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Mapping properties of the Hilbert and Fubini–Study
maps in Kähler geometry (∗)

Yoshinori Hashimoto (1)

ABSTRACT. — Suppose that we have a compact Kähler manifold X with a very
ample line bundle L. We prove that any positive definite hermitian form on the
space H0(X,L) of holomorphic sections can be written as an L2-inner product with
respect to an appropriate hermitian metric on L. We apply this result to show that
the Fubini–Study map, which associates a hermitian metric on L to a hermitian form
on H0(X,L), is injective.

RÉSUMÉ. — Soit X une variété compacte kählerienne avec un fibré en droites
L qui est très ample. Nous prouvons que toute forme hermitienne définie positive
sur H0(X,L) peut être écrite comme produit scalaire L2 associé à une métrique
hermitienne sur L. Nous appliquons ce résultat pour montrer que l’application de
Fubini–Study, des formes hermitiennes sur H0(X,L) vers les métriques hermitiennes
sur L, est injective.

1. Introduction and statement of the result

Let (X,L) be a polarised Kähler manifold of complex dimension n. We
have

• H(X,L) := the set of all positively curved hermitian metrics on L,
• B := the set of all positive definite hermitian forms on H0(X,L),

where H(X,L) is infinite dimensional and B is finite dimensional.

We can define the following two maps;

• the Hilbert map Hilb : H(X,L)→ B defined by the L2-inner product
of h ∈ H(X,L),
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• the Fubini–Study map FS : B → H(X,L) defined as the pullback of
the Fubini–Study metric on the projective space P(H0(X,L)∗).

The result that we prove in this paper is the following.

Theorem 1.1. — Suppose that L is very ample. Then Hilb is surjective
and FS is injective.

Since Hilb is a map from an infinite dimensional manifold to a finite
dimensional manifold, it seems natural to speculate that it is surjective.
Similarly, it also seems natural to speculate that FS is injective. Indeed,
these statements seem to be widely believed among the experts in the field.
However, the proof of these facts do not seem to be explicitly written in
the literature previously, to the best of the author’s knowledge; in fact, as
we shall see, the proof that we give involves application of the degree of
continuous maps and has connection to the Aubin–Yau theorem [2, 13]. We
shall provide the proof of these “folklore” statements in this paper.

For FS, we shall in fact prove a stronger quantitative result for the injec-
tivity (cf. Lemma 3.1), which was applied in [9] to find a point in B that is
close to the minimum of the modified balancing energy. Generalisations to
several variants of the Hilb map (cf. Proposition 2.17) will also be discussed
in Section 2.4.
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2. Surjectivity of Hilb

2.1. Preliminary definitions

Suppose that L is very ample. We shall first define the maps Hilb and
FS more precisely as follows (cf. [6]).

Definition 2.1. — The Hilbert map Hilb : H(X,L)→ B is defined by

Hilb(h) :=
∫
X

h( · , · )ωnh .

The Fubini–Study map FS : B → H(X,L) is defined by the equation
N∑
i=1
|si|2FS(H) = 1 (2.1)

where {si}i is an H-orthonormal basis for H0(X,L) and N :=dimCH
0(X,L).

Remark 2.2. — The above definition is slightly different from the ones
that are often used in the literature by a factor of scaling, in the follow-
ing sense. Often we consider the tensor power L⊗k, and the usual def-
inition of Hilb concerns a hermitian metric h on L (rather than L⊗k),
with Hilb(h) := Nk

V

∫
X
h⊗k( · , · )ω

n
h

n! defining a hermitian form on the vector
space H0(X,L⊗k) of dimension Nk, with V :=

∫
X
c1(L)n/n!. For a hermit-

ian form H on H0(X,L⊗k), FS(H) is a hermitian metric on L satisfying∑
i |si|2FS(H)⊗k = 1.

As far as Theorem 1.1 is concerned, these differing conventions will not
cause any problem, and we shall use the one given above in this paper not
to be concerned with extra exponent of k or the constant Nk. For the quan-
titative result Lemma 3.1, however, this does require some straightforward
modification which is mentioned in Remark 3.2. We shall consider L⊗k also
in Section 2.4.

We also recall (and slightly modify) some definitions made by
Bourguignon–Li–Yau [5, Section 2] that we shall use in the proof of sur-
jectivity of Hilb in Section 2.3. Since L is very ample we have the Kodaira
embedding ι : X ↪→ P(H0(X,L)∗) ∼→ PN−1. First of all pick homogeneous
coordinates {Zi}i on PN−1; all matrices appearing in what follows will be
with respect to this basis {Zi}i, unless otherwise specified. This then defines
a hermitian metric h̃ := h̃FS(Id) on OPN−1(1) and the Fubini–Study metric
ω
F̃S(Id) on PN−1, where Id stands for the identity matrix. We write dµZ for

the volume form on PN−1 defined by ω
F̃S(Id).
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Suppose that we pick B ∈ GL(N,C) and change the basis from {Zi}i to
BZ := {Z ′i}i (where Z ′i :=

∑
j BijZj). This defines a new Fubini–study

metric ω
F̃S(H) associated to the hermitian metric h̃FS(H), where H :=

(B−1)tB−1; note that H has BZ as its orthonormal basis. We also write
dµBZ for the volume form corresponding to ω

F̃S(H).

Definition 2.3. — We define two spaces of hermitian matrices as fol-
lows:

• J ◦ := {N × N positive definite hermitian matrices with operator
norm 1},
• H◦ := {N ×N positive definite hermitian matrices with trace 1}.

Since B ∈ J ◦ is positive definite hermitian, the operator norm ‖B‖op of
B being 1 is equivalent to the largest eigenvalue of B being 1 (all eigenvalues
of B are real and positive). Observe also that any N × N positive definite
hermitian matrix B′ can be divided by a positive real constant α1 := ‖B′‖op
(resp. α2 := tr(B′)) to be an element of J ◦ (resp. H◦).

In other words, J ◦ and H◦ just denote two different scalings of the set of
N×N positive definite hermitian matrices, and hence they are diffeomorphic
under the map J ◦ 3 B 7→ B/ tr(B) ∈ H◦. Artificial as it may seem, it will
be useful in Section 2.3 to fix the scalings as above.

Note dimR J ◦ = dimRH◦ = N2−1 and that J ◦ and H◦ can be identified
with connected bounded open subsets in RN2−1. We endow them with the
Euclidean topology inherited from RN2−1.

With respect to this topology, we can compactify J ◦ (resp. H◦) to J
(resp. H) by adding a topological boundary ∂J (resp. ∂H) defined as

• ∂J := {N ×N positive semi-definite hermitian matrices with oper-
ator norm 1 and rank 6 N − 1},
• ∂H := {N ×N positive semi-definite hermitian matrices with trace

1 and rank 6 N − 1}.

2.2. Degree of continuous maps

We summarise some well-known results on the degree of continuous maps
between domains in Euclidean spaces. The reader is referred to [1, Chap-
ter 12] for more details. Let Ω be a bounded open subset in Rm and Ω̄
be its closure in Rm with respect to the Euclidean topology. We also write
∂Ω := Ω̄ \ Ω for the boundary.
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We first consider a C1-map φ ∈ C1(Ω̄,Rm). Writing componentwise in
terms of Rm, we can write φ = (φ1, . . . , φm). The Jacobian of φ at x is
defined as Jφ(x) := det

(
∂φi
∂xj

(x)
)
. Recall that x ∈ Ω̄ is called a critical point

of φ ∈ C1(Ω̄,Rm) if Jφ(x) = 0. If x is a critical point of φ, φ(x) is called
a critical value. Suppose that φ ∈ C1(Ω̄,Rm), p /∈ φ(∂Ω), and p is not a
critical value of φ. The degree of φ at p relative to Ω is defined by

deg(φ,Ω, p) :=
∑

x∈φ−1(p)

sign Jφ(x). (2.2)

Note deg(φ,Ω, p) = 0 if φ−1(p) = ∅.

If p is a critical value of φ, we define deg(φ,Ω, p) by slightly perturbing
p (cf. [1, Definition 12.4]). Moreover, for a continuous map Q ∈ C0(Ω̄,Rm),
we take a “perturbation” φQ,p ∈ C1(Ω̄,Rm) of Q to define deg(Q,Ω, p) as
deg(φQ,p,Ω, p) (cf. [1, Definition 12.5]). These are well-defined, since they do
not depend on the perturbations chosen [1, Theorems 12.3-12.9].

An important result is the homotopy invariance of the degree.

Theorem 2.4 (cf. [1, Theorem 12.11]). — Let Q0, Q1 ∈ C0(Ω̄,Rm) and
Qt be a homotopy in C0(Ω̄,Rm) between Q0 and Q1. Let p ∈ Rm such that
p /∈ Qt(∂Ω) for all t ∈ [0, 1]. Then deg(Q0,Ω, p) = deg(Q1,Ω, p).

Another important result is that nontriviality of degree “detects” surj-
ectivity.

Theorem 2.5 (cf. [1, Theorem 12.10]). — Let Q ∈ C0(Ω̄,Rm) and p /∈
Q(∂Ω). If deg(Q,Ω, p) 6= 0 then there exists x ∈ Ω such that Q(x) = p.

In what follows, we shall take Ω = J ◦ and Ω̄ = J , and define a map
QX ∈ C0(Ω̄,RN2−1) with QX(Ω̄) ⊂ H and QX(∂Ω) ⊂ ∂H (note that this
implies QX : J ◦ → H◦ is proper). We shall apply the above theorems to
claim surjectivity of QX , which in turn proves the surjectivity of Hilb.

2.3. Proof of surjectivity of Hilb

We now prove the first part of Theorem 1.1, i.e. surjectivity of Hilb. After
several technical definitions and lemmas, the main surjectivity result will be
proved in Proposition 2.15. The main line of the argument presented below
is similar to Bourguignon–Li–Yau [5, Section 2].
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Definition 2.6. — We define a continuous map QP : J ◦ → H◦ as

QP(B)ij :=
(∫

PN−1

∑
l |Zl|2h̃∑

l |
∑
mBlmZm|

2
h̃

dµBZ

)−1∫
PN−1

h̃(Zi, Zj)∑
l |
∑
mBlmZm|

2
h̃

dµBZ ,

where QP(B)ij stands for the (i, j)-th entry of the matrix QP(B) ∈ H◦.

Writing ξB : PN−1 ∼→ PN−1 for the biholomorphic map induced from the
linear action of B ∈ J ◦ on PN−1, we note

QP(Id)ij =
(∫

PN−1
dµZ

)−1 ∫
PN−1

h̃(Zi, Zj)∑
l |Zl|

2
h̃

dµZ

=
(∫

PN−1
(ξ∗BdµZ)

)−1 ∫
PN−1

ξ∗B

(
h̃(Zi, Zj)∑

l |Zl|
2
h̃

)
(ξ∗BdµZ)

=
(∫

PN−1
dµBZ

)−1 ∫
PN−1

∑
l,m h̃(BilZl, BjmZm)∑

l |
∑
mBlmZm|

2
h̃

dµBZ

and hence, recalling tr(QP(B)) = 1 and writing Bt for the transpose of B,
we get

QP(B) = (Bt)−1QP(Id)(Bt)−1

tr((Bt)−1QP(Id)(Bt)−1) , (2.3)

by recalling B = B∗ which implies Bt = B̄.

We have the following lemma.

Lemma 2.7. — QP(Id) is a constant multiple of the identity matrix.

Proof. — We define a local coordinate system (z1, . . . , zN−1) on a Zariski
open subset U of PN−1 defined by ZN 6= 0, so that zi = Zi/ZN . We write zi
in polar coordinates as zi = rie

√
−1θi .

Assuming i, j 6= N , we get

h̃(Zi, Zj)∑N
l=1 |Zl|

2
h̃

= z̄izj

1 +
∑N−1
l=1 |zl|2

= rirje
√
−1(θj−θi)

1 +
∑N−1
l=1 r2

l

.

Recall also that in this coordinate system, the Fubini–Study volume form
dµZ can be written as

dµZ = 1(
1 +

∑N−1
l=1 r2

l

)N N−1∏
i=1

(ri
π

dri ∧ dθi
)
.
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Thus, for i, j 6= N , we get the integral (since U is Zariski open in PN−1) as

QP(Id)ij =
∫
U

h̃(Zi, Zj)∑
l |Zl|

2
h̃

dµZ

=
∫ 2π

0

∫ 2π

0
e
√
−1(θj−θi)dθidθj

(∫ ∞
0
. . .

∫ ∞
0

(2π)N−3rirj

(1 +
∑N−1
l=1 r2

l )N+1

N−1∏
m=1

rmdrm
π

)
,

which is non-zero if and only if i = j because of the integral in θi and θj .

Exactly the same reasoning shows that QP(Id)iN = QP(Id)Nj = 0 for
i, j 6= N ; we only need to observe that, in this case, we have

h̃(Zi, ZN )∑N
l=1 |Zl|

2
h̃

= z̄i

1 +
∑N−1
l=1 |zl|2

= rie
−
√
−1θi

1 +
∑N−1
l=1 r2

l

,

which becomes zero under the integration in θi, as we did above.

Thus the only nonzero entries of QP are the diagonal ones. On the other
hand, we observe that the symmetry in exchanging the variables Z1, . . . , ZN
imply that the diagonal entries of QP must be all equal. Thus QP must be a
constant multiple of the identity. �

Lemma 2.8. — QP defines a diffeomorphism between J ◦ and H◦.

Proof. — By Lemma 2.7 we have QP(B) = (Bt)−2/ tr((Bt)−2). By re-
calling the general fact that a positive definite hermitian matrix A has a
unique positive square root A1/2, it easily follows that QP is bijective.

Since QP is smooth and the map A 7→ A1/2 is smooth as long as A is
positive definite hermitian, we see that QP : J ◦ → H◦ is a diffeomorphism.

�

Lemma 2.9. — QP : J ◦ → H◦ extends continuously to the boundary of
J , and sends elements of ∂J into the ones in ∂H, i.e. QP ∈ C0(J ,H) with
QP(∂J ) ⊂ ∂H.

Proof. — Suppose that we are given a sequence {Bν}ν ⊂ J ◦ converging
to a point B∞ in ∂J (in the Euclidean topology, as remarked at the end of
Section 2.1) as ν → ∞. Let λν > 0 be the smallest eigenvalue of Bν . Since
Bν → ∂J as ν →∞ and the operator norm of Bν is fixed to be 1, we have
λν → 0.

Observe, by homogeneity, that we have

QP(Bν) = (Btν)−1QP(Id)(Btν)−1

tr((Btν)−1QP(Id)(Btν)−1)

= λν(Btν)−1QP(Id)λν(Btν)−1

tr(λν(Btν)−1QP(Id)λν(Btν)−1) .
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We shall prove in Lemma 2.10 that (λ−1
ν Bν)−1 = λνB

−1
ν converges to a

well-defined positive semidefinite hermitian matrix β∞ that is strictly semi-
definite (i.e. with rank 1 6 rk(β∞) 6 N − 1). Assuming this result, the
above equation means that (λ−1

ν Btν)−1QP(Id)(λ−1
ν Btν)−1 (the numerator of

QP(Bν)) converges to a well-defined positive semidefinite hermitian matrix
as ν →∞, which is strictly semidefinite since β∞ = limν→∞(λ−1

ν Bν)−1 is.

Thus we see that QP(Bν) converges to a well-defined positive semidefinite
hermitian matrix as ν →∞. Hence we get

QP

(
lim
ν→∞

Bν

)
= β∞QP(Id)β∞

tr(β∞QP(Id)β∞) = lim
ν→∞

QP(Bν).

Moreover, since β∞ is strictly semidefinite, we see that the limit is an element
in ∂H, i.e. QP(∂J ) ⊂ ∂H.

We finally note that any element in ∂J can be realised as the limit of
a sequence {Bν}ν ⊂ J ◦, which establishes the continuous extension QP ∈
C0(J ,H) that we claimed, granted Lemma 2.10 that we prove below. �

Lemma 2.10. — Suppose that we are given a sequence {Bν}ν ⊂ J ◦
converging to a point B∞ in ∂J . Let λν > 0 be the smallest eigenvalue of Bν .
Then (λ−1

ν Bν)−1 = λνB
−1
ν converges to a well-defined positive semidefinite

hermitian matrix β∞ which is strictly semidefinite, i.e. its rank satisfies
1 6 rk(β∞) 6 N − 1.

Proof. — Since Bν → B∞ as ν → ∞, we see that each eigenvalue (or-
dered, counted with multiplicities) of λνB−1

ν converges. Now, since the uni-
tary group U(N) is compact, we may pick a subsequence {ν(i)}i ⊂ {ν}ν
such that unitarily diagonalising bases for Bν(i)’s converge; more precisely,
this means the existence of a convergent sequence of bases {Z1,i}i (identi-
fied with a convergent sequence in U(N)) such that Bν(i) is diagonal with
respect to Z1,i, whose entries are the eigenvalues of Bν(i). For this subse-
quence {ν(i)}i we have a well-defined limit β1,∞ := limi→∞ λν(i)B

−1
ν(i), since

both the eigenvalues and the diagonalising bases for λν(i)B
−1
ν(i) converge.

Suppose that we take another such subsequence {ν(j)}j with the limit β2,∞,
where each Bν(j) is diagonal with respect to a basis Z2,j , whose entries are
the eigenvalues of Bν(j).

We shall assume without loss of generality that eigenvalues are always
ordered and counted with multiplicities, when a matrix is (unitarily) diago-
nalised.

Let ui,j ∈ U(N) be a change of basis matrix from Z1,i to Z2,j with the
hermitian conjugate u∗i,j , which implies that u∗i,jλν(j)B

−1
ν(j)ui,j is diagonal

with respect to the basis Z1,i. A crucially important point is that {ui,j}i,j
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converges as i, j → ∞, since {Z1,i}i and {Z2,j}j converge. Thus, by taking
the limit i→∞ and j →∞, we see that β1,∞ = û∗β2,∞û for a well-defined
unitary matrix û := u∞,∞ ∈ U(N).

Our aim is to prove β1,∞ = β2,∞. We now take the basis Z1,i as above,
which unitarily diagonalises Bν(i). Recall also that Bν(j) is unitarily diag-
onalised by another basis Z2,j , where two bases Z1,i and Z2,j are related
by ui,j ∈ U(N) as Z2,j = ui,j · Z1,i. Thus, Bν(i) and u∗i,jBν(j)ui,j are both
diagonal with respect to Z1,i, whose entries are their eigenvalues (ordered
and counted with multiplicities). Since the eigenvalues of {Bν}ν converge,
for any ε > 0 there exists ν′ ∈ N such that

‖Bν(i) − u∗i,jBν(j)ui,j‖op < ε

holds for all ν(i), ν(j) > ν′. Note on the other hand
Bν(i) − u∗i,jBν(j)ui,j = Bν(i) − u∗i,jBν(i)ui,j + u∗i,j(Bν(i) −Bν(j))ui,j .

Since {Bν}ν itself converges, for any ε > 0 there exists ν′ ∈ N such that

‖Bν(i) − u∗i,jBν(i)ui,j‖op
6 ‖Bν(i) − u∗i,jBν(j)ui,j‖op + ‖u∗i,j(Bν(i) −Bν(j))ui,j‖op < 2ε

holds for all ν(i), ν(j) > ν′, by also noting that unitary matrices preserve
the operator norm. Since ui,j converges to û ∈ U(N) as i, j → ∞, we take
this limit in the above to conclude B1,∞ = û∗B1,∞û with respect to the
basis Z1,∞, where B1,∞ := limi→∞Bν(i). Recall that Bν(i) is diagonal with
respect to Z1,i and B1,∞ is diagonal with respect to Z1,∞, by definition.
Hence û can be written as a block diagonal matrix with respect to Z1,∞
as û = diag(û1, . . . , ûm), where each ûl corresponds to the unitary ma-
trix acting on the l-th eigenspace (including kerB1,∞) of B1,∞. Recall that
β1,∞ := limi→∞ λν(i)B

−1
ν(i) is diagonal with respect to the basis Z1,∞ and has

the same eigenspace decomposition as B1,∞. In particular, ûβ1,∞û
∗ = β1,∞.

Thus, combined with our hypothesis β1,∞ = û∗β2,∞û, we get β1,∞ = β2,∞
as claimed.

We thus conclude that the limit β∞ := limν→∞ λνB
−1
ν is well-defined,

independently of the subsequence chosen. This is positive semidefinite her-
mitian since it is a limit of positive definite hermitian matrices, and has rank
1 6 rk(β∞) 6 N − 1 since λν is the minimum eigenvalue of Bν that tends
to zero as ν →∞. �

Recall the Kodaira embedding ι : X ↪→ P(H0(X,L)∗) ∼→ PN−1 and the
volume form dµBZ on PN−1, defined with respect to B ∈ GL(N,C) and
homogeneous coordinates {Zi}i as given in Section 2.1.

Now suppose that we write ι∗X(dµBZ) for the volume form on ι(X) ⊂
PN−1, defined by the Fubini–Study metric associated to the hermitian matrix
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H that has BZ as its orthonormal basis (in the notation of Section 2.1).
Analogously to Definition 2.6, we define the following.

Definition 2.11. — We define a continuous map QX : J ◦ → H◦ as

QX(B)ij :=
(∫

PN−1

∑
l |Zl|2h̃∑

l |
∑
mBlmZm|

2
h̃

ι∗X(dµBZ)
)−1

∫
PN−1

h̃(Zi, Zj)∑
l |
∑
mBlmZm|

2
h̃

ι∗X(dµBZ).

Remark 2.12. — Recalling (2.1) in Definition 2.1, we observe that the
above can be written as QX(B)ij = Hilb(FS(H))(Zi, Zj)/ tr(Hilb(FS(H))),
with H = (B−1)tB−1.

As in Lemma 2.9, we need to show that QX extends continuously to the
boundary, i.e. QX ∈ C0(J ,H).

Recall the biholomorphic map ξB : PN−1 ∼→ PN−1 induced from the linear
action of B ∈ J ◦ on PN−1, which moves ι(X) ⊂ PN−1 to ξB ◦ ι(X) ⊂ PN−1.
Recall also that ι∗X(dµBZ) is, as a measure on X, equal to ι∗

(
ωn
F̃S(H)

)
. We

then have∫
PN−1

h̃(Zi, Zj)∑
l |
∑
mBlmZm|

2
h̃

ι∗X(dµBZ) =
∫
ι(X)

h̃(Zi, Zj)∑
l |
∑
mBlmZm|

2
h̃

ωn
F̃S(H)

=
∑
r,s

(B∗)−1
ri B

−1
js

∑
p,q

∫
ι(X)

h̃(BrpZp, BsqZq)∑
l |
∑
mBlmZm|

2
h̃

ωn
F̃S(H)

=
∑
r,s

B−1
ri B

−1
js

∫
ξB◦ι(X)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

,

since (ξB ◦ ι)∗(Zi) =
∑
pBipι

∗(Zp). Writing Φ(B) for the matrix defined by

Φ(B)rs :=
∫
ξB◦ι(X)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

,

we have

QX(B) = (Bt)−1Φ(B)(Bt)−1

tr((Bt)−1Φ(B)(Bt)−1) , (2.4)

analogously to (2.3).

The following two lemmas are of crucial importance in the proof of the
main surjectivity result (Proposition 2.15).
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Lemma 2.13. — QX continuously extends to the boundary of J , and
sends elements in ∂J to the ones in ∂H, i.e. QX ∈ C0(J ,H) with
QX(∂J ) ⊂ ∂H.

Proof. — Suppose that {Bν}ν is any sequence in J ◦ converging to a point
B∞ in ∂J , in the Euclidean topology induced from J ◦,H◦ ⊂ RN2−1 (as in
Section 2.1). Each Bν induces a holomorphic (in fact biholomorphic) map
ξν : PN−1 → PN−1 given by the linear action of Bν on PN−1. In particular,
for each Bν we have an embedded variety ξν ◦ ι(X) ⊂ PN−1.

We now consider the Hilbert scheme HilbPN−1(n, P ) of subvarieties in
PN−1 of dimension n and with the Hilbert polynomial

P (m) =
n∑
i=1

(−1)i dimHi(X,L⊗m).

Let {pν}ν be the sequence of closed points in HilbPN−1(n, P ) defined by
the embedded varieties {ξν ◦ ι(X)}ν ↪→ PN−1 (or equivalently, the homo-
geneous ideals that define these embedded varieties). Since HilbPN−1(n, P )
is a projective scheme [8], it is proper and hence there exists a convergent
subsequence {pν(i)}i in HilbPN−1(n, P ) with the limit p∞,1, say (where the
convergence is in terms of the analytic topology). Now choose another con-
vergent subsequence {pν(j)}j ⊂ HilbPN−1(n, P ) with the limit p∞,2. Assume
p∞,1 6= p∞,2. Then, since HilbPN−1(n, P ) is separated, by taking ν(i) and
ν(j) to be sufficiently large, we can find open subsets U1 and U2 (in the an-
alytic topology) in HilbPN−1(n, P ) such that U1 ∩U2 = ∅, {pν(i)}i ⊂ U1, and
{pν(j)}j ⊂ U2. However, fixing a set of homogeneous polynomials that define
ι(X) ↪→ PN−1 (i.e. generators of the homogeneous ideal that define ι(X) ⊂
PN−1), Bν → B∞ (as ν → ∞) implies that the homogeneous polynomials
defining pν := ξν ◦ ι(X) must converge (in the sense that their coefficients
converge). This contradicts U1 ∩ U2 = ∅ with {pν(i)}i ⊂ U1, {pν(j)}j ⊂ U2,
which was the definition of U1 and U2. Hence we get p∞,1 = p∞,2, i.e. the
sequence {pν}ν has a well-defined limit p∞ ∈ HilbPN−1(n, P ).

Now we take the Chow scheme ChowPN−1(n, d) of algebraic cycles in
PN−1 with dimension n and degree d := degL, and recall that there exists
a universal morphism of schemes fHC : HilbPN−1(n, P ) → ChowPN−1(n, d),
called the Hilbert–Chow morphism, where fHC(p) is the algebraic cycle de-
fined by p ∈ HilbPN−1(n, P ) (cf. [11, Section 5.4]). We define the limit cycle
limν→∞ ξν ◦ ι(X) to be fHC(p∞). Since fHC is a morphism of schemes, we
have fHC(p∞) = limν→∞ fHC(pν) in ChowPN−1(n, d), by continuity of fHC
in the analytic topology.
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By the definition of the Hilbert scheme limit p∞, we have

Φ
(

lim
ν→∞

Bν

)
rs

=
∫
fHC(p∞)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

=
∫

lim
ν→∞

ξν◦ι(X)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

.

On the other hand, we also have∫
fHC(p∞)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

= lim
ν→∞

∫
fHC(pν)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

= lim
ν→∞

∫
ξν◦ι(X)

h̃(Zr, Zs)∑
l |Zl|

2
h̃

ωn
F̃S(H)

= lim
ν→∞

Φ(Bν),

by fHC(p∞) = limν→∞ fHC(pν), which follows from the continuity of fHC .
We thus get

Φ
(

lim
ν→∞

Bν

)
= lim
ν→∞

Φ(Bν). (2.5)

Observe that this is positive semidefinite hermitian, as it is a limit of positive
definite hermitian matrices.

We now prove that the limit QX (limν→∞Bν) is a well-defined element
in ∂H. As we did in the proof of Lemma 2.9, we write λν for the smallest
eigenvalue of Bν and observe, by homogeneity, that

QX (Bν) = (Btν)−1Φ(Bν)(Btν)−1

tr((Btν)−1Φ(Bν)(Btν)−1) ,

= λν(Btν)−1Φ(Bν)λν(Btν)−1

tr(λν(Btν)−1Φ(Bν)λν(Btν)−1) .

Thus, writing β∞ = limν→∞λν(Btν)−1, which is strictly positive semidefinite
(as we saw in Lemma 2.10), we get

QX

(
lim
ν→∞

Bν

)
= β∞Φ (limν→∞Bν)β∞

tr (β∞Φ (limν→∞Bν)β∞) .

Combining this equality with (2.5), we get

QX

(
lim
ν→∞

Bν

)
= β∞ limν→∞Φ(Bν)β∞

tr (β∞ limν→∞Φ(Bν)β∞) = lim
ν→∞

QX(Bν).

Moreover, since β∞ is strictly positive semidefinite (i.e. positive semidefinite
with rank 1 6 rk(β∞) 6 N − 1) and limν→∞ Φ(Bν) is positive semidefinite,
we see that QX (limν→∞Bν) is a strictly positive semidefinite hermitian
matrix, and hence is an element in ∂H.

Since any element in ∂J can be realised as a limit of a sequence {Bν}ν ⊂
J ◦, QX continuously extends to the boundary of J , and sends elements in
∂J to the ones in ∂H. �
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We now define a 1-parameter family of continuous maps Qt : J ◦ → H◦,
t ∈ [0, 1], by

Qt(B) := tQX(B) + (1− t)QP(B).

Lemma 2.14. — Qt continuously extends to the boundary of J , and
sends elements in ∂J to the ones in ∂H for all t ∈ [0, 1], i.e. Qt ∈ C0(J ,H)
with Qt(∂J ) ⊂ ∂H for all t ∈ [0, 1].

Proof. — We argue similarly to the proof of Lemma 2.13. Observe first
that we can write

Qt(B) = (Bt)−1
(

tΦ(B)
tr((Bt)−1Φ(B)(Bt)−1) + (1− t)QP(Id)

tr((Bt)−1QP(Bt)−1)

)
(Bt)−1,

by recalling (2.3) and (2.4). Given a sequence {Bν}ν ⊂ J ◦ converging to
B∞ ∈ ∂J as before, we get (again by homogeneity)

Qt(Bν) = λν(Bt)−1
(

tΦ(Bν)
tr(λν(Btν)−1Φ(Bν)λν(Btν)−1)

+ (1− t)QP(Id)
tr(λν(Btν)−1QP(Id)λν(Btν)−1)

)
λν(Btν)−1,

where λν is the smallest eigenvalue of Bν , as in the proof of Lemma 2.9
or 2.13. Thus, we get

Qt

(
lim
ν→∞

Bν

)
= β∞

(
t limν→∞Φ(Bν)

tr (β∞ limν→∞Φ(Bν)β∞) + (1− t)QP(Id)
tr(β∞QP(Id)β∞)

)
β∞, (2.6)

= lim
ν→∞

Qt(Bν),

where β∞ = limν→∞λν(Btν)−1 as in Lemma 2.10, and we used (2.5).

Since the terms in the bracket of (2.6) is positive semidefinite and β∞
is strictly positive semidefinite (i.e. positive semidefinite with rank 1 6
rk(β∞) 6 N − 1), we conclude that Qt (limν→∞Bν) is a strictly positive
semidefinite hermitian matrix for all t ∈ [0, 1], which completes the proof. �

Proposition 2.15. — Suppose that L is very ample. Then
Hilb : H(X,L)→ B

is surjective.

Proof. — We now recall QP as defined in (2.3). By Lemmas 2.8 and 2.9,
QP defines a diffeomorphism between J ◦ and H◦ which continuously ex-
tends to a map J → H with QP(∂J ) ⊂ ∂H. Since QP : J ◦ → H◦ is a
diffeomorphism, we have

deg(QP,J ◦, p) 6= 0 (2.7)
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for all p ∈ H◦ by (2.2); note H◦ ∩QP(∂J ) = ∅.

We now pick an arbitrary p ∈ H◦ and compute the degree deg(QX ,J ◦, p).
Since Lemma 2.14 shows Qt(∂J ) ⊂ ∂H for all t ∈ [0, 1], we can apply
Theorem 2.4 to prove

deg(QX ,J ◦, p) = deg(QP,J ◦, p) 6= 0,
by also recalling (2.7). Since p ∈ H◦ and H◦ ∩QX(∂J ) = ∅ by Lemma 2.13,
we can apply Theorem 2.5 to prove that there exists x ∈ J ◦ such that
QX(x) = p. We thus conclude that QX is surjective.

Finally, we recall that ι∗X(dµBZ) = ι∗(ωn
F̃S(H)

) is equal to ωnFS(H) as a

volume form on X. Note also that, writing h for ι∗h̃ = ι∗h̃FS(Id), we can
re-write the definition of QX(B) (cf. Definition 2.11) as

QX(B)ij =
(∫

X

∑
l |sl|2h∑

l |
∑
mBlmsm|

2
h

ωnFS(H)

)−1

∫
X

h(si, sj)∑
l |
∑
mBlmsm|

2
h

ωnFS(H). (2.8)

where we wrote si := ι∗Zi. Recalling Definition 2.1 (and also Remark 2.12),
we observe that this can be re-written as

QX(B)ij =
(∫

X

∑
l

|sl|2FS(H)ω
n
FS(H)

)−1 ∫
X

FS(H)(si, sj)ωnFS(H),

which is a (positive) constant multiple of Hilb(FS(H))(si, sj). Thus, the
surjectivity of QX that we proved implies the following consequence: fixing
a basis {si}i for H0(X,L), for any positive definite hermitian matrix G there
exists H ∈ B and a constant α such that Hilb(FS(H))(si, sj) = eαGij , or
equivalently

Hilb(e−αFS(H))(si, sj) = Gij .

Since α is a constant, e−αFS(H) is positively curved (with the curvature
ωFS(H) > 0) and hence defines an element of H(X,L). Thus, the above
establishes the required statement that Hilb is surjective. �

Remark 2.16. — We provide another point of view regarding the equa-
tion (2.8). Fixing a hermitian metric h ∈ H(X,L), we observe that there
exists β ∈ C∞(X,R) such that ωnFS(H) = eβωnh . Writing (2.8) in terms
of h, the surjectivity of QX can be regarded as ensuring the existence of
φ ∈ C∞(X,R) such that ∫

X

eβ+φh(si, sj)ωnh = Gij , (2.9)

for any given positive definite hermitian matrix Gij .
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The left hand side of the above equation is a priori not a Hilb of a
hermitian metric, because eβ+φh is used for the metric on L whereas ωh
is used for the volume form. However, we can always find a function f ∈
C∞(X,R), such that e−fh is positively curved and Hilb(e−fh)(si, sj) =∫
X
eβ+φh(si, sj)ωnh , for any β and φ; indeed, for this purpose, it is sufficient

to solve for f the following nonlinear PDE:(
ωh +

√
−1

2π ∂∂̄f

)n
= ef+β+φωnh ,

which is solvable by the Aubin–Yau theorem (cf. [2] and [13, Theorem 4,
p. 383]).

Thus, to prove the surjectivity of Hilb, it suffices to find some β, φ ∈
C∞(X,R) that satisfy (2.9) with respect to the fixed h ∈ H(X,L), which is
weaker than the surjectivity of Hilb itself.

2.4. Variants of the Hilbert map

We now recall that there are several variants of the Hilbert map that also
appear in the literature [3, 4, 7, 10, 12]. We define the Hilbν map

Hilbν(h) :=
∫
X

h( · , · )dν

where the volume form dν is one of the following.

(1) dν is a fixed volume form on X; an example of this is when X is
Calabi–Yau, in which case we can use the holomorphic volume form
Ω ∈ H0(X,KX) to define dν := Ω ∧ Ω̄,

(2) dν is anticanonical; a hermitian metric h on −KX defines a volume
form dνac(h), where we note dνac(e−ϕh) = e−ϕdνac(h),

(3) dν is canonical; a hermitian metric h on KX defines a dual metric
on −KX , which defines a volume form dνc(h) with dνc(e−ϕh) =
eϕdνc(h).

We prove the following analogue of Proposition 2.15. As we can see from
the statement below, we need to consider the higher tensor power L⊗k and
the vector space H0(X,L⊗k) of dimension Nk.

Proposition 2.17. — Let Hilbν be defined by one of the three volume
forms as defined above, and let L⊗k be a very ample line bundle. Then any
positive definite hermitian matrix on H0(X,L⊗k) can be realised as

Hilbν(h̃⊗k) :=
∫
X

h̃⊗k( · , · )dν
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for some hermitian metric h̃ on L if

(1) L is any ample line bundle and dν is any fixed volume form,
(2) L = −KX is ample with the anticanonical volume form dνac(h̃),
(3) L = KX is ample with the canonical volume form dνc(h̃).
Proof. — Fixing a basis {si}i and a hermitian metric h⊗k on L⊗k, (2.9)

implies that for any positive definite hermitian matrix Gij there exists ϕ ∈
C∞(X,R) such that ∫

X

eϕh⊗k(si, sj)ωnh = Gij ,

(we used ωnh for the volume form instead of ωnh⊗k , but the difference is just
a constant multiple which we can absorb in ϕ).

Observe that for each of the three choices dν, dνac(h), dνc(h) of the
volume form dν, there exists a function φ ∈ C∞(X,R) such that

ωnh = eφdν,
and hence the claim follows from the following;

(1) dν fixed: take h̃ := exp
( 1
k (ϕ+φ)

)
h so that h̃ satisfies Hilbν(h̃)(si, sj) =

Gij ;
(2) dν anticanonical: take h̃ := exp

( 1
k+1 (ϕ+φ)

)
h so that Hilbν(h̃)(si, sj) =

Gij with dν = dνac(h̃);
(3) dν canonical: take h̃ := exp

( 1
k−1 (ϕ + φ)

)
h so that Hilbν(h̃)(si, sj) =

Gij with dν = dνc(h̃). �

Remark 2.18. — Unlike the case of the usual Hilb as treated in Proposi-
tion 2.15, the above proof does not show that h̃ has positive curvature; the
associated curvature form ωh̃ may not be a Kähler metric.

3. Injectivity of FS

We establish the following “quantitative injectivity” to prove the second
part of Theorem 1.1.

Lemma 3.1. — Suppose that L is very ample, and that H,H ′ ∈ B satisfy
FS(H) = (1 + f)FS(H ′)

with supX |f | 6 ε for ε > 0 satisfying N 3
2 ε 6 1/4.

Then we have ‖H − H ′‖op 6 4N 3
2 ε, where ‖ · ‖op is the operator norm,

i.e. the maximum of the moduli of the eigenvalues. In particular, considering
the case ε = 0, we see that FS is injective.
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Proof. — We now pick an H-orthonormal basis {si}i and represent H
(resp. H ′) as a matrix Hij (resp. H ′ij) with respect to the basis {si}i.
Hij is the identity matrix, and replacing {si}i by an H-unitarily equiva-
lent basis if necessary, we may further assume H ′ij = diag(d2

1, . . . , d
2
N ) for

some di > 0. Recall that the equation (2.1) implies that we can write
FS(H ′) = e−ϕFS(H) with ϕ = log

(∑N
i=1 d

−2
i |si|2FS(H)

)
. Thus the equa-

tion FS(H) = (1 + f)FS(H ′) implies 1 + f =
∑
i d
−2
i |si|2FS(H), and hence,

by recalling (2.1),
(1 + f)

∑
i

|si|2h =
∑
i

d−2
i |si|

2
h, (3.1)

with respect to any hermitian metric h on L, by noting that we may multiply
both sides of (3.1) by any strictly positive function eφ. We now fix this basis
{si}i, and the operator norm ‖ · ‖op or the Hilbert–Schmidt norm ‖ · ‖HS
used in this proof will all be computed with respect to this basis.

We now choose N hermitian metrics h1, . . . , hN on L as follows. Recall
now that, by Proposition 2.15, for any N -tuple of strictly positive numbers
~λ = (λ1, . . . , λN ) there exists φ~λ ∈ C

∞(X,R) such that the hermitian metric
h′ := exp(φ~λ)h satisfies

∫
X
|si|2h′ωnh′ = λi. We thus take

~λi = (δ, . . . , δ, 1, δ, . . . , δ)

with 1 in the i-th place, where 0 < δ � 1 is chosen to be small enough so
that the matrix defined as

Λ :=


~λ1
...
~λN


satisfies ‖Λ‖op 6 2 and ‖Λ−1‖op 6 2. (How small δ must be depends on N ,
but this will not concern us.)

We now choose φi ∈ C∞(X,R) appropriately (cf. Proposition 2.15) so
that hi := exp(φi)h satisfies

~λi =
(∫

X

|s1|2hiω
n
hi ,

∫
X

|s2|2hiω
n
hi , . . . ,

∫
X

|sN |2hiω
n
hi

)
.

Then, multiplying both sides of (3.1) by exp(φi) and integrating over X
with respect to the measure ωnhi/n!, we get the following system of linear
equations

(Λ + F )

1
...
1

 = Λ

d
−2
1
...

d−2
N

 ,
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where F is a matrix defined by

Fij :=
∫
X

f |sj |2hiω
n
hi

whose max norm (i.e. the maximum of the moduli of its entries) satisfies
‖F‖max 6 supX |f | 6 ε since the modulus of each entry of Λ is at most 1.
We thus get d

−2
1 − 1
...

d−2
N − 1

 = Λ−1F

1
...
1

 .

Thus, noting ‖Λ−1F‖op 6 ‖Λ−1‖op‖F‖op 6 2‖F‖HS 6 2N‖F‖max 6 2Nε,
we get

|d−2
i − 1| 6

√∑
i

|d−2
i − 1|2 6 2N1+ 1

2 ε.

Thus we get 1−2N 3
2 ε 6 d−2

i 6 1+2N 3
2 ε, and by the assumption N 3

2 ε 6 1/4
we have

1− 4N 3
2 ε < 1− 2N 3

2 ε

1 + 2N 3
2 ε
6 d2

i 6 1 + 2N 3
2 ε

1− 2N 3
2 ε

< 1 + 4N 3
2 ε

as required. �

Remark 3.2. — We recast Lemma 3.1 in the case we use the usual scaling
convention for the Fubini–Study map (cf. Remark 2.2). Suppose that L⊗k is
very ample and write Bk for the space of hermitian forms on the vector space
H0(X,L⊗k) of dimension Nk. The statement for this convention is as follows:
if H,H ′ ∈ Bk satisfy FS(H)⊗k = (1 + f)FS(H ′)⊗k with supX |f | 6 ε for
0 < N

3
2
k ε 6 1/4, then we have ‖H −H ′‖op 6 4N

3
2
k ε.
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