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New cw-expansive homeomorphisms of surfaces (∗)

M. Achigar (1), A. Artigue (2) and J. Vieitez (3)

ABSTRACT. — In this article we characterize monotone extensions of cw-expansive
homeomorphisms of compact metric spaces. For this purpose we introduce the no-
tion “half cw-expansivity” and we study its natural quotient space, specially in the
case of compact surfaces. These results are applied to construct new examples of cw-
expansive homeomorphisms of compact surfaces with infinitely many fixed points
and empty wandering set. These examples are quotients of topological perturba-
tions of pseudo-Anosov diffeomorphisms. We also show that there is a cw-expansive
homeomorphism with the shadowing property of the 2-sphere.

RÉSUMÉ. — Dans ce travail on caractérise les extensions monotones d’homéomor-
phismes cw-expansifs d’espaces métriques compacts. Pour faire cela, on introduit
la notion de “demi cw-expansivité” et on étudie son espace quotient naturel, no-
tament dans le cas de surfaces compactes. On utilise ses résultats pour construire
des exemples nouveaux d’homomémorphismes cw-expansifs avec un nombre infini
de points fixes et dont l’ensemble errant est vide, dans le cadre des surfaces. Ces
exemples sont des quotients de perturbations topologiques de pseudo-Anosov diffeo-
morphismes. Nous montrons également qu’il existe un homéomorphisme cw-expansif
du 2-sphère avec la propriété shadowing.

1. Introduction

In the theory of Dynamical Systems some topological properties play a
key role. Most of them are shared by hyperbolic systems as for instance ex-
pansivity, specification and shadowing property. With respect to expansivity,
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several generalizations have been proposed as for instance N -expansivity [19]
(N > 1), measure-expansivity [20], countable-expansivity [5], hyper-exp-
ansivity [1], h-expansivity (entropy expansivity) [7] and cw-expansivity
(continuum-wise expansivity) [13]. There is a diagram relating the classes
of expansivity considered.

hyper-expansivity
↓

expansivity ↔ 1-exp
↓
...
↓

N -exp → h-exp
↓

measure-exp ↔ countable-exp
↓

cw-exp.

As we can observe, the most general properties in the diagram are
cw-expansivity and h-expansivity. The relation between h-expansivity and
cw expansivity is not direct. Indeed, isometries are h-expansive and not
cw-expansive, and a pseudo-Anosov map of the 2-sphere (see [23]) is cw-
expansive but not entropy expansive (although it is asymptotically entropy
expansive). But under generic conditions in the C1 setting and C1-far from
homoclinic tangencies we have that measure-expansivity, with a measure
absolutely continuous with respect to Lebesgue measure, and h-expansivity
both hold [10, 24]. In this paper we address the study of cw-expansivity
defined on compact metric spaces that, as we have said above, is a prop-
erty shared for several dynamical systems exhibiting chaotic behavior. For
instance, Anosov diffeomorphisms, pseudo-Anosov diffeomorphisms, pseudo-
Anosov maps with 1-prongs of the sphere S2 and expansive homeomorphisms
all are cw-expansive.

Among the results of this article we exhibit a new class of examples of cw-
expansive homeomorphisms with infinitely many fixed points and without
wandering points, we show that a generalized pseudo-Anosov map of S2 has
the shadowing property and we generalize the notion of cw-expansivity in a
way that allows us to obtain an open property in the C0-topology. We call
this generalization half cw-expansivity.

Let us introduce some definitions to explain the results of this paper. Let
f : M → M be a homeomorphism of a metric space (M,dist). We say that
C ⊆M is a continuum if it is compact and connected. Following Kato [13], f
is said to be cw-expansive (continuum-wise expansive) if there is ξ > 0 such
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that if C ⊆M is a continuum and diam fn(C) 6 ξ for all n ∈ Z then C is a
singleton. In this case we say that ξ is a cw-expansivity constant. We recall
that f is expansive if there is ξ > 0 such that dist

(
fn(x), fn(y)

)
6 ξ for all

n ∈ Z implies x = y. It is remarkable that on compact surfaces expansive
homeomorphisms are conjugate to pseudo-Anosov diffeomorphisms [12, 17].

In this paper we consider perturbations of cw-expansive homeomorphisms
in the C0-topology. In [16] Lewowicz considered this kind of perturbations
for expansive homeomorphisms. He proved that if f is sufficiently close to a
given expansive homeomorphism of a compact metric space M , then there
is ξ > 0 with the following property:

if dist
(
fn(x), fn(y)

)
6 ξ for all n ∈ Z then dist(x, y) 6 ξ/2.

This property of f allowed him to define the equivalence relation on M :
x ∼ y if dist

(
fn(x), fn(y)

)
6 ξ for all n ∈ Z. In [16] it is claimed that

in this case the quotient space M̃ = M/ ∼ is metrizable and the induced
homeomorphism f̃ : M̃ → M̃ is expansive. The details of this construction
were given in [8] by Cerminara and Sambarino.

If f is a C0-perturbation of a cw-expansive homeomorphism then a similar
situation arises. In this case f satisfies the following condition:

if diam fn(C) 6 ξ for all n ∈ Z then diamC 6 ξ/2 (1.1)

for every continuum C ⊆ M . In [11] the techniques of [8] were applied to
this case, proving that the corresponding quotient is cw-expansive.

In the present paper we will consider this property, independently of any
perturbation of a cw-expansive homeomorphism. To this end we introduce
the concept of half cw-expansivity. For a metric space (M, dist), a home-
omorphism f : M → M and ξ > 0, a subset C ⊆ M is called ξ-stable if
diam fn(C) 6 ξ for all n ∈ Z.

Definition 1.1. — Let (M, dist) be a metric space. A homeomorphism
f : M →M is half cw-expansive if there exists ξ > 0, such that every ξ-stable
continuum is ξ/2-stable. In this case we say that ξ is a half cw-expansivity
constant and that f is half cw-expansive relative to dist and ξ.

We will prove that half cw-expansivity is an open property in the C0-
topology (see Theorem 2.6). It is easy to show that neither expansive home-
omorphisms nor cw-expansive ones are open in the C0-topology, so that the
study of half cw-expansive homeomorphisms can be thought as an intent to
remedy the lack of this property for expansive and cw-expansive homeomor-
phisms.
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Theorem A. — The set of half cw-expansive homeomorphisms of a com-
pact metric space is open in the C0-topology. Moreover, if f : M → M is a
half cw-expansive homeomorphism of a compact metric space with constant
ξ then there is a C0-neighborhood U of f such that every g ∈ U is half
cw-expansive with constant ξ.

For a half cw-expansive homeomorphism f : M → M with constant ξ it
is natural to identify two points of M if they lie in a common ξ-stable con-
tinuum, and indeed this identification defines an equivalence relation on M .
In Section 2.2 we characterize monotone extensions of cw-expansive homeo-
morphisms. That is, we consider commutative diagrams of the form

M M

N N

f

q q

g

(1.2)

where M,N are compact metric spaces, f, g are homeomorphisms, g is cw-
expansive and q is continuous, onto and monotone (i.e., the preimage set
of any point is connected). We show that if f is half cw-expansive then
the quotient explained above gives a cw-expansive map g and a monotone
canonical map q. Also, we prove the converse, for every monotone extension
f of a cw-expansive homeomorphism g there is a compatible metric in M
that makes f a half cw-expansive homeomorphism.

Next we consider cw-expansivity on compact surfaces. In Section 3 we
show that if f is a monotone extension of a cw-expansive homeomorphism g
as in diagram (1.2), the classes (preimages by q of singletons) are sufficiently
small and M is a compact surface, then N is homeomorphic to M , see
Theorem 3.4.

Theorem B. — If M is a closed surface with a Riemannian metric,
then there is ε0 > 0 such that if f : M → M is a half cw-expansive homeo-
morphism with half cw-expansivity constant ξ 6 ε0 then the quotient space
M̃ is homeomorphic to M .

This result is based on Moore’s Theorem on plane decompositions [18] in
the version of Roberts-Steenrod [25] for compact surfaces. For manifolds of
arbitrary dimension we show that no equivalence class induced by q separates
M , which implies that the codimension-one Betti number of each class is
zero.

In Section 3.2 we consider some examples on compact surfaces with
boundary. Also, we prove that for small enough constant of half cw-expans-
ivity no non-trivial Peano space on R2 admits a half cw-expansive homeo-
morphism. In particular this is valid for the circle S1.
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Theorem C. — The circle only admits trivial half cw-expansive home-
omorphisms. Moreover, if X is a nontrivial Peano space contained in the
plane then X only admits trivial half cw-expansive homeomorphisms.

On compact surfaces there are cw-expansive homeomorphisms that are
not expansive. Some of them are m-expansive. We recall that for m > 1 a
homeomorphism f is m-expansive [19] if there is ξ > 0 such that if A ⊆ M
and diam fn(A) 6 ξ for all n ∈ Z then A has at most m points. In [6] it
is shown that the genus two surface admits a 2-expansive homeomorphism
that is not expansive. In [4] it is shown that a pseudo-Anosov map with 1-
prong singularities of the 2-sphere is cw-expansive but not m-expansive for
any m > 1. In [3] the example of [6] is generalized and it is proved that there
are Cr-robustly, r > 2, m-expansive diffeomorphisms that are not Anosov
diffeomorphisms. In [2] another variation is considered to prove that a local
stable set may be connected but not locally connected, for a cw-expansive
homeomorphism of a surface.

All the examples mentioned in the previous paragraph have a finite num-
ber of fixed points. In Section 4 new examples of cw-expansive homeomor-
phisms are built. These examples, defined on the torus T2, have the par-
ticular feature that have infinitely many fixed points and moreover their
non-wandering set is the whole manifold.

Theorem D. — There exist cw-expansive homeomorphisms on tori that
has infinitely many fixed points and empty wandering set.

In particular these homeomorphisms are not m-expansive for any m > 1.
We recall that x ∈ M is wandering for f : M → M if there is an open set
U such that U ∩ fn(U) = ∅ for all n 6= 0. For the construction of such
examples we start with an Anosov diffeomorphism on the 2-torus. Then we
perform a suitable C0-perturbation to obtain infinitely many fixed points.
Finally, we consider a quotient that gives a cw-expansive homeomorphism,
which we already know that is defined on a 2-torus again. The hard part,
for our purposes, is to perform the perturbation in such a way that: (1)
it adds no wandering point and (2) the (infinitely many) fixed points are
not identified in the quotient, that is, there must be no continuum with
small iterates containing any pair of the fixed points. We will consider area
preserving perturbations to ensure (1).

We finish in Section 5 showing that there is a cw-expansive homeomor-
phism that is not hyperbolic and has the shadowing property. Indeed, we
show a pseudo-Anosov homeomorphism with spines of S2 that has this prop-
erty (see Theorem 5.5).
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Theorem E. — There exists a pseudo-Anosov homeomorphisms of S2

that is cw-expansive and has the shadowing property.

For this proof we consider a homeomorphism g : S2 → S2 that is an
antipodal quotient of an Anosov automorphism of T2 (see Section 5). It is
well known that g is not expansive. Then, in light of Theorem E, we see
that [15, Corollary 2.4] may not be correct.(1) A direct proof of the non-
expansivity of g can be found in [26, Example 1, p. 140]. Moreover, in [4,
Proposition 2.2.2] it is shown that for all ε > 0 there is a Cantor set K ⊆ S2

such that diam gn(K) 6 ε for all n ∈ Z. Nevertheless, the most powerful
argument to prove that g is not expansive comes from [12, 17]: the 2-sphere
does not admit expansive homeomorphisms.

Acknowledgements.We wish to thank the referee for fruitful comments
and suggestions on this paper.

2. Extensions of cw-expansive homeomorphisms

Let M be a topological space. A non-empty, compact and connected
subset C ⊆ M is called continuum. A continuum is called trivial if it has
only one point.

Definition 2.1 (Kato [13]). — A homeomorphism f : M → M is cw-
expansive if there exist a compatible metric dist on M and ξ > 0, such that
every ξ-stable continuum is trivial. Such ξ will be called a cw-expansivity
constant.

If U is an open cover of M and C ⊆ M , we denote C ≺ U to mean that
C ⊆ U for some U ∈ U . We say that U is a cw-expansivity cover for f if
C ⊆M is a continuum and fn(C) ≺ U for all n ∈ Z then C is trivial.

Lemma 2.2. — If M is a compact metrizable topological space and
f : M → M is a homeomorphism then the following conditions are equiv-
alent:

(1) The homeomorphism f is cw-expansive.
(2) There exists a cw-expansivity cover U for f .
(3) For every compatible metric dist on M there exists a cw-expansivity

constant ξ for f .

The proof of Lemma 2.2 is direct from the definitions.
(1) In [15, Corollary 2.4] it is claimed (among other things) that every cw-expansive

homeomorphism with the shadowing property on a compact manifold is expansive.
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2.1. Half cw-expansivity

Recall Definition 1.1 of half cw-expansivity.

Remark 2.3. — An equivalent condition for half cw-expansivity is that
for some ξ > 0 every ξ-stable continuum has diameter less or equal than ξ/2.

Remark 2.4. — Notice that every homeomorphism of M is half cw-exp-
ansive if ξ > 2 diamM . In this case we say that ξ is a trivial half cw-
expansivity constant. Naturally, the case of interest is for small half cw-
expansivity constants.

The next example shows that the existence of a non-trivial half cw-
expansivity constant depends on the compatible metric. In Section 3.2 we
give examples of homeomorphisms of the 2-disk showing this phenomenon,
see Propositions 3.8 and 3.9.

Example 2.5. — Let g : M → M be a cw-expansive homeomorphism of
the compact metric space (M,dist′) with cw-expansivity constant ξ = 1.
Consider dist(x, y) = min{dist′(x, y), 1}, a compatible metric on M . Define
f : M × [0, 1]→ M × [0, 1] as f(x, t) = (g(x), t). On M × [0, 1] consider the
following two metrics:

dist1
(
(x, t), (y, s)

)
= max{dist(x, y), |s− t|},

dist2
(
(x, t), (y, s)

)
= max{4 dist(x, y), |s− t|}.

Both metrics are compatible. For dist1 we have that no ξ < 2 diam1 M is a
half cw-expansivity constant, but for dist2 we have the half cw-expansivity
constant ξ = 3 < 2 diam2 M , where diami is the diameter associated to disti.

We recall that the C0-topology in the set of homeomorphisms of a com-
pact metric space (M,dist) is defined by the C0-metric

distC0(f, g) = sup
x∈M

dist
(
f(x), g(x)

)
, (2.1)

for homeomorphisms f, g : M → M . We assume that the reader is familiar
with the Hausdorff metric defined on the compact subsets of M . We will use
the fact that the space of subcontinua of M is compact with this metric. A
proof can be found in [21].

Theorem A follows immediately from the following Theorem 2.6(3).

Theorem 2.6. — If f : M →M is a half cw-expansive homeomorphism
of a compact metric space with constant ξ then:

(1) There is α > ξ such that every α-stable continuum C ⊆ M is ξ/2-
stable.
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(2) For every ε ∈ (ξ, α) there is m ∈ N such that:
sup
|n|6m

diam fn(C) 6 α implies diamC < ε/2

for every continuum C ⊆M .
(3) For every ε ∈ (ξ, α) there is a C0-neighborhood U of f such that

every g ∈ U is half cw-expansive with constant ε.

Proof.

(1). — Arguing by contradiction suppose that there is a sequence
(Ck)k∈N of (ξ + 1/k)-stable continua that are not ξ/2-stable. Since ξ is a
half cw-expansivity constant, we have that Ck is not ξ-stable for all k ∈ N.
Then diam fn(Ck) 6 ξ + 1/k for all n ∈ Z, and for all k ∈ N there is
nk ∈ Z such that diam fnk (Ck) > ξ. By compactness we may assume that(
fnk (Ck)

)
k∈N converges to C with respect to the Hausdorff metric. Then C

is a continuum such that diamC > ξ and diam fn(C) 6 ξ for all n ∈ Z. This
contradicts that ξ is a half cw-expansivity constant for f .

(2). — To prove that the required m ∈ N exists we will argue by contra-
diction. Suppose that there exists ε ∈ (ξ, α) such that for eachm ∈ N there is
a continuum Cm ⊆M with sup|n|6m diam fn(Cm) 6 α and diamCm > ε/2.
If C ⊆ M is a limit continuum of (Cm)m∈N then diam fn(C) 6 α for all
n ∈ Z and diamC > ε/2 > ξ/2. Then C is an α-stable continuum that is
not ξ/2-stable, contradicting (1).

(3). — For the given ε consider m ∈ N given by (2). Let U be
a C0-neighborhood of f such that sup|n|6m diam gn(C) 6 ε implies
sup|n|6m diam fn(C) 6 α for every continuum C ⊆ M and g ∈ U . Let
us show that ε is a half cw-expansivity constant for every g ∈ U . Sup-
pose that diam gn(C) 6 ε for all n ∈ Z. From the choice of U , this implies
that sup|n|6m diam fn(C) 6 α. Then, as m was chosen as in (2), we have
that diamC < ε/2. That is, ε is a half cw-expansivity constant for every
g ∈ U . �

Corollary 2.7. — Let f : M →M be a cw-expansive homeomorphism
of a compact metric space with constant ξ. Then there is a C0-neighborhood
U of f such that every g ∈ U is half cw-expansive with constant ξ.

Proof. — Suppose that ξ is a cw-expansivity constant of f . Notice that
every 0 < ε 6 ξ is a half cw-expansivity constant. By Theorem 2.6 we can
take two half cw-expansivity constants ε1, ε2 such that ε1/2 < ε2 < ξ < ε1.
Let Ui, i = 1, 2, be the neighborhoods given by Theorem 2.6, such that if
g ∈ Ui then εi is a half cw-expansivity constant for g. Define U = U1 ∩ U2.
From our choice of ε1 and ε2 we see that ξ is a half cw-expansivity constant
for every g ∈ U . �
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2.2. Monotone extensions of cw-expansive systems

LetM,N be topological spaces and p : M → N a map. We say that p is a
quotient map (or an extension map) if p is surjective and the quotient (final)
topology of N induced by p and the topology of M is the given topology of
N . If in addition f and g are homeomorphisms of M and N , respectively,
such that p ◦ f = g ◦ p, we say that f is an extension of g by p (or that g is
a quotient of f by p), and we denote it by (M,f) p→ (N, g).

Let M be a topological space and f : M → M a homeomorphism. An
equivalence relation ∼ on M is called compatible with f if x, y ∈ M , x ∼ y
implies f(x) ∼ f(y). Given an equivalence relation ∼ onM , compatible with
f , let M̃ be the topological quotient space, q : M → M̃ the canonical map,
and f̃ the homeomorphism of M̃ induced by f . Then f is an extension of f̃
by q, and we say that this extension (or quotient) is induced by ∼.

Any extension (M,f) p→ (N, g) is of the form (M,f) q→ (M̃, f̃), that
is, there exists an equivalence relation ∼ on M compatible with f and a
homeomorphism h : N → M̃ such that q = p ◦ h and f̃ ◦ h = h ◦ g. So
we may suppose that extensions always comes from compatible equivalence
relations.

A map between topological spaces is called monotone [21] if the preimage
set of any singleton of the codomain is connected.

Remark 2.8. — If M and N are compact metric spaces and q : M → N
is a monotone continuous and onto map, then q−1(C) is connected for every
connected subset C ⊆ N . See [21, Exercise 8.46].

We will say that an extension (M,f) q→ (M̃, f̃) is a monotone extension if
the map q is monotone, i.e., the equivalence classes [x], x ∈M , are connected.

Definition 2.9. — Let (M,dist) be a metric space and f : M → M
a half cw-expansive homeomorphism with constant ξ > 0. We consider the
equivalence relation compatible with f defined on M by:

x ∼ y if x, y ∈ C for some ξ-stable continuum C ⊆M, (2.2)
for x, y ∈ M . Note that ∼ depends on f , dist, and ξ. To simplify the ter-
minology, in this context we refer to the extension (M,f) q→ (M̃, f̃) as
the extension induced by f . Here M̃ denotes the quotient space M/∼ and
q : M → M̃ is the canonical map.

Lemma 2.10. — Let M be a compact metric space and f : M → M a
half cw-expansive homeomorphism with constant ξ > 0. Then the equiva-
lence classes of the relation ∼ of Definition 2.9 are the maximal ξ-stable
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continua.(2) In particular, the canonical map q : M → M̃ associated to ∼ is
monotone.

Proof. — Take x ∈M and consider the equivalence class [x] ⊆M . Given
y ∈ [x] denote by Cy a ξ-stable continuum containing x and y. Since Cy ⊆ [x]
for all y ∈ [x], we have that [x] =

⋃
y∈[x] Cy. As each Cy is connected and

x ∈ Cy for all y ∈ [x], we conclude that [x] is connected. To prove that [x] is
closed, consider a sequence (xk)k∈N of elements of [x] converging to a point
y ∈M . As x ∼ xk for all k ∈ N, there exists a sequence (Ck)k∈N of ξ-stable
continua such that x, xk ∈ Ck for all k ∈ N. Taking a subsequence we can
suppose that (Ck)k∈N converges, in the Hausdorff metric, to a continuum
C that will be a ξ-stable continuum as well. Then, as x, y ∈ C, we have
y ∈ [x] and [x] is closed. Since f is half cw-expansive, every ξ-stable contin-
uum is (ξ/2)-stable. Thus, given y, z ∈ [x], there are (ξ/2)-stable continua
Cy, Cz such that x, y ∈ Cy and x, z ∈ Cz. This implies that y, z ∈ Cy ∪ Cz
with Cy ∪ Cz a ξ-stable continuum. Consequently, [x] is a ξ-stable contin-
uum. Finally, it is clear that if C is a ξ-stable continuum and [x] ⊆ C then
C = [x]. �

Recall that a decomposition of a space M is a collection D of nonempty,
mutually disjoint subsets of M such that

⋃
D = M . A decomposition D

of a topological space M is upper semi-continuous if for every D ∈ D and
every neighborhood U of D in M there exists a neighborhood V of D in
M such that D′ ⊆ U for every D′ ∈ D that meets V (see for example [21,
Definition 3.5]).

Lemma 2.11. — Let M be a compact metric space, f : M → M a half
cw-expansive homeomorphism, ∼ the equivalence relation of Definition 2.9,
M̃ the quotient space by this relation and q : M → M̃ the canonical map.
Then:

(1) The decomposition of M into equivalence classes is upper semi-
continuous.

(2) q is a closed map.
(3) The space M̃ is metrizable.
(4) For every open set U ⊆ M the set Û = {x ∈ M : [x] ⊆ U} is open

in M and q(Û) is open in M̃ .

Proof.

(1). — First observe that, as the classes are closed by Lemma 2.10, the
upper semi-continuity of the decomposition of M into equivalence classes

(2) That is, for all x ∈ M the class [x] is a ξ-stable continuum and, if [x] ⊆ C for a
ξ-stable continuum C then C = [x].
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amounts to: given ε > 0, and a convergent sequence xk → x of M , there
exists k0 ∈ N such that [xk] ⊆ε [x] for all k > k0. Here for subsets A,B ⊆M ,
A ⊆ε B means that d(a,B) < ε for all a ∈ A, where d(a,B) = infb∈B d(a, b).

Arguing by contradiction suppose that this is not the case. Then there
exist an ε0 > 0, a convergent sequence xk → x and a sequence (yk)k∈N such
that xk ∼ yk and d(yk, [x]) > ε0 for all k ∈ N. Let (Ck)k∈N be a sequence
of ξ-stable continua such that xk, yk ∈ Ck for all k ∈ N. As M is compact,
taking subsequences we may suppose that (yk)k∈N converges to an element y,
which will satisfy d(y, [x]) > ε0, and that (Ck)k∈N converges in the Hausdorff
metric to a continuum C ⊆ M which will be ξ-stable. As x ∈ C ∩ [x] and
both sets are in fact ξ/2-stable continua, we see that C ∪ [x] is a ξ-stable
continuum and x, y ∈ C∪ [x]. Therefore x ∼ y, or equivalently y ∈ [x], which
contradicts d(y, [x]) > ε0.

(2). — It follows from (1) and [21, Proposition 3.7].

(3). — It follows from (1) and [21, Theorem 3.9].

(4). — Note that Û = M \ q−1(q(M \U)
)
. Then, as M \U is closed and

q is a continuous and closed map we see that Û is open. Finally q(Û) is open
because q−1(q(Û)

)
= Û is open. �

Theorem 2.12. — Let M be a compact metrizable space and f : M →
M a monotone extension of f̃ : M̃ → M̃ with quotient map q : M → M̃ . The
following statements are equivalent:

(1) f̃ is cw-expansive,
(2) f is half cw-expansive with respect to a suitable compatible metric,

with constant ξ > 0, and the extension induced by f (as in Defini-
tion 2.9) is precisely the given extension (that is, q(x) = q(y) if and
only if there is a ξ-stable continuum containing x and y).

Proof. — As we said before we may suppose that the extension comes
from a suitable equivalence relation on M compatible with f which we call
'. The class of x ∈M by ' will be denoted as [x] = q(x) where q : M → M̃
is the canonical map.

(1) ⇒ (2). — We need to show a compatible metric on M and ξ > 0
such that f is half cw-expansive relative to ξ, and such that the equivalence
relation ∼ of Definition 2.9 coincides with '.

Pick a compatible metric dist1 forM and a compatible metric dist2 for M̃ .
As f̃ is cw-expansive, by Lemma 2.2 there exists a cw-expansivity constant
ξ for f̃ with respect to dist2. Let D1 be the diameter of M with respect to
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dist1, K = ξ/(1 + 2D1) and define a new metric dist on M by
dist3(x, y) = K dist1(x, y) + dist2([x], [y]), x, y ∈M.

To prove that dist3 is compatible with dist1 first note that K dist1 6 dist3.
On the other hand, by the uniform continuity of q : (M,dist1)→ (M̃, dist2),
it is easy to see that given any ε > 0 there exists δ > 0 such that dist1(x, y) <
δ implies dist3(x, y) < ε, for all x, y ∈M . Therefore dist3 is compatible.

We will show that f is half cw-expansive with respect to dist3 and ξ.
Note that, if x, y ∈M and x ' y then

dist3(x, y) = K dist1(x, y) 6 KD1 6 ξ/2.

Hence diam3 [x] 6 ξ/2 for each [x] ∈ M̃ , where diamj stands for the di-
ameter in the metric distj . Note also that as dist2([x], [y]) 6 dist3(x, y) for
all x, y ∈ M we have diam2 q(C) 6 diam3 C for all C ⊆ M . Suppose that
diam3 f

n(C) 6 ξ for all n ∈ Z, hence diam2 f̃
n
(
q(C)

)
= diam2 q

(
fn(C)

)
6

diam3 f
n(C) 6 ξ for all n ∈ Z. Since ξ is a cw-expansivity constant for f̃

we have that q(C) = [x] for some x ∈ M . Thus, C ⊆ [x] and diam3 C 6
diam3 [x] 6 ξ/2.

Finally we prove that ∼ = '. If x ∼ y then there exists a ξ-stable
continuum C containing x and y. In the previous paragraph we already
showed that in this case C is a subset of a single class (relative to '),
therefore x ' y. Conversely, take x ' y and let C = [x]. We know that C is
connected because the extension is assumed to be monotone. Then x, y ∈ C
and

diam3 f
n(C) = diam3[fn(x)] 6 ξ/2

for all n ∈ Z, hence x ∼ y.

(2)⇒ (1). — By Lemma 2.11 we know that M̃ is a compact metrizable
space. To prove that f̃ is cw-expansive, by Lemma 2.2, it suffices to show a
cw-expansivity cover for f̃ . We assume that the extension is induced by ∼,
the equivalence relation of Definition 2.9.

Let dist be a compatible metric onM and ξ a half cw-expansivity constant
for f with respect to dist. Consider α > ξ, from Theorem 2.6, such that every
α-stable continuum is ξ/2-stable. For each x ∈ M let U(x) = Bα/2(x) be
the open ball of radius α/2 centered at x, and consider

Û(x) = {y ∈M : [y] ⊆ U(x)}.

By Lemma 2.11 we know that Û(x) is open, and, as diam [x] 6 ξ/2 < α/2,
we have that [x] ⊆ U(x), so x ∈ Û(x). Then, again by Lemma 2.11, q

(
Û(x)

)
is an open neighborhood of [x] in M̃ for all x ∈M . Consider the open cover
of M̃ given by Ũ =

{
q
(
Û(x)

)
: x ∈M

}
. To prove that Ũ is a cw-expansivity
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cover for f̃ suppose that f̃n(C̃) ⊆ q
(
Û(xn)

)
for all n ∈ Z where C̃ ⊆ M̃ is a

continuum and xn ∈M .

Let C = q−1(C̃) and note that fn(C) ⊆ U(xn) for all n ∈ Z, because
q
(
fn(C)

)
= f̃n(C̃) ⊆ q

(
Û(xn)

)
for all n ∈ Z. Thus C is a α-stable set. Since

q is monotone, by Remark 2.8 we have that C is connected, and therefore it
must be ξ-stable. Hence, C reduces to a single class, from which we conclude
that C̃ is a trivial continuum. This proves that Ũ is a cw-expansivity cover
for f̃ , and therefore f̃ is cw-expansive. �

3. Monotone quotients on surfaces

In this section we will consider the extensions of Section 2 for homeo-
morphisms of surfaces. In Section 3.1 we show that under certain conditions
the quotient space of a closed surface is homeomorphic to the original sur-
face. In Section 3.2 we consider the existence problem of half cw-expansive
homeomorphisms on surfaces with boundary.

3.1. Closed surfaces

Here we prove Theorem B which is the main result of this subsection, see
Theorem 3.4. We show that for a closed surface M any half cw-expansive
homeomorphism with a sufficiently small half cw-expansivity constant in-
duces a quotient space M̃ homeomorphic to M . In order to prove Theo-
rem 3.4 we introduce Proposition 3.2 which is a generalization, to arbitrary
dimension, of what we need for surfaces.

In the sequel we denote as br(C) the r-dimensional Betti number(3) mod-
ulo 2 of the set C.

Lemma 3.1. — If C ⊆ Rn is a compact subset that does not separate Rn
then bn−1(C) = 0.

Proof. — Let U = Rn \ C. Consider the n-sphere Sn as the one-point
compactification of Rn, Sn = Rn ∪ {∞}, and let V = U ∪ {∞}, which is an
open and connected subset of Sn as can be easily seen. Then, as bn−1(Sn \
V ) = 0, by [27, Theorem 5.25], and C = Rn \ U = Sn \ V , we conclude that
bn−1(C) = 0. �

(3) i.e., the dimension of the rth homology group of C.
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Proposition 3.2. — Suppose that M is a closed Riemannian manifold,
dimM = d > 2. If f : M → M is a homeomorphism then there is ε0 > 0
such that if C ⊆ M is a maximal ε-stable continuum with 0 < ε 6 ε0 then
bd−1(C) = 0.

Proof. — Let ε0 > 0 be a small constant so that if A ⊆M and diamA 6
ε0 then there is a convex open ball D ⊆ M containing A. Suppose that
C ⊆M is a maximal ε-stable continuum for some 0 < ε 6 ε0. For each n ∈ Z
let Dn be a convex open disc containing fn(C). A connected component of
M \ fn(C) will be called bounded component if their closure is disjoint from
the boundary of D. It is clear that we can take ε0 > 0 sufficiently small so
that f preserves the bounded components M \ fn(C).

To conclude that bd−1(C) = 0 we will apply Lemma 3.1 to D, which
is homeomorphic to Rd. Arguing by contradiction suppose that D \ C is
disconnected. Take y ∈ D \ C in a bounded component. Let γ ⊆ D be a
geodesic arc through y with its extreme points in ∂D. The point y separates
γ in two arcs γ1 and γ2. As y is in a bounded component of D\C we can take
zi ∈ γi ∩C for i = 1, 2. Since diamC 6 ε we have that dist(z1, z2) 6 ε. This
implies that dist(y, C) 6 ε because D is convex. An analogous argument for
each fn(C) ⊆ Dn shows that dist

(
fn(y), fn(C)

)
6 ε for all n ∈ Z. Let V be

the unbounded component of D \C and denote by C ′ the continuum D \ V .
We have proved that diam fn(C ′) 6 ε0 for all n ∈ Z. The maximality of C
implies that C ′ = C, but this contradicts that the class C separates D. �

We recall the following result of Algebraic Topology, which will be used
in Theorem 3.4.

Theorem 3.3 ([25, Theorem 1]). — If M is a compact connected sur-
face without boundary and M̃ is the quotient space induced by an upper-
semicontinuous decomposition of M into continua that contains at least two
elements, and b1(C) = 0 for each equivalence class C ⊆ M , then M̃ is
homeomorphic to M .

Theorem 3.4. — If M is a closed surface with a Riemannian metric,
then there is ε0 > 0 such that if f : M → M is a half cw-expansive homeo-
morphism with half cw-expansivity constant ξ 6 ε0 then M̃ is homeomorphic
to M .

Proof. — Take ε0 from Proposition 3.2. Suppose that f is half cw-exp-
ansive with constant ξ 6 ε0. By Lemma 2.10 we know that the maximal ξ-
stable continua are the equivalence classes that defines M̃ . Since dimM = 2
we have that b1(C) = 0 for every class C ⊆ M . Then the result follows by
Theorem 3.3. �

For reference in Section 4 we state the following direct consequence.
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Corollary 3.5. — LetM be a closed surface with a Riemannian metric
and f0 : M →M be a cw-expansive homeomorphism. Then there exists ε1 >
0 such that for every 0 < ξ 6 ε1 there is a C0-neighborhood U of f0 such that
every f ∈ U is half cw-expansive with constant ξ and M̃ is homeomorphic
to M .

Proof. — Take ε0 from Theorem 3.4, let ξ0 be a cw-expansivity constant
for f0 and define ε1 = min{ε0, ξ0}. Then, for any 0 < ξ 6 ε1 we have
that ξ is a cw-expansivity constant for f0. By Corollary 2.7 there exists a
C0-neighborhood U of f0 such that all f ∈ U are half cw-expansive with
constant ξ. Finally, as ξ 6 ε0, we have that M̃ is homeomorphic to M for
every f ∈ U . �

For the proof of the next result we recall some known facts. Given two
compact metric spaces M,N and a continuous map q : M → N , we say that
q is a near-homeomorphism [9, p. 27] if every C0-neighborhood of q contains
a homeomorphism from M to N .

By Corollary 2.7 we know that in a C0-neighborhood of a cw-expansive
homeomorphism every homeomorphism is half cw-expansive. The next result
is some kind of converse for surfaces. That is, in a suitable neighborhood of a
half cw-expansive homeomorphism there is a cw-expansive homeomorphism.
The size of this neighborhood depends on the half cw-expansivity constant.

Theorem 3.6. — If f : M →M is a half cw-expansive homeomorphism
of a closed surface with a Riemannian metric, with constant ξ 6 ε0 (where
ε0 is given by Theorem 3.4) and ε > 0 is given, then there is a cw-expansive
homeomorphism g : M→M conjugate with f̃ such that distC0(f, g)<ξ/2+ε.

Proof. — It is known that the quotient map q : M → M̃ is a near-
homeomorphism. We sketch the proof for reader’s convenience. From Propo-
sition 3.2 and [14, p. 514, Thm. 6] we know that the equivalence classes are
cell-like. By [9, p. 187] a cell-like decomposition is shrinkable. On compact
metric spaces the shrinkability condition implies that the quotient map is a
near-homeomorphism [9].

Let hn : M → M̃ be a sequence of homeomorphisms converging to q in
the C0-metric. Define gn = h−1

n ◦ f̃ ◦ hn. We know that gn is cw-expansive
because f̃ is cw-expansive and they are conjugate. Suppose that there are
ε > 0 and xn such that

dist
(
f(xn), h−1

n ◦ f̃ ◦ hn(xn)
)
> ξ/2 + ε (3.1)

for all n ∈ N. If x is a limit point of xn then f̃ ◦ hn(xn) → f̃ ◦ q(x). If y is
a limit point of h−1

n ◦ f̃ ◦ q(x) then q(y) = f̃
(
q(x)

)
. Since q ◦ f = f̃ ◦ q we

have that q(y) = q(f(x)). We know that diam q−1(z) 6 ξ/2 for all z ∈ M̃ .
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Then, dist(y, f(x)) 6 ξ/2. This contradicts (3.1) and proves that for some n
it holds that distC0(f, gn) < ξ/2 + ε. �

3.2. Surfaces with boundary

In this subsection we prove Theorem C. We recall that surfaces with
boundary do not admit cw-expansive homeomorphisms. This is a conse-
quence of the non-existence of such homeomorphisms on the circle. See for
example [4, Remark 2.3.6]. Also recall that ξ > 2 diamM , is a trivial half
cw-expansive constant, see Remark 2.4.

Proposition 3.7. — The circle only admits trivial half cw-expansive
homeomorphisms.

Proof. — Suppose that f : M → M is a half cw-expansive homeomor-
phism of the circle M = S1 with constant ξ. By Theorem 2.12 we have that
f̃ : M̃ → M̃ is cw-expansive. Since the canonical map is monotone we have
that M̃ is a circle or a singleton. As we said, it cannot be a circle. This
implies that there is only one class, i.e., f is trivially half cw-expansive. �

The next two results show that the non-triviality of the half cw-expan-
sivity depends on the compatible metric.

Proposition 3.8. — Suppose that D is homeomorphic to a 2-dimens-
ional disk with a metric dist such that diamD = diam ∂D. Then D admits
no non-trivial half cw-expansive homeomorphism.

Proof. — If ξ 6 2 diamD is a half cw-expansivity constant for f then it
is also a constant for g = f |∂D. Then g is a non-trivial half cw-expansive
homeomorphism of a circle, contradicting Proposition 3.7. �

It is easy to see that for a disk embedded in the plane we have that
diamD = diam ∂D with respect to the Euclidean metric. Then, Proposi-
tion 3.8 can be applied, for example, to the standard 2-disk x2 +y2 6 1 with
the Euclidean metric.

Proposition 3.9. — The closed 2-dimensional disk with a suitable met-
ric admits a non-trivial half cw-expansive homeomorphism.

Proof. — Let f̃ : S2 → S2 be a cw-expansive homeomorphism of the 2-
sphere with hyperbolic fixed points. For example we can take a power of the
homeomorphism that will be explained in Section 5. Suppose that S2 = R2∪
{∞}, the origin is a hyperbolic fixed point and f̃ is linear in a neighborhood
of (0, 0). Let D = {v ∈ S2 : ‖v‖ > 1} be a disk in the sphere, where
‖ · ‖ is the Euclidean norm and ∞ ∈ D. Consider q : D → S2 given by
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q(r, θ) = (r− 1, θ) in polar coordinates. Note that q(∂D) = (0, 0) and that q
is injective in the interior of D. Define f : D → D as f(x) = q−1(f̃(q(x))) for
all x ∈ D\∂D. Since f̃ is linear around (0, 0) the map f can be continuously
defined in ∂D obtaining a homeomorphism f : D → D. As f is a monotone
extension of f̃ and f̃ is cw-expansive, by Theorem 2.12 we conclude that
there is a compatible metric on D that makes f a half cw-expansive homeo-
morphism. �

Note that the example of Proposition 3.9 has a non-trivial class, i.e.,
b1(∂D) 6= 0 where ∂D is a class of the equivalence relation of Definition 2.9.
The next result generalizes this remark for an arbitrary plane Peano con-
tinuum (i.e., a locally connected subcontinuum of R2). It depends on [13,
Theorem 6.2] where Kato proved that no non-trivial plane Peano continuum
admits a cw-expansive homeomorphism.

Proposition 3.10. — If M ⊂ R2 is a Peano continuum and f : M →
M is non-trivially half cw-expansive then there is a class [x] ⊂ M with
b1([x]) 6= 0.

Proof. — Let f : M → M be a half cw-expansive homeomorphism. Sup-
pose that b1([x]) = 0 for all x ∈ M . Let M̃ be the quotient space and
q : M → M̃ the canonical map. By [21, Corollary 8.17] M̃ is a Peano contin-
uum and by Theorem 2.12 f̃ is cw-expansive on M̃ .

We will show that M̃ is a plane Peano continuum. Consider the decom-
position G of R2 given by G(x) = {x} for x /∈ M and G(x) = [x] for
x ∈ M . By [18] we have that R2/G is homeomorphic to R2. And given
that M̃ ⊂ R2/G we conclude that M̃ is a plane Peano continuum. Apply-
ing [13, Theorem 6.2] we have that M̃ is a singleton, that is, f is trivially
half cw-expansive. �

With Proposition 3.9 we can construct the following example that ex-
plains the meaning of ε0 in Proposition 3.2 and Theorem 3.4.

Example 3.11. — Let fi : Di → Di, i = 1, 2, be two copies of the half cw-
expansive homeomorphism given in Proposition 3.9. Identifying the corre-
sponding points of the boundaries of the disks we obtain a half cw-expansive
homeomorphism f : S2 → S2 of the 2-sphere. Let γ be the circle in the
sphere associated to the boundaries of the disks. In this case the quotient
collapses the invariant circle γ and the quotient space is not a surface, it is
homeomorphic to the union of two tangent spheres in R3. Also, we see that
b1(γ) 6= 0.
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4. Examples with infinitely many fixed points.

In this section by means of a series of steps, named constructions, Theo-
rem D is proved. To this end we will perform a perturbation of a cw-expansive
homeomorphism of a compact surface in order to obtain new examples of
cw-expansive homeomorphisms with particular properties.

Given a homeomorphism f : M →M and a closed set D ⊆M , a modifi-
cation of f in D is a homeomorphism g : M →M such that f |M\D = g|M\D.
Every such modification g is determined by a homeomorphism h : D → f(D)
such that h|∂D = f |∂D (h = g|D). In this case we sometimes refer to h itself
as the modification.

Remark 4.1. — Note that if g is a modification of f in D as before
then f(D) = g(D) and distC0(f, g) 6 diam f(D), where distC0 was defined
in (2.1).

We start with the area preserving linear map T : R2 → R2 given by
T (x, y) = (λx, λ−1y) where λ > 1 is fixed. This map transforms a line of
equation y = kx into the line y = kλ−2x and leaves invariant the hyperbolas
xy = k.

In order to obtain examples without wandering points we will construct
area preserving perturbations. For this purpose we will need the following
result, where µ stands for the Lebesgue measure.

Theorem 4.2 ([22, Corollary 3]). — If D,E ⊆ R2 are diffeomorphic
to closed rectangles, µ(D) = µ(E), and ∂S : ∂D → ∂E is a homeomor-
phism then there is an area preserving homeomorphism S : D → E such that
S|∂D = ∂S.

The example is developed in a series of constructions.

Construction 4.3. — We start with a modification T0 of T as follows.
Consider the following subsets

D+ = {(x, y) : 1 6 xy 6 2, λ−1x 6 y 6 λ3x}, E+ = T (D+),
D− = {(x, y) : 1/2 6 xy 6 1, λ−1x 6 y 6 λ3x}, E− = T (D−),
lD = {(x, y) : xy = 1, λ−1x 6 y 6 λ3x}, lE = T (lD),

D = D+ ∪D−, E = T (D) = E+ ∪ E−.
Let p and q be the endpoints of the arc lD as in Figure 4.1.

Note that u = (1, 1) ∈ lD ∩ lE. Let h : lD → lE be a homeomorphism
such that h(p) = T (p), h(q) = T (q) and h(u) = u. Now consider the map
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Figure 4.1. Construction of T0

∂T+ : ∂D+ → ∂E+ given by ∂T+|∂D+\lD = T |∂D+\lD and ∂T+|lD = h. As
∂T+ is a homeomorphism, D+ and E+ are diffeomorphic to rectangles and
µ(D+) = µ(E+), by Theorem 4.2 we can extend ∂T+ to an area preserving
homeomorphism T+ : D+ → E+. Analogously, we can find an area preserv-
ing homeomorphism T− : D− → E− such that T−|∂D−\lD = T |∂D−\lD and
T−|lD = h. As T+ and T− coincide (with h) in lD we have an area preserv-
ing homeomorphism T0 : D → E given by T0|D+ = T+ and T0|D− = T−.
The map T0 has u ∈ intD as a fixed point. Besides, as T0|∂D = T |∂D we can
define a modification of T in D, replacing T by T0 on D. This modification
will have u as a fixed point and will be area preserving because T0 and T are.

Construction 4.4. — We will define a family of modifications Tn, n ∈
N. For n ∈ N let Mn : R2 → R2 the homothetic transformation Mn(v) =
v/2n, Dn = Mn(D), En = Mn(E) and Tn = Mn ◦ T0 ◦ M−1

n . Note that
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Mn leaves invariant the lines y = kx and takes a hyperbola xy = k to
xy = k/4n. It can be easily checked that Tn : Dn → En is an area preserving
homeomorphism with a fixed point un = (2−n, 2−n) ∈ intDn, that En =
T (Dn) and that Tn|∂Dn

= T |∂Dn
. Then each Tn gives a modification of T .

Notice that if n 6= m in the previous construction then intEn ∩ intEm =
∅, so that we can make the modifications Tn simultaneously. In fact we want
to perform all the modifications Tn for n > n0 simultaneously, with n0 ∈ N
to be chosen later.

Construction 4.5. — Given n0 ∈ N and n > n0, define T̃n as T with
the modifications Tn0 , . . . , Tn, and define T̃ as T with all the modifications
Tn for n > n0.

Clearly all the maps T̃n of the previous construction are area preserving
homeomorphisms.

Lemma 4.6. — The map T̃ is an area preserving homeomorphism.

Proof. — First note that T̃n converges to T̃ pointwise, and that T̃ is
bijective. For all n > n0 we have

distC0(T̃n−1, T̃n) = distC0(T |Dn
, Tn) 6 diamEn = 2−n diamE0,

from which we conclude that T̃n converges uniformly to T̃ , and T̃ is contin-
uous. A similar argument applied to the inverses of all these maps shows
that in fact T̃ is a homeomorphism. Finally, for any measurable subset
A ⊆

⋃
n>n0

Dn we have T̃ (A) ⊆
⋃
n>n0

En, then

µ
(
T̃ (A)

)
=
∑
n>n0

µ
(
T̃ (A) ∩ En

)
=
∑
n>n0

µ
(
T̃ (A ∩Dn)

)
=
∑
n>n0

µ
(
Tn(A ∩Dn)

)
=
∑
n>n0

µ(A ∩Dn) = µ(A).

As T̃ equals T outside
⋃
n>n0

Dn, we see that T̃ is area preserving. �

Clearly T̃ has infinitely many fixed points, at least the un, n > n0. Be-
sides, as the hyperbolas Hn : xy = 2/4n do not meet intDm for all n,m ∈ N,
we see that T̃ = T on these hyperbolas.

Construction 4.7. — Given an open neighborhood V of the origin in
R2, let ξ > 0 be small enough such that if K = [−ξ, ξ]2 then K ⊆ V and
T (K) ⊆ V . Let L = [−ξ/2, ξ/2]2 and suppose that another neighborhood
W ⊆ L of the origin is given. Let n0 ∈ N be such that Dn ∪En ⊆W for all
n > n0, and perform the modification T̃ of T of Construction 4.5.
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Remark 4.8. — Note that distC0(T̃ , T ) 6 diamW , because En ⊆ W for
all n > n0.

Lemma 4.9. — For any continuum C of diamC 6 ξ/2 containing two
different fixed points un and um (m > n > n0), there exist N ∈ N such that
T̃ k(C) ⊆ K ∪ T (K) for k = 0, . . . , N and diam T̃N (C) > ξ/2.

Proof. — In fact, as diamC 6 ξ/2, and un ∈ L we see that C ⊆ K. Now
consider the branch H+ on the first quadrant of the hyperbola Hm : xy =
2/4m. As we can see H+ separates K in two components each of which
containing one of the fixed points considered. Therefore, as C is a connected
subset of K containing both fixed points, we conclude that there exists a
point w ∈ H+ ∩ C. Now, as T = T̃ on H+ we see that there exists N ′ ∈ N
such that T̃N ′(w) /∈ K. Consequently there exist a first N ∈ N such that
T̃N (C) 6⊆ K. Clearly for this N we have T̃ k(C) ⊆ K ∪ T̃ (K) = K ∪ T (K)
for k = 0, . . . , N . Finally, as T̃N (C) is a closed set that meets L (in un)
and R2 \K we conclude that diam T̃N (C) > ξ/2, because dist(L,R2 \K) =
ξ/2. �

Now we are ready to construct the desired example of a cw-expansive
homeomorphism of a compact surface admitting infinitely many fixed points
and with no wandering points.

Construction 4.10. — Let M = R2/Z2 be the flat torus, and f : M →
M the linear Anosov diffeomorphism given by the matrix

[
2 1
1 1
]
. Let U be

an open neighborhood in M of the fixed point of f and assume that there is
an isometric and area preserving local chart ϕ : V → U , where V is an open
neighborhood of the origin in R2. Let λ > 1 and λ−1 the eigenvalues of f . We
can also require that f ◦ϕ(x) = ϕ◦T (x), for x ∈ T−1(V )∩V , where T is the
linear map T (x, y) = (λx, λ−1y) considered at the beginning of this section.
As ϕ is isometric, any modification T̃ of T on a closed subset of T−1(V )∩V
gives a modification g of f such that, distC0(f, g) = distC0(T, T̃ ).

As f is an expansive homeomorphism, it is in particular cw-expansive.
Let ξ > 0 be an expansivity constant small enough to have K∪T (K) ⊆ V and
ξ 6 ε1, where K is as in Construction 4.7 and ε1 is from Corollary 3.5. Let
δ > 0 be such that Bδ(f) ⊆ U for the neighborhood U of Corollary 3.5, and
such thatW = Bδ/2

(
(0, 0)

)
⊆ L, where L is as in Construction 4.7. With the

V , ξ and W chosen, perform the perturbation T̃ of T of Construction 4.7.
As this perturbation is in the closed subset W ⊆ T−1(V ) ∩ V , we have a
corresponding perturbation g of f of the same size

distC0(f, g) = distC0(T, T̃ ) 6 diamW < δ,

where we used Remark 4.8. Then by the choice of δ > 0 we have that g ∈ U , so
that g is half cw-expansive with constant ξ. Consider the equivalence relation
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∼ of Definition 2.9 associated to g and ξ, and the homeomorphism g̃ on the
quotient space M̃ . By Theorem 2.12 we know that g̃ is cw-expansive, and by
Corollary 3.5 we have that M̃ is homeomorphic to M , a 2-torus.

Theorem 4.11. — The cw-expansive homeomorphism g̃ of the 2-torus
obtained in Construction 4.10 has infinitely many fixed points and empty
wandering set.

Proof. — On one hand, as T̃ : K → T (K) and ϕ are area preserving,
we see that g is area preserving. Then the wandering set of g is empty.
Consequently the wandering set of the quotient g̃ is empty. On the other
hand, for n > n0, where n0 is as in Construction 4.7, consider the fixed
points pn of g corresponding to the fixed points un of T̃ . We will show that
different fixed points pn and pm of g are not identified by ∼, so that all this
infinitely many points remains as infinitely many fixed points of g̃. In fact
suppose on the contrary that pn ∼ pm with m > n > n0. Then, by the
definition of ∼, there exists a continuum C inM containing pn and pm, such
that diam gk(C) 6 ξ/2 for all k ∈ Z. Then the continuum C ′ = ϕ−1(C) will
satisfy un, um ∈ C ′ and diam T̃ k(C ′) 6 ξ/2, for all k ∈ Z, which contradicts
Lemma 4.9. �

Remark 4.12. — It is clear that with the techniques developed in this
section we can perturb an arbitrary pseudo-Anosov map of an arbitrary
compact surface in a neighborhood of a periodic orbit.

5. Cw-expansivity with the shadowing property

In this section we will prove Theorem E, i.e., that the 2-sphere admits a
cw-expansive homeomorphism with the shadowing property. For the proof
we develop some general results. Some of them could be well known, but as
we have not found them in the literature and the proofs are short we include
the details.

Lemma 5.1. — Let M and N be compact metric spaces and q : M → N
a continuous and open map. Then for every ρ > 0 there exists ν > 0 such
that q

(
Bρ(x)

)
⊇ Bν

(
q(x)

)
for all x ∈M .

Proof. — If this is not the case then there exist ρ > 0 and a sequence
(xn)n∈N in M such that q

(
Bρ(xn)

)
6⊇ B1/n

(
q(xn)

)
for all n ∈ N. As M is

compact we may assume that xn → x ∈ M . Then q(xn) → q(x) by the
continuity of q. Let U = q

(
Bρ/2(x)

)
which is open in N because q is an

open map. Thus U contains a neighborhood Bδ(q(x)) for some δ > 0. Let
n0 be such that xn ∈ Bρ/4(x) and q(xn) ∈ Bδ/2

(
q(x)

)
for all n > n0. Then
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Bρ(xn) ⊇ Bρ/2(x) and hence q
(
Bρ(xn)

)
⊇ Bδ/4

(
q(xn)

)
for every n > n0,

contradicting that q
(
Bρ(xn)

)
6⊇ B1/n

(
q(xn)

)
for n large enough. �

Let f : M → M be a homeomorphism on a metric space (M, dist).
Given δ > 0, a bi-infinite sequence (xn)n∈Z in M is a δ-pseudo orbit if
dist

(
f(xn), yn+1

)
< δ for all n ∈ Z. If (xn)n∈Z is a δ-pseudo orbit and ε > 0

we say that x ∈ M ε-shadows the pseudo orbit if dist(fn(x), xn) < ε for
all n ∈ Z. We say that the homeomorphism f : M → M has the shadowing
property if for all ε > 0 there is δ > 0 such that every δ-pseudo orbit can be
ε-shadowed, and in this case we say that δ is shadowing constant associated
to ε.

Proposition 5.2. — Let M and N be compact metric spaces, f : M →
M and g : N → N homeomorphisms and q : M → N a continuous and open
onto map such that q ◦ f = g ◦ q. If f has the shadowing property then g has
the shadowing property.

Proof. — Given ε > 0 let ε′ > 0 be such that for all x, y ∈M , dist(x, y) <
ε′ implies dist

(
q(x), q(y)

)
< ε. Let δ′ > 0 be a shadowing constant associated

to ε′ for f , and apply Lemma 5.1 to get δ > 0 such that q
(
δ′(x)

)
⊇ Bδ

(
q(x)

)
for all x ∈M . We claim that δ is a shadowing constant associated to ε for g.

Indeed, given a δ-pseudo orbit (yn)n∈Z of g we lift it to a δ′-pseudo orbit
of f as follows. Take x0 ∈ M such that q(x0) = y0. As dist

(
g(y0), y1

)
< δ

and q
(
f(x0)

)
= g(y0), by the choice of δ we can find x1 ∈ Bδ′

(
f(x0)

)
such

that q(x1) = y1. Doing this inductively we see that we can lift the positive
δ-pseudo orbit (yn)n>0 to a positive a δ′-pseudo orbit. A similar argument
permits us to lift the negative δ-pseudo orbit (yn)n60, and so the entire δ-
pseudo orbit. By the choice of δ′ there exists x ∈ M that ε′-shadows the
lifted δ′-pseudo orbit. Finally, by the choice of ε′ we conclude that y = q(x)
ε-shadows the initially given δ-pseudo orbit. �

Lemma 5.3. — Let M and N be compact metric spaces and q : M → N
a continuous and open map. Then for every non trivial continuum C ⊆ N
there exists a non trivial subcontinuum of q−1(C).

Proof. — Suppose on the contrary that D = q−1(C) is a totally discon-
nected set. Take x, y ∈ D such that q(x) 6= q(y). By continuity of q there
exists a neighborhood V ⊆ D of x relative to D such that q(y) /∈ q(V ). As
D is totally disconnected we may assume that V is open and closed relative
to D. Then V = V1 ∩ D = V2 ∩ D for some open set V1 ⊆ M and some
closed set V2 ⊆ M . Therefore, q(V ) = q(V1) ∩ C = q(V2) ∩ C is open and
closed relative to C, because q is a continuous and open map. As x ∈ q(V )
and y /∈ q(V ) we conclude that C is not connected, a contradiction. �

– 243 –



M. Achigar, A. Artigue and J. Vieitez

Proposition 5.4. — Let M and N compact metric spaces, f : M →M
and g : N → N homeomorphisms and q : M → N a continuous and open
onto map such that q ◦ f = g ◦ q, and with the property that q−1(y) is totally
disconnected for all y ∈ N . If f is cw-expansive then g is cw-expansive.

Proof. — Let ξ > 0 be a cw-expansivity constant for f . Suppose that g
is not cw-expansive. Then for all k ∈ N there exist a non trivial continuum
C ′k ⊆ N such that diam gn(C ′k) < 1/k for all n ∈ Z. By Lemma 5.3, for each
k ∈ N there exists a non trivial connected component D′k ⊆ M of q−1(C ′k).
Then, as f is cw-expansive, there exists nk ∈ Z such that diam fnk (D′k) >
ξ for all k ∈ N. Let Dk = fnk (D′k) and Ck = gnk (C ′k) for k ∈ N. We
have that diamDk > ξ, q(Dk) = Ck and diamCk < 1/k, for all k ∈ N.
Taking a subsequence we have that Dkm

→ D with respect to the Hausdorff
metric, where D is a continuum which will satisfy diamD > ξ. Hence, as
q is continuous and diamCmk

< 1/mk we see that q(D) = y, for some
y ∈ N . This is a contradiction since by hypothesis q−1(y) must be totally
disconnected. �

Let S2 be the 2-sphere obtained as the quotient of the 2-torus T2 = R2/Z2

by the map T (x, y) = (−x,−y), and q : T2 → S2 the canonical map. Let
f : T2 → T2 the linear Anosov diffeomorphism given by the matrix

[
2 1
1 1
]
, and

g : S2 → S2 the induced homeomorphism. More details of this construction
can be found in [26, Example 1, p. 140].

Theorem 5.5. — The homeomorphism g : S2 → S2 is cw-expansive and
has the shadowing property.

Proof. — Observe that the canonical map q : T2 → S2 is open. Then,
as f has the shadowing property, by Proposition 5.2, g has the shadowing
property. On the other hand, as f is expansive, and q is a finite-to-1 map (in
fact, each point has at most two preimages), we can apply Proposition 5.4
and conclude that g is cw-expansive. �

Problem 5.6. — For simplicity let us say that a homeomorphism is cw-
Anosov if it is cw-expansive and has the shadowing property. Besides the map
g of the sphere, there are other examples of cw-Anosov homeomorphisms, of
course, Anosov diffeomorphisms. It would be interesting to classify all the cw-
Anosov homeomorphisms of compact surfaces. Some natural questions arises:
are there cw-Anosov homeomorphisms of the torus not being (conjugate to)
Anosov? Does the genus two surface admit cw-Anosov homeomorphisms?
Does local stable and unstable sets of a cw-Anosov homeomorphism define
singular foliations? Are these local stable sets locally connected?

Remark 5.7. — The cw-expansivity of g could have been deduced from [4,
Proposition 2.2.1] where it is proved that in fact g is cw2-expansive, which
means that there is ξ > 0 such that if C1, C2 ⊆ S2 are continua such that
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diam gn(C1) 6 ξ for all n > 0 and diam g−n(C2) 6 ξ for all n > 0 then
C1 ∩ C2 has at most two points. It is clear that cw2-expansivity implies
cw-expansivity. However, we think that the proof of the cw-expansivity of g
given in Theorem 5.5 (based on Proposition 5.4) is simpler and clearer than
the proof in [4].
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