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About the analogy between optimal transport and
minimal entropy (∗)

Ivan Gentil (1), Christian Léonard (2) and Luigia Ripani (3)

ABSTRACT. — We describe some analogy between optimal transport
and the Schrödinger problem where the transport cost is replaced by an
entropic cost with a reference path measure. A dual Kantorovich type
formulation and a Benamou–Brenier type representation formula of the
entropic cost are derived, as well as contraction inequalities with respect
to the entropic cost. This analogy is also illustrated with some numerical
examples where the reference path measure is given by the Brownian
motion or the Ornstein–Uhlenbeck process.

Our point of view is measure theoretical, rather than based on sto-
chastic optimal control, and the relative entropy with respect to path
measures plays a prominent role.

RÉSUMÉ. — Nous décrivons des analogies entre le transport optimal et
le problème de Schrödinger lorsque le coût du transport est remplacé par
un coût entropique avec une mesure de référence sur les trajectoires. Une
formule duale de Kantorovich, une formulation de type Benamou–Brenier
du coût entropique sont démontrées, ainsi que des inégalités de contraction
par rapport au coût entropique. Cette analogie est aussi illustrée par
des exemples numériques où la mesure de référence sur les trajectoires
est donnée par le mouvement Brownien ou bien le processus d’Ornstein–
Uhlenbeck.
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Notre approche s’appuie sur la théorie de la mesure, plutôt que sur
le contrôle optimal stochastique, et l’entropie relative joue un rôle fonda-
mental.

1. Introduction

In this article, some analogy between optimal transport and the
Schrödinger problem is investigated. A Kantorovich type dual equality, a
Benamou–Brenier type representation of the entropic cost and contraction
inequalities with respect to the entropic cost are derived when the transport
cost is replaced by an entropic one. This analogy is also illustrated with some
numerical examples.

Our point of view is measure theoretical rather than based on stochastic
optimal control as is done in the recent literature; the relative entropy with
respect to path measures plays a prominent role.

Before explaining the Schrödinger problem which is associated to an en-
tropy minimization, we first introduce the Wasserstein quadratic transport
cost W 2

2 and its main properties. For simplicity, our results are stated in
Rn rather than in a general Polish space. Let us note that properties of the
quadratic transport cost can be found in the monumental work by C. Vil-
lani [21, 22]. In particular its square root W2 is a (pseudo-)distance on the
space of probability measures which is called Wasserstein distance. It has
been intensively studied and has many interesting applications. For instance
it is an efficient tool for proving convergence to equilibrium of evolution equa-
tions, concentration inequalities for measures or stochastic processes and it
allows to define curvature in metric measure spaces, see the textbook [22]
for these applications and more.

The Wasserstein quadratic cost W 2
2 and the Monge–Kantorovich

problem

Let P(Rn) be the set of all probability measures on Rn. We denote its
subset of probability measures with a second moment by P2(Rn) = {µ ∈
P(Rn);

∫
|x|2 µ(dx) < ∞}. For any µ0, µ1 ∈ P2(Rn), the Wasserstein qua-

dratic cost is

W 2
2 (µ0, µ1) = inf

π

∫
Rn×Rn

|y − x|2 π(dxdy), (1.1)
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where the infimum is running over all the couplings π of µ0 and µ1, namely,
all the probability measures π on Rn × Rn with marginals µ0 and µ1, that
is for any bounded measurable functions ϕ and ψ on Rn,∫

Rn×Rn
(ϕ(x) + ψ(y))π(dxdy) =

∫
Rn
ϕdµ0 +

∫
Rn
ψ dµ1. (1.2)

In restriction to P2(Rn), the pseudo-distanceW2 becomes a genuine distance.
The Monge–Kantorovich problem with a quadratic cost function, consists in
finding the optimal couplings π that minimize (1.1).

The entropic cost AR and the Schrödinger problem

Let us fix some reference nonnegative measure R on the path space Ω =
C([0, 1],Rn) and denote R01 the measure on Rn ×Rn. It describes the joint
law of the initial position X0 and the final position X1 of a random process
on Rn whose law is R. This means that

R01 = (X0, X1)#R

is the push-forward of R by the mapping (X0, X1). Recall that the push-
forward of a measure α on the space A by the measurable mapping f : A→ B
is defined by

f#α(db) = α(f−1(db)), db ⊂ B,

in other words, for any positive function H,∫
Hd(f#α) =

∫
H(f)dα.

For any probability measures µ0 and µ1 on Rn, the entropic cost AR(µ0, µ1)
of (µ0, µ1) is defined by

AR(µ0, µ1) = inf
π
H(π |R01)

where H(π|R01) =
∫
Rn×Rn log(dπ/dR01) dπ is the relative entropy of π with

respect to R01 and π runs through all the couplings of µ0 and µ1. The
Schrödinger problem consists in finding the unique optimal entropic plan π
that minimizes the above infimum.

In this article, we choose R as the reversible Kolmogorov continuous
Markov process specified by the generator 1

2 (∆ − ∇V · ∇) and the initial
reversing measure e−V (x) dx.

– 571 –



Ivan Gentil, Christian Léonard and Luigia Ripani

Aim of the paper

Below in this introductory section, we are going to focus onto four main
features of the quadratic transport cost W 2

2 . Namely:

• the Kantorovich dual formulation of W 2
2 ;

• the Benamou–Brenier dynamical formulation of W 2
2 ;

• the displacement interpolations, that is theW2-geodesics in P2(Rn);
• the contraction of the heat equation with respect to W 2

2 .

The goal of this article is to recover analogous properties for AR instead
of W 2

2 , by replacing the Monge–Kantorovich problem with the Schrödinger
problem.

Several aspects of the quadratic Wasserstein cost

Let us provide some detail about these four properties.

Kantorovich dual formulation of W 2
2

The following duality result was proved by Kantorovich in [8]. For any
µ0, µ1 ∈ P2(Rn),

W 2
2 (µ0, µ1) = sup

ψ

{∫
Rn
ψ dµ1 −

∫
Rn
Qψ dµ0

}
, (1.3)

where the supremum runs over all bounded continuous function ψ and

Qψ(x) = sup
y∈Rn

{
ψ(y)− |x− y|2

}
, x ∈ Rn.

It is often expressed in the equivalent form,

W 2
2 (µ0, µ1) = sup

ϕ

{∫
Rn
Q̃ϕdµ1 −

∫
Rn
ϕdµ0

}
, (1.4)

where the supremum runs over all bounded continuous function ϕ and

Q̃ϕ(y) = inf
x∈Rn

{
ϕ(x) + |y − x|2

}
, y ∈ Rn.

The map Qψ is called the sup-convolution of ψ and its defining identity is
sometimes referred to as the Hopf–Lax formula.
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Benamou–Brenier formulation of W 2
2

The Wasserstein cost admits a dynamical formulation: the so-called
Benamou–Brenier formulation which was proposed in [5]. It states that for
any µ0, µ1 ∈ P2(Rn),

W 2
2 (µ0, µ1) = inf

(ν,v)

∫
Rn×[0,1]

|vt|2 dνt dt, (1.5)

where the infimum runs over all paths (νt, vt)t∈[0,1] where νt ∈ P(Rn) and
vt(x) ∈ Rn are such that νt is absolutely continuous with respect to time in
the sense of [1, Ch. 1] for all 0 6 t 6 1, ν0 = µ0, ν1 = µ1 and

∂tνt +∇ · (νtvt) = 0, 0 6 t 6 1.
In this equation which is understood in a weak sense, ∇· stands for the
standard divergence of a vector field in Rn and νt is identified with its density
with respect to Lebesgue measure. This general result is proved in [1, Ch. 8].
A proof under the additional requirement that µ0, µ1 have compact supports
is available in [21, Thm. 8.1].

Displacement interpolations

The metric space (P2(Rn),W2) is geodesic. This means that for any prob-
ability measure µ0, µ1 ∈ P2(Rn), there exists a path (µt)t∈[0,1] in P2(Rn)
such that for any s, t ∈ [0, 1],

W2(µs, µt) = |t− s|W2(µ0, µ1).
Such a path is a constant speed geodesic in (P2(Rn),W2), see [1, Ch. 7].
Moreover when ν is absolutely continuous with respect to the Lebesgue mea-
sure, there exists a convex function ψ on Rn such that for any t ∈ [0, 1], the
geodesic is given by

µt = ((1− t) Id +t∇ψ)#µ0. (1.6)
This interpolation is called the McCann displacement interpolation in
(P2(Rn),W2), see [21, Ch. 5].

Contractions in Wasserstein distance

Contraction in Wasserstein distance is a way to define the curvature of
the underlying space or of the reference Markov operator. In its general
formulation, the von Renesse–Sturm theorem tells that the heat equation in a
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smooth, complete and connected Riemannian manifold satisfies a contraction
property with respect to the Wasserstein distance if and only if the Ricci
curvature is bounded from below, see [18]. In the context of the present article
where Kolmogorov semigroups on Rn are considered, two main contraction
results will be explained with more details in Section 6.

Organization of the paper

The setting of the present work and notation are introduced in Section 2.
The entropic cost AR is defined with more detail in Section 3 together with
the related notion of entropic interpolation, an analogue of the displacement
interpolation. A dual Kantorovich type formulation and a Benamou–Brenier
type formulation of the entropic cost are derived respectively at Sections 4
and 5. Section 6 is dedicated to the contraction properties of the heat flow
with respect to the entropic cost. In the last Section 7, we give some examples
of entropic interpolations between Gaussian distributions when the reference
path measure is given by the Brownian motion or the Ornstein–Uhlenbeck
process.

Literature

The Benamou–Brenier formulation of the entropic cost which is stated
at Corollary 5.3 was proved recently by Chen, Georgiou and Pavon in [7]
(in a slightly less general setting) without any mention to optimal transport
(in this respect Corollary 5.6 relating the entropic and Wasserstein costs is
new). Although our proof of Corollary 5.3 is close to their proof, we think it is
worth including it in the present article to emphasize the analogies between
displacement and entropic interpolations. In addition, we also provide a time
asymmetric version of this formulation in Theorem 5.1.

Both [16] and [7] share the same stochastic optimal control viewpoint.
This differs from the entropic approach of the present paper.

Let us notice that Theorem 6.1 is a new result: it provides contraction
inequalities with respect to the entropic cost. Moreover, examples and com-
parison proposed at the end of the paper, with respect two different kernels
(Gaussian and Ornstein–Uhlenbeck) are new.
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2. The reference path measure

We make precise the reference path measure R to which the entropic cost
AR is associated. Although more general reversible path measures R would
be all right to define a well-suited entropic cost, we prefer to consider the
specific class of Kolmogorov Markov measures. This choice is motivated by
the fact that, as presented in [12], the Monge Kantorovich problem is the
limit of a sequence of entropy minimization problems, when a proper fluctu-
ation parameter tends to zero. The Kolmogorov Markov measures, as refer-
ence measures in the Schrödinger problem, admit as a limit case the Monge
Kantorovich problem with quadratic cost function, namely the Wasserstein
distance.

Notation

For any measurable set Y , we denote respectively by P(Y ) and M(Y )
the set of all the probability measures and all positive σ-finite measures on
Y . The relative entropy of a probability measure p ∈ P(Y ) with respect to
a positive measure r ∈M(Y ) is loosely defined by

H(p|r) :=


∫
Y

log(dp/dr)dp ∈ (−∞,∞], if p� r,

∞, otherwise.

For some assumptions on the reference measure r that guarantee the above
integral to be meaningful and bounded from below, see after the regularity
hypothesis (Reg2) at page 579. For a rigorous definition and some properties
of the relative entropy with respect to an unbounded measure see [14]. The
state space Rn is equipped with its Borel σ-field and the path space Ω with
the canonical σ-field σ(Xt; 0 6 t 6 1) generated by the canonical process

Xt(ω) := ωt ∈ Rn, ω = (ωs)06s61 ∈ Ω, 0 6 t 6 1.

For any path measure Q ∈M(Ω) and any 0 6 t 6 1, we denote

Qt( · ) := Q(Xt ∈ · ) = (Xt)#Q ∈M(Rn),

the push-forward of Q by Xt. When Q is a probability measure, Qt is the
law of the random location Xt at time t when the law of the whole trajectory
is Q.
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The Kolmogorov Markov measure R and its semigroup

Most of our results can be stated in the general setting of a Polish state
space. For the sake of simplicity, the setting of the present paper is par-
ticularized. The state space is Rn and the reference path measure R is the
Markov path measure associated with the generator

1
2(∆−∇V · ∇) (2.1)

and the corresponding reversible measure
m = e−V Leb

as its initial measure, where Leb is the Lebesgue measure. It is assumed that
the potential V is a C2 function on Rn such that the martingale problem
associated with the generator (2.1) on the domain C2 and the initial measure
m admits a unique solution R ∈ M(Ω). This is the case for instance when
the following hypothesis are satisfied.

Existence hypothesis (Exi)

There exists some constant c > 0 such that one of the following assump-
tions holds true:

(i) lim|x|→∞ V (x) = +∞ and inf{|∇V |2 −∆V/2} > −∞, or
(ii) −x · ∇V (x) 6 c(1 + |x|2), for all x ∈ Rn.

See [19, Thm. 2.2.19] for the existence result under the assumptions (i)
or (ii). For any initial condition X0 = x ∈ Rn, the path measure Rx :=
R( · |X0 = x) ∈ P(Ω) is the law of the weak solution of the stochastic
differential equation

dXt = −∇V (Xt)/2 dt+ dWx(t), 0 6 t 6 1, (2.2)
where Wx is an Rx-Brownian motion. The Kolmogorov Markov measure is

R( · ) =
∫
Rn
Rx( · )m(dx) ∈M(Ω).

Recall that m = e−V Leb is not necessarily a probability measure. The
Markov semigroup associated to R is defined for any bounded measurable
function f : Rn 7→ R and any t > 0, by

Ttf(x) = ERxf(Xt), x ∈ Rn.

It is reversible with reversing measure m as defined in [3].
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Regularity hypothesis (Reg1)

We also assume for simplicity that (Tt)t>0 admits for any t > 0, a density
kernel with respect to m, a probability density pt(x, y) such that

Ttf(x) =
∫
Rn
f(y)pt(x, y)m(dy). (2.3)

For instance, when V (x) = |x|2/2, then R is the path measure associated to
the Ornstein–Uhlenbeck process with the Gaussian measure as its reversing
measure. When V = 0, we recover the Brownian motion with Lebesgue mea-
sure as its reversing measure. Examples of Kolmogorov semigroups admitting
a density kernel can be found for instance in [20, Ch. 3] or [2, Cor. 4.2]. This
semigroup is fixed once for all.

Properties of the path measure R

The measure R is our reference path measure and it satisfies the following
properties.

(a) It is Markov, that is for any t ∈ [0, 1], R(X[t,1] ∈ · |X[0,t]) =
R(X[t,1] ∈ · |Xt). See [14] for the definition of the conditional law
for unbounded measures since R is not necessarily a probability
measure.

(b) It is reversible. This means that for all 0 6 T 6 1, the restric-
tion R[0,T ] of R to the sigma-field σ(X[0,T ]) generated by X[0,T ] =
(Xt)06t6T , is invariant with respect to time-reversal, that is
[(XT−t)06t6T ]#R[0,T ] = R[0,T ].

Any reversible measure R is stationary, i.e. Rt = m, for all
0 6 t 6 1 for some m ∈ M(Rn). This measure m is called the
reversing measure of R and is often interpreted as an equilibrium
of the dynamics specified by the kernel (Rx;x ∈ Rn). One says for
short that R is m-reversible.

3. Entropic cost and entropic interpolations

We define the Schrödinger problem, the entropic cost and the entropic
interpolation which are respectively the analogues of the Monge–Kantorovich
problem, the Wasserstein cost and the displacement interpolation that were
briefly described in the introduction.

Let us state the definition of the entropic cost associated with R.
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Definition 3.1 (Entropic cost). — Consider the projection

R01 := (X0, X1)#R ∈M(Rn × Rn)

of R onto the endpoint space Rn × Rn. For any µ0, µ1 ∈ P(Rn),

AR(µ0, µ1) = inf{H(π |R01); π ∈ P(Rn×Rn) : π0 = µ0, π1 = µ1} ∈ (−∞,∞]

is the R-entropic cost of (µ0, µ1).

This definition is related to a static Schrödinger problem. It also admits
a dynamical formulation.

Definition 3.2 (Dynamical formulation of the Schrödinger problem).
The Schrödinger problem associated to R,µ0 and µ1 consists in finding the
minimizer P̂ of the relative entropy H( · |R) among all the probability path
measures P ∈ P(Ω) with prescribed initial and final marginals P0 = µ0 and
P1 = µ1,

H(P̂ |R) = min{H(P |R), P ∈ P(Ω), P0 = µ0, P1 = µ1}. (3.1)

It is easily seen that its minimal value is the entropic cost,

AR(µ0, µ1) = inf{H(P |R); P ∈ P(Ω) : P0 = µ0, P1 = µ1} ∈ (−∞,∞], (3.2)

see for instance [15, Lem. 2.4].

In the rest of this work, the entropic cost will always be associated with
the fixed reference measure R ∈M(Ω), therefore without ambiguity we drop
the index and denote AR = A.

Remarks 3.3. —
(1) First of all, when R is not a probability measure, the relative entropy

might take some negative values and even the value −∞. However,
because of the decrease of information by push-forward mappings,
we have

H(P |R) > max(H(µ0 |m), H(µ1 |m)),

see [14, Thm. 2.4] for instance. Hence H(P |R) is well defined in
(−∞,∞] whenever H(µ0 |m) > −∞ or H(µ1 |m) > −∞. This will
always be assumed.

(2) Even the nonnegative quantity A(µ0, µ1) − max(H(µ0 |m),
H(µ1 |m)) > 0 cannot be the square of a distance such as the
Wasserstein cost W 2

2 . As a matter of fact, considering the special
situation where µ0 = µ1 = µ, we have A(µ, µ) > H(µ |m) > 0
as soon as µ differs from m. This is a consequence of Theorem 5.1
below.
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(3) A good news about A is that since R is reversible, it is symmetric:
A(µ, ν) = A(ν, µ). To see this, let us denote X∗t = X1−t, 0 6 t 6 1,
and Q∗ := (X∗)#Q the time reversal of any Q ∈ M(Ω). As X∗ is
one-one, we have H(P |R) = H(P ∗ |R∗) and since we assume that
R∗ = R, we see that

H(P |R) = H(P ∗ |R), ∀P ∈ P(Ω). (3.3)
Hence, if P solves (3.1) with (µ0, µ1) = (µ, ν), thenX∗#P solves (3.1)
with (µ0, µ1) = (ν, µ) and these Schrödinger problems share the
same value.

Existence of a minimizer. Entropic interpolation

We recall some general results from [15, Thm. 2.12] about the solution
of the dynamical Schrödinger problem (3.1). Let us denote by p(x, y) the
probability density introduced in (2.3), at time t = 1, so that

R01(dxdy) = m(dx)p(x, y)m(dy).
In order for (3.1) to admit a unique solution, it is enough that it satisfies the
following hypothesis:

Regularity hypothesis (Reg2)

(i) p(x, y) > e−A(x)−A(y) for some nonnegative measurable function A
on Rn;

(ii)
∫
Rn×Rn e

−B(x)−B(y)p(x, y)m(dx)m(dy) < ∞ for some nonnegative
measurable function B on Rn;

(iii)
∫
Rn(A+B) dµ0,

∫
Rn(A+B) dµ1 <∞ where A appears at (i) and B

appears at (ii);
(iv) −∞ < H(µ0 |m), H(µ1 |m) <∞.

Assumptions (ii)–(iii) are useful to define rigorouslyH(µ0 |m) andH(µ1 |m).
Under these assumptions the entropic cost A(µ0, µ1) is finite and the mini-
mizer P of the Schrödinger problem (3.1) is characterized, in addition to the
marginal constraints P0 = µ0, P1 = µ1, by the product formula

P = f0(X0)g1(X1)R (3.4)
for some measurable functions f0 and g1 on Rn. The uniqueness of the so-
lution is a direct consequence of the fact that (3.1) is a strictly convex min-
imization problem.
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Definition 3.4 (Entropic interpolation). — The R-entropic interpola-
tion between µ0 and µ1 is defined as the marginal flow of the minimizer P
of (3.1), that is µt := Pt ∈ P(Rn), 0 6 t 6 1.

Proposition 3.5. — Under the hypotheses (Exi), (Reg1) and (Reg2),
the R-entropic interpolation between µ0 and µ1 is characterized by

µt = eϕt+ψt m, 0 6 t 6 1, (3.5)
where

ϕt = log Ttf0, ψt = log T1−tg1, 0 6 t 6 1, (3.6)
and the measurable functions f0, g1 solve the following system

dµ0

dm = f0T1g1,
dµ1

dm = g1T1f0. (3.7)

The system (3.7) is often called the Schrödinger system. It simply ex-
presses the marginal constraints. Its solutions (f0, g1) are precisely the func-
tions that appear in the identity (3.4). Actually it is difficult or impossible
to solve explicitly the system (3.7). However, in Section 7, we will see some
particular examples in the Gaussian setting where the system admits an
explicit solution. Some numerical algorithms have been proposed recently
in [6].

In our setting where R is the Kolmogorov path measure defined in (2.1),
the entropic interpolation µt admits a density µt(z) := dµt/dz with respect
to the Lebesgue measure. It is important to notice that, contrary to the
McCann interpolation, the function (t, x) 7→ µt(x) is smooth on (t, x) ∈
]0, 1[×R and solves the transport equation

∂tµt +∇ · (µt vcu(t, µt)) = 0 (3.8)
with the initial condition µ0 and where vcu(t, µt, z) = ∇ψt(z)−∇V (z)/2 +
∇ logµt(z)/2 refers to the current velocity introduced by Nelson in [17,
Ch. 11] (this will be recalled at Section 5). The current velocity is a smooth
function and the ordinary differential equation

ẋt(x) = vcu(t, xt(x)), x0 = x

admits a unique solution for any initial position x, the solution of the con-
tinuity equation (3.8) admits the following push-forward expression:

µt = (xt)#µ0, 0 6 t 6 1, (3.9)
in analogy with the displacement interpolation given in (1.6).

Remark 3.6 (From the entropic cost to the Wasserstein cost). — The
Wasserstein distance is a limit case of the entropic cost. We shall use this
result to compare contraction properties in Section 6 and also to illustrate
the examples in Section 7.
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Let us consider the following dilatation in time with ratio ε > 0 of the
reference path measure R: Rε := (Xε)#R where Xε(t) := Xεt, 0 6 t 6 1. It
is shown in [12] that some renormalization of the entropic cost ARε converges
to the Wasserstein distance when ε goes to 0. Namely,

lim
ε→0

εAR
ε

(µ0, µ1) = W 2
2 (µ0, µ1)/2. (3.10)

Even better, when µ0 and µ1 are absolutely continuous, the entropic
interpolation (µRεt )06t61 between µ0 and µ1 converges as ε tends to zero
towards the McCann displacement interpolation (µt)06t61, see (1.6).

4. Kantorovich dual equality for the entropic cost

We derive the analogue of the Kantorovich dual equality (1.3) when the
Wasserstein cost is replaced by the entropic cost.

Theorem 4.1 (Kantorovich dual equality for the entropic cost). — Let
V, µ0 and µ1 be such that the hypothesis (Exi), (Reg1) and (Reg2) stated in
Section 3 are satisfied. We have

A(µ0, µ1) = H(µ0 |m) + sup
{∫

Rn
ψ dµ1 −

∫
Rn
QRψ dµ0; ψ ∈ Cb(Rn)

}
where for every ψ ∈ Cb(Rn),

QRψ(x) := logERxeψ(X1) = log T1(eψ)(x), x ∈ Rn.

This result was obtained by Mikami and Thieullen in [16] with an al-
ternate statement and a different proof. The present proof is based on an
abstract dual equality which is stated below at Lemma 4.2. Let us first de-
scribe the setting of this lemma.

Let U be a vector space and Φ : U→ (−∞,∞] be an extended real valued
function on U. Its convex conjugate Φ∗ on the algebraic dual space U∗ of U
is defined by

Φ∗(`) := sup
u∈U

{
〈`, u〉U∗,U − Φ(u)

}
∈ [−∞,∞], ` ∈ U∗.

We consider a linear map A : U∗ → V∗ defined on U∗ with values in the
algebraic dual space V∗ of some vector space V.

Lemma 4.2 (Abstract dual equality). — We assume that:

(a) Φ is a convex lower σ(U,U∗)-semicontinuous function and there is
some `o ∈ U∗ such that for all u ∈ U, Φ(u) > Φ(0) + 〈`o, u〉U∗,U ;

(b) Φ∗ has σ(U∗,U)-compact level sets: {` ∈ U∗ : Φ∗(`) 6 a} , a ∈ R;
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(c) The algebraic adjoint A† of A satisfies A†V ⊂ U.

Then, the dual equality

inf {Φ∗(`); ` ∈ U∗, A`= v∗}= sup
v∈V

{
〈v, v∗〉V,V∗ − Φ(A†v)

}
∈ (−∞,∞] (4.1)

holds true for any v∗ ∈ V∗.

Proof of Lemma 4.2. — In the special case where Φ(0) = 0 and `o = 0,
this result is [11, Thm. 2.3]. Considering Ψ(u) := Φ(u) − [Φ(0) + 〈`o, u〉],
u ∈ U, we see that inf Ψ = Ψ(0) = 0, Ψ is a convex lower σ(U,U∗)-
semicontinuous function and Ψ∗(`) = Φ∗(`o+`)+Φ(0), ` ∈ U∗, has σ(U∗,U)-
compact level sets. As Ψ∗ satisfies the assumptions of [11, Thm. 2.3], we have
the dual equality

inf {Ψ∗(`); ` ∈ U∗, A` = v∗ −A`o}

= sup
v∈V

{
〈v, v∗ −A`o〉V,V∗ −Ψ(A†v)

}
∈ [0,∞]

which is (4.1). �

Proof of Theorem 4.1. — Let us denote

Rµ0( · ) :=
∫
Rn
Rx( · )µ0(dx) ∈ P(Ω).

Rµ0 is a measure on paths, its initial marginal, as a probability measure in
Rn, is Rµ0,0 = µ0. When µ0 = m, we have Rm = R. If U is any bounded
functional on paths,

ERµ0
(U) =

∫
ER(U |X0 = x)µ0(dx)

=
∫
ER(U |X0 = x) dµ0

dR0
(x)R0(dx)

= ER
(
ER(U dµ0

dm (X0) |X0)
)

= ER
(
U

dµ0

dm (X0)
)
.

SoRµ0( · ) = dµ0

dm (X0)R( · ), we see that for any P ∈ P(Ω) such that P0 = µ0,

H(P |R) = H(µ0 |m) +H(P |Rµ0). (4.2)
Consequently, the minimizer of (3.1) is also the minimizer of

H(P |Rµ0)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (4.3)
and
A(µ0, µ1) =H(µ0 |m)+inf{H(P |Rµ0), P ∈ P(Ω) : P0 = µ0, P1 = µ1}. (4.4)
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Therefore, all we have to prove is

inf{H(P |Rµ0), P ∈ P(Ω) : P0 = µ0, P1 = µ1}

= sup
{∫

Rn
ψ dµ1 −

∫
Rn
QRψ dµ0, ψ ∈ Cb(Rn)

}
.

This is an application of Lemma 4.2 with U = Cb(Ω), V = Cb(Rn) and

Φ(u) =
∫
Rn

log
(∫

Ω
eu dRx

)
µ0(dx), u ∈ Cb(Ω),

A†ψ = ψ(X1) ∈ Cb(Ω), ψ ∈ Cb(Rn).

Let Cb(Ω)′ be the topological dual space of (Cb(Ω), ‖ · ‖) equipped with the
uniform norm ‖u‖ := supΩ |u|. It is shown in [12, Lem. 4.2] that for any
` ∈ Cb(Ω)′,

Φ∗(`) =
{
H(` |Rµ0), if ` ∈ P(Ω) and (X0)#` = µ0

+∞, otherwise
(4.5)

But according to [10, Lem. 2.1], the effective domain {` ∈ Cb(Ω)∗ : Φ∗(`) <
∞} of Φ∗ is a subset of Cb(Ω)′. Hence, for any ` in the algebraic dual Cb(Ω)∗
of Cb(Ω), Φ∗(`) is given by (4.5).

The assumption (c) of Lemma 4.2 on A† is obviously satisfied. Let us
show that Φ and Φ∗ satisfy the assumptions (a) and (b).

Let us start with (a). It is a standard result of the large deviation theory
that u 7→ log

∫
Ω e

u dRx is convex (a consequence of Hölder’s inequality). It
follows that Φ is also convex. As Φ is upper bounded on a neighborhood of
0 in (Cb(Ω), ‖ · ‖) :

sup
u∈Cb(Ω),‖u‖61

Φ(u) 6 1 <∞ (4.6)

(note that Φ is increasing and Φ(1) = 1) and its effective domain is the
whole space U = Cb(Ω), it is ‖ · ‖-continuous everywhere. Since Φ is con-
vex, it is also lower σ(Cb(Ω), Cb(Ω)′)-semicontinuous and a fortiori lower
σ(Cb(Ω), Cb(Ω)∗)-semicontinuous. Finally, a direct calculation shows that
`o = Rµ0 is a subgradient of Φ at 0. This completes the verification of (a).

The assumption (b) is also satisfied because the upper bound (4.6) implies
that the level sets of Φ∗ are σ(Cb(Ω)∗, Cb(Ω))-compact, see [10, Cor. 2.2]. So
far, we have shown that the assumptions of Lemma 4.2 are satisfied.

It remains to show that A` = v∗ corresponds to the final marginal con-
straint. Since {Φ∗ < ∞} consists of probability measures, it is enough to
specify the action of A on the vector subspace Mb(Ω) ⊂ Cb(Ω)∗ of all
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bounded measures on Ω. For any Q ∈ Mb(Ω) and any ψ ∈ Cb(Ω), we
have

〈ψ,AQ〉Cb(Rn),Cb(Rn)∗ =
〈
A†ψ,Q

〉
Cb(Ω),Cb(Ω)∗ =

∫
Ω
ψ(X1) dQ =

∫
Rn
ψ dQ1.

This means that for any Q ∈Mb(Ω), AQ = Q1 ∈Mb(Rn).

With these considerations, choosing v∗ = µ1 ∈ P(Rn) in (4.1) leads us to

inf
{
H(Q |Rµ0); Q ∈ P(Ω) : Q0 = µ0, Q1 = µ1

}
= sup
ψ∈Cb(Rn)

{∫
Rn
ψ dµ1 −

∫
Rn

log
〈
eψ(X1), Rx

〉
µ0(dx)

}
which is the desired identity. �

Remark 4.3. — Alternatively, considering Ry := Rµ1( · |X1 = y), for
m-almost all x ∈ Rn and

Rµ1( · ) :=
∫
Rn
Ry( · )µ1(dy) ∈ P(Ω)

we would obtain a formulation analogous to (1.4).

Remark 4.4. — We didn’t use any specific property of the Kolmogorov
semigroup. The dual equality can be generalized, without changing its proof,
to any reference path measure R ∈ P(Ω) on any Polish state space X .

5. Benamou–Brenier formulation of the entropic cost

We derive some analogue of the Benamou–Brenier formulation (1.5) for
the entropic cost.

Theorem 5.1 (Benamou–Brenier formulation of the entropic cost). —
Let V, µ0 and µ1 be such that hypothesis (Exi), (Reg1) and (Reg2) stated in
Section 3 are satisfied. We have

A(µ0, µ1) = H(µ0 |m) + inf
(ν,v)

∫
Rn×[0,1]

|vt(z)|2

2 νt(dz)dt, (5.1)

where the infimum is taken over all (νt, vt)06t61 such that, νt(dz) is iden-
tified with its density with respect to Lebesgue measure ν(t, z) := dνt/dz,
satisfying ν0 = µ0, ν1 = µ1 and the following continuity equation

∂tν +∇ · (ν [v −∇(V + log ν)/2]) = 0, (5.2)

is satisfied in a weak sense.

– 584 –



Analogy between optimal transport and minimal entropy

Moreover, these results still hold true when the infimum in (5.1) is taken
among all (ν, v) satisfying (5.2) and such that v is a gradient vector field,
that is

vt(z) = ∇ψt(z), 0 6 t 6 1, z ∈ Rn,
for some function ψ ∈ C∞([0, 1)× Rn).

Remarks 5.2. —
(1) The continuity equation (5.2) is the linear Fokker–Planck equation

∂tν +∇ · (ν [v −∇V/2])−∆ν/2 = 0.
Its solution (νt)06t61, with v considered as a known parameter, is
the time marginal flow νt = Pt of a weak solution P ∈ P(Ω) (if it
exists) of the stochastic differential equation

dXt = [vt(Xt)−∇V (Xt)/2] dt+ dWP
t , P -a.s.

where WP is a P -Brownian motion, P0 = µ0 and (Xt)16t61 is the
canonical process.

(2) Clearly, one can restrict the infimum in the identity (5.1) to (ν, v)
such that ∫

Rn×[0,1]
|vt(z)|2 νt(dz)dt <∞. (5.3)

Proof. — Because of (3.2) and (4.4), all we have to show is

inf{H(P |Rµ0); P ∈ P(Ω) : P0 = µ0, P1 = µ1}

= inf
(ν,v)

∫
Rn×[0,1]

|vt(z)|2

2 νt(dz)dt,

where (ν, v) satisfies (5.2), ν0 = µ0 and ν1 = µ1. As Rµ0 is Markov, by [15,
Prop. 2.10] we can restrict the infimum to the set of all Markov measures
P ∈ P(Ω) such that P0 = µ0, P1 = µ1 and H(P |Rµ0) < ∞. For each such
Markov measure P , Girsanov’s theorem (see for instance [13, Thm. 2.1] for
a proof related to the present setting) states that there exists a measurable
vector field βPt (z) such that

dXt = [βPt (Xt)−∇V (Xt)/2] dt+ dWP
t , P -a.s., (5.4)

where WP is a P -Brownian motion. Moreover, βP satisfies

EP

∫ 1

0
|βPt |2(Xt)dt <∞

and
H(P |Rµ0) = 1

2

∫
Rn×[0,1]

|βPt |2(z)Pt(dz)dt. (5.5)

For any P with P0 = µ0, H(µ0 |m) < ∞ and H(P |Rµ0) < ∞, we have
Pt � Rt = m � Leb for all t. Taking ν = (Pt)06t61 and v = βP , the
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stochastic differential equation (5.4) gives (5.2) and optimizing the left hand
side of (5.5) leads us to

inf{H(P |Rµ0); P ∈ P(Ω) : P0 = µ0, P1 = µ1}

6 inf
(ν,v)

∫
Rn×[0,1]

|vt(z)|2

2 νt(dz)dt.

On the other hand, it is proved in [23, 15] that the solution P of the
Schrödinger problem (4.3) is such that (5.4) is satisfied with βPt (z) = ∇ψt(z)
where ψ is given in (3.6). This completes the proof of the theorem. �

Corollary 5.3. — Let V , µ0 and µ1 be such that the hypotheses stated
in Section 3 are satisfied. We have

A(µ0, µ1) = 1
2 [H(µ0 |m) +H(µ1 |m)]

+ inf
(ρ,v)

∫
Rn×[0,1]

(
1
2 |vt(z)|

2 + 1
8 |∇ log ρt(z)|2

)
ρt(z)m(dz)dt, (5.6)

where the infimum is taken over all (ρt, vt)06t61 such that ρ0m = µ0, ρ1m =
µ1 and the following continuity equation

∂tρ+ eV∇ ·
(
e−V ρv

)
= 0 (5.7)

is satisfied in a weak sense.

Moreover, these results still hold true when the infimum in (5.6) is taken
among all (ν, v) satisfying (5.7) and such that v is a gradient vector field,
that is

vt(z) = ∇θt(z), 0 6 t 6 1, z ∈ Rn,
for some function θ ∈ C∞([0, 1)× Rn).

Remark 5.4. — The density ρ in the statement of the corollary must be
understood as a density ρ = dν/dm with respect to the reversing measure
m. Indeed, with ν(t, z) = dνt/dz, we see that ν = e−V ρ and the evolution
equation (5.7) writes as the current equation ∂tν +∇ · (νv) = 0.

This result was proved recently by Chen, Georgiou and Pavon in [7] in
the case where V = 0 without any mention to gradient type vector fields.
The present proof is essentially the same as in [7]: we take advantage of the
time reversal invariance of the relative entropy H( · |R) with respect to the
reversible path measure R.

Proof. — The proof follows almost the same line as Theorem 5.1’s one.
The additional ingredient is the time-reversal invariance (3.3): H(P |R) =
H(P ∗ |R). Let P ∈ P(Ω) be the solution of (3.1). We have already noted that
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P ∗ is the solution of the Schrödinger problem where the marginal constraints
µ0 and µ1 are inverted. We obtain

dXt = vPt (Xt) dt+ dWP
t , P -a.s.

dXt = vP
∗

t (Xt) dt+ dWP∗

t , P ∗-a.s.

where WP and WP∗ are respectively Brownian motions with respect to P
and P ∗ and

H(P |R) = H(µ0 |m) + EP
1
2

∫ 1

0
|βPt (Xt)|2 dt ,

H(P ∗ |R) = H(µ1 |m) + 1
2EP

∗

∫ 1

0
|βP

∗

t (Xt)|2 dt

= H(µ1 |m) + 1
2EP

∫ 1

0
|βP

∗

1−t(Xt)|2 dt

with vP = −∇V/2 + βP and vP∗ = −∇V/2 + βP
∗
. Taking the half sum of

the above equations, the identity H(P |R) = H(P ∗ |R) implies that

H(P |R) = 1
2 [H(µ0 |m) +H(µ1 |m)] + 1

4EP
∫ 1

0
(|βPt |2 + |βP

∗

1−t|2) dt.

Let us introduce the current velocities of P and P ∗ defined by

vcu,Pt (z) := vPt (z)− 1
2∇ log νPt (z) = βPt (z)− 1

2∇ log ρPt (z),

vcu,P
∗

t (z) := vP
∗

t (z)− 1
2∇ log νP

∗

t (z) = βP
∗

t (z)− 1
2∇ log ρP

∗

t (z)

where for any 0 6 t 6 1, z ∈ Rn,

νPt (z) := dPt
dz , ρ

P
t (z) := dPt

dm (z) and νP
∗

t (z) := dP ∗t
dz , ρP

∗

t (z) := dP ∗t
dm (z).

The naming current velocity is justified by the current equations

∂tν
P +∇ · (νP vcu,P ) = 0 and ∂tρ

P + eV∇ · (e−V ρP vcu,P ) = 0,

∂tν
P∗

+∇ · (νP
∗
vcu,P

∗
) = 0 and ∂tρ

P∗
+ eV∇ · (e−V ρP

∗
vcu,P

∗
) = 0.

To see that the first equation ∂tνP +∇ · (νP vcu,P ) = 0 is valid, remark that
νP satisfies the Fokker–Planck equation (5.2) with v replaced by βP . The
equation for ρP follows immediately and the equations for νP∗ and ρP∗ are
derived similarly.

The very definition of P ∗ implies that ρP∗

t = ρP1−t and the time reversal
invariance R∗ = R implies that

vcu,P
∗

t (z) = −vcu,P1−t (z), 0 6 t 6 1, z ∈ Rn.
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Therefore, βP∗

1−t = −vcu,Pt + 1
2∇ log ρPt and 1

4 (|βPt |2 + |βP∗

1−t|2) = 1
2 |v

cu,P
t |2 +

1
8 |∇ log ρPt |2. This completes the proof of the first statement of the corollary.

For the second statement about v = ∇θ, remark that as in Theorem 5.1’s
proof, the solution P of the Schrödinger problem is such that βP = ∇ψ for
some smooth function ψ. One concludes with vcu,P = βP − 1

2∇ log ρP , by
taking θ = ψ − log

√
ρP . �

Remarks 5.5. —
(1) The current velocity vcu,P of a diffusion path measure P has been in-

troduced by Nelson in [17] together with its osmotic velocity vos,P :=
1
2∇ log ρP .

(2) Up to a multiplicative factor,
∫
Rn |∇ log ρt(z)|2 ρt(z)m(dz) is the en-

tropy production or Fischer information. The average osmotic action
is Aos(P ) :=

∫
Rn×[0,1]

1
2 |v

os,P |2 dPtdt =
∫
Rn×[0,1]

1
8 |∇ log ρ|2ρdmdt

and it is directly connected to a variation of entropy. It’s worth
remarking that by considering the dilatation in time of the refer-
ence path measure as introduced in Remark 3.6, the osmotic action
vanishes in the limit for ε→ 0. Let us define now the osmotic cost
Ios(µ0, µ1) := inf{Aos(P );P ∈ P(Ω) : P0 = µ0, P1 = µ1}

and the current cost

Icu(µ0, µ1) := inf
(ρ,v)

∫
Rn×[0,1]

1
2 |vt(z)|

2ρt(z)m(dz)dt

where the infimum runs through all the (ρ, v) satisfying (5.7). The
standard Benamou–Brenier formula precisely states that
Icu(µ0, µ1) = W 2

2 (µ0, µ1)/2. Therefore, Corollary 5.3 implies that

A(µ0, µ1) > 1
2 [H(µ0 |m) +H(µ1 |m)] + 1

2W
2
2 (µ0, µ1) + Ios(µ0, µ1).

In particular, by the positivity of the entropic cost Ios we obtain the
following relation between the entropic and Wasserstein costs:

Corollary 5.6. — Let V, µ0 and µ1 be such that the hypotheses stated
in Section 3 are satisfied. We have

A(µ0, µ1) > 1
2 [H(µ0 |m) +H(µ1 |m)] + 1

2W
2
2 (µ0, µ1).

6. Contraction with respect to the entropic cost

The analogy between optimal transport and minimal entropy can also be
observed in the context of contractions.
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As explained in the introduction, contraction in Wasserstein distance
depends on the curvature. Even if there are actually many contraction in-
equalities in Wasserstein distance, we focus here on two main results. The
first one depends on the curvature and the second one includes the dimen-
sion. These results can be written for more general semigroups satisfying the
curvature-dimension condition as defined in the Bakry-Émery theory.

In the context of the Kolmogorov semigroup of Section 2 with a generator
given by (2.1) in Rn, the two main contraction inequalities can be formulated
as follows.

• Let us assume that for some real λ, we have Hess(V ) > λ Id in the
sense of symmetric matrices. Then for any f, g probability densities
with respect to the measure m and any t > 0,

W2(Ttf m, Ttgm) 6 e−λ2 tW2(fm, gm). (6.1)
Let us recall that this result was proved in [18] in the general context
of Riemannian manifold. Although in the context of Kolmogorov
semigroups the proof is easy, its generalization for the entropic cost
to a Riemannian setting is not trivial.
• When L = ∆/2, that is V = 0, the heat equation in Rn satifies the
following dimension dependent contraction property:

W 2
2 (Ttf Leb, Tsg Leb) 6W 2

2 (f Leb, g Leb) + n(
√
t−
√
s)2, (6.2)

for any s, t > 0 and any probability densities f, g with respect to
the Lebesgue measure Leb. This contraction was proved in a more
general context in [4, 9].

The two inequalities (6.1) and (6.2) can be proved in terms of entropic
cost. Let us choose the reference path measure R associated with the poten-
tial V and take ε, u > 0 and µ0, µ1 ∈ P(Rn). In order to extend for each
u, ε > 0 the dual formulation for the entropic cost of Theorem 4.1, consider
the semigroup (Tεut)t>0 and the corresponding path measure Rεu: time is
dilated by the factor (εu)−1. Theorem 4.1 implies that

AR
εu

(µ0, µ1)

= H(µ0 |m) + sup
{∫

Rn
ψ dµ1 −

∫
Rn

log Tεu(eψ) dµ0, ψ ∈ Cb(Rn)
}
.

Now by changing ψ with ψ/ε we see that

εAR
εu

(µ0, µ1)

= εH(µ0 |m) + sup
{∫

Rn
ψ dµ1 −

∫
Rn
Qεuψ dµ0, ψ ∈ Cb(Rn)

}
(6.3)
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where for any ψ ∈ Cb(Rn),

Qεuψ = ε log Tεu(eψ/ε). (6.4)

For simplicity, we denote εARεu = Aεu and Aε1 = Aε.

As explained in Remark 3.6, we have

lim
ε→0
Aεu(µ0, µ1) = W 2

2 (µ0, µ1)/2u. (6.5)

The entropic cost associated to the Kolmogorov semigroup has the fol-
lowing properties.

Theorem 6.1 (Contraction in entropic cost). — Let ε > 0 be fixed.

(a) If V satisfies Hess(V ) > λ Id for some λ ∈ R, then for any t > 0,

Aεb(Tut(b)fm, Ttgm)
6 Aεvt(b)(fm, gm) + ε[H(Tut(b)fm|m)−H(fm |m)], (6.6)

where f, g are probability densities with respect to m, and

ut(b) = t+ 1
λ

log
(

e−ελb

1 + eλt(e−ελb − 1)

)
,

vt(b) = − 1
λε

log(1 + eλt(e−ελb − 1))
(6.7)

where: if λ 6 0, b ∈ (0,∞) and if λ > 0, b ∈ (0,− 1
λε log(1− e−λt)).

(b) If V = 0 then for any t > 0,

Aε(Ttfm, Tsgm)

6 Aε(fm, gm) + n

2 (
√
t−
√
s)2 + ε[H(Ttfm |m)−H(fm |m)].

The proof of this theorem relies on the following commutation property
between the Markov semigroup Tt and the semigroup Qεt defined in (6.4).
Let us notice that the second statement of next lemma was proved in [4,
Section 5].

Lemma 6.2 (Commutation property). — Let s, t > 0, ε > 0 and f :
Rn → R be any bounded measurable function.

(a) If Hess(V ) > λ Id for some real λ, then

Qεvt(b)(Ttf) 6 Tut(b)(Q
ε
bf) (6.8)

where for each t > 0, the numbers ut(b), vt(b) and b are given
in (6.7). Moreover, for ε small enough and t > 0 fixed, (6.8) is
valid for all b positive.

– 590 –



Analogy between optimal transport and minimal entropy

(b) If V = 0 then

Qε1(Ttf) 6 Ts(Qε1f) + n

2 (
√
t−
√
s)2.

Proof. — We only have to prove the first statement (a). Let us define for
each s 6 t the function

Λ(s) = TαQεβ(Tt−sf)
with α : [0, t] → [0,∞) an increasing function such that α(0) = 0, and
β : [0, t]→ [0,∞) and we call β(t) = b. Setting g = exp(Tt−sf/ε), using the
chain rule for the diffusion operator L we obtain

Λ′(s)

= εTα

[
α′L log Tεβg + 1

Tεβg
Tεβ (εβ′Lg − gL log g)

]
= εTα

[
α′
(
LTεβg

Tεβg
− |∇Tεβg|

2

2(Tεβg)2

)
+ 1
Tεβg

Tεβ

(
εβ′Lg−Lg+ |∇g|

2

2g

)]
= εTα

[
1

Tεβg

(
LTεβg(α′+ εβ′−1) +Tεβ

(
|∇g|2

2g

)
−α′ |∇Tεβg|

2

2Tεβg

)]
> εTα

[
1

Tεβg

(
LTεβg(α′+ εβ′−1) + 1

2Tεβ
(
|∇g|2

g

)
(1− e−λεβα′)

)]
(6.9)

where the last inequality is given by the commutation,
|∇Ttg|2

Ttg
6 e−λtTt

(
|∇g|2

g

)
which is implied by the condition Hess(V ) > λ Id (see for instance [3, Sec-
tion 3.2]). If the following conditions on α and β hold{

α′ + εβ′ − 1 = 0
1− e−λεβα′ = 0,

(6.10)

we have Λ′(s) > 0 for each 0 6 s 6 t. In particular Λ(0) 6 Λ(t) for each
t > 0, that is

Qεvt(b)(Ttf) 6 Tut(b)(Q
ε
bf)

where vt(b) = β(0) and ut(b) = α(t). Finally solving system (6.10) together
with the conditions α(0) = 0, β(t) = b, we can compute the explicit formulas
for v and u as in statement (a). In particular, substituting α′ in the second
equation of the system and integrating from 0 to t we obtain the following
relation

e−ελβ(0) = 1 + eλt(e−ελb − 1). (6.11)
If we assume for a while that the term on the right hand side is positive, we
obtain

β(0) = − 1
λε

log(1 + eλt(e−ελb − 1))
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and

α(t) = t+ 1
λ

log
(

e−ελb

1 + eλt(e−ελb − 1)

)
.

Let us study now the sign of the right hand side in (6.11).

• If λ 6 0, it is positive for each b ∈ R;
• If λ > 0 in order to be positive, we need the condition for b,

b < − 1
ελ

log(1− e−λt) := b0.

Finally let us consider the case when ε > 0 is small. From (6.11) we
obtain the relation

β(0) = beλt + o(ε)

for each λ ∈ R and b positive.

This completes the proof of the lemma. �

Proof of Theorem 6.1. — The proof is based on the dual formulation
stated in Theorem 4.1. Let ψ ∈ Cb(Rn), by Lemma 6.2 under the condition
Hess(V ) > λ Id and by time reversibility,∫

Rn
ψ Ttg dm−

∫
Rn
Qεbψ Tut(b)f dm =

∫
Rn
Ttψ g dm−

∫
Rn
Tut(b)Q

ε
bψ f dm

6
∫
Rn
Ttψ g dm−

∫
Rn
Qεvt(b)Ttψ f dm

6 Aεvt(b)(fm, gm)− εH(fm |m).

Finally taking the supremum over ψ ∈ Cb(Rn) we obtain the desired inequal-
ity in (a). The same argument can be used to prove the contraction property
in (b), applying the second commutation inequality in Lemma 6.2. �

Remark 6.3. — Let us observe that if λ < 0, the function β(s), for
s ∈ [0, t], is decreasing, while for λ > 0 it is increasing and if λ = 0 it is the
constant function β(t) = b. In particular by choosing b = 1 (6.8) writes as
follows:

Qε1(Ttf) 6 Tt(Qε1f).

Remark 6.4. — Lemma 6.2 can be proved in the general context of
a Markov diffusion operator under the Bakry-Émery curvature-dimension
condition. Its application to more general problems is actually a working
paper of the third author.
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Remarks 6.5. — Let us point out two converse assertions.

(1) The contraction in entropic cost in Theorem 6.1 implies back the
contraction in Wasserstein cost. Indeed, under the assumptions of
Section 3, it can be easily checked that when ε→ 0, we have u(t)→ t
and v(t)→ beλt. Therefore, with (6.5) and (6.6), one recovers (6.1).
Analogous arguments can be applied to recover the contraction of
the Wasserstein cost (6.2) when V = 0.

(2) The commutation property in Lemma 6.2 implies back the convex-
ity of the potential V . This can be seen by differentiating (6.8) with
respect to b around 0. We believe also that for ε > 0 fixed, inequal-
ity (6.6) implies back the convexity of the potential.

7. Examples

In this section we will compute explicitly the results discussed in the pre-
vious sections, between two given measures. We first compute the Wasser-
stein cost, its dual and Benamou–Brenier formulations and the displacement
interpolation, as exposed in the introduction. Then, we’ll do the same for the
entropic cost, taking in consideration two different reference path measures
R. In particular, we’ll compute (6.3), for u = 1 and ε > 0 and look at the
behavior in the limit ε → 0 to recover the classical results of the optimal
transport. For abuse of notation we will denote with µt both the interpola-
tion and its density with respect to the Lebesgue measure dx. We introduce
for Gaussian measures the following notation: for any m ∈ Rn and v ∈ R,
the density with respect to the Lebesgue measure of N (m, v2) is given by

(2πv2)−n/2 exp
(
− |x−m|

2

2v2

)
.

As marginal measures we consider for x0, x1 ∈ Rn

µ0(x) := N (x0, 1), µ1(x) := N (x1, 1). (7.1)

Note that the entropic interpolation between two Dirac measures δx and
δy should be the Bridge Rxy between x and y with respect to the reference
measure R. But unfortunately H(δx |m), H(δy |m) =∞, hence we consider
only marginal measures with a density with respect to m.

7.1. Wasserstein cost

The Wasserstein cost between µ0, µ1 as in (7.1), is
W 2

2 (µ0, µ1) = d(x0, x1)2.
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In its dual formulation, the supremum is reached by the function

ψ(x) = (x1 − x0)x

and in the Benamou–Brenier formulation the minimizer vector field is

vMC = x1 − x0

The displacement or McCann interpolation is given by

µMC
t = N (xt, 1) (7.2)

where xt = (1 − t)x0 + tx1. In other words using the push-forward nota-
tion (1.6),

µMC
t = (x̂MC

t )#µ0

with x̂MC
t (x) := (1 − t)x + t(x + x1 − x0) a trajectory whose associated

velocity field is vMC = x1 − x0.

7.2. Schrödinger cost

Heat semigroup

As a first example we consider on the state space Rn the heat (or Brown-
ian) semigroup, that corresponds to the case V = 0 in our main example in
Section 2, whose infinitesimal generator is the Laplacian L = ∆/2 and the
invariant reference measure is the Lebesgue measure dx. Since we are inter-
ested in the ε-entropic interpolation, with ε > 0, we take in consideration
the heat semigroup with a dilatation in time, whose density kernel is given
by

pεt (x, y) = (2πεt)−n/2 exp
(
−|x− y|

2

2εt

)
i.e. pεt (x, y) = N (y, εt) for t > 0, (x, y) ∈ Rn × Rn.

• The entropic interpolation (3.5) is

µεt = N (xt, Dε
t ) (7.3)

where xt is like in (7.2) andDε
t : [0, 1]→ R+ is a polynomial function

given by
Dε
t = αεt(1− t) + 1

with αε = δ2/(1 + δ) where δ = (ε − 2 +
√

4 + ε2)/2. We observe
that Dε

t is such that D0 = D1 = 1 with a maximum in t = 1/2 for
each ε > 0, (see Figure 7.1).
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It’s worth to point out how we managed to derive an explicit for-
mula for the entropic interpolation. The key point is the resolution
of the Schrödinger system (3.7) that in our example writes as(2π)−n/2 exp

(
− |x−x0|2

2

)
= f(x)

∫
g(y)(2πεt)−n/2 exp

(
− |x−y|

2

2εt

)
dy

(2π)−n/2 exp
(
− |x−x1|2

2

)
= g(x)

∫
f(y)(2πεt)−n/2 exp

(
− |x−y|

2

2εt

)
dy.

By taking f and g exponential functions of the type

ea2x
2+a1x+a0 with a0, a1, a2 ∈ R

we can solve the system explicitely by determining the coefficients
of f and g.

One can also express the entropic interpolation through the push-
forward notation as introduced in (3.9), µεt = (x̂εt )#µ0 where

x̂εt (x) =
√
Dε
t (x− x0) + xt.

Furthermore x̂εt satisfies the differential equation

ẋεt = vcu,ε(xεt ) (7.4)

where vcu,ε is the current velocity given by

vcu,ε = Ḋε
t

2Dε
t

(x− xt) + x1 − x0.

It can be finally verified that the entropic interpolation (7.3)
satisfies the PDE

µ̇εt +∇ · (µεtvcu,ε) = 0. (7.5)

Remark 7.1. — Let us observe that if x0 = x1, µεt is not con-
stant in time, unlike the McCann interpolation.

• Denoting P ∈ P(Ω) the path measure whose flow is given by (7.3)
and that minimizes H(· |R), the entropic cost between µ0, µ1 as
in (7.2) is

Aεu(µ0, µ1) = H(P |R).
The easiest way to compute this quantity is to use the Benamou–
Brenier formulation in Section 5. The resulting formula has not a
nice and interesting form, therefore we don’t report it explicitly.
• In the dual formulation proved in Section 3, the supremum is reached
by the function ψ ∈ Cb(Rn) given, up to a constant term, by

ψt(x) = −1
2

δ

1 + δ(1− t)x
2 − 1

2
γ

1 + δ(1− t)x (7.6)

where δ as in (7.3) and γ = 2[x0(1 + δ)− x1].
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• In the Benamou–Brenier formulation in Theorem 5.1 the minimizer
vector field is

vH = ∇ψt.
where ψt is given by (7.6) and ∇ψt represents the forward velocity.
It can be easily verified that the equation

∂tµt +∇ ·
(
µt

[
∇ψt −

∇µt
2µt

])
= 0 (7.7)

is satisfied.

Ornstein–Uhlenbeck semigroup

As a second example, we consider on the state space Rn the Ornstein–
Uhlenbeck semigroup, that corresponds to the case V (x) = |x|2/2 for the
Kolmogorov semigroup in Section 2, whose infinitesimal generator is given
by L = (∆ − x · ∇)/2 and the invariant measure is the standard Gaussian
in Rn. Here again we consider the kernel representation with a dilatation
in time; in other words, for ε > 0, the kernel with respect to the Lebesgue
measure is given by

pt(x, y) = (2π(1− e−εt))−n/2 exp
(
−|y − xe

−εt/2|2

2(1− e−εt)

)
i.e. pt(x, y) = N (xe−εt/2, 1− e−εt)(y).

• The entropic interpolation (3.5) is given by
µεt = N (mt, D

ε
t ) (7.8)

where mt = at[(e−εt/2− e−ε(1−t/2))x0 + (e−ε(1−t)/2− e−ε(1+t)/2)x1]
with

at := 1 + δ − δe−ε

(1− e−ε)[δ(1 + δ)(e−εt + e−ε(1−t))− 2δ2e−ε]
with δ as in (7.10), and Dε

t : [0, 1]→ R+ defined as
Dε
t := −1 + 2(1− e−ε)at

satisfying, as in the case of the Heat semigroup, Dε
0 = Dε

1 = 1.
Furthermore, we have µεt = (x̂εt )#µ0 where

x̂εt :=
√
Dε
t (x− x0) +mt.

It can be verified that equations (7.5) and (7.4) hold true also in
the Ornstein Uhlenbeck case, with the current velocity given by

vεcu(x) = Ḋε
t

2Dt
(x− x0) + ṁt (7.9)
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• The entropic cost between µ0, µ1 can be computed as in the Heat
semigroup case by

Aεu(µ0, µ1) = H(P |R)
where P is the path measure associated to the flow (7.8) which
minimizes H( · |R).
• In the dual formulation in Section 3, the supremum is reached, up
to a constant term, by the function

ψt(x) = −1
2

εδe−ε(1−t)

1 + δ(1− e−ε(1−t))
x2 + εγe−ε(1−t)/2

1 + δ(1− e−ε(1−t))
x (7.10)

where δ = (e−ε −
√
e−2ε − e−ε + 1)/(e−ε − 1) and γ = (x0e

−ε/2 −
x1(1 + δ − δe−ε))/(1− e−ε).
• In the Benamou–Brenier formulation (Theorem 5.1) the minimizer
vector field is

vOU = ∇ψt.
Remark 7.2. — Let us observe that both in the heat and Ornstein–

Uhlenbeck cases, if we take the limit ε → 0 of the entropic interpolation,
of the velocities vH , vOU and of the function ψt, we recover the respective
results for the Wasserstein cost stated in Subsection 7.1.

In the following figures we refer to the McCann interpolation with a dot-
ted line, the Heat semigroup with a dashed line and the Ornstein–Uhlenbeck
semigroup with a continuous line. We fix ε = 1 and consider marginal
measures in one dimension. Figure 7.1 represents the variance of the three in-
terpolations, independent from the initial and final means x0, x1. Figures 7.2
and 7.3 correspond to the mean in the three cases respectively with the initial
and final means symmetric w.r.t the origin, and for any means. It’s worth to
remark from these images that the McCann interpolation and the entropic
interpolation in the case of the heat semigroup, have the same mean. Finally
Figures 7.4 and 7.5 represent the three interpolations at time t = 0, 1/2, 1
respectively with different marginal data, as before.

Figure 7.1. Variance, ε = 1
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Figure 7.2. Mean with x0 = −3, x1 = 3, ε = 1

Figure 7.3. Mean with x0 = 1, x1 = 7, ε = 1

Figure 7.4. Interpolations at time t = 0, 1/2, 1, x0 = −3, x1 = 3, ε = 1
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Figure 7.5. Interpolations at time t = 0, 1/2, 1, x0 = 1, x1 = 7, ε = 1
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