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Endomorphisms and bijections of the character variety
χ(F2, SL2(C)) (∗)

Serge Cantat (1)

ABSTRACT. — We answer a question of Gelander and Souto in the special case
of the free group of rank 2. The result may be stated as follows. If F is a free group
of rank 2, and G is a proper subgroup of F, the restriction of homomorphisms F→
SL2(C) to the subgroup G defines a map from the character variety χ(F, SL2(C))
to the character variety χ(G,SL2(C)); this algebraic map never induces a bijection
between these two character varieties.

RÉSUMÉ. — Le résultat suivant, qui répond à une question de Gelander et Souto
dans un cas particulier, est démontré : si F est le groupe libre de rang 2 et G est un
sous-groupe de F, la restriction des homomorphismes F → SL2(C) au sous-groupe
G fournit une application de la variété des caractères χ(F, SL2(C)) vers la variété
des caractères χ(G, SL2(C)); cette application algébrique n’est bijective que si G
coïncide avec F.

1. Representations and character varieties

Consider the free group of rank 2,
F = 〈a, b | ∅〉, (1.1)

and an algebraic group H. Every representation ρ : F → H is defined by
prescribing the images of the generators A = ρ(a) and B = ρ(b) in H. Thus,
the variety of representations Rep(F, H) is just the product H × H. The
group H acts on this variety by conjugation, and the quotient, in the sense
of geometric invariant theory, is called the character variety of (F, H); we
shall denote it χ(F, H).

Assume now that H is the special linear group SL 2 (the field of definition
will be specified later). Since traces of matrices are polynomial functions in

(*) Reçu le 21 décembre 2017, accepté le 4 décembre 2018.
(1) Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes (France) —

serge.cantat@univ-rennes1.fr
Article proposé par Stepan Orevkov.

– 897 –

mailto:serge.cantat@univ-rennes1.fr


Serge Cantat

the coefficients of the matrices and are invariant under conjugacy, the three
functions

x = tr(A), y = tr(B), z = tr(AB) (1.2)
provide regular functions on the character variety χ(F, SL 2). The following
result, due to Fricke, is proven in details in [5].

Fricke’s Theorem. — The character variety χ(F, SL 2) is the affine
space of dimension 3; its ring of regular functions are the polynomial func-
tions in the coordinates (x, y, z) = (tr(A), tr(B), tr(AB)).

We did not specify the field because this theorem works for any alge-
braically closed field. Examples of invariant functions are given by traces of
words in the matrices A and B, for instance by the function tr(A3B−2AB);
in fact, the theorem of Fricke is based on the fact that these traces can
be expressed as polynomial functions of x, y, and z with integer coeffi-
cients. This follows easily from Cayley-Hamilton theorem. For instance A−
tr(A) Id+A−1 = 0, which shows that tr(A−1B) = xy−z. A classical example
is given by the trace of the commutator of A and B:

tr(ABA−1B−1) = x2 + y2 + z2 − xyz − 2. (1.3)
The level sets of this polynomial function are the cubic surfaces

Sκ = {(x, y, z) ;x2 + y2 + z2 = xyz + κ}. (1.4)
The surface S0 is known as the Markoff surface, and S4 as the Cayley cubic
(see [1, §2.8] and [2, §1.5]).

2. Restrictions

Now, consider a subgroup G of F. It is a free group, and we assume that
G has rank two, as F. Fixing a basis (u, v) of G, we have:

(1) u and v are elements of F, hence they are words u = u(a, b) and
v = v(a, b) in the generators a and b and their inverses;

(2) G = 〈u, v〉, with no relations between u and v.

Since u is a word in a and b, we know from the theorem of Fricke that there
is a polynomial function P ∈ Z[X,Y, Z] with the following property. For
every pair (A,B) of elements of SL 2,
P (x, y, z) = tr(u(A,B)) where (x, y, z) = (tr(A), tr(B), tr(AB)). (2.1)

Similarly, there are polynomial functions Q and R such that
Q(x, y, z) = tr(v(A,B)) and R(x, y, z) = tr(u(A,B)v(A,B)). (2.2)
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Every representation ρ of F into SL 2 gives a representation of G: the re-
striction of ρ to G. Thus, we get a map res : χ(F,SL 2) → χ(G, SL 2).
Once these character varieties have been identified to affine spaces of dimen-
sion 3 using the coordinates (x, y, z) = (tr(A), tr(B), tr(AB)) and (r, s, t) =
(tr(U), tr(V ), tr(UV )), this map res corresponds to the algebraic endomor-
phism A3 → A3 defined by

(x, y, z) 7→ (P (x, y, z), Q(x, y, z), R(x, y, z)). (2.3)
Our goal is to understand whether this map can be a bijection (resp. an
isomorphism of algebraic varieties) when G is a strict subgroup of F. This
was the question raised by Gelander and Souto, in its simpler form.

To restate this question more precisely, we adopt another equivalent view-
point. Consider the endomorphism ϕ : F → F that maps a to u(a, b) and b
to v(a, b). Its image is G. Given any representation ρ of F, ϕ∗ρ = ρ ◦ ϕ is a
new representation of F; this determines an algebraic endomorphism

Φ: χ(F, SL 2)→ χ(F, SL 2). (2.4)
Then, res is a bijection if and only if Φ is a bijection (these two maps are
actually the same maps in affine coordinates). Thus, the question may be
stated as follows.

Questions. — Given an endomorphism ϕ : F → F of the free group
F, under what condition does it induce an automorphism Φ: χ(F, SL 2) →
χ(F, SL 2) of the algebraic variety χ(F, SL 2)? Given an endomorphism ϕ : F→
F, and a field k, under what condition does ϕ induce a bijection Φ: A3(k)→
A3(k) of the set of k points of χ(F, SL 2) = A3?

For the second version of the question, it is crucial to indicate over which
field one works. If the field is too small, for instance if it is a finite field,
there are many endomorphisms ϕ that induce bijections on the set of rep-
resentations into SL 2(k). Indeed, consider a finite group H, for example
H = SL 2(k) for some finite field k, and denote by n the number of elements
of H. Then, every element h ∈ H satisfies hn = eH . Now, pick positive
integers ` and `′ and consider the endomorphism ϕ of F that maps a to
a`n+1 and b to b`′n+1. Then, ρ(ϕ(a)) = ρ(a) and ρ(ϕ(b)) = ρ(b) for every
representation ρ : F→ H; thus, ϕ induces an injection (hence a bijection) of
the finite set of representations of F into H.

If we assume that k is algebraically closed and of characteristic 0, the two
questions are actually equivalent, as the following classical statement shows.

Bijectivity Theorem. — Let Φ: Ad → Ad be a regular endomorphism
of an affine space, defined over an algebraically closed field k of characteristic
0. If Φ is an injective transformation of Ad(k) then Φ is an automorphism
of Ad: it is bijective and its inverse is also defined by polynomial formulas.
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This theorem fails over the field of real numbers, as x 7→ x+x3 shows. It
also fails in positive characteristic, as the Frobenius morphism shows. For a
proof of the Bijectivity Theorem see the book [4]. Note also that this result
holds in much greater generality, and can therefore be applied to character
varieties of higher rank free groups.

3. The main theorem

Theorem A. — Let F be the free group of rank 2, and ϕ : F→ F be an
endomorphism of F. If the algebraic endomorphism

Φ: χ(F,SL 2(C))→ χ(F, SL 2(C))
induced by ϕ is injective, then ϕ : F → F is an automorphism of the free
group F.

Corollary 3.1. — Let F be the free group of rank 2. If G is a proper
subgroup of F, the restriction res : ρ 7→ ρ|G does not induce a bijection from
the character variety χ(F, SL 2(C)) to the character variety χ(G, SL 2(C)).

Proof of the corollary. — For res to be a bijection, G should have rank 2
(the dimension of χ(G,SL 2(C)) is 3rk(G)− 3). The previous section shows
that res is a bijection if and only if the endomorphism ϕ : F→ F determined
by any isomorphism between F and G induces a bijection on the charac-
ter variety of F. Theorem A shows that ϕ must be an isomorphism, hence
G = F. �

4. The proof

To prove Theorem A, one first makes use of the Bijectivity Theorem, and
deduce that the polynomial endomorphism Φ which is determined by ϕ is
a polynomial automorphism of the character variety χ(F,SL 2(C)). In what
follows, Sκ is the complex affine surface defined by Equation (1.4) (it may
be better to denote it Sκ(C)).

4.1. Automorphisms of the surfaces Sκ

In what follows, we denote by Aut(W ) the group of automorphisms of the
algebraic variety W . (Note that we play with two distint notions of auto-
morphisms and endomorphisms, one for groups, one for algebraic varieties.)
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One can identify the group Out(F) with GL 2(Z) (see [7, Prop. I.4.5]).
This group acts on the character variety χ(F, SL 2). The function tr([A,B])
is invariant under this action because every automorphism of the group F
maps aba−1b−1 to a conjugate of itself or its inverse (see [7, Prop. I.5.1] for
instance). This gives an embedding

GL 2(Z)→ Aut(χ(F,SL 2)), (4.1)

i.e. in Aut(A3), that preserves the polynomial function x2 +y2 +z2−xyz−2
and its level sets Sκ.

El’Huti’s Theorem. — Let κ be a complex number. The group
GL 2(Z) = Out(F) provides a subgroup of index 4 in the group of all au-
tomorphisms of the complex affine surface Sκ: every automorphism of Sκ
is the composition of an element of Out(F) and a linear map (x, y, z) 7→
(ε1x, ε2y, ε3z) where each εi = ±1 and ε1ε2ε3 = 1.

Let us explain how this result follows from the main theorems of [3]. First,
note that the image of the homomorphism GL 2(Z)→ Aut(Sκ) contains the
finite group of permutations of the coordinates. For instance, the permuta-
tion (x, y, z) 7→ (z, y, x) is induced by the automorphism of F mapping a
and b to (ab)−1 and b.

To describe more precisely El’Huti’s work, we compactify Sκ by taking its
closure Sκ in the projective space P3

C. In homogeneous variables [x : y : z : w],
this surface is defined by the cubic equation

(x2 + y2 + z2)w = xyz + κw3. (4.2)

It intersects the plane at infinity {w = 0} into a triangle {xyz = 0}. If f
is an automorphism of Sκ, it extends as a birational map f of Sκ, typically
with indeterminacy points on the triangle at infinity.

There are three obvious involutions on Sκ. Indeed, if one projects Sκ
onto the (x, y)-plane one gets a 2-to-1 cover because the equation of Sκ has
degree 2 with respect to the z-variable; the deck transformation of this cover
is the involution

σz(x, y, z) = (x, y, xy − z). (4.3)

Geometrically, σz is the following birational transformation of Sκ: if [x : y :
z : w] is a point of Sκ, draw the line joining this point to the point “at
infinity” [0 : 0 : 1 : 0] ∈ Sκ; this line intersects Sκ in exactly three points,
and the third point of intersection is precisely σz[x : y : z : w]. Permuting
the variables, we obtain three involutions σx, σy, σz and Theorem 1 of [3]
says that the group generated by those three involutions is a free product
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Z/2Z ? Z/2Z ? Z/2Z. Now, note that the element(
1 0
0 −1

)
∈ GL 2(Z) (4.4)

is represented by the automorphism of F mapping the generators a and b to a
and b−1, and its action on traces corresponds to σz because tr(B−1) = tr(B)
and tr(AB−1) = −tr(AB) + tr(A)tr(B) for elements of SL 2 (see Section 1).
Using permutations of coordinates, we see that the image of GL 2(Z) in
Aut(Sκ) contains the three involutions σx, σy, and σz, hence the group
〈σx, σy, σz〉 that they generate.

Theorem 2 of [3] states that the automorphism group Aut(Sκ) is generated
by two groups: the group 〈σx, σy, σz〉 ' Z/2Z ?Z/2Z ?Z/2Z, and the group
W (Sκ) of projective transformations of P3

C preserving the compact surface
Sκ and its open surface Sκ ⊂ Sκ. The following lemma concludes the proof
of what we called El’Huti’s theorem.

Lemma 4.1. — The group W (Sκ) is the group generated by

(1) the group of permutations of the coordinates (x, y, z), and
(2) the changes of sign of pairs of coordinates (such as (x, y, z) 7→

(−x,−y, z)).

Proof. — Let f be a linear projective transformation preserving Sκ ⊂ Sκ.
Then, f preserves the triangle Sκ \ Sκ, of equation {w = 0, xyz = 0}.
Composing f by a permutation of the coordinates, we may assume that
(i) f induces an affine transformation of the affine space A3

C and (ii) f fixes
the three points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0] at infinity.
Thus, f becomes an affine transformation whose linear part is diagonal, i.e.
f(x, y, z) = (αx+ a, βy + b, γz + c) for some complex numbers α, β, γ, a, b,
and c with αβγ 6= 0. Now, if one writes that Sκ is invariant, and look at the
quadratic terms xy, yz, and zx, one sees that a = b = c = 0; then, α, β, and
γ are all equal to +1 or −1. �

4.2. Invariance of S4

Reducible representations correspond to the surface S4: both A and B
preserve a one dimensional subspace of C2, so that A and B can be written
simultaneously as upper triangular matrices; there commutator ABA−1B−1

is upper triangular, with 1’s on the diagonal, and tr(ABA−1B−1) = 2.

If ρ is a reducible representation of F, so is ϕ∗ρ; thus Φ induces an
automorphism of S4. Since GL 2(Z) generates a subgroup of Aut(S4) of finite
index, we obtain the following lemma.
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Lemma 4.2. — The endomorphism Φ is an automorphism of the complex
algebraic variety χ(F, SL 2) = A3 that preserves S4. It induces an automor-
phism of S4. There is an integer k > 0 and an element ψ of Out(F) such
that Φk = Ψ on S4.

Here Ψ denotes the automorphism of χ(F, SL 2) which is defined by ψ∗.

Remark 4.3. — This remark is not needed in the proof, but illustrates
the nice geometry of S4. One can “uniformize” S4 by C∗ × C∗, as follows.
Given a pair (z1, z2) ∈ C∗ ×C∗, consider two upper triangular matrices A
and B whose diagonal coefficients are respectively (z1, 1/z1) and (z2, 1/z2).
Then,

(tr(A), tr(B), tr(AB)) = (z1 + 1/z1, z2 + 1/z2, z1z2 + 1/(z1z2)). (4.5)

Then,

• the map π : (z1, z2) 7→ (z1 + 1/z1, z2 + 1/z2, z1z2 + 1/(z1z2)) is in-
variant under the involution η(z1, z2) = (1/z1, 1/z2) of C∗ ×C∗;

• the image π(C∗ ×C∗) is S4;
• the projection π : C∗×C∗→S4 realizes S4 as the quotient (C∗×C∗)/η;
• the four fixed points (±1,±1) of η give rise to the four singularities
of S4.

The group GL 2(Z) acts by automorphisms on the algebraic group C∗ ×
C∗; in coordinates (z1, z2), this action is given by monomial transformations
(z1, z2) 7→ (za1zb2, zc1zd2). From El’Huti’s theorem, or by a direct computation,
one easily deduces that this copy of GL 2(Z) in Aut(S4) coincides with the
one given by Out(F) and has finite index in Aut(S4). (see [2, §1.2] for details)

4.3. Invariance of E4

We replace Φ by Φk and compose it with Ψ−1; after such a modification
Φ is the identity on S4.

Our goal is to show that, under this extra hypothesis, Φ is the identity.
For this, note that the equation

E4(x, y, z) = x2 + y2 + z2 − xyz − 4 (4.6)

of S4 is transformed by the automorphism Φ: A3 → A3 into another (re-
duced) equation of the same (hyper)surface. Thus, there is a non-zero con-
stant α such that

E4 ◦ Φ = αE4. (4.7)
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Lemma 4.4. — The constant α is equal to 1. Hence, E4 is Φ-invariant,
and each of the surfaces Sκ is Φ invariant.

Proof. — Since E4 ◦ Φ = αE4, the level sets Sκ of E4 are permuted
by the automorphism Φ. Among them, exactly two are singular surfaces.
The surface S4, and the Markov surface S0. Indeed, the differential of E4 is
(2x− yz)dx+ (2y− zx)dy+ (2z−xy)dz; if it vanishes, we obtain x2 = y2 =
z2 = xyz/2 = κ, and we deduce that κ = 0 or 4. Since S4 is Φ-invariant,
the singular surface S0 (and its singularity at the origin) must also be Φ-
invariant. This implies αE4(0, 0, 0) = E4(0, 0, 0) and α = 1. �

Remark 4.5. — Instead of looking at singularities of the surfaces Sκ, we
could have considered the subset F of χ(F, SL 2) given by irreducible repre-
sentations with finite image. This set is Φ-invariant, and it is finite. Thus,
there exists ` > 0 such that Φ` fixes F pointwise. This implies E4 ◦Φ` = E4;
looking at the different possibilities for the finite images, one can even deduce
that ` = 1

4.4. Conclusion

From Lemma 4.4 we get E4 ◦ Φ = E4. Thus, Φ is an automorphism
of the complex affine space χ(F, SL 2) that preserves every level set Sκ of
E4. Fix such a constant κ, and consider the restriction of Φ to Sκ. This is
an automorphism of Sκ and we denote by Φ its extension, as a birational
transformation, to the compactification Sκ of Sκ in P3(C). The trace of Sκ
at infinity is the triangle given by xyz = 0 (see Section 4.1). This triangle
does not depend on κ, and one verifies that the action of Φ at infinity does
not depend on κ either: indeterminacy points, and exceptional curves are
the same for all values of κ (see [1, §2.4 and 2.6]). But for κ = 4, we know
that this action is just the identity map. Thus, Φ is in fact an automorphism
of Sκ for all values of κ. From Section 4.1, we know this automorphism Φ is
a composition of a permutation of the coordinates (x, y, z) with a diagonal
linear map whose diagonal coefficients are ±1. Since Φ is the identity on S4,
we deduce that Φ is the identity.

Thus, we have shown that there is an automorphism ψ of F and a positive
integer k such that Φk ◦ Ψ−1 is the identity map. In other words, Φk = Ψ
on χ(F, SL 2). To conclude, one needs to show that an endomorphism ϕ of F
that induces the identity map on χ(F, SL 2) is in fact an inner automorphism
of the group F. To prove it, fix a faithful representation ρ : F→ SL 2(C); its
image is automatically Zariski dense in the complex algebraic group SL 2(C).
For instance, take

ρ(a) =
(

1 z
0 1

)
and ρ(b) =

(
1 0
z 1

)
(4.8)
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for z = 2 or even for a generic z ∈ C (see [6, §II.B.25]). Then, the fiber of
ρ for the quotient map Rep(F, SL 2(C)) → χ(F, SL 2(C)) is an orbit for the
action of SL 2(C) by conjugation on

Rep(F, SL 2(C)) ' SL 2(C)× SL 2(C). (4.9)

Since ϕ induces the identity map on χ(F,SL 2), ρ and ρ ◦ ϕ are in the same
conjugacy class, there is an element c ∈ F such that ρ◦ϕ(w) = ρ(cwc−1) for
every w ∈ F, and ϕ coincides with the conjugation by c because ρ is faithful.

Remark 4.6. — It may also be possible to conclude the proof by showing
that ϕ preserves the conjugacy classes of aba−1b−1 and its inverse (because
Φ preserves the polynomial function E4). And this property is sufficient to
imply that ϕ is an automorphism of F.

5. Two open problems

Theorem A leaves many natural questions open. One may, for instance,
replace the free group of rank 2 by a free group of rank n > 1 (or by
fundamental groups of closed surfaces) and the group SL 2 by other algebraic
groups. One may also replace the field C by other fields, for instance by Q,
R or Qp. Let us now state two open problems that concern χ(F, SL 2).

5.1. Real coefficients

The proof makes use of the fact that C is algebraically closed in order to
get the equivalence “Φ is a bijection if and only if it is an automorphism”.
Let us replace C by the field R of real numbers, and simply assume that Φ
is a bijection of the real part A3(R) of the character variety. The difficulty
is that there are algebraic bijections of R which are not isomorphisms, for
instance t 7→ t+ t3.

There are two parts in A3(R), corresponding respectively to representa-
tions of F in SL 2(R) and in SU 2. There common boundary is the surface
S4(R). These subsets are Φ-invariant; in particular, S4(R) is invariant, as
a subset or A3(R) (this does not imply that its equation E4 is invariant).
I haven’t been able to use this invariance to prove that Φ is a bijection of
A3(R) if and only if ϕ is an automorphism of F. Thus, Theorem A remains
an open problem if one replaces the field C by R.
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5.2. Topological degree

A better result than Theorem A would be to compute the topological
degree of Φ: A3(C)→ A3(C) given by any injective endomorphism ϕ of F ,
or at least to estimate it from below. Theorem A just says that it cannot be
equal to 1.
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