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Diffusions with polynomial eigenvectors
via finite subgroups of O(3)

Dominique Bakry, Xavier Bressaud(1)

RÉSUMÉ. – We provide new examples of diffusion operators in dimen-

sion 2 and 3 which have orthogonal polynomials as eigenvectors. Their
construction relies on the finite subgroups of O(3) and their invariant

polynomials.

ABSTRACT. – We provide new examples of diffusion operators in dimen-

sion 2 and 3 which have orthogonal polynomials as eigenvectors. Their
construction relies on the finite subgroups of O(3) and their invariant

polynomials.

1. Introduction

We investigate in this paper new examples of bounded domains in R2
on which there exists a probability measure μ with an orthonormal basis
of L2(μ) such that the elements of this basis are eigenvectors of a diffusion
operator. To determine such a basis, one needs first to define a valuation
(a definition for the degree) for a polynomial in two or three variables.
The complete determination of all the possible such domains in R2 has
been carried in [3], under the restriction that the valuation is the usual one
(that is the degree of the monomial xpyq is p + q). We shall show in this
paper that relaxing this requirement on the valuation leads to many new
models. We have no claim to exhaustivity, and for the moment have no clue
about a possible scheme which would lead to a complete classification for
the general valuation. However, the domains that we describe here all share
some common algebraic properties that we want to underline.

The construction of these domains rely mainly on the study of finite
subgroups of O(3), and are in particular related to the Platonic polyhedra. It
requires the knowledge of invariant polynomials for subgroups of O(3). The
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analysis of these invariants also lead to the construction of new polynomial
models in dimension 3.

2. Orthogonal polynomials and diffusion operators

The short description of diffusion operators that we present below is
inspired from [1], and we refer the reader to it for further details.

Diffusion operators are second order differential operators with no zero
order terms, and are central in the study of diffusion processes, solutions
of stochastic differential equations, Riemannian geometry, classical partial
differential equations, potential theory, and many other areas. When they
have smooth coefficients, they may be described in some open subset Ω of
Rd as

L(f) =
∑

ij

gij(x)∂2ijf +
∑

i

bi(x)∂i(f), (2.1)

where the symmetric matrix (gij)(x) is everywhere non negative (the ope-
rator L is said to be semi-elliptic). We are mainly interested here in the case
where this operator is symmetric with respect to some probability measure
μ, that is when, for any smooth functions f, g, compactly supported in Ω,
one has ∫

Ω

fL(g)dμ =

∫

Ω

gL(f)dμ. (2.2)

We then say that μ is a reversible measure for L, which reflects the fact
that, in a probabilistic context, the associated stochastic process has a law
which is invariant under time reversal, provided that the law at time 0 of
the process is μ.

When μ has a smooth positive density ρ with respect to the Lebesgue
measure, this symmetry property translates immediately in

bi(x) =
∑

j

∂jg
ij(x) +

∑

j

gij∂j log ρ, (2.3)

which shows a fundamental relation between the coefficients of L and the
measure μ, and allows in general to completely determine μ up to some
normalizing constant.

Let us introduce the carré du champ operator Γ. For this, we suppose that
we have in L2(μ) some dense algebra A of functions which is stable under
the operator L, and contains the constant functions. Then, for (f, g) ∈ A,
we define

Γ(f, f) =
1

2
(L(fg)− fL(g)− gL(f)). (2.4)
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If L is given by equation (2.1), and when the elements of A are at least
C2, it turns out that

Γ(f, g) =
∑

ij

gij∂if∂jg,

so that Γ describes in fact the second order part of L. The semi-ellipticity
of L translates into the fact that Γ(f, f) ≥ 0, for any f ∈ A. If we apply
formula (2.2) with g = 1, we observe that

∫
Ω
Lfdμ = 0 for any f ∈ A. Then,

applying (2.2) again, we see immediately that, for any (f, g) ∈ A
∫

Ω

fL(g)dμ = −
∫

Ω

Γ(f, g)dμ, (2.5)

so that the knowledge of Γ and μ describes entirely the operator L. We
call such a triple (Ω,Γ, μ) a Markov triple, although we should also add the
algebra A. Thanks to (2.1), we see that L(xi) = bi and Γ(xi, xj) = gij .
The operator Γ is called the co-metric, and in our system of coordinates is
described by a matrix Γ =

(
Γ(xi, xj)

)
= (gij).

In our setting, we shall always assume that Ω is bounded and choose A
to be the set of polynomials. Under the conditions that we shall describe
below, we may as well extend A to be the set of the restrictions to Ω of
the smooth functions defined in a neighborhood of Ω, but this extension is
useless in what follows.

The fact that L is a second order differential operator translates into
the change of variable formulas. Whenever f = (f1, · · · , fn) ∈ An, and
whenever Φ(f1, · · · , fn) ∈ A, for some smooth function Φ : Rn �→ R, then

L(Φ(f)) =
∑

i

∂iΦ(f)L(fi) +
∑

ij

∂2ijΦ(f)Γ(fi, fj) (2.6)

and also

Γ(Φ(f), g) =
∑

i

∂iΦ(f)Γ(fi, g). (2.7)

When A is the algebra of polynomials, this applies in particular for any
polynomial function Φ. Indeed, in this context, properties (2.6) and (2.7)
are equivalent.

As long as polynomials are concerned, it may be convenient to use com-
plex coordinates. That is, for a pair of variables (x, y), consider z = x+ iy
and z̄ = x − iy, using linearity and bilinearity to extend L and Γ to z and
z̄, for example setting L(z) = L(x) + iL(y), Γ(z, z) = Γ(x, x) − Γ(y, y) +
2iΓ(x, y). Then one may compute L

(
P (z, z̄)

)
and Γ

(
P (z, z̄), Q(z, z̄)

)
for any

pair of polynomials P and Q in the variables (z, z̄) using the change of va-
riable formulas (2.6) and (2.7). One may then come back to the original
variables x and y setting x = (z + z̄)/2, y = (z − z̄)/(2i).
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Moreover, we shall restrict our attention to the case where the matrix
(gij) is everywhere positive definite in Ω, that is when the operator L is
elliptic. In this situation, one may expect L to have a self adjoint extension
(not unique in general), and then look for a spectral decomposition for this
self adjoint extension. We may expect then that the spectrum is discrete,
and look for the eigenvectors.

It is quite rare that one may exhibit explicitly any eigenvalue or eigen-
vector, and this makes the analysis of such operators quite hard. However,
a good situation is when there is a complete L2(μ) basis formed of polyno-
mial eigenvectors, in which case one may have explicit computation for the
eigenvalues and expect a good description of the eigenvectors (recurrence
formulas, generating functions, etc). These polynomials being eigenvectors
of a symmetric operator are orthogonal whenever the eigenvalues are dif-
ferent, and this leads to a family of orthogonal polynomials for the invariant
measure μ.

Unfortunately, this situation does not appear quite often. In dimension 1
for example, up to affine transformations, there are only 3 cases, correspon-
ding to the Jacobi, Laguerre and Hermite polynomials, see for example [2].

(1) The Hermite case corresponds to the Gaussian measure e−x2/2
√
2π

dx on

R and to the Ornstein–Uhlenbeck operator

LOU =
d2

dx2
− x

d

dx
.

The Hermite polynomial Hn of degree n satisfy LOUPn = −nPn.

(2) The Laguerre polynomials operator correspond to the measure
μa(dx) = Cax

a−1e−x dx on (0,∞) , a > 0, and to the Laguerre ope-
rator

La = x
d2

dx2
+ (a− x)

d

dx
.

The Laguerre polynomial L
(a)
n with degree n satisfies LaL

(a)
n = −nL(a)n .

(3) The Jacobi polynomials correspond to the measure μa,b(dx) =
Ca,b(1 − x)a−1(1 + x)b−1 dx on (−1, 1), a, b > 0 and to the Jacobi
operator

La,b = (1− x2)
d2

dx2
−

(
a− b+ (a+ b)x

) d

dx
.

The Jacobi polynomial (J
(a,b)
n )n with degree n satisfy

La,bJ
(a,b)
n = −n(n+ a+ b− 1)J (a,b)n .
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In this paper, we concentrate on probability measures on bounded do-
mains Ω ⊂ Rd. For such measures, the set of polynomials is dense in L2(μ),
and we want to construct bases of L2(μ) formed with polynomials. There is
not an unique choice for such a basis.

First, we choose a valuation. That is, choosing some positive integers
a1, · · · , ad, we decide that the degree of a monomial xp1

1 · · ·xpd

d is a1p1 +
· · · adpd. Then, the degree of a polynomial is the maximum of the degrees
of its monomials.

This being done, for n ∈ N, we look at the finite dimensional vector
space Hn of polynomials with degrees less than n. One has Hn ⊂ Hn+1,
and ∪nHn is the vector space of polynomials. It is dense in L2(μ). Then,
a polynomial basis is a choice, for any n, of an orthonormal basis is the
orthogonal complement of Hn+1 in Hn.

Our problem is then to describe for which open bounded subsets Ω ⊂ Rd,
one may find a probability measure μ on it with positive density ρ(x) with
respect to the Lebesgue measure, and an elliptic diffusion operator L on
Ω such that such a polynomial basis for μ is made of eigenvectors for L,
for some given valuation. We restrict our attention to those sets Ω with
piecewise smooth boundary. Let us call such a set Ω a polynomial set, and
the triple (Ω,Γ, μ) a polynomial model.

We recall here some of the results of [3], where the same structure is
described only for the usual valuation (that is when all the integers ai are
equal to 1), but easily extended to the general valuation case. We have

Proposition 2.1.— Choose a valuation deg described as above by some
integer parameters (a1, · · · , ad), and let (Ω,Γ, μ) be a polynomial model in
Rd. Then, with L described by equation (2.1),

(1) For i = 1, · · · , d, bi is a polynomial with deg(bi) ≤ ai.

(2) For i, j = 1, · · · , d, gij is a polynomial with deg(gij) ≤ ai + aj.

(3) The boundary ∂Ω is included in the algebraic set {det(gij) = 0}.
(4) If {P1 · · ·Pk = 0} is the reduced equation of the boundary ∂Ω (see

remark 2.2 below), then, for each q = 1, · · · k, each i = 1, · · · d, one
has

Γ(logPq, xi) = Li,q, (2.8)

where Li,q is a polynomial with deg(Li,q) ≤ ai ;

(5) All the measures μα1,··· ,αk
with densities Cα1,··· ,αk

|P1|α1 · · · |Pk|αk on
Ω, where the αi are such that the density is is integrable on Ω, are
such that (Ω,Γ, μα1,··· ,αk

) is a polynomial model.
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(6) When the degree of P1 · · ·Pk is equal to the degree of det(gij) there
are no other measures.

Conversely, assume that some bounded domain Ω is such that the boun-
dary ∂Ω is included in an algebraic surface and has reduced equation {P1 · · ·Pk

= 0}. Assume moreover that there exists a matrix (gij(x)) which is positive
definite in Ω and such that each component gij(x) is a polynomial with de-
gree at most ai + aj. Let Γ denote the associated carré du champ operator.
Assume moreover that equation (2.8) is satisfied for any i = 1, · · · , d and
any q = 1, · · · , k, with Li,q a polynomial with degree at most ai.

Let (α1, · · · , αk) be such that the |P1|α1 · · · |Pk|αk is integrable on Ω with
respect to the Lebesgue measure, and denote μα1,··· ,αk

(dx) = Cα1,··· ,αk
Pα1
1

· · ·Pαk

k dx, where Cα1,··· ,αk
is the normalizing constant such that μα1,··· ,αk

is a probablity measure.

Then (Ω,Γ, μα1,··· ,αk
) is a polynomial model.

Before giving a sketch of the proof of Proposition 2.1, let us make a few
remarks.

Remark 2.2.— We say that {P1 · · ·Pk = 0} is the reduced equation of
∂Ω when

(1) The polynomials Pi are not proportional to each other.

(2) For i = 1, · · · k, Pi is an irreducible polynomial, both in the real and
the complex field.

(3) For each i = 1, · · · , k, there exists at least one regular point of the
boundary ∂Ω such that Pi(x) = 0.

(4) For each regular point x ∈ ∂Ω, there exist a neighborhood V and of
x and some i such that ∂Ω ∩ V = {Pi(x) = 0} ∩ V .

In particular, this does not mean that any point satisfying Pi(x) = 0 for
some i belongs to ∂Ω.

Remark 2.3.— The determination of the polynomial models therefore
amounts to the determination of the domains Ω with an algebraic boundary,
with the property that the reduced equation of ∂Ω is such that the set
of equations (2.8) has a non trivial (and even positive definite concerning
(gij)) solution, for gij and Li,q. Looking at the form of these equations,
given the reduced equation of ∂Ω, they appear as a linear homogeneous
equation in the coefficients of the polynomials gij and of the polynomials
Li,k. Unfortunately, there are in general much more equations to be satisfied
that unknowns, and this requires very strong constraints on the polynomials
appearing in the reduced equation of the boundary.
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Remark 2.4.— The set of equations (2.8), which are central in the study
of polynomial models, may be reduced to less equations, when k > 1. Indeed,
if we set P = P1 · · ·Pk, it reduces to

Γ(xi, logP ) = Li, deg(Li) ≤ ai. (2.9)

To see this, assume that this last equation holds with some polynomial Li.
Then on the regular part of the boundary described by {Pq(x) = 0}, we
have Γ(xi, Pq) = 0, since

Γ(xi, Pq) = Pq(Li −
∑

l �=q

Γ(xi, Pl)

Pl
).

Therefore, Pq divides Γ(xi, Pq).

Proof. — (Of Proposition 2.1).

We shall be a bit sketchy in the details, all the arguments being borrowed
from [3]. LetHn be the finite dimensional vector space of polynomials P such
that deg(P ) ≤ n. From the definition of a polynomial model, L(Hn) ⊂ Hn.
In the representation (2.1) of L, we have bi = L(xi) and gij = Γ(xi, xj).
Therefore, bi ∈ Hai and, from the representation (2.4) of Γ, gij ∈ Hai+aj .
This gives items 1 and 2.

Now, since L has polynomial eigenvectors, for any pair (P,Q) of polyno-
mials, we have ∫

PL(Q)dμ =

∫
QL(P )dμ.

Since the coefficients gij and bi are bounded on Ω with bounded coeffi-
cients, this identity may be extended to any pair (f, g) of smooth functions
compactly supported in Rd (not necessary with support in Ω). Looking at
this for smooth functions compactly supported in Ω leads to equation (2.3),
which is equivalent to the symmetry property for such functions. Further-
more, applying this symmetry property to a pair of smooth function com-
pactly supported in a neighborhood of a regular point of the boundary,
and using Stokes formula, this implies in fact that, for any i = 1, · · · , d,∑

j g
ijnj = 0 at any point of the boundary, where (ni) is the normal vector

to the boundary at that point. Therefore, this normal vector is in the kernel
of the matrix g at any regular point of the boundary, which implies that
det(g) = 0 at such a point. This gives item 3.

We now know that the boundary is included in the algebraic set {det(g) =
0}, and we may look at the reduced equation for it, say P1 · · ·Pk = P = 0.
Let x be a regular point of the boundary and V a neighborhood of it such
that ∂Ω ∩ V = {Pq = 0} ∩ V, for some q = 1, · · · , k. In V, the normal
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vector (ni) to the boundary is parallel to ∂iPq, so that we also have for
all i,

∑
j g

ij∂jPq = 0 on {Pq = 0} ∩ V. But ∑
j g

ij∂jPq is a polynomial,

which vanishes in V on the zeros of Pq. This implies (since Pq is complex
irreducible) that ∑

j

gij∂jPq = Li,qPq, (2.10)

where Li,q is a polynomial, the degree of which is less than ai since
deg(

∑
j g

ij∂jPq) ≤ deg(Pq) + ai. Then, equation (2.8) is just a rephrasing

of (2.10). This gives item 4.

If we now apply equation (2.8) and look at the value of bi given by
formula (2.3), we see that, when the measure is μα1,··· ,αk

,

bi =
∑

i

∂jg
ij +

∑

k

αkLi,k,

and therefore is a polynomial with deg(bi) ≤ ai.

Therefore, for every n ∈ N, the associated operator maps Hn into Hn.
Moreover, the boundary equation (2.8) shows that for any pair of smooth
functions compactly supported in Rd, for the associted operator Lα1,··· ,αk∫

fLα1,··· ,αk
(h)dμα1,··· ,αk

=

∫
hLα1,··· ,αk

(f)dμα1,··· ,αk
,

and this in particular applies for polynomials. Therefore, the operator
Lα1,··· ,αk

is symmetric on the finite dimensional space Hn, and this al-
lows to construct a basis of eigenvectors for Lα1,··· ,αk

made of orthogonal
polynomials. This gives item 5.

The last item 6, that we shall not use in this note, is more technical,
and relies on the fact that, looking at equation (2.3), any density measure
ρ is such that ∂i log ρ is a rational function, with singularities concentrated
on {det(g) = 0}, and degree −ai. We refer to [3], where the arguments
are developed, and which furthermore provides a complete description of
the possible measures in the case where the reduced equation of ∂Ω is not
{det(g) = 0}.

The proof of the reverse part of Proposition 2.1 is just a rephrasing of
that of item 5. �

From Proposition 2.1, the important data are the set Ω (open subset of
Rd, bounded with piecewise smooth boundary given by an algebraic reduced
equation P1 · · ·Pk = 0), and the operator Γ, given by polynomial functions
(gij), elliptic in Ω, satisfying the degree condition 2, and the boundary
equation 4.
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To fix the ideas, we provide a few definitions

Definition 2.5.—

(1) A polynomial domain Ω ⊂ Rd is a bounded open set in Rd with
boundary ∂Ω included in some algebraic surface with reduced equation
{P (x) = 0}, and such that there exists some valuation {a1, · · · , ad}
and some elliptic co-metric Γ = (gij) on Ω with deg(gij) ≤ ai + aj
satisfying the boundary equation (2.10).

(2) A polynomial system (Ω,Γ) is given by a polynomial domain Ω toge-
ther with the associated co-metric Γ.

(3) A polynomial model is a triple (Ω,Γ, μ), where (Ω,Γ) is a polynomial
system, and μ is probability measure on Ω with smooth density ρ such
that Γ(xi, log ρ) = Si, with deg(Si) ≤ ai.

By definition, to each polynomial domain corresponds at least one poly-
nomial system (there may indeed be many different co-metrics Γ associated
with the same domain Ω, see [3]). Moreover, we saw that to any polynomial
system corresponds many polynomial models.

Remark 2.6.— The valuation is not unique. Beyond the trivial change
(a1, · · · , ad) �→ (ca1, · · · , caq), the same polynomial model (or system) may
correspond to various valuations. We shall make no effort to provide the
lowest ones since in general a good choice is provided by a simple look at
the co-metric Γ.

In [3], a complete description of all polynomial models is provided when
the chosen valuation is the natural one (we give this description in Section 10
at the end of the paper for completeness). This description relies in an
essential way on the fact that for the natural valuation, the problem is
affine invariant, that is that a polynomial domain Ω is transformed into
another one through affine transformations. This allows for an analysis of
the boundary equation, and to the classification of algebraic curves in the
plane for which the boundary equation (2.8) has a non trivial solution,
through the analysis of the singular points of the curve and its dual.

This affine invariance is lost for other valuations, since an affine trans-
formation no longer maps the set Hn of polynomials with degree at most n
into itself. This paves the way for the construction of new models. In what
follows, we shall mainly concentrate on the construction of polynomial sys-
tems in dimension 2. These two dimensional models also provides new 3-d
models through the use of 2-fold covers of our 2-d models. These two fold
covers already appear in [3]. But even for the 2-d models which already ap-
pear there (Ω11 and Ω13 of Section 7, e.g.), some two-fold coverings appear
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as new. The reason is that in [3], only the models with natural valuation
are considered. Here, even though the 2-d models may be considered with
the usual valuation, this is no longer the case for their coverings.

3. Constructing polynomial systems

A generic way for the construction of polynomial models in dimension d
is to consider some other symmetric diffusion operator L (often in higher
dimension) and look for functions (X1, · · · , Xd) such that, setting X =
(X1, · · · , Xd)

L(Xi) = Bi(X), Γ(Xi, Xj) = Gij(X),

whereBi andGij are some smooth functions. Then according to formula (2.6),

L(Φ(X)) = L̂(Φ)(X),

where
L̂Φ =

∑

ij

Gij(X)∂2ij +
∑

i

Bi(X)∂i.

This new operator L̂ has as reversible measure μ̂ which is the image of
the reversible measure μ of L under X. This is often a good way to identify
image measures, through equation (2.3). Then, L̂ corresponds to a new triple

(Ω̂, Γ̂, μ̂), where Ω̂ is the image X(Ω), Γ̂ = (Gij) and μ̂ is the image of μ.

Definition 3.1.—

(1) When we have such functions (X1, · · · , Xd) such that Γ(Xi, Xj) =
Gij(X), we say that (X1, · · · , Xd) form a closed system for Γ.

(2) If moreover L(Xi) = Bi(X), we say that we have a closed system for
L.

It may happen that for some specific polynomial model (Ω,Γ, μ) and
some functions X = (X1, · · · , Xd), X is a closed system for Γ, but not for
L.

Now, if L itself maps polynomials with degree n into polynomials with
degree n (say with the usual valuation), if Xi is a polynomial with degree

ai, and if B
i(X) and Gij(X) are polynomials in X, then L̂ provides a new

polynomial model with valuation (a1, · · · , ad).

It may also happen that this transformation x �→ X = (X1, · · · , Xd) is
a diffeomorphism, in which case we do not distinguish between those two
models. If this diffeomorphism and its inverse are given through polynomial
transformations, and if both are polynomial systems or models, we say that
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these systems or models are isomorphic. It is not always easy to see when a
model is an image of another one, or when they are isomorphic.

Apart of one specific case (example 7 of Section 10), all the models which
appears in [3] may be constructed either from the Euclidean Laplace ope-
rator in R2 acting on function invariant under the symmetries of a regular
lattice (examples 1, 6 and 11 in Section 10), or from the spherical Laplace
operator on the unit sphere S2 ⊂ R3 acting on functions which are invariant
under some finite subgroup of O(3) (all the other models of Section 10).
Here, we shall explore in a systematic way all the models that one may
construct from the finite subgroups of O(3). This construction may be also
carried in higher dimension letting the spherical Laplace operator on Sd−1
act on polynomials in Rd (that is on the restriction to Sd−1 of such polyno-
mials).

The spherical Laplace operator on Sd−1 may be described through its
action on linear forms. If e is any vector in the Euclidean space Rd, we
look at the associated linear form e∗ : x �→ e · x, and more precisely to its
restriction to the unit sphere, as a function Sd−1 �→ R. Then, for the Laplace
operator LS and its associated carré du champ ΓS, we have

LS(e∗) = −(d− 1)e∗, ΓS(e∗, f∗) = e · f − e∗f∗. (3.1)

Therefore, looking at the canonical basis (ei) of Rd, we see that any
polynomial in the variables xi (= e∗i (x)) is transformed under LS into a
polynomial with the same (natural) degree. Moreover, the spherical Laplace
operator commutes with all the elements of O(d). Then, if we are given
any subgroup of O(d) and if we look at the set of polynomials invariants
under the group action, LS will preserve this set. If we may describe some
polynomial basis for these invariant polynomials, then we expect to get in
such a way a closed system, and therefore construct new polynomial models.

4. Invariant polynomials

The theory of invariant polynomials has a long history going back to D.
Hilbert, E. Noether, etc. It now plays an important role in coding theory
and combinatorics (see [7]). In what follows, we provide a brief account
which is useful for the understanding of our construction method, reducing
to the case of finite subgroups of O(n). We refer to [5, 6] for further details.

Given any finite subgroup G of O(n), any element g ∈ G acts on the set of
linear functionals (x1, · · · , xn). We may consider its action on homogeneous
polynomials in the variables (x1, · · · , xn) and look for invariant polynomials,
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that are homogeneous polynomials which are invariant under the group
action. If one denotes by dn the dimension of the vector space of invariant
polynomials with homogeneous degree n, then Molien’s formula allows to
compute the Hilbert sum F (G, t) =

∑
n dnt

n through

F (G, t) =
1

|G|
∑

g∈G

1

det(Id− tg)
. (4.1)

Moreover, the set of invariant polynomials may be represented as follows.
First, there exist n algebraically independent polynomials (θ1, · · · , θn), cal-
led primary invariants, and some other invariant polynomials (η1, · · · , ηk)
(the number of them may depend on the choice of the θi), called secondary
invariants, such that any invariant may be written as

P0(θ1, · · · , θn) +
k∑

i=1

ηiPi(θ1, · · · , θn),

where Pi are polynomials (in the variables (θ1, · · · , θn)). Moreover, each ηi
satisfies some monic polynomial equation in the variables θ = (θj), that is
satisfies an algebraic identity of the form

ηpi

i + ηpi−1
i Qi,1(θ) + · · ·+Qi,pi(θ) = 0,

where Qi,k(θ) are polynomials in the variables (θ1, · · · , θn). These algebraic
relations are called syzygies.

Furthermore, there are only primary generators if and only if the group
G is generated by reflections, that is when G is a Coxeter group.

In order to construct polynomial systems, we then consider finite sub-
groups of O(n), compute their invariants (primary and secondary when
they exist), look at their restriction to the unit sphere (that is consider
those polynomials modulo

∑
i x

2
i − 1). They are no longer homogeneous,

and, since
∑

i x
2
i may always be considered as a primary invariant, we may

reduce to n − 1 primary invariants, plus some number of secondary inva-
riants. We then let the spherical Laplace operator act on them. Since the
spherical Laplace operator commutes with rotations, it preserves the set of
invariant polynomials. Moreover, it maps polynomials with degree n into
polynomials with the same degree. Constructing such polynomial systems
amounts then to choose some family (ζ1, · · · , ζp) of invariants, and look for
Γ(ζi, ζj), expecting that it may be written as G

ij(ζ1, · · · , ζp) (that is to pro-
vide a closed system for Γ). Then, the extra condition on the degrees will be
automatically satisfied, where the valuation is defined through ai = deg(ξi).
The difficulty then is to produce such a closed system (ζi) of algebraically
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independent polynomials. When such happens, we produce a polynomial
system which is an image of the starting Laplace operator.

In all the examples in dimension 3, one may always chose 2 primary
invariant (θ1, θ2) to produce a closed system (this is no longer true in hi-
gher dimension, see Section 11). Moreover, when one adds one secondary
invariant η, we always obtain a closed system with 3 variables (θ1, θ2, η) =
(ζ1, ζ2, ζ3). Now, it turns out that, if one forgets about the algebraic rela-
tions Q(θ1, θ2, η) = 0, and consider the polynomials Gij(ζi, ζj) = Γ(ζi, ζj) as
a polynomial co-metric in dimension 3, it provides a polynomial model on a
bounded domain in R3 which has the surface Q(ζ1, ζ2, ζ3) = 0 (the syzygy)
as a part of its boundary. Although the first construction with just the pri-
mary invariants (θ1, θ2) is not surprising (all our groups are sub-groups of
Coxeter groups), the second property (construction of 3-dimensional models
from 2-dimensional ones through the syzygies) remains quite mysterious.

Let us show this phenomenon in dimension 1, on the simpler form of the
cyclic group Zn acting in R2, as a rotation in the complex plane with angle
2π/n. Writing z = x+ iy, we may choose as primary invariant X = �(zn),
and secondary invariant Y = �(zn). We now restrict them to the unit circle
S1 and let the spherical Laplace operator act on it. Using formulas (3.1), or
the computations provided at the beginning of Section 6, one sees that

Γ(X,X) = n2(1−X2), L(X) = −n2X,

and therefore it provides a closed system for L which corresponds (up to
the factor n2), to the classical Jacobi operator on (−1, 1). Now, if we add
the variable Y , we get again a closed system for Γ, with co-metric

(
Γ(X,X) Γ(X,Y )
Γ(X,Y ) Γ(X,Y )

)
= n2

(
1−X2 −XY
−XY 1− Y 2

)

The determinant of this matrix is 1 −X2 − Y 2, and indeed we have X2 +
Y 2 = 1 in our model (this is the syzygy relating X and Y ). But the metric(
1−X2 −XY
−XY 1− Y 2

)
is a metric on the unit ball Ω = {1−X2−Y 2 > 0} ⊂ R2

which corresponds to the model 2 in the 2-d polynomial models of [3] in
Section 10. The various probability measures for this model have the form
Ca(1 − X2 − Y 2)adXdY , whith a > −1. When a = (d − 3)/2, for some
integer d ≥ 2, this corresponds to the image of the Laplace operator on
Sd through the projection (x1, · · · , xd+1) ∈ Rd+1 �→ (x1 = X,x2 = Y ).
This measure concentrates when a → −1 to the uniform measure on the
boundary S1. The case that we just described as the image of the Laplace
operator on S1 corresponds in this model to a limiting case when d→ 1.
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This is this phenomenon that will remain valid in dimension 2 in the
examples described below, although we will not provide such simple geome-
tric interpretation for the various 3 dimensional models constructed from
the syzygies.

5. Finite subgroups of O(3)

In our context, we shall restrict to finite subgroups of O(3). We first des-
cribe them, following [4]. There are only five (families of) finite subgroups of
SO(3), described by F. Klein, corresponding to the cyclic, dihedral, tetra-
hedral, octahedral and icosahedral respectively, denoted in what follows as
Cn,Dn, T ,O, I respectively. The groups T ,O, I correspond to the elements
of O(3) preserving respectively the tetrahedron, the octahedron or its dual
the cube, the icosahedron or its dual the dodecahedron.

The finite subgroups of O(3) are described in two ways. The first class is
obtained adding the central symmetry J : x �→ −x to one of the subgroups of
SO(3). If G is such a group, we denote GJ this new group, with |GJ | = 2|G|.

The second class is obtained by those groups G of SO(3) which contain
a subgroup G1 of index 2. A new group denoted G1|G is obtained as
G1∪{Jg, g ∈ G\G1}. This provides the groups T |O, Cn|Dn,Dn|D2n, Cn|C2n,
where in the case of the cyclic and dihedral groups, the structure of inva-
riants may depend on the fact that n is odd or even. A complete table of
Molien’s formulas is provided in [4] together with the associated list of in-
variants (with however some error in the secondary invariant for the group
I).

In the following sections, we shall describe the various invariants, and
provide the polynomial models which they produce, both in dimension 2
with the primary invariants, and then in dimension 3 with the use of the
secondary ones and their syzygies.

Among the subgroups of O(3), the following are Coxeter groups : Dn,J

(n even) and Dn|D2n (n odd) ; Cn|Dn, for all n ; T |O, OJ and IJ . They will
yield the primary invariants and hence a closed system and a model. Among
them, some were known : those obtained from C2|D2 (coaxial parabolas),
D3|D6 (the cuspidal cubic with secant), T |O (the swallow tail), OJ (the
cuspidal cubic with tangent). But Dn,J (n even) and Dn|D2n (n odd) for
n larger yield new models involving Tchebychev polynomials, which is not
very surprising ; and IJ yields a nice model with an angle based on π/5
whose existence has been the initial motivation of this work.
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Since each other subgroup of O(3) is a subgroup of one of these Coxeter
groups, we obtain the higher dimensional models by adding the secondary
invariant as auxiliary variable. In most examples, if the equation of the
boundary of the two dimensionnal model yield by the Coxeter group is
P (X,Y ) = 0, then the equation of the boundary of the three dimensionnal
models are either of the form Z2 − P (X,Y ) = 0, of the form X(Z2 −
P (X,Y )) = 0 or of the form Z2 − XP (X,Y ) = 0 and the boundary of
the three dimensional domain is either a bounded two leaves cover of the
two dimensional domain, either the same but bounded also by a plane. The
case of the groups Cn|C2n or Cn,J is special in that we have more than
one secondary invariant ; each of them yield a different three dimensional
system.

From now on, the operator Γ will always be the carré du champ operator
of the sphere S2.

6. Cyclic and dihedral groups

Let (x, y, z) be the standard coordinate system in R3. On the unit circle
{z = 0}∩S2, we choose n equidistant points (ei, i = 1, · · ·n). The group Zn

acts on them by circular permutations, which consist of elements of SO(3)
with vertical axis and angle 2π/n.

We first consider the complex function Z = x + iy, with its conjugate
Z̄ = x− iy, and observe that

Γ(Z,Z) = −Z2,Γ(Z̄, Z̄) = −Z̄2,Γ(Z, Z̄) = 2− ZZ̄,

and

Γ(z, z) = 1− z2,Γ(z, Z) = −zZ, Γ(z, Z̄) = −zZ̄.

With this in hand, we set

Xn = �(Zn) =
1

2
(Zn + Z̄n), Yn = �(Zn) =

1

2i
(Zn − Z̄n).

The 3 variables (z,Xn, Yn) are linked by the relation X2
n + Y 2

n = (1− z2)n.

Then, the table

Γ =

⎛
⎝
Γ(z, z)) Γ(z,Xn) Γ(z, Yn)

Γ(Xn, Xn) Γ(Xn, Yn)
Γ(Yn, Yn)

⎞
⎠
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is given by
⎛
⎝
1− z2 −nzXn −nzYn

n2((1− z2)n−1 −X2
n) −n2XnYn

n2((1− z2)n−1 − Y 2
n

⎞
⎠ (6.1)

We may chose θ1 = z, θ2 = Xn as primary invariants ; these are the
invariants of the Coxeter group Cn|Dn. Hence, consider (θ1, θ2) = (z,Xn).
From table (6.1), we see that they form a closed system for Γ. Let Γ1 be the
extracted matrix corresponding to the two first lines and columns from Γ.

Γ1 =

(
1− θ21 −nθ1θ2

n2((1− θ21)
n−1 − θ22)

)
.

Up to the factor n2, the determinant of this matrix is P (θ1, θ2) = (1 −
θ21)

n − θ22, and according to n being odd or even, it has 1 or 2 irreducible
factors. Then, it is quite immediate to see that

Γ1(θ1, logP ) = −2nθ1,Γ1(θ2, logP ) = −2n2θ2.

Figure 1.— Ω
(3)
1 , Ω

(5)
1 and Ω

(11)
1 .

It satisfies therefore the boundary equation. When n is odd, the set

Ω
(n)
1 = {P (θ1, θ2) > 0} ⊂ R2 is bounded and (Ω

(n)
1 ,Γ1) provides a poly-

nomial system. When n = 2p is even, P = P1P2, where P1 = (1− θ21)
p− θ2,

P2 = (1− θ21)
p+ θ2. The area Ω

(n)
1 plane with P1(θ1, θ2) > 0, P2(θ1, θ2) > 0

and θ1 ∈ (0, 1) has P1P2 = 0 as reduced boundary equation, and (Ω
(n)
1 ,Γ1)
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Figure 2.— Ω
(4)
1 to illustrate the even case

is again a polynomial system. In this model, we may chose deg(θ1) = 1
and deg(θ2) = n, which comes from the sphere interpretation, but we may
observe that we may as well chose deg(θ1) = 1, deg(θ2) = n − 1. Observe
that these domains correspond to the disk if n = 1 (model 2 in Section 10)
and to the double parabola if n = 2 (model 4 in Section 10), but are new
as soon as n ≥ 3.

We now add the variable Yn = η in the figure, which is our secondary
invariant (observe that the roles of Xn and Yn are similar, and we may as
well exchange them). This reflects the symmetries of the cyclic group Cn.
We now have the co-metric

Γ2 =

⎛
⎝
1− θ21 −nθ1θ2 −nθ1η

n2((1− θ21)
n−1 − θ22) −n2θ2η

n2((1− θ21)
n−1 − η2)

⎞
⎠

whose determinant factorizes as n4(1 − θ21)
n−1((1 − θ21)

n − θ22 − η2). Note
that the last factor

P (θ1, θ2, η) = (1− θ21)
n − θ22 − η2

reflects the syzygy relating η to (θ1, θ2). It is not a surprise that this deter-
minant vanishes identically, since Γ is the Gramm matrix of the gradients
(on the sphere) of three functions, and the range of these 3 gradients is at
most 2. Observe also that this syzygy, which will appear in the boundary of
the 3-d system, may be written as P (θ1, θ2)− η2, where P is the boundary
equation of the corresponding 2-d system.

But now consider Γ2 as a co-metric in R3 on the bounded domain Ω(n)2 =
{|θ1| < 1, P (θ1, θ2, η) > 0} ⊂ R3, which has indeed again reduced equation
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P (θ1, θ2, η) = 0. We may check that

Γ2(θ1, log(P )) = −2nθ1,Γ2(θ2, log(P )) = −2n2θ2,Γ2(η, log(P )) = −2n2η,
so that indeed (Ω

(n)
2 ,Γ2) is a polynomial system in R3, with degrees deg(θ1) =

1, deg(θ2) = n, deg(η) = n.

Figure 3.— Here, the domains Ω
(3)
2 and Ω

(5)
2 .

We now study the case where the groups contain the central symmetry.
This corresponds to the new system of primary invariants (θ1 = z2, θ2 = Xn)
associated with the Coxeter group Dn,J (n even) or Dn|D2n (n odd). We
get

Γ3 =

(
4θ1(1− θ1) −2nθ1θ2

n2((1− θ1)
n−1 − θ22)

)

which, up to a constant, has determinant P (θ1, θ2) = θ1((1 − θ1)
n − θ22) =

θ1P1(θ1, θ2). It has three irreducible components when n is even and 2 when
n is odd. Once again

Γ3(θ1, log(θ1)) = 4(1− θ1),Γ3(θ2, log(θ1)) = −2nθ2,
and,

Γ3(θ1, log(P1)) = −4nθ1,Γ3(θ2, log(P1)) = −2n2θ2,

so that the domain Ω3 = {θ1 ∈ (0, 1), P1(θ1, θ2) > 0}, which has reduced
boundary equation θ1P1(θ1, θ2) = 0 is such that (Ω3,Γ3) is a polynomial
system.

Let us now add the secondary invariant η = Yn, to treat the group Cn,J
when n is even and Cn|C2n when n is odd. We get a new co-metric

Γ4 =

⎛
⎝
4θ1(1− θ1) −2nθ1θ2 −2nθ1η

n2((1− θ1)
n−1 − θ22) −n2θ2η

n2((1− θ1)
n−1 − η2)

⎞
⎠

The determinant of this matrix factorizes as

n4(1− θ1)
n−1θ1((1− θ1)

n − θ22 − η2).
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Figure 4.— The domains Ω
(3)
3 and Ω

(5)
3 (for C3,J and C5,J)

Figure 5.— The domain Ω
(4)
3

The factor P1(θ1, θ2, η) = (1−θ1)
n−θ22−η2 represents the relation between

η, θ1, θ2 (the syzygy). The two factors θ1, P1(θ1, θ2, η) = (1− θ1)
n − θ22 − η2

satisfy the boundary equations

Γ4(θ1, log(θ1)) = 4(1− θ1),Γ4(θ2, log(θ1)) = −2nθ2,Γ4(η, log(θ1)) = −2nη

Γ4(θ1, log(P1)) = −4nθ1,Γ4(θ2, log(P1)) = −2n2θ2,Γ4(η, log(P1)) = −2n2η.
(This is not true for the factor 1 − θ1). The domain Ω4 ⊂ R3 defined
by θ1 ∈ (0, 1), P1(θ1, θ2, η) > 0, which has reduced boundary equation
θ1P1(θ1, θ2, η) = 0, is therefore such that (Ω4,Γ4) is a polynomial system.
Observe that the syzygy, which appears in one component of the boundary
of Ω4, may be written as P (θ1, θ2)− η2, where P is one of the components
of the boundary of the corresponding 2-d domain Ω3.

We may now consider the dihedral group Dn, which amounts to add to
the symmetries of Cn the transformation (x, y, z) �→ (x,−y,−z). It has as
primary invariants θ1 = z2, θ2 = Xn as before (corresponding to the 2-d
polynomial system (Ω3,Γ3)), but now the secondary invariant is η = zYn.
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Figure 6.— The domain Ω
(3)
4

The new co-metric in dimension 3 is then

Γ5 =

⎛
⎝
4θ1(1− θ1) −2nθ1θ2 −2η((n+ 1)θ1 − 1)

n2((1− θ1)
n−1 − θ2

2) −n(n+ 1)θ2η

(1− θ1)
n−1(1 + (n2 − 1)θ1)− θ2

2 − (n+ 1)2η2

⎞
⎠

The determinant of this metric factorizes as

4n2(θ1(1− θ1)
n − θ1θ

2
2 − η2)((1− θ1)

n−1((n2 − 1)θ1 − 1)− θ22) = 4n2P1P2,

where P1(θ1, θ2, η) = θ1(1 − θ1)
n − θ1θ

2
2 − η2 is the syzygy which relates

η to (θ1, θ2). Observe once again the relation between this syzygy and the
boundary equation of the corresponding 2-d domain Ω3.

Once again, we have

Γ5(θ1, log(P1)) = 4(1− (n+ 1)θ1),Γ5(θ2, log(P1))

= −2n(n+ 1)θ2,Γ5(η, log(P1)) = −2(n+ 1)2η

while the boundary equation is not satisfied for P2. In R3, the domain Ω5
delimited by θ1 ∈ (0, 1), P1 > 0 is a bounded domain with reduced boundary
equation P1 = 0, and (Ω5,Γ5) provides a 3-dimensional polynomial system.
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Figure 7.— The domain Ω5 for n = 3

The groups Dn|D2n for n even or Dn,J for n even have primary invariants
(z2 = θ1, X

2
n = θ2) and secondary invariant η1 = zYn or η2 = zXn. However

the groups Cn|C2n (n even) or Cn,J (n odd) have the same primary invariants
and as secondary invariants zXn, zYn, XnYn. It may be worth to observe
that (z,X2

n, XnYn) is another form of the invariants for C2n, since X2n =
X2

n − Y 2
n = 2X2

n − (1− z2)n, and Y2n = 2XnYn. and therefore they do not
provide any new model (although they provide them under another form).

We first choose θ1 = z2, θ2 = X2
n (for which we already know that it

corresponds to (z2, X2n) through a change of variables. We then get a co-
metric

Γ6 = 4

(
θ1(1− θ1) −nθ1θ2

n2θ2((1− θ1)
n−1 − θ2)

)
,

which corresponds to a 2-d domain Ω6 with boundary reduced equation
θ1θ2((1−θ1)n−θ2) = 0, which is isomorphic to the domain Ω3 when changing
n into 2n (this model has 3 irreducible components in its boundary equation,
and two of them may be reduced to a line, providing then a simpler form).
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Figure 8.— The domain Ω6 for n = 3

We may first add the secondary invariant η1 = zY . We get a co-metric

Γ7 =

⎛
⎝
4θ1(1− θ1) −4nθ1θ2 2η1(1− (n+ 1)θ1)

4n2θ2((1− θ1)
n−1θ1 − θ2) −2n(n+ 1)θ2η1

(1− θ1)
n−1(1 + (n2 − 1)θ1)− (n+ 1)2η1 − θ2

⎞
⎠

The syzygy relation between (θ1, θ2, η) may be written as

P (θ1, θ2, η1) = θ1
(
(1− θ1)

n − θ2
)
− η21 ,

once again of the form Q(θ1, θ2) − η2, where Q appears in the boundary
equation of the corresponding 2-d domain Ω6.

One may check that for this co-metric, θ2P divides det(M), and moreover
that

Γ7(θ1, log(P )) = 4(1− (n+ 1)θ1), Γ7(θ2, log(P ))

= −4n(n+ 1)θ2, Γ7(η1, log(P )) = −2(n+ 1)2η1.

and also

Γ7(θ1, log(θ2)) = −4nθ1, Γ7(θ2, log(θ2)) = 4n2((1−θ1)n−1−θ2,Γ7(η, log(θ2))
= −2n(n+ 1)η1.

This provides a 3-d domain Ω7 ⊂ R3 with boundary reduced equation
θ2P (θ1, θ2, η1) = 0, such that (Ω7,Γ7) is again a polynomial system.

Adding the variable η2 = zX, instead of η1 = zY , to θ1 = z2, θ2 = X2

leads to the co-metric

Γ8 =

⎛
⎝
4θ1(1− θ1) −4nθ1θ2 2η2(1− (n+ 1)θ1)

4n2θ2((1− θ1)
n−1 − θ2) 2nη2(n(1− θ1)

n−1 − (n+ 1)θ2)

n2θ1(1− θ1)
n−1 + θ2 − (n+ 1)2η2

2

⎞
⎠
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Figure 9.— The domain Ω7 for n = 3

The determinant of this matrix has 3 factors, 2 of them being P1 = θ1θ2−η22
and P2 = θ2− (1−θ1)

n. P1(θ1, θ2, η2) is the syzygy relating η2 to (θ1, θ2). It
is still of the form Q(θ1, θ2)−η22 , where Q appears in the boundary equation
of the corresponding 2-d domain Ω6.

Now, once again, we have

⎧
⎪⎨
⎪⎩

Γ8(θ1, log(P1)) = 4(1− (n+ 1)θ1),

Γ8(θ2, log(P1)) = 4n((1− θ1)
n−1 − (n+ 1)θ2),

Γ8(η2, log(P1)) = −2(n+ 1)2η2,

and
⎧
⎪⎨
⎪⎩

Γ8(θ1, log(P2)) = −4nθ1,
Γ8(θ2, log(P2)) = −4n2θ2,
Γ8(η2, log(P2)) = −2n(n+ 1)η2.
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The third factor of the determinant does not satisfy the boundary equa-
tion. The domain Ω8 with boundary reduced equation P1P2 = 0 provides a
polynomial system (Ω8,Γ8).

Figure 10.— The domain Ω8 for n = 3

We now may add instead the secondary invariant η3 = XnYn. As already
observed, the new system (z2 = θ1, X

2
n = θ2, η3 = XnYn) is isomorphic

to the system (θ1 = z2, θ2 = X2n, η = Y2n) described by the metric Γ4
and the domain Ω4. Observe however that in this presentation, the reduced
boundary equation of the domain is θ1(θ2(1−θ1)

n−θ22−η23) = 0, the second
factor being the syzygy.Finally, one may check that adding two of the secondary invariants ηi
to θ1 = z2, θ2 = X2

n will not provide any closed system for Γ. The system
(θ1, θ2, η1, η2, η3) provides a closed 5 dimensional Γ operator, but the deter-
minant of the metric vanishes (in R5) and there does not seem to be any
polynomial system associated with it.

7. Tetrahedron and cube/octahedron

It makes sense, as we shall see, to treat jointly these cases. The groups
T ,O correspond to the elements of SO(3) preserving respectively the te-
trahedron, the octahedron or its dual the cube. They have respective car-
dinality 12 and 24. Adding the central symmetry J : x �→ −x to each of
them we obtain TJ and OJ . Observe that the first one does not preserve the
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Figure 11.— The domain Ω9 for n = 3.

tetrahedron, while the second one does preserves the cube. We also consider
the group T |O which can be obtained by adding a plane symmetry with
respect to the plane symmetry axes of the tetrahedron and which preserves
the tetrahedron regardless of orientation.

They are related by the following inclusions diagram :

T
↙ ↓ ↘

TJ O T |O
↘ ↓ ↙

OJ

Let (x, y, z) be the standard coordinate system in R3. We put the cube
centered at the origin and with faces parallel to the coordinate planes. We
put the tetrahedron with edges on the diagonal of the cube. We consider
the polynomials

O3 = xyz,O4 = x4 + y4 + z4, O6 = (x2 − y2)(y2 − z2)(z2 − x2),

which will play the same rôle as the one played by (z,XnYn) in the previous
one as basic blocks to construct all the invariants for the various groups
concerned in this section.
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We first compute :

Γ =

⎛
⎝
Γ(O3, O3) Γ(O3, O4) Γ(O3, O6)

Γ(O4, O4) Γ(O4, O6)
Γ(O6, O6)

⎞
⎠

which is
⎛
⎝
(1− O4)/2− 9O2

3 4O3(1− 3O4) −18O3O6

8(6O2
3 + 3O4 − 1− 2O2

4) 8O6(2− 3O4)
−54O2

3O4 + 18O2
3 − 3O2

4 + 4O4 − 1− 36O2
6

⎞
⎠ .

We consider the primary invariants of the Coxeter group T |O given by
(θ1, θ2) = (O3, O4). The determinant of the submatrix Γ11 given by the first
two rows and columns is

P (θ1, θ2) = −108θ41 + 20θ21 + 2θ32 − 5θ22 + 4θ2 − 36θ21θ2.

It provides a domain Ω11 with boundary P (X,Y ) = 0. This corresponds to
the model of the swallow tail (example 10 in Section 10).

Figure 12.— The domain Ω11 : swallow tail.

For the group T , we can choose η = O6 as secondary invariant. It is alge-
braically related to (θ1, θ2) = (O3, O4) through

η2 = P (θ1, θ2).
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If we write the matrix

Γ12 =

⎛
⎝
Γ(θ1, θ1) Γ(θ1, θ2) Γ(θ1, η)

Γ(θ2, θ2) Γ(θ2, η)
Γ(η, η)

⎞
⎠ ,

we get

⎛
⎜⎜⎝

−9 θ12 − θ2/2 + 1/2 −12 θ1θ2 + 4 θ1 −18 θ1η
48 θ2

1 − 16 θ2
2 + 24 θ2 − 8 −24 θ2η + 16 η

−54 θ2
1θ2 + 18 θ2

1 − 3 θ2
2 − 36 η2 + 4 θ2 − 1

⎞
⎟⎟⎠ .

The determinant of this matrix factorizes in

D = 4 (3 θ2 − 1)
(
18 θ1

2 + θ2 − 1
)

(
108 θ1

4 + 36 θ1
2θ2 − 2 θ2

3 − 20 θ1
2 + 5 θ2

2 + 4 η2 − 4 θ2 + 1
)

It turns out that the factor

P3(θ1, θ2, η) = 108θ41 + 36 θ21θ2 − 2 θ32 − 20 θ21 + 5 θ22 + 4 η2 − 4 θ2 + 1

satisfies ⎧
⎪⎨
⎪⎩

Γ12(θ1, logP3) = −36θ1,
Γ12(θ2, log(P3)) = −48θ2 + 32,

Γ12(η, log(P3)) = −72η,

so that this provides a new polynomial model (Ω12,Γ12) in dimension 3.
(The boundary equation is not satisfied for the two other factors.)

We can check that the complementary of the surface P3(X,Y, Z) = 0 has
one bounded component in R3 and that the determinant does not vanish
inside this component.

We observe that OJ . is also a Coxeter group. We can take as primary inva-
riants (θ1, θ2) = (O2

3, O4) for OJ . We get

Γ13 =

(
Γ(θ1, θ1) = 4θ1((1− θ2)/2− 9θ1) Γ(θ1, θ2) = 8θ1(1− 3θ2)

Γ(θ2, θ2) = 16(3θ1 +
3
2 θ2 − 1/2− θ2

2)

)

whose determinant is given by,

Q(θ1, θ2) = 16θ1(−108θ21 + 20θ1 + 2θ32 − 5θ22 + 4θ2 − 1− 36θ1θ2)

Observe that Q(X2, Y ) = X2P (X,Y ). We recognize that the boundary of
the domain Ω13 is the cuspidal cubic with tangent (model 9 in Section 10).
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Figure 13.— Surface P3(X,Y, Z) = 0, bounding Ω12.

For the group TJ , we may add the secondary invariant η = O6. We obtain
the co-metric Γ14 :
⎡
⎢⎢⎣

−36 θ12 − 2θ1θ2 + 2θ1 −24 θ1θ2 + 8 θ1 −36θ1η
48 θ1 − 16 θ2

2 + 24 θ2 − 8 −24 θ2η + 16 η

−54 θ1θ2 + 18 θ1 − 3 θ2
2 − 36 η2 + 4 θ2 − 1

⎤
⎥⎥⎦ .

The determinant of this matrix factorizes as

16θ1(3θ2−1)(18θ1+θ2−1)(−2θ32+108θ21+36θ1θ2+5θ22+4η2−20θ1−4θ2+1).
Only the two factors θ1 and

Q3(θ1, θ2, η) = (−2θ32 + 108θ21 + 36θ1θ2 + 5θ22 + 4η2 − 20θ1 − 4θ2 + 1)

satisfy the boundary equation, with
⎧
⎪⎨
⎪⎩

Γ14(θ1, log(θ1)) = −36θ2 − 2θ2 + 2,

Γ14(θ2, log(θ1)) = −24θ2 + 8,

Γ14(η, log(θ1)) = −36η,
and ⎧

⎪⎨
⎪⎩

Γ14(θ1, log(Q3)) = −72θ1,
Γ14(θ2, log(Q3)) = −48θ2 + 32,

Γ14(θ3, log(Q3)) = −73θ3.
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Figure 14.— The domain Ω13 : cuspidal cubic with tangent.

We observe that this factor writes η2−Q(θ1, θ2). It appears that the two
components bound a domain Ω14 on which the other factors do not vanish.
Finally, for the group O, we use (θ1, θ2, η) = (O2

3, O4, O3O6). We compute
the Γ15 matrix
⎡
⎢⎣
−36 θ12 − 2θ1θ2 + 2θ1 −24 θ1θ2 + 8 θ1 −54θ1η − θ2η + η

48 θ1 − 16 θ2
2 + 24 θ2 − 8 −36ηθ2 + 20η

G3,3

⎤
⎥⎦ ,

with

G3,3 := −81 η2 − 81 θ1
2θ2
2

+ 9/2 θ1
2 − 3 θ1θ2 + 3/2 θ1 + 3/2 θ1θ2

2 − 1/4 t2
4

+
7 θ2

3

8
− 9 θ2

2

8
+ 5/8 θ2 − 1/8.

The determinant of the matrix factorizes as 2Q1Q2, with

Q1 = 2 θ2
4+324 θ1

2θ2−12 θ1θ22−7 θ23−36 θ12+24 θ1θ2+9 θ22−12 θ1−5 θ2+1
Q2 = 2 θ1θ2

3 + 108 θ1
3 + 36 θ1

2θ2 + 5 θ1θ2
2 − 20 θ1

2 − 4 θ1θ2 + 4 η2 + θ1.
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Figure 15.— SurfaceXQ3(X,Y, Z) = 0 bounding the do-
main Ω14

Only Q2 satisfies the boundary equation, with⎧
⎪⎨
⎪⎩

Γ15(θ1, log(Q2)) = 2− 108θ1 − 2θ2

Γ15(θ2, log(Q2)) = 40− 72θ2

Γ15(η, log(Q2)) = −162η
We observe that (O3O6)

2 = O3
3Q(O

2
3, O4) so that η2 = θ1Q(θ1, θ2) =:

R(θ1, θ2). We get then a new domain Ω15 with boundary

Q2(θ1, θ2, η) := η2 −R(θ1, θ2) = 0.

Figure 16.— Surface R3(X,Y, Z) = 0 bounding the do-
main Ω15.

We may observe that in all these cases, the 3-dimensional domains can
be cut by the plane {Z = 0} to get a 2-dimensional domain. In the first
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case, we get the swallow tail, in the other two cases, we get the cuspidal
cubic with tangent. They provide various two fold coverings of these two
dimensional models. It could be interesting to investigate the shape of the
singularities of the boundaries of these 3-dimensional domains.

8. Dodecahedron / Icosahedron

We finish by the study of the groups I and IJ of cardinality 60 and 120.
The computations are a bit more painful but the idea is always the same.
Let us introduce as before three new building blocks. With c = (1+

√
5)/2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I6 = (c2x2 − y2)(c2y2 − z2)(c2z2 − x2),

I10 = (x+ y + z)(−x+ y + z)(x− y + z)(x+ y − z)

(c−2x2 − c2y2)(c−2y2 − c2z2))(c−2z2 − c2x2),

I15 = xyz(cx+ c−1y + z)(−cx+ c−1y + z)((cx− c−1y + z)(cx+ c−1y − z)

(x+ cy + c−1z)(−x+ cy + c−1z)((x− cy + c−1z)(x+ cy − c−1z)

(c−1x+ y + cz)(−c−1x+ y + cz)(c−1x− y + cz)(c−1x+ y − cz).

We will use the primary invariants (θ1, θ2) = (I6, I10) and the secondary
invariant η = I15. Let us do the computations directly with all the invariants
in this family. With (θ1, θ2, η) = (I6, I10, I15), we get for the co-metric

Γ =

⎛
⎝
Γ(θ1, θ1) Γ(θ1, θ2) Γ(θ1, η)

Γ(θ2, θ2) Γ(θ2, η)
Γ(η, η)

⎞
⎠

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(θ1, θ1) = −36 θ12 −
(√

5 + 2
) (
7 θ1 +

√
5(2 +

√
5) θ2

)
,

Γ(θ1, θ2) =
(
40− 16

√
5
)
θ1
2 +

(
3
√
5 + 6

)
θ2 + θ1

√
5− 60 θ1 θ2,

Γ(θ2, θ2) =
(
7296− 3264

√
5
)
θ1
3 +

(
96
√
5− 240

)
θ1 θ2

+
(
−432 + 192

√
5
)
θ1
2 − 5

√
5θ2 +

(
6− 3

√
5
)
θ1 − 100 θ2

2,

Γ(θ1, η) = −90 θ1 η − 2
(√

5 + 2
)
η

Γ(θ2, η) = −150 θ2 η + η
((
−100 + 40

√
5
)
θ1 − 2

√
5
)

Γ(η, η) = −225 η2 − 1/4
(
−161 + 72

√
5
)

(
13 θ1

√
5 + 45

√
5θ2 + 45 θ1

2 + 4
√
5 + 26 θ1 + 100 θ2 + 9

)
(
30 θ1 θ2

√
5− 3 θ1

√
5− 9

√
5θ2 − 19 θ1

2 + 75 θ1 θ2 − 6 θ1 − 20 θ2
)

For the Coxeter group IJ we restrict our attention to (θ1, θ2). Up to some
factor, the determinant of the sub-matrix Γ21 corresponding to (θ1, θ2) is
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S(θ1, θ2), with

S(θ1, θ2) = 688
√
5θ

4
1 + 6480

√
5θ

3
1θ2 + 1728 θ

5
1 + 364

√
5θ

3
1 + 6042

√
5θ

2
1θ2 + 23400

√
5θ1 θ

2
2

+17050
√
5θ

3
2 + 1376 θ

4
1 + 14400 θ

3
1θ2 + 68 θ

2
1

√
5 + 1288 θ1 θ2

√
5 + 1220

√
5θ

2
2

+819 θ
3
1 + 13515 θ

2
1θ2 + 52325 θ1 θ

2
2 + 38125 θ

3
2 + 152 θ

2
1 + 2880 θ1 θ2 + 2728 θ

2
2

This is a new 2-dimensional domain Ω21.

Figure 17.— Domain Ω21 bounded by S(X,Y ) = 0.

For the direct subgroup I, the determinant of Γ22 factorizes (up to some
constant) into S1S2S3, with

S1(θ1, θ2, η) = S(θ1, θ2)− 43648 η2,

S2(θ1, θ2) = 13 θ1
√
5 + 45

√
5θ2 + 45 θ21 + 4

√
5 + 26 θ1 + 100 θ2 + 9,

and,

S3(θ1, θ2) = 30 θ1 θ2
√
5− 3 θ1

√
5− 9

√
5θ2 − 19 θ21 + 75 θ1 θ2 − 6 θ1 − 20 θ2.

S1(θ1, θ2, η) is the syzygy relating η to θ1 and θ2, and the polynomial S1
satisfies the boundary condition for the co-metric Γ22, which once again
provides a new polynomial system with domain Ω22 in dimension 3, since
the boundary conditions are satisfied :

⎧
⎪⎨
⎪⎩

Γ22(θ1, log(S1)) = −4
√
5− 8− 180θ1,

Γ22(θ2, log(S1)) = 4(2
√
5− 5)((30

√
5 + 75)θ2 + 10θ1 + 2 +

√
5),

Γ22(η, log(S1)) = −450η.
Observe that we may as well rescale η to get a simpler domain η2 = S(θ1, θ2).
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Figure 18.— Surface S1(X,Y, Z) = 0 bounding the do-
main Ω22.
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9. Summary

We summarize here the models detailed above. For the dihedral family,
we let

Hn(X,Y ) = (1−X)n − Y.

Group θ1 θ2 η Ω Boundary Picture

Cn|Dn z Xn Ω
(n)
1 Hn(X

2, Y 2) = 0

Cn z Xn Yn Ω
(n)
2 Hn(X

2, Y 2)− Z2 = 0

Dn,J ,Dn|D2n z2 Xn Ω
(n)
3 XHn(X,Y 2) = 0

CnJ , Cn|C2n z2 Xn Yn Ω
(n)
4 X(Hn(X,Y 2)− Z2) = 0

Dn z2 Xn zYn Ω
(n)
5 XHn(X,Y 2)− Z2 = 0

D2n,J z2 X2
n D6(Ω

(n)
3 ) XYHn(X,Y ) = 0

Dn|D2n,Dn,J

Cn|C2n, Cn,J z2 X2
n zYn Ω

(n)
7 XHn(X,Y )− Z2 = 0

Cn|C2n, Cn,J z2 X2
n zXn Ω

(n)
8 (XY − Z2)Hn(X,Y ) = 0

Cn|C2n, Cn,J z2 X2
n XnYn D9(Ω

(n)
4 ) X(Y Hn(X,Y )− Z2) = 0
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When there are two groups, the first one is for n odd, the second is for n
even.

For the tetrahedron / cube / octahedron family, we let H(X,Y ) =
108X2 − 20X − 2Y 3 + 5Y 2 − 4Y + 36XY, and for the dodecahedron /
icosahedron family, we set S be as defined in Section 8.

G θ1 θ2 η Ω Boundary Picture

T |O O3 O4 Ω11 H(X2, Y ) = 0

T O3 O4 O6 Ω12 H(X2, Y )− 4Z2 = 0

OJ O2
3 O4 Ω13 XH(X,Y ) = 0

TJ O2
3 O4 O6 Ω14 X(H(X,Y )− 4Z2) = 0

O O2
3 O4 O3O6 Ω15 Z2 −XH(X,Y ) = 0

IJ O6 O10 Ω21 S(X,Y ) = 0

I O6 O10 O15 Ω22 Z2 = S(X,Y )

Covers. If H is a subgroup of G, then polynomials that are invariant by
G are also invariant by H. It follows that we can express the G invariants
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(primary and secondary) as polynomials in terms of the primary and secon-
dary H-invariants (modulo x2 + y2 + z2 − 1). These polynomials define a
mapping from the H-domain onto the G-domain which is a h-covering, h
being the index of H in G.

Let us see what happens for a few examples. This is specially easy for
the 2-covers. We go from 3D to 2D models by simple projection (forgetting
variable z). In other cases the effect is that of adding a new symmetry for
instance :

Ω
(n)
1 → Ω

(n)
3

(x, y) �→ (x2, y)

Ω
(n)
2 → Ω

(n)
5

(x, y, z) �→ (x2, y, xz)

Ω
(n)
2 → Ω

(n)
4

(x, y, z) �→ (x2, y, z)

The case of C3|D3 as subgroup of T |O is a little bit more tedious because
we did not choose the same coordinates for the representations. We can see
what happens taking for C3|D3 the variables (x+y+z)/

√
3 and xyz to have

a common invariant. It is a linear computation to get a, b, c and d such that

x4 + y4 + z4 = a(x+ y + z)4 + b(x+ y + z)2(x2 + y2 + z2)

+c(x+ y + z)xyz + d(x2 + y2 + z2)2.

We obtain a map of the form :

Ω
(3)
1 → Ω11

(x, y) �→ (y, ax4 + bx2 + cxy + d).

10. The bounded two dimensional models of [3]

We provide here for completeness the complete list of models in dimension
2 described in [3]. With the restriction that the valuation is the usual one,
they are the only ones which may occur up to affine transformations. We
indicate the (scalar) curvature when it is constant (+ when it is a positive
constant, 0 otherwise). When no curvature is indicated, it comes from the
fact that the metric is not unique (models 2 and 3), in which case there
exist at least one metric for which the curvature is constant and positive),
or it is not constant (model 7). Up to isomorphism, one may replace one
parabola by an horizontal line in model 4, so that this changes the degree
in the boundary (in this particular case however, the co-metric is no longer
unique).
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Up to isomorphism, we have
{
(2) � Ω

(1)
1 , (3) � Ω

(2)
3 , (4) � Ω

(2)
1 � Ω

(1)
3 ,

(5) � Ω
(2)
6 � Ω

(4)
4 , (8) � Ω

(3)
2 , (9) � Ω13, (10) � Ω11

� Curv. d(Ω) Boundary Picture

1 0 4 (1−X2)(1− Y 2) = 0

2 � 2 1−X2 − Y 2 = 0

3 � 3 XY (1−X − Y ) = 0

4 + 4, 3 (1−X2)2 − Y 2 = 0

5 + 4 Y (1−X)(X2 − Y )

6 0 4 (Y −X2)((Y + 1)2 − 4X2) = 0

7 � 3 Y 2 −X2(1−X) = 0

8 + 4 (Y 2 −X3)(X − 1) = 0

9 + 4 (Y 2 −X3)(2(Y − 1)− 3(X − 1)) = 0

10 + 4 4X2 − 27X4 + 16Y − 128Y 2 − 144X2Y + 256Y 3 = 0

11 0 4 (X2 + Y 2)2 + 18(X2 + Y 2)− 8X3 + 24XY 2 − 27 = 0
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11. Further remarks

In the various models presented here, it happens that the primary in-
variants provide a closed system. The reason is that all these groups are
subgroups of finite Coxeter groups, for which the invariants are our primary
invariants. It is not true that this is always the case. Here is an example
provided by Y. Cornulier of a group in dimension 4 which is not a subgroup
of a finite Coxeter group. Let Mp the matrix of a rotation with angle 2π/p
in R2, where p is an odd prime. Let I2 be the 2× 2 identity matrix. Then,
we consider the group generated by

N1 =

(
Mp 0
0 I2

)
, N2 =

(
I2 0
0 Mp

)
, J =

(
0 I2
I2 0

)
.

This group has 2p2 elements, Nk1
1 Nk2

2 , JNk1
1 Nk2

2 , 0 ≤ k1, k2 ≤ p − 1, and,
thanks to Mollien’s formula (4.1), the Hilbert sum is easily computed

F (t) =
1 + tp + 2tp+2 + 2t2p + t2p+2 + t3p+2

(1− t2)(1− t4)(1− t2p)(1− tp)
.

This leads to the description of primary and secondary invariants when
restricted on the unit sphere in R4. Following Section 6, we identify R4 � C2,
and for a pair (z1, z2), consider z

p
j = Xj+ iYj and Rj = |zj |2, j = 1, 2. Then

we chose

θ1 = X1 +X2, θ2 = X1X2, θ3 = R1R2

as primary invariants, and the secondary invariants may be chosen as

η1 = Y1 + Y2, η2 = (Y1 − Y2)(R1 −R2), η3 = (X1 −X2)(R1 −R2),

η4 = Y1Y2, η5 = (X1 −X2)(Y1 − Y2), η6 = (X1Y1 −X2Y2)(R1 −R2),

η7 = η3η4

It turns out that θ1, θ2, θ3 is not closed for Γ, where Γ is the square field
operator on the unit sphere in R4. For example

Γ(θ1, θ2) = p2(Tp−1 − 2θ1θ2),

where Tk = Rk
1X2 +Rk

2X1, and Tp−1 may be expressed as

Tp−1 = θ1Q1(θ3) + T1Q2(θ3),

where Qi are polynomials, and T1 = (θ1 + η3)/2, so that Γ(θ1, θ2) is not a
polynomial of (θ1, θ2, θ3).

In this example, one may observe that indeed (θ1, θ2, θ3, η3) form a closed
system for Γ, but this does not provide any model in R4 (the boundary
equation is not satisfied).
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A final remark is that our various 3-d models constructed from 2-d one
could appear as provided by Coxeter groups in dimension 4. If such would
be the case, the natural Ricci curvature carried by the associated cometric
Γ would be constant (since it would locally be the spherical co-metric seen
through a diffeomorphism). One may easily check that this is not the case.
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