= �.

The vector field D is called the primitive vector field.

Theorem 2.2 ([26, 27]). — For every W -invariant vector field δ∈D(A)W ,
there exists a unique vector field θ ∈ D(A)W such that

∇Dθ = δ.

We denote θ = ∇−1
D δ.

Thus the operator ∇−1
D acts on D(A)W . It induces a filtration, the so-called

“Hodge filtration”,

· · · ∇−2
D D(A)W ⊂ ∇−1

D D(A)W ⊂ D(A)W . (2.3)

The operator increases the contact order of the vector fields.

Theorem 2.3 ([5, 35, 41, 42, 46]). — Let A be a Coxeter arrangement
with exponents (e1, . . . , e�) and Coxeter number h. Let m : A −→ {0, 1} be
a {0, 1}-valued multiplicity.

(i) For a positive integer k, we have

D(A, 2k + m) � D(A,m)[−kh],

D(A, 2k − m) � (D(A,m)∨) [−kh] � Ω1(A,m)[−kh].

(ii) (m ≡ 1) The multiarrangement (A, 2k + 1) is free with exp(A, 2k +
1) = (e1 + kh, . . . , e� + kh).
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(iii) (m ≡ 0) The multiarrangement (A, 2k) is free with exp(A, 2k) =
(kh, kh, . . . , kh).

In particular, the filtration (2.3) is equivalent to the following.

· · · ⊂ D(A, 5)W ⊂ D(A, 3)W ⊂ D(A)W . (2.4)

3. Weyl, Catalan and Shi arrangements

In this section we consider a crystallographic Coxeter group (Weyl group)
W . The reflecting hyperplanes are determined by a root system Φ ⊂ V ∗.
We fix a positive system Φ+ ⊂ Φ. For a given α ∈ Φ+ and k ∈ Z, define an
affine hyperplane Hα,k by

Hα,k = {x ∈ V | α(x) = k}.

We consider the following type of arrangement

A[a,b]
Φ = {Hα,k | α ∈ Φ+, k ∈ Z, a � k � b},

where a � b are integers. (For example, see Figure 2 for A[−1,1]
G2

.)

3.1. Freeness of Extended Catalan and Shi arrangements

The next result was originally conjectured by Edelman-Reiner [12].

Theorem 3.1 ([47]). — Let k be a nonnegative integer.

(i) The cone cA[−k,k]
Φ of the extended Catalan arrangement A[−k,k]

Φ is
free with exponents (1, e1 + kh, . . . , e� + kh).

(ii) The cone cA[1−k,k]
Φ of the extended Shi arrangement A[1−k,k]

Φ is free
with exponents (1, kh, kh, . . . , kh).

Proof. — The proof is done by induction on the rank � of the root system
Φ. First one can check for the case � = 2, Φ = A2, B2, G2 (using Theorem
1.39 and Theorem 2.3, or proving inductive freeness). For � � 3, consider

the restriction of cA[−k,k]
Φ (resp. cA[1−k,k]

Φ ) to the hyperplane at infinity H0

and apply Theorem 1.38. The multirestriction ((cA[−k,k]
Φ )H0 ,mH0) (resp.

((cA[1−k,k]
Φ )H0 ,mH0)) is equal to the multiarrangement (A, 2k + 1) (resp.

(A, 2k)). Thus the second condition in Theorem 1.38 is verified by Theorem

2.3 (ii) (resp. (iii)). The localization of cA[−k,k]
Φ at x ∈ H0 \ {0} is a direct

sum of Coxeter arrangements of lower ranks. Hence the first condition in
Theorem 1.38 is verified by the inductive assumption. �
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Using Terao’s factorization theorem (Theorem 1.17), we have the follo-
wing.

Corollary 3.2. —

(i) χ(A[−k,k]
Φ , t) =

∏�
i=1(t − ei − kh).

(ii) χ(A[1−k,k]
Φ , t) = (t − kh)�.

In the above corollary, (i) has been proved by Athanasiadis [9] by a
purely combinatorial method. Edelman-Reiner [12] and Headley [18] proved
(ii) for some special cases (type A and the case k = 1). However as far as
we know, the combinatorial proof for (ii) is not known.

3.2. Beyond free arrangements

There are several conjectures on the characteristic polynomials χ(A[a,b]
Φ , t).

Conjecture 3.3 (“Riemann hypothesis” by Postnikov-Stanley,
[23]). — If 0 � a < b are integers, then all roots of the characteristic poly-

nomial χ(A[−a,b]
Φ , t) have the same real part (a+b+1)h

2 .

This conjecture has been verified for types ABC and D by Athanasiadis
[8]. We also note that for the parameters b = a + 1, it is a special case
of Theorem 3.1 (ii). Generally it is still an open problem. Conjecture 3.3

implies that the roots of the characteristic polynomial χ(A[−a,b]
Φ , t) sit on the

line of complex numbers whose real part is Re = (a+b+1)h
2 , which concludes

the following nontrivial property of the characteristic polynomial.

Conjecture 3.4 (“Functional Equation” by Postnikov-Stanley,
[23]). — If a, b are integers such that −1 � a � b (except for (a, b) = (−1, 0)
and (−1,−1)), then the characteristic polynomial satisfies

χ(A[−a,b]
Φ , (a + b + 1)h − t) = (−1)�χ(A[−a,b]

Φ , t). (3.1)

Note that the “Functional Equation” is true when a = b � 0. Indeed, in

this case χ(A[−a,a]
Φ , t) =

∏�
i=1(t − ei − ah). The relation (3.1) is equivalent

to the relation so-called duality of exponents:

ei + e�+1−i = h, (3.2)

i = 1, . . . , �. Thus the “Functional Equation” can be considered as a gener-
alization of the duality of exponents.

The following is also observed in the work by Athanasiadis [8, 9].
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Conjecture 3.5. — If a, b are integers such that −1 � a � b (except for
(a, b) = (−1, 0) and (−1,−1)), then the characteristic polynomial satisfies

χ(A[−a−1,b+1]
Φ , t) = χ(A[−a,b]

Φ , t − h). (3.3)

Except for [a, b] = [−k, k] and [1 − k, k], the characteristic polynomial

χ(A[a,b]
Φ , t) can not be decomposed into linear terms. So the cone cA[a,b]

Φ is
no more free. The simplest such example may be Φ = A3 (h = 4) with
(a, b) = (−1, 1). More explicitly, after change of coordinates,

Q(A[1,1]
A3

) = (x − 1)(y − 1)(z − 1)(x + y − 1)(y + z − 1)(x + y + z − 1)

Q(A[0,2]
A3

) =

2∏

k=0

(x − k)(y − k)(z − k)(x + y − k)(y + z − k)(x + y + z − k).

Then χ(A[1,1]
A3

, t) = (t−2)(t2−4t+7) and χ(A[0,2]
A3

, t) = (t−6)(t2−12t+39). It

is easily seen that roots have the real part 2, respectively 6, and χ(A[0,2]
A3

, t) =

χ(A[1,1]
A3

, t − 4).

It seems to be interesting to investigate these conjectures through the
module D(A) of logarithmic vector fields.

Problem 3.6. — Prove the above conjectures by using D(A). Is it pos-
sible to refine these conjectures in terms of algebraic/geometric structures
of the module of logarithmic vector fields?

Remark 3.7. — Recall that D0(A[a,b]
Φ ) � D(A[a,b]

Φ )/S · θE . In the lecture
in Pau (June 2012), the author asked whether or not if the following iso-
morphisms hold

D0(cA[−a,b]
Φ )∨ � D0(cA[−a,b]

Φ )[(a + b + 1)h]

D0(cA[−a−1,b+1]
Φ ) � D0(cA[−a,b]

Φ )[−h],

which induce Conjecture 3.4 and Conjecture 3.5, respectively via Solomon-
Terao’s formula Theorem 1.16 (see [5] for details). These seem to be strongly
supported by Theorem 2.3. However Professor D. Faenzi pointed out to us

(October 2012) that the first isomorphism D0(cA[−a,b]
Φ )∨ � D0(cA[−a,b]

Φ )[(a+
b + 1)h] does not hold at least for some cases.
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