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Mapping properties of the Hilbert and Fubini—Study
maps in Kihler geometry

YosuiNorl HasaiMoTo (V)

ABSTRACT. — Suppose that we have a compact Kéhler manifold X with a very
ample line bundle £. We prove that any positive definite hermitian form on the
space H%(X, £) of holomorphic sections can be written as an L2-inner product with
respect to an appropriate hermitian metric on £. We apply this result to show that
the Fubini—Study map, which associates a hermitian metric on £ to a hermitian form
on HY(X, L), is injective.

RESUME. — Soit X une variété compacte kdhlerienne avec un fibré en droites
L qui est trés ample. Nous prouvons que toute forme hermitienne définie positive
sur HO(X, L) peut étre écrite comme produit scalaire L? associé & une métrique
hermitienne sur £. Nous appliquons ce résultat pour montrer que I’application de
Fubini-Study, des formes hermitiennes sur H°(X, £) vers les métriques hermitiennes

sur L, est injective.

1. Introduction and statement of the result

Let (X, L) be a polarised Kahler manifold of complex dimension n. We
have

o H(X, L) := the set of all positively curved hermitian metrics on L,
e B := the set of all positive definite hermitian forms on H°(X, L),

where H (X, £) is infinite dimensional and B is finite dimensional.
We can define the following two maps;

e the Hilbert map Hilb : H(X, L) — B defined by the L2-inner product
of h e H(X, L),
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e the Fubini-Study map FS : B — H(X, L) defined as the pullback of
the Fubini-Study metric on the projective space P(H?(X, £)*).

The result that we prove in this paper is the following.

THEOREM 1.1. — Suppose that L is very ample. Then Hilb is surjective
and F'S is injective.

Since Hilb is a map from an infinite dimensional manifold to a finite
dimensional manifold, it seems natural to speculate that it is surjective.
Similarly, it also seems natural to speculate that F'S is injective. Indeed,
these statements seem to be widely believed among the experts in the field.
However, the proof of these facts do not seem to be explicitly written in
the literature previously, to the best of the author’s knowledge; in fact, as
we shall see, the proof that we give involves application of the degree of
continuous maps and has connection to the Aubin—Yau theorem [2, 13]. We
shall provide the proof of these “folklore” statements in this paper.

For F'S, we shall in fact prove a stronger quantitative result for the injec-
tivity (cf. Lemma 3.1), which was applied in [9] to find a point in B that is
close to the minimum of the modified balancing energy. Generalisations to
several variants of the Hilb map (cf. Proposition 2.17) will also be discussed
in Section 2.4.
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Mapping properties of the Hilbert and Fubini-Study maps in Kéahler geometry
2. Surjectivity of Hilb
2.1. Preliminary definitions

Suppose that £ is very ample. We shall first define the maps Hilb and
F'S more precisely as follows (cf. [6]).

DEFINITION 2.1. — The Hilbert map Hilb : H(X, L) — B is defined by
Hilb(h) := / h(-, wp.
b's

The Fubini-Study map FS : B — H(X, L) is defined by the equation
N
Z |5¢\%S(H) =1 (2.1)
i=1
where {s;}; is an H-orthonormal basis for H°(X, L) and N:=dim¢c H°(X, L).

Remark 2.2. — The above definition is slightly different from the ones
that are often used in the literature by a factor of scaling, in the follow-
ing sense. Often we consider the tensor power £®*, and the usual def-
inition of Hilb concerns a hermitian metric A on £ (rather than L£®F),
with Hilb(h) := J& [ h®k(. . )% defining a hermitian form on the vector
space HO(X, L®*) of dimension Ny, with V := [, ¢;(L)"/n!. For a hermit-
ian form H on H°(X,L£®*), FS(H) is a hermitian metric on £ satisfying
2 |si|§7'S(H)®k =1

As far as Theorem 1.1 is concerned, these differing conventions will not
cause any problem, and we shall use the one given above in this paper not
to be concerned with extra exponent of k or the constant Nj. For the quan-
titative result Lemma 3.1, however, this does require some straightforward
modification which is mentioned in Remark 3.2. We shall consider £®* also
in Section 2.4.

We also recall (and slightly modify) some definitions made by
Bourguignon-Li-Yau [5, Section 2] that we shall use in the proof of sur-
jectivity of Hilb in Section 2.3. Since L is very ample we have the Kodaira
embedding ¢ : X — P(H°(X, £)*) = PN~1 First of all pick homogeneous
coordinates {Z;}; on PY~1; all matrices appearing in what follows will be
with respect to this basis {Z;};, unless otherwise specified. This then defines
a hermitian metric h := ﬁFS(Id) on Opn-1(1) and the Fubini-Study metric

WES(1a) OB PN—1 where Id stands for the identity matrix. We write duy for

N—1
the volume form on P defined by WES(1a)”
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Suppose that we pick B € GL(N,C) and change the basis from {Z;}; to
BZ = {Z]}; (where Z] := }_ . B;;Z;). This defines a new Fubini-study

metric WES () associated to the hermitian metric iNLFS(H), where H :=

(B=1)tB~1; note that H has BZ as its orthonormal basis. We also write
dupz for the volume form corresponding to w——

FS(H)"
DEFINITION 2.3. — We define two spaces of hermitian matrices as fol-
lows:
e J7° := {N x N positive definite hermitian matrices with operator

norm 1},
o H°:={N x N positive definite hermitian matrices with trace 1}.

Since B € J° is positive definite hermitian, the operator norm ||B||,, of
B being 1 is equivalent to the largest eigenvalue of B being 1 (all eigenvalues
of B are real and positive). Observe also that any N x N positive definite
hermitian matrix B’ can be divided by a positive real constant ay := || B’||op
(resp. ap = tr(B’)) to be an element of J° (resp. H°).

In other words, J° and H° just denote two different scalings of the set of
N x N positive definite hermitian matrices, and hence they are diffeomorphic
under the map J° 3 B +— B/tr(B) € H°. Artificial as it may seem, it will
be useful in Section 2.3 to fix the scalings as above.

Note dimg J° = dimg H° = N?—1 and that J° and H° can be identified
2
with connected bounded open subsets in RV ~!. We endow them with the
Euclidean topology inherited from RV’ ~1.

With respect to this topology, we can compactify J° (resp. H°) to J
(resp. H) by adding a topological boundary 0 (resp. OH) defined as

e 0J :={N x N positive semi-definite hermitian matrices with oper-
ator norm 1 and rank < N — 1},

e OH := {N x N positive semi-definite hermitian matrices with trace
1 and rank < N — 1}.

2.2. Degree of continuous maps

We summarise some well-known results on the degree of continuous maps
between domains in Euclidean spaces. The reader is referred to [1, Chap-
ter 12] for more details. Let © be a bounded open subset in R™ and Q
be its closure in R™ with respect to the Euclidean topology. We also write
090 := Q\ Q for the boundary.
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We first consider a C'-map ¢ € C'(Q, R™). Writing componentwise in

terms of R™, we can write ¢ = (é1,...,0m). The Jacobian of ¢ at x is
defined as Jy(z) := det (gi’J (x)) Recall that 2 € Q is called a critical point

of ¢ € CH(Q,R™) if Jy(z) = 0. If z is a critical point of ¢, ¢(x) is called
a critical value. Suppose that ¢ € C1(Q,R™), p ¢ ¢(99), and p is not a
critical value of ¢. The degree of ¢ at p relative to 2 is defined by

deg(p,Q,p) := Z sign Jy(x). (2.2)

x€P1(p)
Note deg(¢, 2, p) =0 if ¢~ (p) = 0.

If p is a critical value of ¢, we define deg(¢, 2, p) by slightly perturbing
p (cf. [1, Definition 12.4]). Moreover, for a continuous map Q € C°(Q,R™),
we take a “perturbation” ¢g , € C*(Q,R™) of Q to define deg(Q,,p) as
deg(é0.p, 2, p) (cf. [1, Definition 12.5]). These are well-defined, since they do
not depend on the perturbations chosen [1, Theorems 12.3-12.9].

An important result is the homotopy invariance of the degree.

THEOREM 2.4 (cf. [1, Theorem 12.11]). — Let Qo, Q1 € CO(Q,R™) and
Q: be a homotopy in CO(Q,R™) between Qo and Q1. Let p € R™ such that
p ¢ Qu(0) for allt € [0,1]. Then deg(Qo, <, p) = deg(Q1,%,p).

Another important result is that nontriviality of degree “detects” surj-
ectivity.

THEOREM 2.5 (cf. [1, Theorem 12.10]). — Let Q € C°(Q,R™) and p ¢
Q(09). If deg(Q, 2, p) # 0 then there exists x € Q such that Q(z) = p.

In what follows, we shall take Q = 7° and Q = J, and define a map
Qx € COUQ,RY 1) with Qx(Q) C H and Qx(9Q) C OH (note that this
implies Qx : J° — H° is proper). We shall apply the above theorems to
claim surjectivity of @y, which in turn proves the surjectivity of Hilb.

2.3. Proof of surjectivity of Hilb

We now prove the first part of Theorem 1.1, i.e. surjectivity of Hilb. After
several technical definitions and lemmas, the main surjectivity result will be
proved in Proposition 2.15. The main line of the argument presented below
is similar to Bourguignon-Li—Yau [5, Section 2].
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DEFINITION 2.6. — We define a continuous map Qp : J° — H° as

S 1Zi2 - W7, Z;)
ij = d 2d 5
lE) </ S IS B Zm 2 ) / S S B Zale

where Qp(B),; stands for the (i,7)-th entry of the matriz Qp(B) € H°.

Writing &5 : PV~1 5 PV=1 for the biholomorphic map induced from the
linear action of B € J° on PV~!, we note

B -t W(Zi, Z;)
it = ([ ) [ e
_ * - * E(Zla ZJ) *
= </1PN_1(€BdMZ)> /sz_l 35 <Zz |Zz|% (Epduz)

( / i ) zl,mE<Buzz7Bjmzm>du
- BZ BZ
eyt 3, BinZmls

and hence, recalling tr(Qp(B)) = 1 and writing B! for the transpose of B,
we get

(B)~'Qe(1d)(B") !

RN TR R ORI 23)
by recalling B = B* which implies B! = B.
We have the following lemma.
LEMMA 2.7. — Qp(Id) is a constant multiple of the identity matriz.
Proof. — We define a local coordinate system (z1,...,2y—_1) on a Zariski

open subset U of PN~ defined by Zx # 0, so that z; = Z;/Zn. We write z;
in polar coordinates as z; = rieﬁeﬂ

Assuming i,j # N, we get
E(Zi,Zj) B leJ Ty eV =1(0;-0:)
~ = )
Zl:llZl|h 1+Z ‘zl|2 1+Zz 1 7"12

Recall also that in this coordinate system, the Fubini—Study volume form
dpz can be written as

N1
N
(1+21N117"l2) =1
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Thus, for i,j # N, we get the integral (since U is Zariski open in PNV ~1) as

nMZ;, Z;)
Qr(Id)i; = | —=%duz
u Zl ‘Zl|;%
27 27 [e'e) 00 2 N—3,..... N-—1 d
_ V=1(6;,-6:) 19 10 (2m) TiTy T'mdTm
= e d6;do, T 11 :
o Jo 0 o (L+X o NS T

which is non-zero if and only if ¢ = j because of the integral in 0; and 6;.

Exactly the same reasoning shows that Qp(Id);y = Qp(Id)n; = 0 for
1,7 # N; we only need to observe that, in this case, we have

h(Zi,ZN) . Z; Tie_\/jwi

N 2 = N—1 = N—1 3’
sl 1+05 a1+ 300
which becomes zero under the integration in 6;, as we did above.

Thus the only nonzero entries of Qp are the diagonal ones. On the other

hand, we observe that the symmetry in exchanging the variables Z1,...,Zn
imply that the diagonal entries of Qp must be all equal. Thus Qp must be a
constant multiple of the identity. (|

LEMMA 2.8. — Qp defines a diffeomorphism between J° and H°.

Proof. — By Lemma 2.7 we have Qp(B) = (B!)~2/tr((B)~2). By re-
calling the general fact that a positive definite hermitian matrix A has a
unique positive square root A'/2, it easily follows that Qp is bijective.

Since Qp is smooth and the map A — A'/2 is smooth as long as A is
positive definite hermitian, we see that Qp : J° — H° is a diffeomorphism.
a

LEMMA 2.9. — Qp : J° — H° extends continuously to the boundary of
J, and sends elements of OJ into the ones in OH, i.e. Qp € CO(T,H) with
Qr(0J) C OH.

Proof. — Suppose that we are given a sequence {B, }, C J° converging
to a point By, in 0J (in the Euclidean topology, as remarked at the end of
Section 2.1) as v — oo. Let A, > 0 be the smallest eigenvalue of B,,. Since
B, — 0J as v — oo and the operator norm of B, is fixed to be 1, we have
Ay — 0.

Observe, by homogeneity, that we have

(By) 'Qe(Id)(By) "
tr((Bf)~'Qe(1d)(BE)~1)
_ o A(BY) T Qe(Id)A, (B)) !
(A (BL) T Qe(Id) A (BL) 1)

Q]P’(BV) =
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We shall prove in Lemma 2.10 that (A, 1B,)™* = X\, B, ! converges to a
well-defined positive semidefinite hermitian matrix (. that is strictly semi-
definite (i.e. with rank 1 < rk(fs) < N — 1). Assuming this result, the
above equation means that (A\;!B%)~1Qp(Id)(A,;1B!)~! (the numerator of
Qr(B,)) converges to a well-defined positive semidefinite hermitian matrix
as v — 0o, which is strictly semidefinite since Boo = lim, oo (A, 1B,) 7! is.

Thus we see that Qp(B,) converges to a well-defined positive semidefinite
hermitian matrix as v — oco. Hence we get

Qe lim B,) = (BQe () i) i, Qe(By)-

Moreover, since 4 is strictly semidefinite, we see that the limit is an element

in OH, i.e. Qp(0T) C OH.

We finally note that any element in 97 can be realised as the limit of
a sequence {B,}, C J°, which establishes the continuous extension Qp €
C°(J,H) that we claimed, granted Lemma 2.10 that we prove below.  [J

LEMMA 2.10. — Suppose that we are given a sequence {B,}, C J°
converging to a point Bo, tn 0J . Let A, > 0 be the smallest eigenvalue of B, .
Then (A\;1B,)~Y = A\, B, converges to a well-defined positive semidefinite
hermitian matrix Be, which is strictly semidefinite, i.e. its rank satisfies
1 <1k(foo) < N —1.

Proof. — Since B, — By, as v — 00, we see that each eigenvalue (or-
dered, counted with multiplicities) of A\, B, ! converges. Now, since the uni-
tary group U(N) is compact, we may pick a subsequence {v(i)}; C {v},
such that unitarily diagonalising bases for B, (;’s converge; more precisely,
this means the existence of a convergent sequence of bases {Z; ;}; (identi-
fied with a convergent sequence in U(N)) such that B, ; is diagonal with
respect to Z7 ;, whose entries are the eigenvalues of B, ;). For this subse-
quence {v(i)}; we have a well-defined limit 51 o0 := lim; o0 )\V(i)B;éy since
both the eigenvalues and the diagonalising bases for )\,,(i)B;é) converge.
Suppose that we take another such subsequence {v(j)}; with the limit 82 o,
where each B, ;) is diagonal with respect to a basis Z3 j, whose entries are
the eigenvalues of B, ;).

We shall assume without loss of generality that eigenvalues are always
ordered and counted with multiplicities, when a matrix is (unitarily) diago-
nalised.

Let u;; € U(N) be a change of basis matrix from Z;; to Zs ; with the
hermitian conjugate w! ;, which implies that u;?‘,j)\,,(j)B;é.)um is diagonal

*
2,77

with respect to the basis Z; ;. A crucially important point is that {u; ;}i ;
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converges as i,j — 0o, since {Z1,;}; and {Z3 ;}; converge. Thus, by taking
the limit ¢ — oo and j — oo, we see that £1 oo = U* B2 ooU for a well-defined
unitary matrix 4 := e 00 € U(N).

Our aim is to prove 81 0 = 2,00 We now take the basis Z; ; as above,
which unitarily diagonalises B, (;). Recall also that B, ;) is unitarily diag-
onalised by another basis Z; ;, where two bases Z;; and Z;; are related
by u;; € U(N) as Zaj = Uy - Z1,4. Thus, Bu(i) and u’{’jBl,(j)ui,j are both
diagonal with respect to Z; ;, whose entries are their eigenvalues (ordered
and counted with multiplicities). Since the eigenvalues of {B,}, converge,
for any € > 0 there exists v/ € N such that

1By i) — i jBugytillop < €
holds for all v (i), v(j) > v'. Note on the other hand
By = uijBugyuig = Buy — i i Bugyuij + uij(Bu) — Bug))ui -

Since {B, }, itself converges, for any € > 0 there exists v/ € N such that

B iy — ui Buiywi,llop

<|Buy = ui ;Bugytigllop + 1w j(Buy — Bug))willop < 2€

holds for all v(i),v(j) > v/, by also noting that unitary matrices preserve
the operator norm. Since u; ; converges to u € U(N) as i,j — oo, we take
this limit in the above to conclude By o = U*Bj .U with respect to the
basis Z1 o, where B1 o := lim; o B,(;)- Recall that B, ;) is diagonal with
respect to Z;; and B; o is diagonal with respect to Z; o, by definition.
Hence @ can be written as a block diagonal matrix with respect to Z1 o
as u = diag(Us,...,Uy), where each 4; corresponds to the unitary ma-
trix acting on the [-th eigenspace (including ker By o) of B1 . Recall that
B1,00 = lim; 500 )\V(i)B;é) is diagonal with respect to the basis Z; o, and has
the same eigenspace decomposition as Bj . In particular, 481 ccU" = f1,00-
Thus, combined with our hypothesis 51,00 = U*f2,00U, We get 51,00 = B2.00
as claimed.

We thus conclude that the limit B := lim,_ o, A, B, ! is well-defined,
independently of the subsequence chosen. This is positive semidefinite her-
mitian since it is a limit of positive definite hermitian matrices, and has rank
1 < 1k(Bs) < N — 1 since A, is the minimum eigenvalue of B, that tends
to zero as v — 0. ]

Recall the Kodaira embedding ¢ : X < P(H°(X,L£)*) = P¥~! and the
volume form dupz on PV~1 defined with respect to B € GL(N,C) and
homogeneous coordinates {Z;}; as given in Section 2.1.

Now suppose that we write 1% (dupz) for the volume form on «(X) C
PN—1 defined by the Fubini-Study metric associated to the hermitian matrix
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H that has BZ as its orthonormal basis (in the notation of Section 2.1).
Analogously to Definition 2.6, we define the following.

DEFINITION 2.11. — We define a continuous map Qx : J° — H° as

Z2 -
Qx(B)ij = ( 1 S |§l |Bll|hZ gb}(dNBZ)>
B l m Plm&mlp

h(ZZ, Z;)
oY1 3 [ BimZle
Remark 2.12. — Recalling (2.1) in Definition 2.1, we observe that the

above can be written as Qx (B);; = Hilb(F'S(H))(Z;, Z;)/ tr(Hilb(FS(H))),
with H = (B-1)iB~1.,

tx(dupz)-

As in Lemma 2.9, we need to show that Qx extends continuously to the
boundary, i.e. Qx € CO(J,H).

Recall the biholomorphic map &g : PY~1 5 PN~!induced from the linear
action of B € J° on PV~ which moves t(X) C PVN~1 to {gou(X) c PV-L,

Recall also that LX(duBZ) is, as a measure on X, equal to ¢ (w;;é H)) We
then have
W%, Z)) nZi, Z;) n
: K (dppz) = / ! 79
pN-1 Zl ‘Z BimZp, h u(X) Zl |Z BlmZm|;"l

D ICECETD M N Moy 2 Buea)
= wW—~—
I ) S BumZ |3 FSUH)
i w2, Z,)
1 1 ry4s T
= ZBM B'S 72“;’:5(1{)7
erouX) Y |21l5

since (§p 0 1)"(Z;) = >, Bipt*(Zp). Writing ®(B) for the matrix defined by

Mz, Z)
®(B)s 1:/ ~ 72 Yrsay
esou(X) Y 12115,

we have

1p(B)(B!)!
w(BY 12 (B)(B) 1) 24

analogously to (2.3).

The following two lemmas are of crucial importance in the proof of the
main surjectivity result (Proposition 2.15).
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LEMMA 2.13. — Qx continuously extends to the boundary of J, and
sends elements in OJ to the ones in OH, ie. Qx € C°J,H) with
Qx(0J) C OH.

Proof. — Suppose that {B, }, is any sequence in [J° converging to a point
B in 87, in the Euclidean topology induced from J°,H° € R¥"~1 (as in
Section 2.1). Each B, induces a holomorphic (in fact biholomorphic) map
&, : PN=1 & PN=1 given by the linear action of B, on PV~1. In particular,
for each B, we have an embedded variety &, o ¢(X) C PN~L

We now consider the Hilbert scheme Hilbpn-1(n, P) of subvarieties in
PN—1 of dimension n and with the Hilbert polynomial

P(m) = i(q)i dim H'(X, £Z™).
i=1

Let {p,}, be the sequence of closed points in Hilbpy-1(n, P) defined by
the embedded varieties {£, o t(X)}, < PV~1 (or equivalently, the homo-
geneous ideals that define these embedded varieties). Since Hilbpy-1(n, P)
is a projective scheme [8], it is proper and hence there exists a convergent
subsequence {p,(;)}; in Hilbpy-1(n, P) with the limit p. 1, say (where the
convergence is in terms of the analytic topology). Now choose another con-
vergent subsequence {p,(;)}; C Hilbpy-1(n, P) with the limit p,, 2. Assume
Doo,1 7 Poo,2- Then, since Hilbpn-1(n, P) is separated, by taking v(i) and
v(j) to be sufficiently large, we can find open subsets U; and Us (in the an-
alytic topology) in Hilbpx-1(n, P) such that Uy NUy = 0, {p,;)}i C U1, and
{pv(jy}; C Us. However, fixing a set of homogeneous polynomials that define
1(X) < PN~ (i.e. generators of the homogeneous ideal that define +(X) C
PN-1) B, — By (as v — oo) implies that the homogeneous polynomials
defining p, := &, o ¢(X) must converge (in the sense that their coefficients
converge). This contradicts Uy N Us = 0 with {p,;y}s C Ur, {pu(j)}; C Ua,
which was the definition of U; and Us. Hence we get poo,1 = Doo,2, i-€. the
sequence {p, }, has a well-defined limit po, € Hilbpy-1(n, P).

Now we take the Chow scheme Chowpn-1(n,d) of algebraic cycles in
PN~! with dimension n and degree d := deg £, and recall that there exists
a universal morphism of schemes fr¢ : Hilbpy-1(n, P) — Chowpn-1(n,d),
called the Hilbert—Chow morphism, where frco(p) is the algebraic cycle de-
fined by p € Hilbpy-1(n, P) (cf. [11, Section 5.4]). We define the limit cycle
lim, 00 & 0 ¢(X) to be fro(pso). Since fye is a morphism of schemes, we
have frc(Poo) = lim, o0 frco(py) in Chowpn-1(n,d), by continuity of fryc
in the analytic topology.
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By the definition of the Hilbert scheme limit p.,, we have

W(Z,, Z, Wz 7.
o( lim B,) :/ M2 2s) :/ MZn2) o
vooo rs uoe) Yl ZilE TSE) Jhim gax) Yoy | Zif5 FSUD

On the other hand, we also have

h(ZTvzs) n _ . h(Zra ZS) n
—_— w;;g(H) = lim —_— w;;g(H)
fuc(w=) 2 |2}, v S tuc o) 211215
W2y, Zs
_ lim MZZ) i a(B,),
v Je oux) Yoyl Zily  FSUD voee
by frc(Peo) = limy 00 fe(py), which follows from the continuity of frc.
We thus get
o (Vlgr;o Bl,) = lim ®(B,). (2.5)
Observe that this is positive semidefinite hermitian, as it is a limit of positive
definite hermitian matrices.

We now prove that the limit Qx (lim, .. B,) is a well-defined element
in OH. As we did in the proof of Lemma 2.9, we write A, for the smallest
eigenvalue of B, and observe, by homogeneity, that

(B)) 'e(B.,)(B))!
tr((B)~'®(B.,)(BL)~1)’
_ B TTe(B)A(B)
(A (BE)TIR(B)A(BY) )

QX (Bu) -

Thus, writing e = lim, 0o\, (B%) ™1, which is strictly positive semidefinite
(as we saw in Lemma 2.10), we get
Ctr (Boo® (limy oo By) foo)

Combining this equality with (2.5), we get

Boo liI.Ill/—N)O (I)(BV)BOO — lim Qy (Bu)
tr (ﬂoo lim, o0 (I)(Bv)ﬂoo) V=00
Moreover, since S is strictly positive semidefinite (i.e. positive semidefinite
with rank 1 < rk(fs) < N — 1) and lim, o, ®(B,) is positive semidefinite,
we see that Qx (lim, ,.B,) is a strictly positive semidefinite hermitian
matrix, and hence is an element in OH.

@x (Jim B)

Qx (Jim B.) -

Since any element in 0J can be realised as a limit of a sequence {B, }, C
J°, Qx continuously extends to the boundary of J, and sends elements in
0J to the ones in OH. O
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We now define a 1-parameter family of continuous maps Q; : J° — H°,
t €10,1], by
Qi(B) := tQx (B) + (1 - 1)Qp(B).
LEMMA 2.14. — Q: continuously extends to the boundary of J, and

sends elements in OJ to the ones in OH for allt € [0,1], i.e. Q; € C°(T,H)
with Q¢(0J) C OH for allt € [0,1].

Proof. — We argue similarly to the proof of Lemma 2.13. Observe first
that we can write

_ (pty-1 to(B) (1 - t)Qp(1d) -1
28) =) (s raEnET * e anET)
by recalling (2.3) and (2.4). Given a sequence {B,}, C J° converging to
B € 0J as before, we get (again by homogeneity)

t®(B,)
(A (BL)~1e(By)A(B]) )
(1 - t)QIP’(Id) A (Bt)—l
tr(A, (BL) T Qe(Id)A, (BE) =) ) 7
where A, is the smallest eigenvalue of B,, as in the proof of Lemma 2.9
or 2.13. Thus, we get

O ( lim Bl,)

vV— 00

@B =05 (4

_|_

4 ( t1im, 00 ®(B,) N (1 -t)Qp(Id)
Tt (Boo limy 00 P(B)Boc)  t1(BooQr(1d) Boo)
= 2, @(By)

where B = lim, 0o\, (B%)™! as in Lemma 2.10, and we used (2.5).

). 29

Since the terms in the bracket of (2.6) is positive semidefinite and S
is strictly positive semidefinite (i.e. positive semidefinite with rank 1 <
k() < N — 1), we conclude that Q; (lim,_, B, ) is a strictly positive
semidefinite hermitian matrix for all ¢ € [0, 1], which completes the proof. O

PROPOSITION 2.15. — Suppose that L is very ample. Then
Hilb: H(X, L) — B
s surjective.

Proof. — We now recall Qp as defined in (2.3). By Lemmas 2.8 and 2.9,
Qp defines a diffeomorphism between [J° and H° which continuously ex-
tends to a map J — H with Qp(0J) C IH. Since Qp : J° — H° is a

diffeomorphism, we have

deg(Qp, J°,p) #0 (2.7)
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for all p € H° by (2.2); note H° N Qp(0T) = 0.

We now pick an arbitrary p € H° and compute the degree deg(Qx, J°, p).
Since Lemma 2.14 shows Q:(0J) C OH for all t € [0,1], we can apply
Theorem 2.4 to prove

deg(QX7 joap) = deg(QP)jo7p) 7& 0)

by also recalling (2.7). Since p € H® and H° N Qx(0T) = 0 by Lemma 2.13,
we can apply Theorem 2.5 to prove that there exists x € J° such that
Qx (z) = p. We thus conclude that Qx is surjective.

“rsm) B N
volume form on X. Note also that, writing h for t*h = *hpgq), We can
re-write the definition of Qx (B) (cf. Definition 2.11) as

2 |Sl|i )
Qx(B)ij = (/ Whs(H
X E[ |Em Bl7TLS7TL|}QL (

h(si, s;) n
s WES(H)- (2.8)
‘/‘X Zl |Z'rn Blmsm‘h
where we wrote s; := ¢*Z;. Recalling Definition 2.1 (and also Remark 2.12),
we observe that this can be re-written as

-1
Qx(B)i; = ( /X Z|sz|%s<mw$s<m> /X FS(H) (55,5, 5011
l

which is a (positive) constant multiple of Hilb(FS(H))(s;,s;). Thus, the
surjectivity of @) x that we proved implies the following consequence: fixing
a basis {s;}; for HY(X, L), for any positive definite hermitian matrix G there
exists H € B and a constant « such that Hilb(F.S(H))(s;, s;) = e*G,;, or
equivalently

Finally, we recall that % (dugz) = *( ) is equal to wig ) as a

Hilb(e_aFS(H))(si, Sj) = Gij.
Since « is a constant, e”"*FS(H) is positively curved (with the curvature
wpsa)y > 0) and hence defines an element of #H (X, £). Thus, the above
establishes the required statement that Hilb is surjective. O

Remark 2.16. — We provide another point of view regarding the equa-
tion (2.8). Fixing a hermitian metric h € H(X, L), we observe that there
exists 8 € C(X,R) such that Wiy = ePwi. Writing (2.8) in terms
of h, the surjectivity of Qx can be regarded as ensuring the existence of
¢ € C*(X,R) such that

/ eﬂ+¢h(si,sj)wﬁ = G,j, (2.9)
X

for any given positive definite hermitian matrix Gj;.
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The left hand side of the above equation is a priori not a Hilb of a
hermitian metric, because e’t?h is used for the metric on £ whereas wy,
is used for the volume form. However, we can always find a function f €
C*>(X,R), such that e~/h is positively curved and Hilb(e=/h)(s;,s;) =
fX PO (s;, sj)wi, for any S and ¢; indeed, for this purpose, it is sufficient
to solve for f the following nonlinear PDE:

(wh + V2_la(§f) — ef+ﬁ+¢w,’f,
Y8

which is solvable by the Aubin—Yau theorem (cf. [2] and [13, Theorem 4,
p. 383]).

Thus, to prove the surjectivity of Hilb, it suffices to find some §,¢ €
C*(X,R) that satisfy (2.9) with respect to the fixed h € H(X, L), which is
weaker than the surjectivity of Hilb itself.

2.4. Variants of the Hilbert map

We now recall that there are several variants of the Hilbert map that also
appear in the literature [3, 4, 7, 10, 12]. We define the Hilb, map

Hilb, (h) = / (-, )dv

X
where the volume form dv is one of the following.

(1) dv is a fized volume form on X; an example of this is when X is
Calabi—Yau, in which case we can use the holomorphic volume form
Q€ H°(X,Kx) to define dv := Q A Q,

(2) dv is anticanonical; a hermitian metric h on —Kx defines a volume
form dv®c(h), where we note dv®“(e”¥h) = e~ ?dv®“(h),

(3) dv is canonical; a hermitian metric h on Kx defines a dual metric
on —Kx, which defines a volume form dv¢(h) with dv¢(e”¥h) =
e?dve(h).

We prove the following analogue of Proposition 2.15. As we can see from
the statement below, we need to consider the higher tensor power £&* and
the vector space HY(X, L®) of dimension Nj.

PropPOSITION 2.17. — Let Hilb, be defined by one of the three volume
forms as defined above, and let L= be a very ample line bundle. Then any
positive definite hermitian matriz on H(X, L®*) can be realised as

Hilb, (R9%) ::/ ROk, )dv
X
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for some hermitian metric h on L if

(1) L is any ample line bundle and dv is any fized volume form,
(2) L =—Kx is ample with the anticanonical volume form dv®c(h),
(3) L = Kx is ample with the canonical volume form dv°(h).

Proof. — Fixing a basis {s;}, and a hermitian metric h** on L&, (2.9)
implies that for any positive definite hermitian matrix G;; there exists ¢ €
C*(X,R) such that

k
/ 6(‘0h® (Si,S]‘)wﬁ = Gi]‘,
X

(we used wj} for the volume form instead of wjy,, but the difference is just
a constant multiple which we can absorb in ¢).

Observe that for each of the three choices dv, dv®c(h), dv°(h) of the
volume form dv, there exists a function ¢ € C°°(X,R) such that
wit = e?dv,
and hence the claim follows from the following;
(1) dv fixed: take h := exp (£(+¢))h so that I satisfies Hilb,, () (s, 55) =
Gij;
(2) dyjantlcanomcal take f := exp( -(p+9¢))h so that Hilb, (h)(si, 55) =
Gi; with dv = dl/““(h) _
(3) dv canonical: take h := exp(7i5 (¢ + @))h so that Hilb, (h)(s;, s;) =
G;; with dv = dv* (h) O
Remark 2.18. — Unlike the case of the usual Hilb as treated in Proposi-

tion 2.15, the above proof does not show that h has positive curvature; the
associated curvature form wj may not be a Kéhler metric.

3. Injectivity of F'S

We establish the following “quantitative injectivity” to prove the second
part of Theorem 1.1.

LEMMA 3.1. — Suppose that L is very ample, and that H, H' € B satisfy
FS(H)= 1+ f)FS(H")
with supy | f| < € for € > 0 satisfying N3e < 1/4.

Then we have |H — H'||,p < AN3e, where || - llop s the operator norm,
i.e. the maximum of the moduli of the eigenvalues. In particular, considering
the case e = 0, we see that F'S is injective.
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Proof. — We now pick an H-orthonormal basis {s;}; and represent H
(resp. H') as a matrix H;; (resp. H;;) with respect to the basis {s;}:.
H;j is the identity matrix, and replacing {s;}; by an H-unitarily equiva-
lent basis if necessary, we may further assume H{j = diag(d3,...,d%) for
some d; > 0. Recall that the equation (2.1) implies that we can write
FS(H') = e *FS(H) with ¢ = log(Z:Z]-V:1 d;2|8i|%S(H))' Thus the equa-
tion FS(H) = (1+ f)FS(H’) implies 1 + f =", d;2|si\%s(m, and hence,
by recalling (2.1),

A+ N lslh = 3 d sl (31)

with respect to any hermitian metric h on £, by noting that we may multiply
both sides of (3.1) by any strictly positive function e®. We now fix this basis
{si}i, and the operator norm | -||op or the Hilbert—Schmidt norm |- || ms
used in this proof will all be computed with respect to this basis.

We now choose N hermitian metrics hy,...,hy on L as follows. Recall
now that, by Proposition 2.15, for any N-tuple of strictly positive numbers

-

A= (A1,...,An) there exists ¢ € C*°(X,R) such that the hermitian metric
W := exp(¢y)h satisfies [ |s]7,wjl = Xi. We thus take

Xi=(6,...,8,1,6,...,6)

with 1 in the i-th place, where 0 < § < 1 is chosen to be small enough so
that the matrix defined as

M
A= | :

A
satisfies ||Allop < 2 and |[A™Y,p < 2. (How small 6 must be depends on N,

but this will not concern us.)

We now choose ¢; € C*°(X,R) appropriately (cf. Proposition 2.15) so

that h; := exp(¢;)h satisfies
%Liwz]i""7/ |SN %L.Lw;:;) :
b's

x:(/wﬁy@/wz
X X

Then, multiplying both sides of (3.1) by exp(¢;) and integrating over X
with respect to the measure wy /n!, we get the following system of linear
equations

1 d;?
w+p) [ =a] |
1 dy
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where F' is a matrix defined by

Fij Z:/ f‘Sj
X

whose max norm (i.e. the maximum of the moduli of its entries) satisfies
|1 E|lmaz < supy |f] < € since the modulus of each entry of A is at most 1.
We thus get

2 n
h:%h;

di?—1 1
. = A_lF .
dy —1 1
Thus, noting ||A_1F||op < HA_1HOP||F||0P < 2[[F|lgs < 2N|[|F||maz < 2Ne,
we get

Thus we get 1-2N%e < di_2 < 1+2N%e, and by the assumption Nie <1/4
we have

IN? IN3$
1-4NBe<lo —C < @<+ <1+4Ne
1+ 2Nze 1—-2Nze
as required. O
Remark 3.2. — We recast Lemma 3.1 in the case we use the usual scaling

convention for the Fubini-Study map (cf. Remark 2.2). Suppose that £ is
very ample and write By, for the space of hermitian forms on the vector space
HO(X, £Z*) of dimension Nj. The statement for this convention is as follows:
if H H' € By, satisfy FS(H)®F = (1 + f)FS(H')®* with supy |f| < € for

3 3
0 < NZ2e < 1/4, then we have |[H — H'||,, < 4N7e.
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