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On the non existence of non negative solutions to a
critical Growth-Fragmentation Equation (∗)

Miguel Escobedo (1)

ABSTRACT. — A growth fragmentation equation with constant dislocation den-
sity measure is considered, in which growth and division rates balance each other.
This leads to a simple example of equation where the so called Malthusian hypothesis
(M+) of J. Bertoin and A. Watson [8] is not necessarily satisfied. It is proved that,
as it was first suggested by these authors, when that happens, no global non nega-
tive weak solution, satisfying some boundedness condition on several of its moments,
exists. Non existence of local non negative solutions satisfying a similar condition,
is proved to happen also. When a local non negative solution exists, the explicit
expression is given.

RÉSUMÉ. — Nous considérons une équation de croissance fragmentation dont les
taux de croissance et de fragmentation s’équilibrent et dont le noyau de dislocation
est constant. Suivant la valeur de cette constante l’équation vérifie ou non la condition
(M+) introduite par J. Bertoin et A. Watson dans [8]. Nous démontrons que, comme
ces auteurs l’avaient suggéré, lorsque la condition n’est pas vérifiée l’équation ne
possède pas de solution globale non négative dont les moments satisfont certaines
estimations naturelles. Nous montrons également que l’équation peut aussi ne pas
avoir de solution locale vérifiant de telles estimations. Lorsqu’une telle solution existe,
locale ou globale, une formule explicite est obtenue.

1. Introduction

Growth fragmentation equations have proved to be of interest due to their
many applications in mathematical modeling and also for purely mathemat-
ical reasons (cf. [3, 4, 12, 20] and references therein). Motivated by the study
of compensated growth-fragmentation stochastic processes (cf. [5]) and their
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occurrence in the construction of the Brownian map (cf. [6, 18, 21]), the
Cauchy problem for the equation

∂u(t, x)
∂t

+ ∂

∂x

(
x1+γu(t, x)

)
+ xγu(t, x) =

∫ ∞
x

1
y
k0

(
x

y

)
yγu(t, y)dy (1.1)

in the domain t > 0, x > 0 is considered in [8] with initial data:

u(0) = δ1, (1.2)

for γ ∈ R and k0 a dislocation measure density, with support contained in
[0, 1] and satisfying:

k0(x)dx = k0(1−x)dx, ∀ x ∈ [1/2, 1);
∫

[1/2,1)
(1−x)2k0(x)dx <∞. (1.3)

The existence of solutions of growth fragmentation equations of a more gen-
eral form:
∂u(t, x)
∂t

+ ∂

∂x

(
τ(x)u(t, x)

)
+B(x)u(t, x) =

∫ ∞
x

k(x, y)B(y)u(t, y)dy (1.4)

has been studied by several authors, with different motivations and by dif-
ferent methods (cf. for example [3, 4, 12, 20] and references therein). Several
choices of the functions B(x) and τ(x) have been used, based either on mod-
eling considerations or for purely mathematical purpose. Functions B and
τ with power law behaviors at x → 0 and x → ∞ seem to be acceptable
approximations and are mathematically manageable. Suppose for the sake
of simplicity that B(x) = xγ and τ(x) = xν . When 1 + γ− ν > 0, and under
some other suitable conditions that may vary from an article to another, it
has been proved that the equation has a kind of ground state, denoted as
(λ,N, φ) whose components satisfy the stationary system:

∂

∂x

(
τ(x)N(x)

)
+B(x)N(x) =

∫ ∞
x

k(x, y)B(y)N(y)dy − λN(x)

∂

∂x

(
τ(x)φ(x)

)
−B(x)φ(x) = −

∫ ∞
x

k(x, y)B(y)φ(y)dy + λφ(x)

N(0) = 0, N(x) > 0, ∀ x > 0,
∫ ∞

0
N(x)dx = 1

φ(x) > 0,
∫ ∞

0
φ(x)N(x)dx = 1.

These eigenelements are important because, under some conditions, they
have been proved to describe in some detail the dynamics of the evolution
equation (1.4) and in particular its long time behavior as t→∞. They are
particularly relevant in the mathematical modeling of population dynamics
in biology (cf. [3, 25] and references therein).
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Non existence of non negative solutions

The case ν = 0 is treated in [25], and the cases ν > 0, γ > 0 in [19].
In [20] the authors take ν = 0 and the function B is bounded from above
and from below by positive constants. In [10] the function τ is compactly
supported in [0, xM ]). The authors of [12] consider also more general kernels
k0 like k0(x) = (δr + δ1−r)/2 for some r ∈ [0, 1/2] or k0(x) = (α+ 1)/2(xα +
(1− x)α. They also prove that if ν = 1 and γ = 0 (and then 1 + γ − ν = 0)
such eigenelements do not exist. That case also appears as critical in [15]
when studying the long time behavior of fragmentation equations. It was
considered in [11], where the existence of solutions was proved for a large set
of initial data.

The growth fragmentation equation with 1 + γ − ν = 0 turns out to
be of interest also in the study of compensated fragmentation processes in
probability theory (cf. [5]). The equation is then rather specific, since the
growth and dislocation rates balance each other in some sense. When γ 6= 0
the growth rate is not linear and the dislocation rate is unbounded. In that
case, the existence of global, non negative, weak solutions of (1.1)–(1.3) has
been proved in [8], under the condition (called Malthusian condition (M+)
in [8]):

inf
s>0

Φ(s) < 0 (1.5)

Φ(s) = (K(s) + s− 2) , K(s) =
∫ 1

0
xs−1k0(s)ds. (1.6)

When property (1.5) is not satisfied it is shown in [8] and [7] that the par-
ticle system that corresponds to the stochastic version of (1.1)–(1.3) explode
in finite time almost surely. The question has then been raised in [8] of the
existence of non negative global solutions to (1.1)–(1.3) when the measure
k0 is such that:

inf
s>0

Φ(s) > 0 (1.7)

and it was suggested that no such solutions exists when the inequality in (1.7)
is strict. In order to obtain some insight into this question, we consider the
simplest possible choice for k0:

k0(x) = θH(1− x), θ > 0 (1.8)

where H is the Heaviside’s function. This is of course a very particular
example, but for which it is possible to obtain a rather explicit solutions,
whose properties may be understood in detail. It is straightforward to check
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that for such a dislocation measure:

K(s) = θ

s
(1.9)

Φ(s) = θ

s
+ s− 2 ≡ (s− σ1)(s− σ2)

s
, ∀ s ∈ C; <e(s) > 0, (1.10)

σ1 = 1−
√

1− θ, σ2 = 1 +
√

1− θ. (1.11)

If θ ∈ (0, 1) the two roots of Φ(s) are positive real numbers and condi-
tion (1.5) is satisfied. But, when θ > 1, infs>0 Φ(s) = 2(

√
θ−1) > 0 and (1.5)

is not satisfied.

For θ ∈ (0, 1) the existence of global non negative solutions follows from
the results of [8]. We then focus on the case γ 6= 0, θ > 1 and the question
of the existence or not of non negative solutions.

For reasons due to the specific application of the growth fragmentation
equation that one may be interested in, the dislocation measure k0 is some-
times required to satisfy also:∫ 1

0
xk0(x)dx = 1,

(cf. for example in [3, 4, 11, 12, 20]). Were we willing to impose such condition
in our case, it would force the value θ = 2 and the condition (1.5) would not
be satisfied.

1.1. Some notations

We denote N the set of non negative integers and Γ( · ) the Gamma func-
tion. For a given interval (a, b) ⊂ R we define:

S (a, b) = {s ∈ C; <e(s) ∈ (a, b)} . (1.12)

We denote D ′1 the set of distributions of order one and by F (a, b, c, z) the
Gauss hypergeometric function 2F1(a, b; c; z). On the disc |z| < 1, the func-
tion F (a, b, c, z) is defined by the series:

F (a, b, c, z) = Γ(a)Γ(b)
Γ(c)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)Γ(n+ 1)z

n (1.13)

and it is defined by analytic continuation elsewhere (cf. [23]).
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Non existence of non negative solutions

We say that the measure u is a weak solution of (1.1), (1.8) on the time
interval (t0, t1) if

∀ ϕ ∈ C1
c ((t0, t1)× (0,∞)) :∫ ∞

0

∫ ∞
0

(
∂ϕ

∂t
+ xγ+1 ∂ϕ

∂x
+ xγϕ(t, x)

)
u(t, x)dxdt

= −θ
∫ ∞

0

∫ ∞
0

u(t, y)yγ−1
∫ y

0
ϕ(t, x)dxdydt (1.14)

We denote Mρ the space of measures u on (0,∞) such that∫ ∞
0

xρu(x)dx <∞.

If w is a measure, we denote Mw its Mellin transform, defined, when it
makes sense, as

Mw(t, s) =
∫ ∞

0
xs−1w(t, x)dx.

It follows from the definition of K(s) in (1.6) that K(s) = Mk0(s). The
use of the Mellin transform makes the spaces E′p, q for p < q, presented for
example in [22, Chapter 11], necessary. They are defined as the dual of the
spaces Ep, q of all the functions φ ∈ C∞(0,∞) such that:

Np,q,k(φ) = sup
x>0

(
kp,q(x)xk+1 ∣∣φk(x)

∣∣) <∞
where

kp,q(x) =
{
x−p, if 0 < x 6 1
x−q, if x > 1

with the topology defined by the numerable set of seminorms {Np,q,k}k∈N.
It follows that E′p, q is a subspace of D ′(0,∞). As indicated in [22], these are
the spaces of Mellin transformable distributions.

1.2. Main results

In very short, when θ > 1 and γ 6= 0, global non negative solutions
to (1.1), (1.2), (1.8), satisfying a boundedness condition on several of its
moments, do not exist. More detailed statements depend on the sign of γ,
as follows.
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1.2.1. When γ > 0

Our first result is the following local existence of non negative solutions:

Theorem 1.1. — For all θ > 0 and γ > 0 there exists a unique, non
negative weak solution u ∈ D ′1((0, γ−1) × (0,∞)) of (1.1), (1.8) on (0, γ−1)
such that, for some ρ > 0:

u ∈ C
([

0, γ−1) ;E′ρ−δ,ρ+γ+δ
)
, for some δ > 0 (1.15)

u(t) ⇀ δ1 in E′ρ,ρ+γ , as t→ 0. (1.16)
That solution is:

u(t, x) = uS(t, x) + uR(t, x)H
(

1− (1− γt)
1
γ x
)

(1.17)

uS(t, x) = (1− γt)
1
γ δ
(
x− (1− γt)−

1
γ

)
(1.18)

uR(t, x) = θ (1− γt)
2
γ tF

(
1 + σ1

γ
, 1 + σ2

γ
, 2, γt (1 + (γt− 1)xγ)

)
(1.19)

and satisfies:
u ∈ C

([
0, γ−1) ; Mρ−1

)
, ∀ ρ > 0. (1.20)

The sense in which the initial data δ1 is taken in the hypothesis (1.16)
ensures that the Mellin transform of u(t) converges to 1 as t goes to zero, for
all s ∈ S (ρ, ρ + γ). Since E′ρ,ρ+γ ⊂ D ′(0,∞) with continuous embedding,
this condition is stronger than the convergence in the weak sense of measures.

Non uniqueness in some sense, of non negative solutions of (1.1) has been
proved in [8] under some conditions on k0. However the function k0 given
in (1.8) does not satisfy such conditions (cf. Remark 3.7).

As a consequence of Theorem 1.1 we deduce the following:

Corollary 1.2. — The solution u of (1.1), (1.8) defined in (1.17)–
(1.19) satisfies:

∀ x > 0 : lim
γt→1−

u(t, x) =
γΓ( 2

γ )
Γ(σ1

γ )Γ(σ2
γ ) (1 + xγ)−

2
γ , (1.21)

∀ r > 1 : lim
t→γ−1

(1− γt)
r−1
γ

∫ ∞
0
xru(t, x)dx =

Γ( r+1
γ )Γ( r−1

γ )
Γ( r+1−σ1

γ )Γ( r+1−σ2
γ )

, (1.22)

lim
t→γ−1

−1
log(1− γt)

∫ ∞
0

xu(t, x)dx =
Γ( 2

γ )
Γ(σ1

γ )Γ(σ2
γ ) , (1.23)

∀ r ∈ (0, 1) : lim
t→γ−1

∫ ∞
0

xru(t, x)dx =
Γ( r+1

γ )Γ( 1−r
γ )

Γ(σ1
γ )Γ(σ2

γ ) . (1.24)
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Non existence of non negative solutions

We prove in Theorem 5.3 that, when θ > 1 and γ > 0, there is no possible
extension of u to a non negative global solution whose Mellin transform
satisfies suitable conditions. When γ ∈ (0, 2) and θ > 1 the non existence
result of non negative solutions for large times is the following:

Theorem 1.3. — Suppose that θ > 1, γ ∈ (0, 2). Then there is no exten-
sion of the local solution u to a non negative weak solution w ∈ D ′1((0, T )×
(0,∞)) of (1.1), (1.8) such that:

w ∈ C ([0, T ) ; Mρ−1−δ ∩Mρ+γ−1+δ) , for some δ > 0 (1.25)
and satisfying the initial condition (1.16), for any T > γ−1 and ρ ∈ (0, 2−γ).

Remark 1.4. — It follows from Theorem 1.3 that, given γ ∈ (0, 2), any
T > γ−1 and any ε > 0 arbitrarily small, the Cauchy problem for equa-
tion (1.1), (1.8) with initial condition (1.16) has no non negative weak solu-
tion w ∈ D ′1((0, T )× (0,∞)) such that

w ∈ C ([0, T ) ; M1−γ−2ε ∩M1+ε) .
(Chose δ = 2ε and ρ = 2 − γ − ε.) Then, given any r < 1 − γ, any ε > 0
arbitrarily small and any ρ > r it can’t have a weak solution w ∈ D ′1((0, T )×
(0,∞)) such that

w ∈ C ([0, T ) ; Mρ ∩Mρ+γ+ε)

1.2.2. When γ < 0.

When γ < 0 the existence of a local solution v ∈ C ([0,−γ−1), E′1+γ,∞)
of (1.1), (1.8), (1.16) on (0,−γ−1) is proved in Theorem 6.5. But the following
non existence of local nonnegative solutions holds:

Theorem 1.5. — If γ < 0 and θ > 1 there is no local, non negative
weak solution v of (1.1), (1.8) on (0, T ), for any T > 0, satisfying for some
ρ > 1− γ, the initial condition (1.16) and such that:

v ∈ C ([0, T ) ; Mρ−1−δ ∩Mρ−γ−1+δ) , for some δ > 0. (1.26)

In summary, for θ > 1 and γ ∈ (0, 2), the non negative solution u of
Theorem 1.1 blows up as γt→ 1−, in the sense given by Corollary (1.2), and
can not be extended beyond t = γ−1 to a non negative solution that still
satisfies (1.25). If γ < 0, nonnegative solutions satisfying (1.26) do not ex-
ist, even locally in time. The non existence of global non negative solutions,
for critical growth fragmentation equations where the condition (1.5) is not
satisfied, was first suggested in [8]. Of course, Theorem 1.3 and Theorem 1.5
do not preclude the existence of non negative global solutions that do not
satisfy (1.25) or (1.26). When θ ∈ (0, 1), the condition (1.5) is satisfied and
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then, as proved in [8], the problem (1.1), (1.2) has a global non negative so-
lution µ. It follows that µ coincides with the solution obtained in Section (5),
when γ <

√
1− θ (cf. Proposition 5.4) or, when γ < 0, with the solution

obtained in Section 6 (cf. Remark 6.6). If θ = 1 the condition (1.5) is not
satisfied, but our arguments do not prove the non existence of a non negative
extension of u beyond t = γ−1 (cf. Remark 5.2).

The equation (1.1) may be solved using the Mellin transform. The proof
of the non existence of non negative solution is then done in two steps. The
first is to prove the uniqueness of solutions that may take positive and nega-
tive values but some moments of which are suitably bounded. The second is
to show that the solution that was previously obtained satisfies the regular-
ity condition, but takes positive and negative values. That follows from its
behavior as x → 0 or x → ∞, since they are given, up to some multiplica-
tive factor depending on time, by x−σ2−γ and x−σ1−γ . When σ2 and σ1 are
complex numbers, this forces the solution to oscillate.

The choice of k0 as in (1.8), is of course very particular and makes
the solutions of equation (1.1) rather explicit. We emphasize however that
the arguments used in Section 4 and Section 6, based on the Wiener Hopf
method, permit to solve the growth fragmentation equation (1.1) for more
general dislocation measures. More details will be presented elsewhere. We
may recall at this point that explicit solutions to the Cauchy problem for
the pure fragmentation equation, (i.e. without growth term and with k0
such that

∫
yk0(y)dy = 1), with the initial data as in (1.2) where obtained

in [26, 27] for several fragmentation rates and the same dislocation mea-
sure (1.8) with θ = 2. Explicit solutions for the critical case γ = 0, ν = 1
with k0(z) = αδ 1

α
(z) and α > 1, which generalises the binary fission when

α = 2 have been obtained in [13].

The plan of this article is as follows. In Section 2 the Cauchy problem sat-
isfied byMu(t, s), the Mellin transform of suitable solutions u of (1.1), (1.2),
(1.8) is obtained. In Section 3 we prove Theorem (1.1 and Corollary 1.2. In
Section 4 we study the extension of the local solution, and its uniqueness. The
sign of the extension is studied in Section 5, where Theorem 1.3 is proved.
Section 6 contains the case γ < 0 and the proof of Theorem (1.5. Several
technical results are gathered in the Appendix. The content of Sections 2
and 3 where anounced and shortly presented in [14].

2. The problem in Mellin variables

We deduce in this Section the equation satisfied by the Mellin transform
of a solution u of (1.1) that would satisfy suitable conditions. To this end
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Non existence of non negative solutions

we suppose that u(t, x) is a solution of equation (1.1) such that its Mellin
transformMu is well defined for s and s+γ, where s belongs to some domain
D of the complex plane C. Applying the Mellin transform to both sides of
equation (1.1) we arrive at:

∂

∂t
Mu(t, s) +

∫ ∞
0

∂

∂x

(
x1+γu(t, x)

)
xs−1dx+Mu(t, s+ γ)

=
∫ ∞

0
xs−1

∫ ∞
x

1
y
k0

(
x

y

)
yγu(t, y)dydx

=
∫ ∞

0
dyyγ−1u(t, y)

∫ y

0
dxxs−1k0

(
x

y

)
=Mu(t, s+ γ)K(s).

If limx→0 x
γ+su(t, x) = limx→∞ xγ+su(t, x) = 0 we deduce that∫ ∞

0

∂

∂x

(
x1+γu(t, x)

)
xs−1dx = −(s− 1)

∫ ∞
0

(
x1+γu(t, x)

)
xs−2dx

= −(s− 1)Mu(t, s+ γ)

and finally,

∂

∂t
Mu(t, s) = (K(s) + s− 2)Mu(t, s+ γ). (2.1)

With our choice of the measure k0 (cf. (1.8) and (1.10)), we are then led to
consider the problem

∂W

∂t
(t, s) = Φ(s)W (t, s+ γ), ∀ s ∈ C; <e(s) = s∗ (2.2)

W (0, s) = 1, ∀ s ∈ S (ρ, ρ+ γ). (2.3)

for some s∗ ∈ R and ρ ∈ R, where

Φ(s) =
(
θ

s
+ s− 2

)
, ∀ s ∈ C \ {0}. (2.4)

Problem (2.2)–(2.3) was already considered in [8]. Equations like (2.2) have
deserved some attention in the literature, for different functions Φ (cf. [2] and
references therein, [16]). They may be Laplace transformed into a Carleman
type problem and solved using the classical Wiener–Hopf method (cf. [9, 17,
24]). See also Section 4 for the same equation (2.2) but a different initial
data.
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3. γ > 0. Proof of Theorem 1.1

3.1. An explicit solution of (2.2)–(2.3)

It immediately follows from the identities 15.2.1 and 15.3.3 in [1] that the
function

Ω(t, s) = F

(
s− σ1

γ
,
s− σ2

γ
,
s

γ
, γt

)
≡ (1− γt)

2−s
γ F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
(3.1)

satisfies the two identities in (2.2)–(2.3) for all t ∈ (0, γ−1) and s ∈ C such
that s 6= 0,−γ,−2γ, . . . . From the properties of hypergeometric functions it
follows that, for all ρ > 0, R > ρ and T ∈ (0, γ−1):

∀ t ∈ (0, γ−1) : Ω(t, · ) is analytic in C \ {−mγ,m ∈ N} (3.2)
Ω ∈ C

(
[0, γ−1)×S (0,∞)

)
(3.3)

sup
{
|Ω(t, s)|, t ∈ [0, T ), s ∈ S (ρ,R)

}
<∞ (3.4)

lim
t→0

Ω(t, s) = 1, ∀ s ∈ C \ {−mγ, m ∈ N} (3.5)

∀ s ∈ S (−∞, 2) \ {−nγ, n ∈ N} :

lim
t→γ−1

Ω(t, s) = Ω(γ−1, s) =
Γ( sγ )Γ( 2−s

γ )
Γ(σ1

γ )Γ(σ2
γ ) . (3.6)

Our purpose is now to take the inverse Mellin transform of the function
Ω(t, s). We first show:

Proposition 3.1. — For any σ0 > 0, σ1, σ2 and x > 0 and T ∈ (0, 1
γ )

there exists a positive constant C = C(T, σ0, σ1, σ2) such that, for all t ∈
(0, T ):∫

<es=σ0

∣∣∣∣Ω(t, s)− (1− γt)
2−s
γ

(
1 + 2t

s

)
x−s

∣∣∣∣ ds 6 C (x(1− γt)
1
γ

)−σ0
.

Proof. — Using the series representation of the Hypergeometric function
in (3.1) we deduce, for each t ∈ (0, γ−1) fixed:

F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
− 1− 2t

s
= Ot

(
|s|−2) , |s| → ∞, <es = σ0 > 0,

(cf. [23, (15.2.2)]) and there exists a constant C = C(T, σ0, σ1, σ2) > 0 such
that if t ∈ (0, T ) and s = σ0 + iv, v ∈ R and −σ0 6∈ N:∣∣∣∣F (σ1

γ
,
σ2

γ
,
s

γ
, γt

)
− 1− 2t

s

∣∣∣∣ 6 C(1 + |s|)−2. (3.7)
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Then, by definition of Ω(t, s):∣∣∣∣Ω(t, s)− (1− γt)
2−s
γ

(
1 + 2t

s

)∣∣∣∣ 6 C(1− γt)
2−s
γ (1 + |s|)−2

and∫
<es=σ0

∣∣∣∣Ω(t, s)− (1− γt)
2−s
γ

(
1 + 2t

s

)
x−s

∣∣∣∣ds
6 C(1− γt)

2
γ

∫
<es=σ0

(1 + |s|)−3
∣∣∣x(1− γt)

1
γ

∣∣∣−s ds

6 C(1− γt)
2
γ

(
x(1− γt)

1
γ

)−σ0
∫
<es=σ0

(1 + |s|)−2ds. �

It follows from Proposition 3.1 that Ω(t, s) has an inverse Mellin trans-
form when 0 < γt < 1. Our next purpose is to obtain its explicit expression.

3.2. The inverse Mellin transform of Ω(t, s)

We recall that, for suitable functions V , the classical inverse Mellin trans-
form is defined as

M−1
σ0

(V ) = 1
2iπ

∫
<e(s)=σ0

x−sV (s)ds (3.8)

for some σ0 > 0 fixed. We first show the following:

Proposition 3.2. — Suppose σ1 ∈ C, σ2 ∈ C, γ > 0 and t > 0 such
that 0 < γt < 1 and define the function

v(t, x) = F

(
1 + σ1

γ
, 1 + σ2

γ
, 2, γt (1 + (γt− 1)xγ)

)
×H

(
1− (1− γt)

1
γ x
)

(3.9)

for x > 0, where H is the Heaviside function. Then, for all s > 0, v(s) ∈ E′0,q
for all q > 0, the Mellin transform of v is given by:

Mv(t, s) ≡
∫ ∞

0
v(t, x)xs−1dx = (1− γt)−

s
γ

F (σ1
γ ,

σ2
γ ,

s
γ , γt)− 1

σ1σ2t
. (3.10)

Proof. — For all t < γ−1, v(t) has compact support in (0, (1− γt)−1/γ)),
is integrable on (0,∞) and bounded as x → 0. Then v ∈ C ([0, γ−1);E′0,q)
for all q > 0. The proof of (3.10) is a straightforward calculation using the
expression of the hypergeometric function. Since γ > 0 we have that γt > 0.
Moreover, since 1 − γt > 0 and x > 0, we have (γt − 1)xγ < 0 and then
(1 + (γt − 1)xγ) < 1. Finally, due to the Heaviside function we only have
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to consider values of (t, x) where 1 + (γt − 1)xγ > 0. It then follows from
the expression of the function F (1 + σ1

γ , 1 + σ2
γ , 2, γt(1 + (γt− 1)xγ)) as an

absolutely convergent series (cf. [1, Definition 15.1.1]):

Mv(t, s) =
∞∑
n=0

Γ(1 + σ1
γ + n)Γ(1 + σ2

γ + n)Γ(2)(γt)n

Γ(1 + σ1
γ )Γ(1 + σ2

γ )Γ(2 + n)Γ(n+ 1)

×
∫ (1−γt)−

1
γ

0
(1 + (γt− 1)xγ)nxs−1dx.

We use now that, since γ > 0, we have for all s > 0:

∫ (1−γt)−
1
γ

0
(1 + (γt− 1)xγ)nxs−1dx

=
n∑

m=0

(
n
m

)
(−1)m(1− γt)m ×

∫ (1−γt)−
1
γ

0
xmγ+s−1dx

= (1− γt)−
s
γ

n∑
m=0

(
n
m

)
(−1)m

mγ + s
= (1− γt)−

s
γ

Γ(n+ 1)Γ( sγ )
γΓ(1 + s

γ + n) .

Then,

Mv(t, s) = (1− γt)−
s
γ

×
∞∑
n=0

Γ(1 + σ1
γ + n)Γ(1 + σ2

γ + n)Γ(2)(γt)n

Γ(1 + σ1
γ )Γ(1 + σ2

γ )Γ(2 + n)Γ(n+ 1)
Γ(n+ 1)Γ( sγ )
γΓ(1 + s

γ + n)

= (1− γt)−
s
γ

F (σ1
γ ,

σ2
γ ,

s
γ , γt)− 1

σ1σ2t
.

and this proves (3.10). �

The next Corollary follows from Proposition 3.2 and Theorem 11.10.1
in [22] on the uniqueness of the inverse Mellin transform:

Corollary 3.3. — For all σ1 ∈ C, σ2 ∈ C, suppose that γ > 0, 0 <
γt < 1 and let u be the measure:

u(t, x) = (1− γt)
1
γ δ
(
x− (1− γt)−

1
γ
)

+ σ1σ2t(1− γt)
2
γ v(t, x).

Then, for all t ∈
(
0, γ−1):
Mu(t) = Ω(t), and u(t) =M−1(Ω(t)).

We prove now the existence part in Theorem 1.1.
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Proposition 3.4. — The measure u defined in (1.17)–(1.19) is a weak
non negative solution of (1.1), (1.8) on (0, γ−1) such that

(i) u ∈ C
([

0, γ−1) ; Mρ−1
)
, ∀ ρ > 0.

(ii) ∀ T ∈
(
0, γ−1) , ∃ CT > 0;

∀ t ∈ [0, T ], ∀ s > 0 :
∫ ∞

0
u(t, x)xs−1dx 6 CT

and satisfies (1.16).

Proof of Proposition 3.4. — The assertions (i) and (ii) follow from the
explicit expression of u. It is easy to check that (1.16) holds true. Let us
prove that u is a weak solution of (1.1), (1.8) on (0, γ−1).

We already know that Ω(t, s) solves (2.2) for all t ∈ (0, γ−1) and all
s ∈ S (0,∞). Since Ω(t) and ΦΩ(t) are analytic and bounded in S (0, q) for
any q > 0, we deduce from Theorem 11.10.1 in [22] that u ∈ C ((0, γ−1), E′0,q)
for all q > 0. Applying the inverse Mellin tranform (3.8) to both sides of the
equation (2.2) we deduce the following identity:

∂u

∂t
(t, x) =M−1

s0

((
θ

s
+ (s− 1)− 1

)
τγMu

)
(t, x) (3.11)

where all the terms are in C ((0, γ−1), E′0,q) and we have denoted
(τγMu)(t, s) =Mu(t, s+ γ).

We consider now each of the terms in the right and side separately. Since
σ0 > 0, γ > 0, using thatMu(t, s) = Ω(t, s) for all <e(s) > 0 we have:

M−1
σ0

(τγMu) = xγu(t, x). (3.12)

M−1
s0

((s− 1)τγMu) (t, x) = − ∂

∂x

(
xγ+1u(t, x)

)
(3.13)

In the last term in the right hand side of (3.11) we write as above:
1

2iπ

∫
<es=σ0

θ

s
Mu(t, s+ γ)x−sds

=
∫ ∞

0
u(t, y)

(
1

2iπ

∫
<es=σ0

θ

s
ys+γ−1x−sds

)
dy.

Using that for σ0 > 0:

1
2iπ

∫
<es=σ0

1
s
ys+γ−1x−sds =

{
0, if y < x

yγ−1, if y > x
(3.14)

we deduce
1

2iπ

∫
<es=σ0

θ

s
Mu(t, s+ γ)x−sds = θ

∫ ∞
x

u(t, y)yγ−1dy. (3.15)
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Both sides of equation (1.1) are then equal in C ((0, γ−1), E′0,q). In particular,
u ∈ C ((0, γ−1),D ′(0,∞)) and is a weak solution of (1.1), (1.8) on (0, γ−1).

In order to prove the non negativity of the measure u we use its defini-
tion (1.17)–(1.19) and the expression of the hypergeometric function in the
right hand side of (1.19) as an absolutely convergent series:

F

(
1 + σ1

γ
, 1 + σ2

γ
, 2, z

)
=
∞∑
n=0

Γ(1 + σ1
γ + n)Γ(1 + σ2

γ + n)zn

Γ(1 + σ1
γ )Γ(1 + σ2

γ )Γ(2 + n)Γ(n+ 1)

where we have denoted γt (1 + (γt− 1)xγ) = z. When θ ∈ (0, 1) all the
terms of the series are obviously non negative since σ2 > 0 and σ1 > 0.
When θ > 1, we use that, since σ1 = σ2, Γ(1 + σ1

γ + n) = Γ(1 + σ2
γ + n) for

all n ∈ N, and again all the term of the series are non negative. �

Remark 3.5. — The particular form of the measure u(t) and a simple
calculation with distributions in (0,∞) show that the measure uS solves:

∂uS(t)
∂t

+ ∂

∂x

(
xγ+1uS(t)

)
+ xγuS(t) = 0, in D ′1

((
0, γ−1)× (0,∞)

)
and the function uR satisfies, for all t ∈ (0, γ−1) and x ∈

(
0, (1− γt)−1/γ):

∂uR(t, x)
∂t

+
∂
(
xγ+1uR(t, x)

)
∂x

+ xγuR(t, x)

= θ

∫ (1−γt)−
1
γ

x

uR(t, y)yγ−1dy + θ (1− γt)−1
.

Remark 3.6. — By the particular form of u we deduce, for all ϕ ∈
C1
c ([0, γ−1]× (0,∞)) :∫ ∞

0

∫ ∞
0

(
∂ϕ

∂t
+ xγ+1 ∂ϕ

∂x
+ xγϕ(t, x)

)
u(t, x)dxdt+ ϕ(0, 1)

=
∫ ∞

0
u
(
γ−1, x

)
ϕ
(
γ−1, x

)
dx

− θ
∫ ∞

0

∫ ∞
0

u(t, y)yγ−1
∫ y

0
ϕ(t, x)dxdydt. (3.16)

Proof of Theorem 1.1. — By the Proposition 3.4 only the uniqueness of
non negative weak solutions satisfying (1.15)–(1.16) for some ρ > 0 remains
to be proved. Suppose on the contrary that u and v are two such solutions and
u(t) 6= v(t). Since u1 and u2 are nonnegative and satisfy (1.15) it follows that
their Mellin transforms Mu(t) and Mv(t) are well defined and analytic on
S (ρ−δ, ρ+γ+δ) for all t ∈ (0, γ−1) and satisfy (7.1). By (1.15),Mu(t) and
Mv(t) also satisfy (7.2). We check now that u and v also satisfy (7.3). Since
the proof is of course the same for both, we only consider u. By (1.15) and the
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continuity of the Mellin transform on E′ρ,ρ+γ , it follows that Mu(0, s) = 1
for all s ∈ S (ρ, ρ + γ) and u satisfies (7.3). Therefore, Mu and Mv satisfy
the hypotheses of Theorem 7.1 and are then equal. This contradicts our
hypothesis that u1(t) 6= u2(t), and proves the uniqueness. Assertion (1.20)
has been shown in Proposition 3.4. �

Remark 3.7. — The existence of a non negative and non identically zero
solution for the equation (1.1) with zero initial data has been proved in [8] for
quite general dislocation measures k0 under some conditions. One of these
conditions, denoted (M−), requires to have σ1 − 1 > 0. That is not possible
in our case by our choice of k0 and (1.11).

Proof of Corollary 1.2. — By (1.18), us(t, x) → 0 as γt → 1. Then,
by (1.17) the behavior of u(t, x) as t → γ−1 is given by that of F (1 + σ1

γ ,

1 + σ2
γ , 2, z) as z → 1− and depends on the values of σ1

γ and σ2
γ .

lim
γt→1−

uR(t, x) = lim
γt→1−

σ1σ2t (1− γt)
2
γ

× F
(

1 + σ1

γ
, 1 + σ2

γ
, 2, γt (1 + (γt− 1)xγ)

)
= lim
γt→1−

σ1σ2t (1− γt)
2
γ

(1− γt (1 + (γt− 1)xγ))
2
γ

× lim
γt→1−

F (1 + σ1
γ , 1 + σ2

γ , 2, γt(1 + (γt− 1)xγ))

(1− γt (1 + (γt− 1)xγ))−
2
γ

Since σ1+σ2
γ = 2

γ > 0, by 15.4.23 in [23] we have for all x > 0:

lim
γt→1−

F (1 + σ1
γ , 1 + σ2

γ , 2, γt(1 + (γt− 1)xγ))

(1− γt (1 + (γt− 1)xγ))−
2
γ

=
Γ( 2

γ )
Γ(1 + σ1

γ )Γ(1 + σ2
γ ) .

Since 1− γt (1 + (γt− 1)xγ) = (1− γt)(1 + γtxγ) it follows:

lim
γt→1−

σ1σ2t (1− γt)
2
γ

(1− γt (1 + (γt− 1)xγ))
2
γ

= lim
γt→1−

σ1σ2t

(1 + γtxγ)
2
γ

= σ1σ2

γ (1 + xγ)
2
γ

and finally,

lim
γt→1−

uR(t, x) =
Γ( 2

γ )σ1σ2

γΓ(1 + σ1
γ )Γ(1 + σ2

γ ) (1 + xγ)−
2
γ

=
γΓ( 2

γ )
Γ(σ1

γ )Γ(σ2
γ ) (1 + xγ)−

2
γ .

The proofs of properties (1.22)–(1.24) follow from the explicit expression (3.1)
of Ω(t, s) and formulas 15.4(ii) in [23]. �
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4. γ > 0. Extension of the local solution.

In the first of the two main results of this Section we extend the local
solution u obtained in Theorem 1.1. It uses the notation

ν = min(2,<e(σ2) + γ). (4.1)
Theorem 4.1. — For all θ > 0 and γ > 0 there exists a global weak

solution w ∈ C
(
[0,∞);E′0,ν

)
of (1.1), (1.8) on t ∈ (0,∞), such that w(t) =

u(t) for all t ∈ (0, γ−1) and satisfying
w ∈ C∞((γ−1,∞)× (0,∞)) ∩ C ([γ−1,∞)× (0,∞))
w satisfies (1.1), (1.8), pointwise, ∀ t > γ−1,∀ x > 0
∀ t > γ−1, Mw(t, · ) is analytic in S (0,<e(σ2) + γ),
Mw(γ−1, s) = Ω(γ−1, s) ∀ s ∈ C, <e(s) < 2

(4.2)

An expression of w for t > γ−1 is obtained in Remark 4.6.

Then, the following uniqueness result is proved, for the case γ ∈ (0, 2):
Theorem 4.2. — If γ ∈ (0, 2), the measure w defined in Theorem 4.1

is the unique global weak solution of (1.1), (1.8) such that for all T > 0,
w ∈ C ([0, T );E′ρ−δ,ρ+γ+δ) for some ρ ∈ (0, 2− γ), δ > 0 and

sup {|Mw(s, t)|; s ∈ S (ρ− δ, ρ+ γ + δ), t ∈ [0, T ]} <∞
w(0) = δ1.

(4.3)

The uniqueness of the solution obtained in Theorem 4.1, valid for all
γ > 0, is proved in Theorem 4.7.

In order to extend the solution u of (1.1), (1.2) beyond t = γ−1 we first
obtain a solution of (2.2) for γt > 1.

4.1. Another explicit solution of (2.2)

The new solution of the equation (2.2) is obtained as follows:
Proposition 4.3. — The function U defined, for all t > γ−1 and all

s ∈ C, as

U(t, s) =
(γt)

σ1−s
γ Γ( sγ )Γ(1− s−σ2

γ )
Γ(σ1

γ )Γ(1− σ1−σ2
γ )

× F
(

1− σ1

γ
,
s− σ1

γ
; 1 + σ2 − σ1

γ
; 1
γt

)
(4.4)
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is such that:

(i) U is meromorphic on (γ−1,∞)× S and the set S of its poles is:

S = {s = −mγ, m ∈ N} ∪ {s = <e(σ2) + (m+ 1)γ, m ∈ N} .

(ii) U satisfies the equation (2.2) for all t > γ−1 and all s ∈ C \ S;
(iii) For all closed subinterval I ⊂ (0,<e(σ2)+γ)), there exists a positive

constant C = C(t, I) such that, for all t > γ−1 and all s ∈ C,
<e(s) ∈ I

|U(t, s)|+ |Ut(t, s)| 6 Ce−
π|=m(s)|

γ t
σ1−s0
γ
(
(1 + |s|)−1+σ1

γ + (1 + |s|)−
σ2
γ
)

(iv) If <e(s) < 2:

lim
t→(γ−1)+

U(t, s) = lim
t→(γ−1)−

Ω(t, s) =
Γ( sγ )
Γ(σ1

γ )
Γ(σ2+σ1−s

γ )
Γ(σ2

γ )

Proof. — It is straightforward to check that the function

V (s) = γ
s
γ

Γ( s−σ1
γ )

Γ( sγ )Γ(1− s−σ2
γ )

, ∀ s ∈ C \ {s ∈ C; s = σ1 −mγ, m ∈ N}

satisfies:

V (s+ γ) = − (s− σ1)(s− σ2)
s

V (s), ∀ s ∈ C \ {s ∈ C; s = σ1 −mγ, m ∈ N}

We define now the function of t and s:

U (t, s) = 1
γV (s)

∫
C

(−t)
σ−s
γ V (σ)dσ

Γ(1 + σ−s
γ )(e−

2iπ
γ (σ−s) − 1)

(4.5)

where the path of integration C is as follows. For σ0 > σ1 fixed, we define:

C = C1 ∪ C2 ∪ C3 (4.6)
C1 = {s ∈ C; s = σ0 + iv, |v| 6 1} (4.7)
C2 = {s ∈ C; s = (u+ iv), v = −u+ (1 + σ0), v > 1} (4.8)
C3 = {s ∈ C; s = (u+ iv), v = u− (1 + σ0), v < −1} . (4.9)

Notice that when σ ∈ C is such that |σ| → ∞ we have that <e(σ) → −∞.
The function below the integral sign of (4.5) may be written as follows:

w(t, s, σ) = (−t)
σ−s
γ V (σ)

Γ(1 + σ−s
γ )(e−

2iπ
γ (σ−s) − 1)

=
(−t)−

s
γ (−γt)

σ
γ Γ(σ−σ1

γ )

Γ(1 + σ−s
γ )(e−

2iπ
γ (σ−s) − 1)Γ(σγ )Γ(1− σ−σ2

γ )
(4.10)
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For s ∈ C fixed, σ ∈ C , |σ| → ∞ we have, using Stirling’s formula:∣∣∣∣Γ(σ − σ1

γ

)∣∣∣∣ ≈ eσ−σ1
γ log(σ−σ1

γ ) ≈ e
<e(σ)
γ log |σ/γ|∣∣∣∣Γ(σγ

)∣∣∣∣ ≈ eσγ log(σγ ) ≈ e
<e(σ)
γ log |σ/γ|∣∣∣∣Γ(1− σ − σ2

γ

)∣∣∣∣ ≈ e(1−σ−σ2
γ ) log(1−σ−σ2

γ ) ≈ e
(

1−<e(σ)
γ

)
log |σ/γ|

∣∣∣∣Γ(1 + σ − s
γ

)∣∣∣∣ ≈ e(1+σ−s
γ ) log(1+σ−s

γ ) ≈ e
(

1+<e(σ)
γ

)
log |σ/γ|

∣∣∣e− 2iπ
γ (σ−s) − 1

∣∣∣ =
∣∣∣e− 2iπ

γ (<e(σ)+i=m(σ)) − 1
∣∣∣ > ∣∣∣e 2π=m(σ)

γ − 1
∣∣∣

(−γt)
σ−s
γ = e

σ−s
γ log(−γt) ≈ e

<e(σ)
γ log(γt).

We deduce that, for each s ∈ C fixed there exists a constant C = C(s) > 0
such that for all t > γ−1 and all σ ∈ C :

|w(t, s, σ)| 6 C e
<e(σ)
γ log(γt)

elog |σ/γ|
∣∣∣e 2πv

γ − 1
∣∣∣

where the constant C depends on s. Since <e(σ) → −∞ as |σ| → ∞ for
σ ∈ C the function w(t, s, · ) is exponentially decaying in σ for t > γ−1, and
the integral in the right hand side of (4.5) is absolutely convergent. It follows
that the function U (t, s) is well defined, continuous with respect to t and
analytic with respect to s for all t > γ−1 and s in

D = C \
(
{s ∈ C; s = −mγ, m ∈ N}

∪ {s ∈ C; s = σ2 + (m+ 1)γ, m ∈ N}
)
. (4.11)

By the exponential decay of w(t, s, σ) in σ along C and its regularity in time,
a simple calculation yields:

∂U

∂t
(t, s) = −1

γV (s)

∫
C

(−t)
σ−s
γ −1(σ−sγ )V (σ)dσ

Γ(1 + σ−s
γ )(e−

2iπ
γ (σ−s) − 1)

(4.12)

= −1
γV (s)

∫
C

(−t)
σ−s
γ −1V (σ)dσ

Γ(σ−sγ )(e−
2iπ
γ (σ−s) − 1)

(4.13)

= −1
γV (s)

∫
C

(−t)
σ−(s+γ)

γ V (σ)dσ
Γ(1 + σ−(s+γ)

γ )(e−
2iπ
γ (σ−(s+γ)) − 1)

. (4.14)

By (6.2):
−1
V (s) = (s− σ1)(s− σ2)

s

1
V (s+ γ) .
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We deduce
∂U

∂t
(t, s) = (s− σ1)(s− σ2)

s
U (t, s+ γ).

and the function U (t, s) satisfies the equation (2.2) for t > γ−1 and s in D
given by (4.11).

Our next step is to prove that U = U , using the residue’s method. To
this end, we notice that for s fixed as in (4.11), the poles of the function
w(t, s, σ) to integrate are located at the following points:

{σ = σ1 − γm, m ∈ N} ∪ {σ = s+ γm, m ∈ N}

For values of t such that γt > 1 we must use the residues at the points
σ = σ1−γm. We deform the integration contour, always in the region where
<s→ −∞. Since σ0 > <e(σ1):

U (t, s) = 2iπ
V (s)(e−

2iπ
γ (σ1−s) − 1)

×
∞∑
m=0

(−t)
σ1−s
γ −mγ

σ1
γ −m(−1)m

Γ(σ1
γ −m)Γ(1 + σ1−s

γ −m)Γ(1− σ1−σ2
γ +m)Γ(m+ 1)

= 2iπ(−t)
σ1−s
γ γ

σ1
γ

V (s)(e−
2iπ
γ (σ1−s) − 1)

×
∞∑
m=0

(γt)−m

Γ(σ1
γ −m)Γ(1 + σ1−s

γ −m)Γ(1− σ1−σ2
γ +m)Γ(m+ 1)

=
2iπ(−t)

σ1−s
γ γ

σ1
γ F (1− σ1

γ ,
s−σ1
γ ; 1− σ1−σ2

γ ; 1
γt )

V (s)(e−
2iπ
γ (σ1−s) − 1)Γ(σ1

γ )Γ(1− s−σ1
γ )Γ(1− σ1−σ2

γ )
.

This may we writen:

U (t, s) =
2iπ(−γt)

σ1−s
γ Γ( sγ )Γ(1− s−σ2

γ )F (1− σ1
γ ,

s−σ1
γ ; 1− σ1−σ2

γ ; 1
γt )

Γ(σ1
γ )Γ(1− σ1−σ2

γ )Γ( s−σ1
γ )Γ(1− s−σ1

γ )(e−
2iπ
γ (σ1−s) − 1)

and using the identity Γ(x)Γ(1− x)(e2iπx − 1) = 2iπeiπx:

U (t, s) = (−γt)
σ1−s
γ

Γ(σ1
γ )Γ(1− σ1−σ2

γ )
Γ
(
s

γ

)
Γ
(

1− s− σ2

γ

)
× F

(
1− σ1

γ
,
s− σ1

γ
; 1− σ1 − σ2

γ
; 1
γt

)
e−

iπ
γ (s−σ1) (4.15)

from where, using that e−iπ = −1 it follows that U (t, s) = U(t, s) for
γt > 1 and s ∈ C. Property (ii) immediately follows. In order to prove the
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property (iii) we use again Stirling’s formula. For s ∈ C such that <e(s)
remains bounded and |=m(s)| → ∞:∣∣∣∣Γ( sγ

)∣∣∣∣ ≈ e ivγ iArg(s/γ) = e−
v
γ Arg(s/γ)∣∣∣∣Γ(1− s− σ2

γ

)∣∣∣∣ ≈ e−ivγ iArg(−s/γ) = e
v
γ Arg(−s/γ)

Then, ∣∣∣∣Γ( sγ
)

Γ
(

1− s− σ2

γ

)∣∣∣∣ ≈ e− vγ Arg(s/γ)e
v
γ Arg(−s/γ).

If v →∞, Arg(s/γ)→ π/2, Arg(−s/γ)→ −π/2 and then∣∣∣∣Γ( sγ
)

Γ
(

1− s− σ2

γ

)∣∣∣∣ ≈ e− vγ π2 e vγ (−π)
2 ≈ e−πv.

If v → −∞, Arg(s/γ)→ −π/2 and Arg(−s/γ)→ π/2 from where∣∣∣∣Γ( sγ
)

Γ
(

1− s− σ2

γ

)∣∣∣∣ ≈ e−vγ (−π
2 )e

v
γ
π
2 ≈ eπv.

On the other hand, by 15.7.2 in [1], if |=m(s)| → ∞:∣∣∣∣F (1− σ1

γ
,
s− σ1

γ
; 1 + σ2 − σ1

γ
; 1
γt

)∣∣∣∣ = O
(
|s|−1+σ1

γ + |s|−
σ2
γ

)
.

Using |(γt)
σ1−s
γ | = (γt)

σ1−s0
γ we deduce:

|U(t, s)| ∼ Ce−
v
γ
π
2 e

v
γ (−π2 )t

σ1−s0
γ

∣∣∣∣F (1− σ1

γ
,
s− σ1

γ
; 1 + σ2 − σ1

γ
; 1
γt

)∣∣∣∣
= e−

πv
γ t

σ1−s0
γ O

(
|s|−1+σ1

γ + |s|−
σ2
γ

)
, v →∞

|U(t, s)| ∼ Ce−
v
γ (−π2 )e

v
γ
π
2 t

σ1−s0
γ

∣∣∣∣F (1− σ1

γ
,
s− σ1

γ
; 1 + σ2 − σ1

γ
; 1
γt

)∣∣∣∣
= e

πv
γ t

σ1−s0
γ O

(
|s|−1+σ1

γ + |s|−
σ2
γ

)
, v → −∞

and (iii) follows.

The property (iv) is directly deduced from the definitions of Ω and U ,
(3.1) and (4.4) respectively, and the application of identity 15.4.20 in [23]
when s < <e(σ2 + σ1) ≡ 2:

lim
γt→1+

F

(
1− σ1

γ
,
s− σ1

γ
; 1 + σ2 − σ1

γ
; 1
γt

)
=

Γ(1 + σ2−σ1
γ )Γ(σ2+σ1−s

γ )
Γ(σ2

γ )Γ(1 + σ2−s
γ )

lim
γt→1−

F

(
s− σ1

γ
,
s− σ2

γ
,
s

γ
, γt

)
=

Γ( sγ )
Γ(σ1

γ )
Γ(σ2+σ1−s

γ )
Γ(σ2

γ ) . �
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Remark 4.4. — The solution of (2.2)–(2.3) defined in (3.1) may be ob-
tained in the same way as the solution U has been obtained in Proposi-
tion 4.3. It is enough to this end to start with the following function Ṽ (s):

Ṽ (s) = (−γ)
s
γ

Γ( s−σ1
γ )Γ( s−σ2

γ )
Γ( sγ ) (4.16)

that also satisfies the equation (6.2). It may then be checked that:

Ω(t, s) = −1
γṼ (s)

∫
<eσ=σ0

(−t)
σ−s
γ Ṽ (σ)dσ

Γ(1 + σ−s
γ )(e−

2iπ
γ (σ−s) − 1)

(4.17)

for any σ0 > 0.

4.2. Inverse Mellin transform of the function U in (4.4)

By the Proposition 4.3 it is possible to apply to the function U(t) the
inverse Mellin transform defined as in (3.8) with s0 ∈ (0,<e(σ2)). We then
define:

ω(t, x) =M−1
s0

(U(t))(x). (4.18)

Proposition 4.5. — For any s0 ∈ (0,<e(σ2)) the function ω defined
in (4.18) is such that:

(i) ω ∈ C∞
(
(γ−1,∞)× (0,∞)

)
(ii) ω ∈ C ((γ−1,∞);E′0,<e(σ2)+γ) and Mω(t, s) = U(t, s), for all t >

γ−1, s ∈ S (0,<e(σ2) + γ),
(iii) ω satisfies the equation (1.1), (1.8) pointwise for all t > γ−1 and

x > 0.
(iv) For all x > 0:

lim
t→(γ−1)+

ω(t, x) =
γΓ( 2

γ )
Γ(σ1

γ )Γ(σ2
γ ) (1 + xγ)−

2
γ

(v) For all t > γ−1 :

ω(t, x) =
γΓ(1 + σ2

γ )
Γ(σ1

γ )Γ(1 + σ2−σ1
γ )

(γt− 1)
σ1
γ −1

(γt)
σ2
γ

x−σ2−γ + o
(
x−σ2−γ

)
, x→∞

Proof. — The assertion (i) It follows from the regularity of the function
U with respect to t and Proposition 4.3(i).

For the proof of assertion (ii) we first notice that, by Proposition 4.3(i)
and (iii), the function U(t, s) is analytic and exponentially decaying the strip
s ∈ S (0,<e(σ2) + γ) as |=m(s)| → ∞. Then, by classical properties of the
Mellin transform (cf. [22, Theorem 11.10.1]) assertion (ii) follows.
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In order to prove assertion (iii) we first notice that, from the analyticity
and boundedness properties of ΦU(t) on the strip s ∈ S (0,<e(σ2) + γ)
and by the same general properties of the Mellin transform, we have ΦU ∈
C ((γ−1,∞);E′0,<e(σ2)+γ). We may then apply the inverse Mellin transform
as defined in (3.8) with s0 ∈ (0,<e(σ2)) to both sides of the equation (2.2)

∂

∂t
M−1

s0
(U(t))(x) =M−1

s0
(ΦU(t, ·+ γ)) (x). (4.19)

By the regularity of U(t, s) with respect to t and the decay properties of
U(t, s) and Ut(t, s) along the integration curve <e(s) = s0 we have

∂

∂t
M−1

s0
(U(t))(x) = ∂ω

∂t
(t, x). (4.20)

Arguing now as in the proof of Proposition 3.4 we deduce that ω satisfies the
equation (1.1), (1.8) where all the terms belong to C ((γ−1,∞);E′0,<e(σ2)+γ).
Therefore, the equation is satisfied in the weak sense. By the assertion (i) it
follows that it is satisfied pointwise in (γ−1)× (0,∞).

The property (iv) is a direct consequence of Proposition 4.3(iv). More
precisely, since s0 ∈ (0,<e(σ2)), it follows that s < <e(σ2 + σ1) ≡ 2 and
then, using the Lebesgue’s convergence Theorem and Proposition 4.3(iv):

lim
γt→1+

ω(t, x) =M−1
s0

(U(γ−1))(x) = u(γ−1, x).

In order to prove (v) we use the definition of ω and deformation of the
contour integration. For t > γ−1 fixed and x→∞ we have:

ω(t, x) =
γΓ(1 + σ2

γ )
Γ(σ1

γ )Γ(1 + σ2−σ1
γ )

(γt− 1)
σ1
γ −1

(γt)
σ2
γ

x−σ2−γ

+ 1
2iπ

∫
<es=s∗

U(t, s)x−sds

for s∗ > σ2 + γ. Then,

ω(t, x) =
γΓ(1 + σ2

γ )
Γ(σ1

γ )Γ(1 + σ2−σ1
γ )

(γt− 1)
σ1
γ −1

(γt)
σ2
γ

x−σ2−γ +O
(
x−s∗

)
, x→∞

and (v) follows. �

Remark 4.6. — It is possible to obtain an explicit expression of ω(t, x) for
all γt > 1 and x > 0 by deforming the integration contour and the residue’s
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Theorem. For γxγt < 1 we must use the residues at s = −mγ, m ∈ N:

ω(t, x) ≡ 1
2iπ

∫
<es=s0

U(t, s)x−sds

= − γ (γt)
σ1
γ

Γ(σ1
γ )Γ(1− σ1−σ2

γ )
×
∞∑
m=0

(γxγt)mΓ(1 +m+ σ2
γ )(−1)m+1

Γ(m+ 1)

× F
(

1− σ1

γ
,−m− σ1

γ
; 1− σ1 − σ2

γ
; 1
γt

)
.

If γxγt > 1 we use the poles at s = σ2 + γ(m+ 1), m ∈ N and obtain

ω(t, x) ≡ 1
2iπ

∫
<es=s0

U(t, s)x−sds

= −γ (γt)
σ1−σ2
γ −1x−σ2−γ

Γ(σ1
γ )Γ(1− σ1−σ2

γ )
×
∞∑
m=0

(γxγt)−mΓ(1 +m+ σ2
γ )(−1)m+1

Γ(m+ 1)

× F
(

1− σ1

γ
, 1 +m+ σ2 − σ1

γ
; 1− σ1 − σ2

γ
; 1
γt

)
. (4.21)

The function ω may then be written as follows:

ω(t, x) = γ(γt)
σ1
γ H(t, γtxγ)

Γ(σ1
γ )Γ(1 + σ2−σ1

γ )
, ∀ t > γ−1, ∀ x > 0,

where

H(t, z) =



∑∞
m=0

(−z)mΓ(1+m+σ2
γ )

Γ(m+1)

×F
(

1− σ1
γ ,−m−

σ1
γ ; 1− σ1−σ2

γ ; 1
γt

)
, z 6 1

z−
σ2
γ −1∑∞

m=0
Γ(1+m+σ2

γ )
(−z)mΓ(m+1)

×F
(

1− σ1
γ , 1 +m+ σ2−σ1

γ ; 1− σ1−σ2
γ ; 1

γt

)
, z > 1.

Proof of Theorem 4.1. — We claim that the measure defined as

w(t) =
{
u(t), if , t ∈ (0, γ−1)
ω(t), if t > γ−1.

(4.22)

satisfies all the requirements. In order to prove that w is a global weak
solution of (1.1), (1.8) we must prove that for all ϕ ∈ C1

c ((0,∞)× (0,∞)):∫ ∞
0

∫ ∞
0

(
∂ϕ

∂t
+ xγ+1 ∂ϕ

∂x
+ xγϕ(t, x)

)
w(t, x)dxdt

= −θ
∫ ∞

0

∫ ∞
0

ϕ(t, x)
∫ ∞

0
w(t, y)yγ−1dyϕ(t, x)dxdt. (4.23)
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This is easily shown by splitting the time integrals in (4.23) in the two
domains (0, γ−1) and (γ−1,∞), use (3.16) in Remark 3.6, assertion (iii) of
Proposition 4.5 and the continuity of w at t = γ−1.

Let us prove now w ∈ C ((0,∞);E′0,<e(σ2)+γ). By Theorem 1.1, for all t ∈
[0, γ−1) the functionMw(t) =Mu(t) is analytic and bounded in S (0,∞).
By Theorem 4.7, for t > γ−1, Mw(t) = Mω(t) is analytic and bounded
in S (0,<e(σ2) + γ). But, for t = γ−1, limt→γ−1Mw(γ−1, s) is analytic
and bounded only on S (0, ν). Then, Mw(t) is analytic and bounded in
S (0, ν). Again by Theorem 1.1 and Theorem 4.7,Mw ∈ C ((0,∞)×S (0, ν).
Therefore w ∈ C ((0,∞);E′0,ν) using Theorem 11.10.1 in [22].

The properties (4.2) for t > γ−1 follow directly from Theorem 4.7 since
w = ω for t > γ−1. On the other since u = w in t ∈ (0, γ−1) it follows
from (3.2)–(3.4) that w also satisfies (4.2) in that interval of time. �

4.3. Uniqueness of the extension to t > γ−1

We are now concerned with the question of uniqueness of global solutions
to (1.1), (1.8), (1.2). After the existence and uniqueness of a local solution
u on (0, γ−1) proved in Theorem 1.1, and since, by Corollary 1.2, this local
solution has a limit as γt → 1−, this question is reduced in some sense to
the uniqueness of the solutions of (1.1), (1.8) with initial data u

(
γ−1). How

is this on the side of the Mellin variables?

By general properties of hypergeometric functions, the limit when γt →
1− ofMu only exists for <e(s) < 2. Therefore, the data at t = γ−1 ofMω

is only defined for <e(s) < 2. On the other hand,Mω is meromorphic, with
a countable set of poles located at s = −mγ and s = σ2 + (m + 1)γ for
m ∈ N. Since, in order to uniquely determine Mω, we need the data to be
given in a strip of width strictly larger than γ, when γ > 2 this forces to
use an argument of uniqueness in a strip whereMω has a pole. That is why
the hypotheses in Theorem 4.7 are given in terms of sPω(t, s) on the strip
S (−γ, ε), where Pω is the analytic extension ofMω to S (−γ, ε).

Theorem 4.7. — For all γ > 0 and θ > 0, the measure ω defined
in (4.18) is the unique real valued weak solution ω ∈ D ′1((γ−1,∞)× (0,∞))
of (1.1), (1.8) for all t > γ−1 such that its Mellin transform Mω satisfies
the following properties:
∀ T > 0,∃ ε > 0 :Mω(t) is analytic on S (0, ε), ∀ t ∈ (γ−1, T )

∀ t ∈ (0, T ), Mω(t, s) has an extension Pω, to (−γ, ε) (4.24)
Pω satisfies (2.2), on (γ−1, T ) for some s∗ ∈ (−γ, ε) (4.25)
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∀ t ∈ (0, T ), sPω(t, s) is analytic in (−γ, ε) (4.26)
sPω ∈ C ([γ−1,∞)×S (−γ, ε)) (4.27)
sup

{
|sPω(t, s)|; s ∈ S (−γ, ε), t ∈

[
γ−1, T

]}
<∞ (4.28)

Pω(γ−1, s) = Ω(γ−1, s), ∀ s ∈ S (−γ, ε). (4.29)
Moreover this solution is such that:

ω ∈ C∞((γ−1,∞)× (0,∞)) ∩ C([γ−1,∞)× (0,∞)). (4.30)
For all t > γ−1, ω satisfies (1.1), (1.8) pointwise and its Mellin transform
Mω is such that:

Mω is analytic on (γ−1,∞)×S (0,<e(σ2) + γ), (4.31)
Mω(γ−1, s) = Ω(γ−1, s) ∀ s ∈ C, <e(s) < 2 (4.32)
Mω ∈ C ([γ−1,∞)×S (0, ν)). (4.33)

Remark 4.8. — The condition (4.28) is not satisfied in general byMu(t)
for γt < 1, but is satisfied byMu(γ−1), the initial data of ω at t = γ−1, as
it follows using (3.6) and Stirling’s formula.

Proof of Theorem 4.7. — By Proposition 4.3(ii),Mω(t, s) = U(t, s) for
all s ∈ S (0,<e(σ2)+γ). It follows from Proposition 4.3) and Proposition 4.5
that ω satisfies (4.30)–(4.33). On the other hand, the functionMω(t, s) has
a meromorphic extension to the complex plane, given by U(t, s) that, by
Proposition 4.3(ii) satisfies (4.25). By Proposition 4.3(i), U as a simple
pole at s = 0 and sU(t, s) is analytic on (−γ,<e(σ2) + γ). By Proposi-
tion 4.3(i) and (iv), sU(t, s) satisfies (4.27) and it satisfies (4.28) and (4.29)
by points (iii) and (iv).

We prove now the uniqueness of weak solutions satisfying (4.24)–(4.29).
Suppose that two such solutions ω1 and ω2 exist and let Pω1 , Pω2 be the
extensions of their Mellin transforms. Then, the two functions W1(t, s) =
Pω1(t − γ−1, s) and W2(t, s) = Pω2(t − γ−1, s) satisfy the hypotheses of
Theorem 7.2 and are then equal. We deduce in particular thatMω1(t, s) =
Mω2(t, s) for t ∈ (γ−1, T ) and s ∈ S (0, ε) which is a contradiction.

Suppose now that ω is complex valued. Since the coefficients of the equa-
tion (1.1), (1.8) are real, the conjugate ω is also a solution, with the same
initial data. Moreover, just by definition, its Mellin transform Mω is such
that Mω(t, s) = Mω(t, s) and sMω(t, s) = sMω(t, s) for s ∈ S (0, ε).
By hypothesis, for all t > γ−1, Mω(t, s) has an extension Pω(t, s) such
that the function h(t, s) = sPω(t, s) is analytic in s ∈ S (−γ, ε). There-
fore, Qω(t, s) = Pω(t, s) = is an extension of Mω(t, s) such that h(t, s) =
sQω(t, s) is analytic in the domain:

S = {s ∈ C; s ∈ S (−γ, ε)} ≡ S (−γ, ε).
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Moreover, Qω satisfies the conditions (4.27)–(4.29) since, by hypothesis, so
does Pω. We deduce that u = u by the uniqueness property that has been
proved just above and u is then real valued. This ends the proof of Theo-
rem 4.7. �

The following Proposition is used in the proof of Theorem 4.2,

Proposition 4.9. — Suppose γ ∈ (0, 2). There exists a unique real val-
ued weak solution ω ∈ D ′1((γ−1,∞)× (0,∞)) of (1.1), (1.8) for all t > γ−1

such that for some ρ ∈ (0, 2− γ) and all T > γ−1 its Mellin transform Mω

solves (2.2) and satisfies, for some δ > 0:
∀ t ∈ (γ−1, T ),Mω(t, s) is analytic on S (ρ− δ, ρ+ γ + δ) (4.34)
Mω(t, s) is continuous on [γ−1,∞)×S (ρ− δ, ρ+ γ + δ) (4.35)
sup

{
|Mω(s, t)|; s ∈ S (ρ−δ, ρ+γ + δ), t ∈

[
γ−1, T

]}
<∞ (4.36)

Mω(γ−1, s) = Ω(γ−1, s), ∀ s ∈ S (ρ, ρ+ γ). (4.37)
This solution is the function ω obtained in Theorem 4.7.

Proof of Proposition 4.9. — By Theorem 4.7 and the hypothesis γ ∈
(0, 2), the function ω obtained in Theorem 4.7 satisfies (4.34)–(4.37). Sup-
pose that ω1 and ω2 are two different weak solution in D ′1((γ−1,∞) ×
(0,∞)) of (1.1), (1.8) satisfying (4.34)–(4.37). Then the functionsW1(t, s) =
Mω1(t + γ−1, s) and W2(t, s) = Mω2(t + γ−1, s) satisfy the hypotheses of
Theorem 7.1 for all T > 0 for W0(s) = U(γ−1, s) and are then equal. This
contradiction concludes the proof. �

We now prove Theorem 4.2 whose hypotheses are simpler than (4.24)–
(4.29) in Theorem 4.7, but that requires the condition γ ∈ (0, 2).

Proof of Theorem 4.2. — Suppose first that T < γ−1. By Theorem 1.1
the measure u is a weak non negative solution of (1.1), (1.8) such that
u ∈ C ([0, γ−1);E′0,q) for all q > 0 and satisfies (4.3). If we suppose now that
u1 and u2 are two different solutions satisfying these conditions, Mu1 and
Mu2 would both satisfy the hypotheses of Theorem 7.1 for all T ∈ (0, γ−1)
and therefore would be equal. This contradiction proves the uniqueness for
T ∈ (0, γ−1).

Suppose now that T > γ−1 and w̃ satisfies the hypotheses of Theorem 4.2.
We already know by the previous step that w̃ = u for t ∈ (0, γ−1). Let us
prove that w̃ = ω for t ∈ (γ−1, T ). By hypothesis, w̃ ∈ C ((0, T );E′ρ−δ,ρ+γ+δ)
for some ρ ∈ (0, 2 − γ), δ > 0 and is a weak solution of (1.1), (1.8). Since
xs−1

+ ∈ Ep,q for all s ∈ C such that <e(s) ∈ (p, q) and D(0,∞) is dense in
Ep,q for all p < q, we deduce that Mw̃ solves the equation (2.2). By (4.3),
it also satisfies (4.34)–(4.36). Since, by the continuity ofMw̃ at t = γ−1 we
also have Mw(γ−1, s) = Mu(γ−1, s) = Ω((γ−1, s)) for all s ∈ S (ρ, ρ + γ).

– 202 –



Non existence of non negative solutions

It follows that w̃ satisfies all the hypotheses of Proposition 4.9. We deduce
from that Proposition that w̃ = ω for t ∈ (γ−1, T ). We deduce by continuity
that w̃ = w for t ∈ (0, T ). �

5. γ > 0. Non existence of non negative solutions for large time.

The measure w defined in Theorem 4.7 is a global weak solution of (1.1),
(1.8) for all values of the parameter θ and all possible values of the roots σ1
and σ2. However, as we prove in this Section, it is not always a non negative
solution. By uniqueness of the possible extensions of the local solution u, as
stated in Theorem 4.7, it follows that it can not be extended to a suitable
weak solution beyond t = γ−1.

Our next result is concerned with the sign of the solution ω obtained in
Theorem 4.7, and the possible extension of the local solution u to a global
non negative solution.

Theorem 5.1. — If θ > 1, the solution w obtained in Theorem 4.7 is
not always non negative for t > γ−1.

Proof of Theorem 5.1. — If we define the two following functions of
t > 0:

A(t) = γ
(γt)

σ1−σ2
γ −1

Γ(σ1
γ )Γ(1 + σ2−σ1

γ )

H(t) = Γ
(

1 + σ2

γ

)
F

(
1− σ1

γ
, 1 + σ2 − σ1

γ
; 1− σ1 − σ2

γ
; 1
γt

)
= Γ

(
1 + σ2

γ

)(
1− 1

γt

)−1+σ1
γ

the right hand side of (4.21) may be written as follows:
ω(t, x) = A(t)x−σ2−γ (H(t) +B(t, x))

B(t, x) = −(γxγt)−1

( ∞∑
m=0

(γxγt)−mΓ(2 +m+ σ2
γ )(−1)m

Γ(2 +m)

× F
(

1− σ1

γ
, 2 +m+ σ2 − σ1

γ
,

1
γt

))
,

where, by (1.11), A(t) > 0 and H(t) > 0 for all t > γ−1. By 15.7.2 in [1],
there exists a constant C = C(σ1, σ2, γ) such that for all t > 1

γ and m > 0:∣∣∣∣F (1− σ1

γ
, 2 +m+ σ2 − σ1

γ
,

1
γt

)∣∣∣∣ 6 Ce(2+m+σ2−σ1
γ ) 1

γt
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Then, for all t > γ−1, all x > 1 and m > 0∣∣∣∣∣ (γx
γt)−mΓ(2 +m+ σ2

γ )(−1)m

Γ(2 +m) F

(
1− σ1

γ
, 2 +m+ σ2 − σ1

γ
,

1
γt

)∣∣∣∣∣
6 Ce−m(log(γxγt)− 1

γt ) Γ(2 +m+ σ2
γ )

Γ(2 +m) .

But, from Stirling’s formula:
Γ(2 +m+ σ2

γ )
Γ(2 +m) = O

((
2 +m+ σ2

γ

)σ2
γ

)
, m→∞.

and therefore:∣∣∣∣∣
∞∑
m=0

(γxγt)−mΓ(2 +m+ σ2
γ )(−1)m

Γ(2 +m)

× F
(

1− σ1

γ
, 2 +m+ σ2 − σ1

γ
,

1
γt

)∣∣∣∣∣εC
∞∑
m=0

e−m(log(γxγt)− 1
γt )m

σ2
γ .

The series in the right hand side defines a bounded function on the domain
t > γ−1, x > Rγ for Rγ > 0 fixed large enough to have

log(γRγγt)−
1
γt
> δ > 0, ∀ t > 1

γ
.

We then deduce that, for every t > γ−1:

ω(t, x) = A(t)x−σ2−γ
(
H(t) +O

(
1
xγt

))
, x→∞. (5.1)

Suppose now that θ > 1, from where σ2 ∈ C\R, and fix any t0 > γ−1. There
exists R = R(t0) large enough such that:

A(t0)(H(t0) +B(t, x)) > A(t0) (H(t0 − |B(t, x)|)

>
1
2A(t0)H(t0) > 0, ∀ x > R.

Since σ2 ∈ C \ R, the function x−σ2−γ is oscillatory. Therefore by (5.1),
u(t0, x) can not remain non negative for all x > R. �

Remark 5.2. — If θ = 1, then σ1 = σ2 = 1 and our final argument in the
proof of Theorem 5.1 fails.

Proof of Theorem 1.3. — Suppose that there exists a non negative weak
solution w̃ satisfying (1.16), (1.25) for some T > γ−1. Since u > 0, it follows
from (1.25) that u ∈ C ([0, T );E′ρ−δ,ρ+γ+δ). The function, Mu(t) is then
well defined and analytic on S (ρ − δ, ρ + γ + δ) and satisfies (2.2) for any
s∗ ∈ (ρ, ρ+ γ). By (1.25) again, we deduce thatMu satisfies (4.3). Then we
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have, by Theorem 4.2, w̃(t) = w(t) for t ∈ (T, γ−1). But, by Theorem 5.1, w
is not non negative on (0,∞) when t > γ−1, and this contradiction concludes
the proof. �

The following Theorem on non existence of global solutions follows from
the uniqueness result of Theorem 4.7 and Theorem 5.1, in the same way as
Theorem 1.3 follows from Theorem 4.2 and Theorem 5.1.

Theorem 5.3. — Suppose that θ > 1 and T > γ−1. Then there is no
possible extension of the local solution u to a non negative weak solution
w̃ ∈ D ′1((0, T )× (0,∞)) of (1.1), (1.8) satisfying the initial condition (1.16)
and suchMw̃ satisfies the conditions (4.24)–(4.29).

When θ ∈ (0, 1) the condition (1.5) is satisfied and by Corollary 4.2 in [8]
a global nonnegative solution µ exists. Although we do not know if µ = w,
the solution obtained in Theorem 4.1, in general, we have:

Proposition 5.4. — Suppose that θ ∈ (0, 1) and 0 < γ <
√

1− θ. Let
µ be the global non negative solution of (1.1), (1.8) obtained in [8] and w the
solution obtained in Theorem 4.1. Then µ = w.

Proof. — When θ ∈ (0, 1) condition (1.5) is satisfied and by Corol-
lary 4.2 in [8] a global nonnegative solution µ exists. Moreover, it follows
from Lemma 4.3(i) and Corollary 4.2 in [8] that µ ∈ C ([0, T );E′1,σ2

) and
Mµ ∈ satisfies (4.3) for any ρ ∈ (1, σ2 − γ). By the uniqueness of such
solutions proved in Theorem 4.2 it follows that µ = w. �

Remark 5.5. — The results in [8] are proved for general dislocation mea-
sures, for which the corresponding function Φ(s) could be defined only for
<es > 2. When k0 as in (1.8), Φ(s) is defined for all <es > −1 and the
solutions in [8] may then be expected to have moments of order s in a larger
interval than <e(s) ∈ (1, σ2). That could make Proposition 5.4 to be true
under a weaker condition than γ <

√
1− θ.

6. The case γ < 0.

When γ < 0 the function obtained in Section 3.1

Ω(t, s) = F

(
s− σ1

γ
,
s− σ2

γ
,
s

γ
, γt

)
≡ (1− γt)

2−s
γ F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
.

is a solution of (2.2) for all t > 0. If, to obtain a solution to (1.1), (1.8),
our purpose was still to take its inverse Mellin transform, the inverse Mellin
transform should be defined along a vertical integration curve contained in
the half plane <e(s) > 0, as in the case γ > 0. But now the poles of Ω(t),
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namely s = −mγ,m ∈ N, are non negative real numbers. It follows that the
momentsMu(t, r) of any solution u of (1.1), (1.8) whose Mellin transform is
Ω(t, s) will be bounded only for r in an interval (−mγ,−(m+ 1)γ) for some
m ∈ N. For that reason we look for another solution of (2.2)–(2.3)

6.1. Still another solution of (2.2)–(2.3)

The function

V2(s) =
γ
s
γ Γ(1− s

γ )
Γ(1− s−σ1

σ )Γ(1− s−σ2
σ )

(6.1)

satisfies:

V2(s+ γ) = − (s− σ1)(s− σ2)
s

V2(s) (6.2)

for all s ∈ C \ {s ∈ C; s = −mγ, m ∈ N}. For σ0 > 0 fixed let C̃θ be the
following curve in the complex plane:

C̃θ = C̃1,θ ∪ C̃2

C̃1,θ = {s = ξ + iζ ∈ C; ξ = σ0 + θζ, ζ > 0}

C̃2 = {s = ξ + iζ ∈ C; ξ = σ0, ζ < 0}

and define

U2(t, s) = 1
γV2(s)

∫
C̃θ

(−t)
σ−s
γ V2(σ)dσ

Γ(1 + σ−s
γ )(e−

2iπ
γ (σ−s) − 1)

. (6.3)

Proposition 6.1. — For all t ∈ (0, (−γ)−1), the integral in the right
hand side of (6.3) is absolutely convergent and defines the following mero-
morphic function U2(t) in the complex plane:

U2(t, s) = Ω1(t, s)− Ω2(t, s) (6.4)

Ω1(t, s) = (−γt)−
s
γ

(e
2iπ
γ s − 1)

γtΓ(1− s−σ1
γ )Γ(1− s−σ2

γ )
Γ(σ1

γ )Γ(σ2
γ )Γ(1− s

γ )

×
F (1− σ1

γ , 1−
σ2
γ , 2−

s
γ , γt)

Γ(2− s
γ ) (6.5)

Ω2(t, s) = i

2π (1− γt)
2−s
γ F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
(6.6)

and
U2 ∈ C ([0,−γ−1)×S (1− γ,∞)). (6.7)
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Remark 6.2. — By 15.3.3 in [1]:

Ω2(t, s) ≡ i

2πF
(
s− σ1

γ
,
s− σ2

γ
,
s

γ
, γt

)
.

Proof. — Using Stirling’s formulas in the same way as in Section 4.1, we
obtain by straightforward calculation that for all t ∈ (0, (−γ)−1) and s ∈ C,
there exists a positive constant C = C(s, γ):∣∣∣∣∣∣ (−t)

σ
γ V2(σ)dσ

Γ
(

1 + σ−s
γ

)(
e−

2iπ
γ (σ−s) − 1

)
∣∣∣∣∣∣ 6

{
Ce

ξ
γ log(−γt)e−

ζπ
γ , v > 0

Ce
ξ
γ log(−γt)e

2ζπ
γ , v < 0.

(6.8)

The right hand side is exponentially decaying as ζ → −∞ for any ξ fixed.
On the other hand, suppose that −γt ∈ (0, τ) with τ < 1. Then log(−γt) <
log τ < 0 and

0 < log τ
γ

<
log(−γt)

γ
.

Therefore, if σ = ξ + iζ ∈ C̃1,θ, ξ = σ0 + θζ and:

ξ

γ
log(−γt)− ζπ

γ
= (σ0 + θζ)

γ
log(−γt)− ζπ

γ

= σ0

γ
log(−γt) + θζ

log(−γt)
γ

− ζπ

γ

= σ0

γ
log(−γt) + ζ

(
θ

log(−γt)
γ

− π

γ

)
.

If we choose now θ < 0 we deduce:

ξ

γ
log(−γt)− ζπ

γ
<
σ0

γ
log(−γt) + ζ

(
θ

log τ
γ
− π

γ

)
and, if

θ <
π

log τ

the right hand side of (6.8) is also exponentially decreasing as ζ → ∞ and
σ ∈ Cθ. The function under the integral in (6.3) is then absolutely integrable.

The integral may now be obtained using the method of residues. The
poles of the function to integrate are:

σ = γ(m+ 1), σ = s+ γm, m ∈ N.
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and then, for −γt ∈ (0, 1):

U(t, s) = (−t)−
s
γ

γV (s)

∞∑
m=0

(−t)m+1γm+1Res(Γ(1− σ
γ );σ = γ(m+ 1))

Γ(σ1
γ −m)Γ(σ2

σ −m)Γ(2 +m− s
γ )(e

2iπ
γ s − 1)

+ 1
γV (s)

∞∑
m=0

(−t)mγ
s
γ+mΓ(1− s

γ−m)Res((e
2iπ
γ (σ−s)−1)−1;σ = s+γm)

Γ(1− s−σ1
γ −m)Γ(1− s−σ2

σ −m)Γ(1 +m)
.

We use that, for all m ∈ N:

Res

(
Γ
(

1− σ

γ

)
;σ = γ(m+ 1)

)
= (−1)m+1γ

Γ(m+ 1)

Res

((
e

2iπ
γ (σ−s) − 1

)−1
;σ = s+ γm

)
= − iγ2π

and obtain, for −γt ∈ (0, 1):

U(t, s) = (−t)−
s
γ

V (s)(e
2iπ
γ s − 1)

∞∑
m=0

(t)m+1γm+1

Γ(σ1
γ −m)Γ(σ2

σ −m)Γ(2 +m− s
γ )Γ(m+ 1)

− iγ
s
γ

2πV (s)

∞∑
m=0

(−t)mγmΓ(1− s
γ −m)

Γ(1− s−σ1
γ −m)Γ(1− s−σ2

σ −m)Γ (1 +m)
.

The two series may be summed when −γt ∈ (0, 1):
∞∑
m=0

(t)m+1γm+1

Γ(σ1
γ −m)Γ(σ2

σ −m)Γ(2 +m− s
γ )Γ(m+ 1)

=
γt F (1− σ1

γ , 1−
σ2
γ , 2−

s
γ , γt)

Γ(σ1
γ )Γ(σ2

γ )Γ(2− s
γ )

∞∑
m=0

(−t)mγmΓ(1− s
γ −m)

Γ(1− s−σ1
γ −m)Γ(1− s−σ2

σ −m)Γ(1 +m)

=
Γ(1− s

γ )F ( s−σ1
γ , s−σ2

γ , sγ , γt)
Γ(1− s−σ1

γ )Γ(1− s−σ2
γ )

.

We deduce:

U2(t, s) = (−t)−
s
γ

V2(s)(e
2iπ
γ s − 1)

γt F (1− σ1
γ , 1−

σ2
γ , 2−

s
γ , γt)

Γ(σ1
γ )Γ(σ2

γ )Γ(2− s
γ )

− iγ
s
γ

2πV2(s)
Γ(1− s

γ )F ( s−σ1
γ , s−σ2

γ , sγ , γt)
Γ(1− s−σ1

γ )Γ(1− s−σ2
γ )

.

and the explicit expression of U2(t) in (6.4)–(6.6) follows using the expres-
sion (6.1) of V2(s). The property (6.7) follows now from (6.4)–(6.6) and the
well known properties of the Gamma and hypergeometric functions �
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6.2. The solution v

We wish now to define a solution u of (1.1), (1.8) by means of a suitable
inverse Mellin transform of U2(t). The inverse Mellin transform of Ω2 has
been obtained in Section (3.2). Some useful properties of Ω1 are now given
in the next Proposition.

Proposition 6.3. — For all t ∈ (0,−γ−1), the function Ω1(t) is ana-
lytic for s ∈ C such that <e(s) > 1 + γ. For all t ∈ (0,−γ−1) there exists a
positive constant C such that

|Ω1(t, s)| 6
{
C(t)e

2π=m(s)
γ , =m(s) > 0

C(t)(1 + |=m(s)|)−1+ 2
γ , =m(s) < 0.

(6.9)

Proof. — The estimate follows from the expression of Ω1 and Stirling’s
formula. �

We deduce from the Proposition 6.3 that we may set

v(t, x) = 1
2iπ

∫
<e(s)=s0

x−sU2(t, s)ds, s0 > 1 + γ (6.10)

and, by classical results on the Mellin and inverse Mellin transform this
expression defines a measure v ∈ C

(
[0,−γ−1);E′1+γ,∞

)
.

Proposition 6.4. — For all t ∈ (0,−γ−1), U2(t) is meromorphic on C
with poles located at:

s = σ` + (m+ 1)γ, ` = 1, 2, m ∈ N.
If we call:

Am(t) = Res (U(t, s); s = σ1 + γ(m+ 1))
Bm(t) = Res (U(t, s); s = σ2 + γ(m+ 1)) ,

we have:

Am(t) = (−γt)−
σ1
γ −(m+1)

(e
2iπ
γ σ1 − 1)

γtΓ(−σ1−σ2
γ −m)(−1)m+1

Γ(σ1
γ )Γ(σ2

γ )Γ(−σ1
γ −m)Γ(m+ 1)

×
F (1− σ1

γ , 1−
σ2
γ , 1−

σ1
γ −m, γt)

Γ(1− σ1
γ −m)

Bm(t) = (−γt)−
σ2
γ −(m+1)

(e
2iπ
γ σ2 − 1)

γtΓ(−σ2−σ1
γ −m)(−1)m+1

Γ(σ1
γ )Γ(σ2

γ )Γ(−σ2
γ −m)Γ(m+ 1)

×
F (1− σ1

γ , 1−
σ2
γ , 1−

σ2
γ −m, γt)

Γ(1− σ2
γ −m) .

Moreover, U2 satisfies (2.2) for t > γ−1 and s such that <e(s) > 1 + γ.
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Proof. — For each t ∈ (0,−γ−1) the functions Ω1(t) and Ω2(t) are mero-
morphic on C with poles located respectively at s = −γm, s = σ`+γ(m+1)
and s = −γm, m ∈ N. But, at poles s = −mγ we have:

Res(Ω1(t), s = −γm) = Res

((
e

2iπ
γ s − 1

)−1
; s = −γm

)
(−γt)m

×
γtΓ(1 + σ1

γ +m)Γ(1 + σ2
γ +m)

Γ(σ1
γ )Γ(σ2

γ )Γ(1 +m)
F (1− σ1

γ , 1−
σ2
γ , 2 +m, γt)

Γ(2 +m)

= − iγ2π (−γt)m
γtΓ(1 + σ1

γ +m)Γ(1 + σ2
γ +m)

Γ(σ1
γ )Γ(σ2

γ )Γ(1 +m)

×
F (1− σ1

γ , 1−
σ2
γ , 2 +m, γt)

Γ(2 +m) .

On the other hand, since

F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
=
∞∑
n=0

Γ(σ1
γ + n)Γ(σ2

γ + n)Γ( sγ )(γt)n

Γ(σ1
γ )Γ(σ2

γ )Γ( sγ + n)Γ(n+ 1) .

we deduce:

Res

(
F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
, s = −γm

)
= γ

∞∑
n=m+1

Γ(σ1
γ + n)Γ(σ2

γ + n)(γt)n(−1)m

Γ(σ1
γ )Γ(σ2

γ )Γ(−m+ n)Γ(n+ 1)Γ(m+ 1) .

This series may still be summed,

Res

(
F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
, s = −γm

)
= γ

(γt)m+1(−1)mΓ(1 +m+ σ1
γ )Γ(1 +m+ σ2

γ )
Γ(σ1

γ )Γ(σ2
γ )Γ(m+ 2)Γ(m+ 1)

× F
(

1 +m+ σ1

γ
, 1 +m+ σ2

γ
, 2 +m, γt

)
.

We use now 15.3.3 in [1] to write:

F

(
1 +m+ σ1

γ
, 1 +m+ σ2

γ
, 2 +m, γt

)
= (1− γt)−m−

2
γ F

(
1− σ1

γ
, 1− σ2

γ
, 2 +m, γt

)
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from where:

Res

(
F

(
σ1

γ
,
σ2

γ
,
s

γ
, γt

)
, s = −γm

)
= γ

(γt)m+1(−1)mΓ(1 +m+ σ1
γ )Γ(1 +m+ σ2

γ )
Γ(σ1

γ )Γ(σ2
γ )Γ(m+ 2)Γ(m+ 1)

× (1− γt)−m−
2
γ F

(
1− σ1

γ
, 1− σ2

γ
, 2 +m, γt

)
and then,

Res (Ω2(t), s = −γm)

= i

2πγ
(γt)m+1(−1)mΓ(1 +m+ σ1

γ )Γ(1 +m+ σ2
γ )

Γ(σ1
γ )Γ(σ2

γ )Γ(m+ 2)Γ(m+ 1)

× F
(

1− σ1

γ
, 1− σ2

γ
, 2 +m, γt

)
.

Therefore, at s = −mγ, the residues of Ω1(t) and Ω2(t) are equal and there-
fore, they cancel when combined to obtain the residue of U(t). On the other
hand, the residues of Ω1(t) at s = σ2 + γ(m+ 1):

Res (Ω1(t, s); s = σ2 + γ(m+ 1))

= (−γt)−
σ2
γ −(m+1)

(e
2iπ
γ σ2 − 1)

γtΓ(−σ2−σ1
γ −m)(−1)m+1

Γ(σ1
γ )Γ(σ2

γ )Γ(−σ2
γ −m)Γ(m+ 1)

×
F (1− σ1

γ , 1−
σ2
γ , 1−

σ2
γ −m, γt)

Γ(1− σ2
γ −m)

and similarly:

Res (Ω1(t, s); s = σ1 + γ(m+ 1))

= (−γt)−
σ1
γ −(m+1)

(e
2iπ
γ σ1 − 1)

γtΓ(−σ1−σ2
γ −m)(−1)m+1

Γ(σ1
γ )Γ(σ2

γ )Γ(−σ1
γ −m)Γ(m+ 1)

×
F (1− σ1

γ , 1−
σ2
γ , 1−

σ1
γ −m, γt)

Γ(1− σ1
γ −m) .

Arguing as in the proof of Proposition 4.3, we deduce that U2 satisfies (2.2)
for t > γ−1 and s such that <e(s) > 1 + γ. �

Theorem 6.5. — The measure u ∈ C
(
[0,−γ−1);E′1+γ,∞

)
defined in

(6.10) is a weak solution of (1.1), (1.8) on t ∈ (0,−γ−1). It satisfies∫ ∞
0

v(t, x)xs−1dx = U2(t, s), ∀ s ∈ C; <e(s) > 1 + γ. (6.11)
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If θ > 1, for all t ∈ (0,−γ−1) the measure v(t) takes positive and negative
values on (0,∞).

Proof. — The identity (6.11) follows from Theorem 11.10.1 in [22] and
by classical properties of the Mellin transform, u is a weak solution of (1.1),
(1.8).

It follows from (6.10) and the properties of U2(t) that as x→ 0:

v(t, x) = <e
(
A0(t)x−σ2−γ

)
+ <e

(
B0(t)x−σ1−γ

)
+ o

(
x−1−γ) , x→ 0

If θ > 1, σ2 = 1 + iζ, σ1 = 1− iζ with ζ =
√
θ − 1,

x−σ2−γ = x−1−iζ−γ = x−1−γ (cos(ζ log x)− i sin(ζ log x))
x−σ1−γ = x−1−iζ−γ = x−1−γ (cos(ζ log x) + i sin(ζ log x))

and we deduce, for all t fixed, as x→ 0:

v(t, x) = x−1−γ (h1(t) cos (ζ log x) + h2(t) sin (ζ log x)) + o
(
x−1−γ) (6.12)

h1(t) = <eA0(t) + <eB0(t)
h2(t) = =mA0(t)−=mB0(t).

Consider now two values of x:

x1 = e−
2`π
ζ , x2 = e−

(2`+1)π
ζ

where ` ∈ N has to be fixed. From (6.12):

v(t, x1) = x−1−γ
1 h1(t) + o(x−1−γ

1 ), x1 → 0

v(t, x2) = −x−1−γ
1 h1(t) + o(x−1−γ

1 ), x2 → 0.

We chose now ` large enough to have:

v(t, x1) > x−1−γ
1 h1(t)

2 > 0, u(t, x2) 6 −x
−1−γ
1 h1(t)

2 < 0 if h1(t)> 0

v(t, x1) 6 x−1−γ
1 h1(t)

2 < 0, u(t, x2) > −x
−1−γ
1 h1(t)

2 > 0 if h1(t)< 0. �

Proof of Theorem 1.5. — We argue by contradiction and suppose that
such a local solution, that we denote ṽ, exists on some time interval (0, T ).
We may suppose without loss of generality that T < −γ−1. By hypothesis,
Mṽ satisfies all the assumptions in Theorem 7.1. By (6.7), U2 satisfies (7.1)
for any ρ > 1−γ. By (6.9) and the property (3.5) of Ω2, U2 also satisfies (7.2)
for any ρ > 1− γ. It follows by (6.11) thatMv also satisfies the hypotheses
of Theorem 7.1 for any ρ > 1 − γ. Then Mṽ(t, s)=Mv(t, s) for t ∈ [0, T ),
s ∈ S (ρ, ρ− γ) and therefore v(t) = ṽ(t) for t ∈ [0, T ) but this is not possi-
ble since v takes positive and negative values in (0,∞). This contradiction
concludes the proof. �
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Remark 6.6. — If θ ∈ (0, 1) the existence of a unique global non negative
solution µ is proved in Theorem 4.1 of [8]. It immediately follows from this
and related results in Section 4 of [8] that the Mellin transform of µ is such
thatMµ ∈ C ([0,∞);E′1+γ,∞) and satisfies (7.2)–(7.3) for any ρ > 1+γ and
W0(s) = 1. We deduce by Theorem 7.1 that µ = v, the solution obtained in
Theorem 6.5, on t ∈ (0,−γ−1).

7. Appendix

7.1. Uniqueness of bounded analytic solutions of (2.2)

Theorem 7.1. — Given any T > 0 and W0(s) a bounded and analytic
function on a strip S (ρ, ρ + |γ|) for some ρ > 0, there exists at most one
solution W to the equation (2.2) for t ∈ (0, T ), such that, for all t ∈ (0, T ),
W (t, s) is analytic on the strip S (ρ, ρ+ |γ|), satisfying

W ∈ C
(

[0, T )×S (ρ, ρ+ |γ|)
)

(7.1)

sup
{
|W (t, s)|; 0 6 t 6 T, s ∈ S (ρ, ρ+ |γ|)

}
<∞. (7.2)

W (0, s) = W0(s), ∀ s ∈ S (ρ, ρ+ |γ|) (7.3)
Proof. — Suppose that W`(t, s), ` = 1, 2 are two solutions, analytic on

the strip S (ρ, ρ+ |γ|), satisfying (7.1)–(7.3) and denote W = W1−W2. The
function W satisfies the same conditions and W (0) = 0. Given any T ′ < T ,
let α(t) be a C∞ cutt-off function satisfying α(t) = 1 for 0 6 t 6 T ′ and
α(t) = 0 if t > T . If we define:

Ŵ (t, s) = W (t, s)α(t)
we have

∂Ŵ

∂t
(t, s) = Φ(s)Ŵ (t, s+ γ) + r(t, s) (7.4)

where the function r is bounded in (0, T ) ×S (ρ, ρ + |γ|) and r(t) ≡ 0 for
0 6 t 6 T ′. We apply now the Laplace transform in t at both sides of (7.4)
and obtain, for <e(z) > 0 and s ∈ S (ρ, ρ+ |γ|):

zW̃ (z, s) = Φ(s)W̃ (z, s+ γ) + r̃(z, s), (7.5)
where, for some constant C > 0,

|r̃(z, s)| 6 Ce−T
′<e(z), ∀ s ∈ S (ρ, ρ+ γ), <e(z) > 0. (7.6)

By the linearity of the equation in (7.5) we may write W̃ = W̃part + W̃hom

where W̃hom solves
zW̃hom(z, s) = Φ(s)W̃hom(z, s+ γ), ∀ s ∈ S (ρ, ρ+ γ), <e(z) > 0 (7.7)
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and W̃part is a particular solution of (7.5). Arguing as with the function U

defined by (4.5) in the Proof of Proposition 4.3 it follows that, if Ṽ (s) is the
function defined by (4.16), then

W̃part(z, s) = i

γz Ṽ (s)

∫
<e(σ)=σ0

(−z)
σ−s
γ Ṽ (σ)r̃(z, σ)dσ

(1− e−
2iπ
γ (s−σ))

(7.8)

satisfies (7.5) and, by (7.6),

|W̃part(z, s)| 6 Ce−T
′<e(z), ∀ s ∈ S (ρ, ρ+ |γ|), <e(z) > 0. (7.9)

It is simpler to write our next argument if we distinguish now the cases
γ > 0 and γ < 0, although the proof is completely similar in both cases.
Let us then assume from now on that γ > 0. We first perform the change of
variables:

ζ = e−
2iπ
γ (s−ρ), G(z, ζ) = W̃ (z, s). (7.10)

For all z ∈ C such that <(z) > z0, the function G(z, ζ) is now analytic with
respect to ζ for ζ ∈ C \ R+ and bounded on C \ R+. We also have, using
that W̃ ∈ C((0,∞)×S (ρ+ |γ|)):{

∀ s = ρ+ iv : W̃ (z, s) = G(z, x− i0), x := e
2πv
γ

∀ s = ρ+ γ + iv : W̃ (z, s) = G(z, x+ i0), x := e
2πv
γ .

(7.11)

We also define:
ϕ̃(ζ) = Φ(s) =

(ρ− σ1 − γ
2iπ log ζ)(ρ− σ2 − γ

2iπ log ζ)
(ρ− γ

2iπ log ζ) , ∀ ζ ∈ C

ϕ(x) = lim
ε→0

ϕ̃
(
xe−iε

)
, ∀ x > 0.

(7.12)

where log(ζ) = log |ζ|+ i arg(ζ), and arg(ζ) ∈ [0, 2π). The equation reads:

G(z, x− i0) = ϕ(x)
z

G(z, x+ i0), ∀ x > 0.

If we denote:

m(z, ζ) = 1
2iπ

∫ ∞
0

Log
(
ϕ(λ)
z

)(
1

λ− ζ
− 1
λ− λ0

)
dλ

where Log(ζ) = log |ζ| + iArg(ζ), and Arg(ζ) ∈ (−π/2, π/2], this is an
analytic function on C \ R+ and by Plemej–Sojoltski formulas:

ϕ(x)
z

= em(z,x+i0)

em(z,x−i0) , ∀ x > 0.

We deduce from the equation:

em(z,x−i0)G(z, x− i0) = em(z,x+i0)G(z, x+ i0), ∀ x > 0
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and therefore, since em(z,ζ)G(z, ζ) is analytic with respect to ζ for ζ ∈ C\R+,
the function

C(z, ζ) = em(z,ζ)G(z, ζ)
is analytic on C \ {0}. It remains to check the behavior of C(z, ζ) as ζ → 0
and |ζ| → ∞.

By definition:

ϕ(ζ) =
(ρ− σ1 − γ

2iπ log ζ)(ρ− σ2 − γ
2iπ log ζ)

(ρ− γ
2iπ log ζ)

= − γ

2iπ (log |ζ|)
(1 + θ1

log |ζ| )(1 + θ2
log |ζ| )

(1 + θ0
log |ζ| )

where

θ` = −2iπ(ρ− σ`)
γ

+ i arg(ζ), ` = 1, 2; θ0 = −2iπρ
γ

+ i arg(ζ).

Then, as |ζ| → 0 or |ζ| → ∞

ϕ(ζ) = − γ

2iπ (log |ζ|)
(

1 +O
(

1
| log |ζ||

))
. (7.13)

It follows that
1

2iπ Log
(
ϕ(λ)
z

)
= 1

2iπ Log
(
γ| log λ|

2π|z|

)
+ 1

2π arg
(
−γ log λ

2iπz

)
.

Since Arg z ∈ (−π/2, π/2) we have

Arg
(
−γ log λ

2iπz

)
= Arg

(
i
γ log λ

2π

)
−Arg(z)

where

Arg
(
i
γ log λ

2π

)
=
{
−π2 , if 0 < λ < 1
π
2 , if λ > 1.

(7.14)

We may then write
m(z, ζ) = I1(z, ζ) + I2(z, ζ) + I3(z, ζ)

I1(z, ζ) = 1
2iπ

∫ ∞
0

log
(
γ|log λ|
2π|z|

)(
1

λ− ζ
− 1
λ− λ0

)
dλ

I2(z, ζ) = 1
2π

(
−π2 −Arg(z)

)∫ 1

0

(
1

λ− ζ
− 1
λ− λ0

)
dλ

I3(z, ζ) = 1
2π

(π
2 −Arg(z)

)∫ ∞
1

(
1

λ− ζ
− 1
λ− λ0

)
dλ

(7.15)
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If we take λ0 = i:∫ 1

0

(
1

λ− ζ
− 1
λ− λ0

)
dλ =− iπ

4 −
Log 2

2 + Log
(
ζ − 1
ζ

)
∫ ∞

1

(
1

λ− ζ
− 1
λ− λ0

)
dλ =− iπ

4 + Log 4
4 − Log (1− ζ)

and then,

(I2 + I3)(z, ζ) = 1
2π

{(π
2 + Arg(z)

)
Log

(
ζ

ζ − 1

)
−
(π

2 −Arg(z)
)

Log (1− ζ)
}

+R(z)

R(z) = 1
2π

{
−
(π

2 + Arg(z)
)( iπ

4 + Log 2
2

)
+
(π

2 −Arg(z)
)(Log 2

2 − iπ

4

)}
.

As |ζ| → 0,

Log
(

ζ

ζ − 1

)
= Log(ζ)− log(ζ − 1)

= log |ζ|+ iArg(ζ)− Log(ζ − 1)

= log |ζ|
(

1 + iArg(ζ)− log(ζ − 1)
log |ζ|

)
= log |ζ|

(
1 +O

(
1

log |ζ|

))
, |ζ| → 0

and then, as |ζ| → 0:

(I2 + I3)(z, ζ) = 1
2π

(π
2 + Arg(z)

)(
log |ζ|+O

(
1

log |ζ|

))
.

Similarly, as |ζ| → ∞

Log(1− ζ) = log |ζ − 1|+ iArg(1− ζ)

= log |ζ|+ log
∣∣∣∣1− 1

ζ

∣∣∣∣+ iArg(1− ζ)

= log |ζ|

1 +
log
∣∣∣1− 1

ζ

∣∣∣+ iArg(1− ζ)

log |ζ|


= log |ζ|

(
1 +O

(
1

log |ζ|

))
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and, as |ζ| → ∞:

(I2 + I3)(z, ζ) = − 1
2π

(π
2 −Arg(z)

)(
log |ζ|+O

(
1

log |ζ|

))
.

By (7.15), em(z,ζ) = eI1(z,ζ)e(I2+I3)(z,ζ). We notice that
∣∣eI1(z,ζ)

∣∣ = 1 and, as
|ζ| → 0:∣∣∣e(I2+I3)(z,ζ)

∣∣∣ = e
1

2π (π2 +Arg(z))
(

log |ζ|+O
(

1
log |ζ|

))
6 e

1
2π (π2 +Arg(z))(log |ζ|+1)

= e
1

2π (π2 +Arg(z))e
1

2π (π2 +Arg(z)) log |ζ|

= e
1

2π (π2 +Arg(z))|ζ|
1

2π (π2 +Arg(z)). (7.16)

A similar argument gives, as |ζ| → ∞:∣∣∣e(I2+I3)(z,ζ)
∣∣∣ 6 e− 1

2π (π2−Arg(z))|ζ|−
1

2π (π2−Arg(z)). (7.17)

Since Arg(z) ∈ (−π/2, π/2):

0 < 1
2π

(π
2 + Arg(z)

)
<

1
2 . (7.18)

From the boundedness of the function G(z, · ) on C and (7.16)–(7.18), we
deduce that for all z ∈ C, <e(z) > z0, the function C(z, ζ) = G(z, ζ)em(z,ζ)

is bounded as |ζ| → 0 and |ζ| → ∞. It follows that C(z, · ) is independent of
ζ. Using (7.16) again

lim
ζ→0

C(z, ζ) = 0

and we deduce that C(z, ζ) = 0 for all ζ, thenG(z) ≡ 0 for all z ∈ C, <e(z) >
z0. Therefore W̃hom = 0 and then W̃ = W̃part. Laplace’s inversion then
yields:

Ŵ (t, s) = 1
2iπ

∫ b+i∞

b−i∞
Ŵpart(t, s)eztdz (7.19)

for any b > 0. Then, (7.9) implies Ŵ (t, s) = W (t, s) = 0 for all 0 6 t 6 T ′

and s ∈ S (ρ, ρ+ |γ|). �

It is not always possible to apply Theorem 7.1 to the solutions of a Cauchy
problem associated to (2.2). That is the case when γ > 0 and consider the
solution U , obtained in Section 4, Proposition 4.3. Our next result is then
useful:

Theorem 7.2. — Suppose γ > 0. Given any T > 0 and W0(s) such
that sW0(s) is a bounded and analytic function on the strip S (−γ, ε) for
some ε > 0, there exists at most one solution W to the equation (2.2) for
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t ∈ (0, T ), such that, for all t ∈ (0, T ), sW (t, s) is analytic on the strip
S (−γ, ε), satisfying

sW ∈ C ([0, T )×S (−γ + δ, ε− δ)) , for some δ ∈ (0, ε)
sup {|sW (t, s)|; 0 6 t 6 T, s ∈ S (−γ + δ, ε− δ)} <∞.
W (0, s) = W0(s), ∀ s ∈ S (−γ, ε)

Proof of Theorem 7.2. — Assume the existence of two such solutions
to (2.2) and call W their difference. Then, we define the function:

H(t, s) = sW (t, s)
If ρ > 0 is such that (ρ, ρ+ γ) ⊂ (−γ, ε), by our hypotheses on W :

∂H(t, s)
∂t

= (s− σ1)(s− σ2)
s+ γ

H(t, s+ γ)

H(0, s) = sW0(s), ∀ s ∈ S (ρ, ρ+ γ).
The proof follows now the same arguments used in the proof of Theorem 7.1,
applied to H instead of W . This amounts just to consider the new function

Ψ(s) = (s− σ1)(s− σ2)
s+ γ

instead of Φ.

We first consider the case where T < γ−1. Then, all the beginning of the
proof of Theorem 7.1 may be exactly reproduced until the formula (7.7),
with the interval (ρ, ρ+ γ). In order to obtain a particular solution H̃part of

zW̃ (z, s) = Ψ(s)W̃ (z, s+ γ) + r̃(z, s), (7.20)
we consider the function:

V (s) =
(−γ)

s
γ Γ( s−σ1

γ )Γ( s−σ2
γ )

Γ(1 + s
γ ) .

It is straightforward to check that V (s) satisfies:
V (s+ γ) = −Ψ(s)V (s), s ∈ C \ {s ∈ C; s = σ1 −mγ, m = 0, 1, 2, . . .}

and, arguing as for the function V in (4.1), its behavior as |=m(s)| → ∞
with <e(s) bounded is such that the function:

H̃part(t, s) = i

γz V (s)

∫
<e(σ)=σ0

(−z)
σ−s
γ V (σ)r̃(z, σ)dσ

(1− e−
2iπ
γ (s−σ))

satisfies the equation (7.20) and the estimate (7.9) for t ∈ (0, T ).

The argument for H̃hom is now very similar using the new functions
G (t, ζ) = H(t, s) instead of G in (7.10), and ψ̃(ζ), ψ(x) instead of ϕ̃(ζ), ϕ(x)
in (7.11), (7.12). Since ψ(ζ) may still be estimated as in (7.13) the end of the

– 218 –



Non existence of non negative solutions

argument follows straightforwardly in the same way to prove that H(t) ≡ 0
for t ∈ [0, T ). This proves Theorem 7.2 if T < γ−1.

The result for T > γ−1 follows by iteration of the uniqueness of solutions
on intervals [mγ/2, (m + 1)γ/2) for m = 0, 1, 2, . . . ,M where M = [2T/γ],
the integer part of 2T/γ, and finally on [Mγ/2, T ). �
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