Tome XXXI, $\mathrm{n}^{\mathrm{o}} 2$ (2022), p. 491-499.
https://doi.org/10.5802/afst. 1700
© Université Paul Sabatier, Toulouse, 2022.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.centre-mersenne.org/) implique l'accord avec les conditions générales d'utilisation (http://afst.centre-mersenne.org/legal/). Les articles sont publiés sous la license CC-BY 4.0.

The divergence equation with L^{∞} source ${ }^{(*)}$

Eduard Curcă ${ }^{(1)}$

Abstract. - A well-known fact is that there exists $g \in L^{\infty}\left(\mathbb{T}^{2}\right)$ with zero integral, such that the equation

$$
\begin{equation*}
\operatorname{div} f=g \tag{*}
\end{equation*}
$$

has no solution $f=\left(f_{1}, f_{2}\right) \in W^{1, \infty}\left(\mathbb{T}^{2}\right)$. This was proved by Preiss ([4]), using an involved geometric argument, and, independently, by McMullen ([2]), via Ornstein's non-inequality. We improve this result: roughly speaking, we prove that, there exists $g \in L^{\infty}$ for which (*) has no solution such that $\partial_{2} f_{2} \in L^{\infty}$ and f is "slightly better" than L^{1}. Our proof relies on Riesz products in the spirit of the approach of Wojciechowski ([6]) for the study of (*) with source $g \in L^{1}$. The proof we give is elementary, self-contained and completely avoids the use of Ornstein's non-inequality.

RÉSUMÉ. - Notre point de départ est le résultat suivant de non existence : il existe $g \in L^{\infty}\left(\mathbb{T}^{2}\right)$, d'integrale nulle et telle que l'équation

$$
\begin{equation*}
\operatorname{div} f=g \tag{*}
\end{equation*}
$$

n'ait pas de solution $f=\left(f_{1}, f_{2}\right) \in W^{1, \infty}\left(\mathbb{T}^{2}\right)$. Ce résultat a été obtenu indépendamment par Preiss ([4]), en utilisant un argument géométrique délicat, et par McMullen ([2]), via la non-inégalité d'Ornstein. Nous améliorons substantiellement ce résultat, en montrant qu'en général $(*)$ n'a pas de solution satisfaisant $\partial_{2} f_{2} \in L^{\infty}$, avec f «un peu mieux» que L^{1}. Notre démonstration est basée sur les produits Riesz dans l'esprit de l'approche de Wojciechowski ([6]) pour l'étude de (*) avec source $g \in L^{1}$. La démonstration est élémentaire et évite completement l'utilisation de la non-inégalité d'Ornstein.

[^0]
1. Introduction

In this paper, we improve the following result of Preiss ([4]) and McMullen ([2, Theorem 2.1]):

Theorem 1.1. - There exists $g \in L^{\infty}\left(\mathbb{T}^{2}\right)$ with zero integral, such that there are no $f_{1}, f_{2} \in W^{1, \infty}\left(\mathbb{T}^{2}\right)$ with

$$
g=\partial_{1} f_{1}+\partial_{2} f_{2}
$$

The proof in [4] is "geometric", the one in [2] relies essentially on Ornstein's non-inequality ([3]).

Note that, in the above statement, the conditions on f_{1}, f_{2} are isotropic, i.e., we require $\partial_{l} f_{j} \in L^{\infty}\left(\mathbb{T}^{2}\right)$ for all $l, j=1,2$. In what follows, we will prove that, under some mild regularity assumptions on f_{1}, f_{2}, the above requirements can be weakened to anisotropic conditions. Namely, it is enough to impose $\partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{2}\right)$. In order to state this more precisely, we introduce the following spaces of distributions.

Suppose $\lambda: \mathbb{N} \rightarrow(0, \infty)$ is a decreasing function such that $\lambda(k) \rightarrow 0$ when $k \rightarrow \infty$. To such a function we associate the Banach space of those distributions whose Fourier transform decays at the rate at least λ. More precisely, consider the space

$$
S_{\lambda}\left(\mathbb{T}^{2}\right):=\left\{f \in \mathcal{D}^{\prime}\left(\mathbb{T}^{2}\right) \left\lvert\, \sup _{n \in \mathbb{Z}^{2}} \frac{|\widehat{f}(n)|}{\lambda(|n|)}<\infty\right.\right\}
$$

endowed with the norm given by

$$
\|f\|_{S_{\lambda}}:=\sup _{n \in \mathbb{Z}^{2}} \frac{|\widehat{f}(n)|}{\lambda(|n|)}, \quad f \in S_{\lambda}\left(\mathbb{T}^{2}\right)
$$

To mention only few examples, we note that, for any $m \in \mathbb{N}^{*}, W^{m, 1}\left(\mathbb{T}^{2}\right) \hookrightarrow$ $S_{\lambda}\left(\mathbb{T}^{2}\right)$, with $\lambda(|n|)=1 /(1+|n|)^{m}$ and, if $s>0$, the fractional Sobolev space $H^{s}\left(\mathbb{T}^{2}\right)$ is embedded in $S_{\lambda}\left(\mathbb{T}^{2}\right)$ for $\lambda(|n|)=1 /(1+|n|)^{s}$.

With this notation, we can formulate our result.
Theorem 1.2. - Suppose $\lambda: \mathbb{N} \rightarrow(0, \infty)$ is decreasing to 0 . There exists $g \in L^{\infty}\left(\mathbb{T}^{2}\right)$ such that there are no $f_{0}, f_{1}, f_{2} \in S_{\lambda}\left(\mathbb{T}^{2}\right)$ with $\partial_{2} f_{2} \in$ $L^{\infty}\left(\mathbb{T}^{2}\right)$ and

$$
g=f_{0}+\partial_{1} f_{1}+\partial_{2} f_{2}
$$

We can easily observe that Theorem 1.2 implies Theorem 1.1. Indeed, if $f_{1}, f_{2} \in W^{1, \infty}\left(\mathbb{T}^{2}\right)$ then $\partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{2}\right)$ and, as we mentioned above, we have $f_{1}, f_{2} \in S_{\lambda}\left(\mathbb{T}^{2}\right)$ for $\lambda(|n|)=1 /(1+|n|)$. Also, even the weaker regularity
condition $f_{0}, f_{1}, f_{2} \in H^{\varepsilon}\left(\mathbb{T}^{2}\right), \partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{2}\right)(\varepsilon>0$, a small fixed number $)$ rules out the existence of a solution. Intuitively, $f \in S_{\lambda}\left(\mathbb{T}^{2}\right)$, with λ slowly decaying, means that f is "slightly better" than L^{1}. The above result asserts that solutions with such regularity satisfying $\partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{2}\right)$ need not exist.

Finally, we discuss the most important aspect, which is the proof of Theorem 1.2. Our proof completely avoids the use of Ornstein's non-inequality. It is an adaptation of the Riesz products based proof, given by Wojciechowski in [6], of the fact that there exist L^{1} functions which are not divergences of $W^{1,1}$ vector fields. We follow the general structure of his proof making the needed modifications in order to handle the L^{∞} case. While the proof in [6] relies on a relatively difficult lemma ([6, Lemma 1]), in our case, the role of this lemma will be played by Lemma 2.1 below, which is elementary and easy. Another aspect of our proof is the presence of the function λ. This allows us to quantify the regularity that we impose to the solution and to improve the result described by Theorem 1.1. The approach based on Ornstein's non-inequality does not seem to be suited for obtaining this improvement.

We also mention that the proof of Theorem 1.2 given below is selfcontained and elementary.

Acknowledgements

The author thanks Petru Mironescu for useful discussions and suggestions.

2. Proof of Theorem 1.2

Before starting the proof, we recall first the following well-known elementary fact (see [5, Lemma 6.3, p. 118]):

Lemma 2.1. - Suppose z_{1}, \ldots, z_{N} are some complex numbers. Then, there exist $\sigma_{1}, \ldots, \sigma_{N} \in\{0,1\}$ such that

$$
\left|\sum_{k=1}^{N} \sigma_{k} z_{k}\right| \geqslant \frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

Proof. - We follow [5]. View z_{1}, \ldots, z_{N} as vectors in \mathbb{R}^{2}. For a given $\theta \in[0,2 \pi]$, let $r_{\theta}:=(\cos \theta, \sin \theta)$. If H_{θ} is the half-plane given by

$$
H_{\theta}:=\left\{z \in \mathbb{R}^{2} \mid\left\langle z, r_{\theta}\right\rangle \geqslant 0\right\}
$$

we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1, z_{k} \in H_{\theta}}^{N} z_{k}\right| \mathrm{d} \theta \geqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j=1}^{N}\left\langle z_{j}, r_{\theta}\right\rangle^{+} \mathrm{d} \theta=\sum_{j=1}^{N} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle z_{j}, r_{\theta}\right\rangle^{+} \mathrm{d} \theta
$$

and we easily see that, for all j,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle z_{j}, r_{\theta}\right\rangle^{+} \mathrm{d} \theta=\left|z_{j}\right| \frac{1}{2 \pi} \int_{0}^{2 \pi}(\cos \theta)^{+} \mathrm{d} \theta=\frac{1}{\pi}\left|z_{j}\right| .
$$

Using the above inequality, we complete the proof of Lemma 2.1 via a mean value argument: there exists $\theta_{0} \in[0,2 \pi]$ such that

$$
\left|\sum_{k=1, z_{k} \in H_{\theta_{0}}}^{N} z_{k}\right| \geqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1, z_{k} \in H_{\theta}}^{N} z_{k}\right| \mathrm{d} \theta \geqslant \frac{1}{\pi} \sum_{j=1}^{N}\left|z_{j}\right|
$$

and one can choose $\sigma_{k}=1$, if $z_{k} \in H_{\theta_{0}}$ and $\sigma_{k}=0$, otherwise.
We will also need few facts concerning the trigonometric polynomials.
Fix a finite sequence $\left(a_{k}\right)_{k=1, N}$ in \mathbb{Z}^{2}. For each finite sequence $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ of complex numbers we have the following expansion rule for Riesz products:

$$
\begin{align*}
& \prod_{k=1}^{N}\left(1+\alpha_{k} \cos \left\langle t, a_{k}\right\rangle\right) \\
& =1+\sum_{k=1}^{N} \sum_{\substack{\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{-1,0,1\} \\
\varepsilon_{k} \neq 0}}\left(\prod_{\varepsilon_{j} \neq 0} \frac{\alpha_{j}}{2}\right) e^{i\left\langle t, \varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}\right\rangle} \tag{2.1}
\end{align*}
$$

(This can be easily proved by induction on N.)
Suppose, moreover, that $\left(a_{k}\right)_{k=1, N}$, with $a_{k} \in(\mathbb{Z} \backslash\{0\})^{2}$ is componentwise lacunary, i.e., there exists a constant $M>3$ such that $\left|a_{k+1}(1)\right| /\left|a_{k}(1)\right|>$ M and $\left|a_{k+1}(2)\right| /\left|a_{k}(2)\right|>M$ for all $1 \leqslant k \leqslant N-1$. Then, all the expressions $\varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}$ in the above formula are distinct and nonzero. Hence, if $\alpha_{1}, \ldots, \alpha_{N}$ and $\beta_{1}, \ldots, \beta_{N}$ are complex numbers, by using the above formula and the relation between convolution and the Fourier transform, we obtain

$$
\begin{align*}
\prod_{k=1}^{N}\left(1+\alpha_{k} \cos \left\langle\cdot, a_{k}\right\rangle\right) * \prod_{k=1}^{N}\left(1+\beta_{k} \cos \langle\cdot\right. & \left.\left., a_{k}\right\rangle\right) \\
& =\prod_{k=1}^{N}\left(1+\frac{\alpha_{k} \beta_{k}}{2} \cos \left\langle\cdot, a_{k}\right\rangle\right) \tag{2.2}
\end{align*}
$$

Indeed, using (2.1) we find that the coefficient of $e^{i\left\langle t, \varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}\right\rangle}$ in the left hand side of (2.2) is

$$
\left(\prod_{\varepsilon_{j} \neq 0} \frac{\alpha_{j}}{2}\right)\left(\prod_{\varepsilon_{j} \neq 0} \frac{\beta_{j}}{2}\right)=\prod_{\varepsilon_{j} \neq 0} \frac{\left(\alpha_{j} \beta_{j} / 2\right)}{2} .
$$

Since, all the expressions $\varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}$ are distinct, the above identity permits us to recover the right hand side of (2.2) via (2.1).

We will also use the following standard algebraic identity which can be proved by induction on N :

$$
\begin{equation*}
\prod_{k=1}^{N}\left(1+c_{k}\right)=1+\sum_{k=1}^{N} c_{k} \prod_{j=1}^{k-1}\left(1+c_{j}\right) \tag{2.3}
\end{equation*}
$$

for any complex numbers c_{1}, \ldots, c_{N}.
Proof of Theorem 1.2. - Suppose that the assertion of Theorem 1.2 is false and fix a function λ as in the statement. Then, by the open mapping principle, there exists a constant $C>0$ such that for any $g \in L^{\infty}\left(\mathbb{T}^{2}\right)$ there exist distributions $f_{0}, f_{1}, f_{2} \in S_{\lambda}\left(\mathbb{T}^{2}\right)$, satisfying $g=f_{0}+\partial_{1} f_{1}+\partial_{2} f_{2}$, with the properties that $\partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{2}\right)$ and

$$
\begin{equation*}
\left\|f_{0}\right\|_{S_{\lambda}}+\left\|f_{1}\right\|_{S_{\lambda}}+\left\|f_{2}\right\|_{S_{\lambda}}+\left\|\partial_{2} f_{2}\right\|_{L^{\infty}} \leqslant C\|g\|_{L^{\infty}} . \tag{2.4}
\end{equation*}
$$

Let N be a large positive integer such that $\ln N>25 \pi C$ and consider the functions on \mathbb{T}^{2}

$$
g_{N}(t):=\prod_{k=1}^{N}\left(1+\frac{i}{k} \cos \left\langle t, a_{k}\right\rangle\right) \quad \text { and } \quad G_{N}(t):=\prod_{k=1}^{N}\left(1+\cos \left\langle t, a_{k}\right\rangle\right)
$$

where the finite sequence $\left(a_{k}\right)_{k=1, N}$ in $\left(\mathbb{N}^{*}\right)^{2}$ is defined below.
Using Lemma 2.1, applied to the sequence of complex numbers

$$
z_{k}:=\frac{1}{k} \prod_{j=1}^{k-1}\left(1+\frac{i}{2 j}\right) \quad \text { for } k=1, \ldots, N
$$

(here and after the product over an empty set is by convention equal to 1), we can find a sequence $\sigma_{1}, \ldots, \sigma_{N} \in\{0,1\}$ such that

$$
\begin{equation*}
\left|\sum_{k=1}^{N} \frac{\sigma_{k}}{k} \prod_{j=1}^{k-1}\left(1+\frac{i}{2 j}\right)\right| \geqslant \frac{1}{\pi} \sum_{k=1}^{N} \frac{1}{k} \prod_{j=1}^{k-1}\left(1+\frac{1}{4 j^{2}}\right)^{\frac{1}{2}} \geqslant \frac{1}{\pi} \sum_{k=1}^{N} \frac{1}{k} \geqslant \frac{1}{\pi} \ln N . \tag{2.5}
\end{equation*}
$$

Now we impose the sequence $\left(a_{k}\right)_{k=1, N}$ to satisfy the following properties:
(i) $\left(a_{k}\right)_{k=1, N}$ is component-wise lacunary;
(ii) If $\sigma_{k}=1$, then

$$
\begin{array}{r}
\left|a_{k}(1)+\sum_{1 \leqslant j \leqslant k-1} \varepsilon_{j} a_{j}(1)\right| \lambda\left(\left|a_{k}(2)+\sum_{\substack{1 \leqslant j \leqslant k-1}} \varepsilon_{j} a_{j}(2)\right|\right)<\frac{1}{4^{N}} \\
\quad \text { for all } \varepsilon_{1}, \ldots, \varepsilon_{k-1} \in\{-1,0,1\} ;
\end{array}
$$

(iii) If $\sigma_{k}=0$, then

$$
\begin{aligned}
\left|a_{k}(2)+\sum_{1 \leqslant j \leqslant k-1} \varepsilon_{j} a_{j}(2)\right| \lambda\left(\left|a_{k}(1)+\sum_{\substack{1 \leqslant j \leqslant k-1}} \varepsilon_{j} a_{j}(1)\right|\right)<\frac{1}{4^{N}} \\
\quad \text { for all } \varepsilon_{1}, \ldots, \varepsilon_{k-1} \in\{-1,0,1\} .
\end{aligned}
$$

(By convention the sum over an empty set is equal to 0 .)

Such a sequence can be easily constructed by induction on k : if a_{1}, \ldots, a_{k-1} are chosen, then we choose $a_{k}(2)$ much larger than $a_{k}(1)$, or $a_{k}(1)$ much larger than $a_{k}(2)$, depending on whether $\sigma_{k}=1$ or $\sigma_{k}=0$ respectively. Since λ is decreasing to 0 , we can satisfy in this way the conditions (ii), respectively (iii). Also, the condition (i) can be easily satisfied.

We now return to the proof of Theorem 1.2. Note that

$$
\begin{align*}
&\left\|g_{N}\right\|_{L^{\infty}}=\prod_{k=1}^{N}\left(1+\frac{1}{k^{2}}\right)^{\frac{1}{2}} \leqslant e^{\frac{\pi^{2}}{12}}<3 \\
& \quad \text { and also } G_{N} \geqslant 0 \text { and }\left\|G_{N}\right\|_{L^{1}}=1 \tag{2.6}
\end{align*}
$$

(We can see that $\left\|G_{N}\right\|_{L^{1}}=1$ by using (2.1).)
Using (2.2) and (2.3), we get

$$
\begin{align*}
G_{N} * g_{N}(t)=\prod_{k=1}^{N} & \left(1+\frac{i}{2 k} \cos \left\langle t, a_{k}\right\rangle\right) \\
& =1+\sum_{k=1}^{N} \frac{i}{2 k} \cos \left\langle t, a_{k}\right\rangle \prod_{j=1}^{k-1}\left(1+\frac{i}{2 j} \cos \left\langle t, a_{j}\right\rangle\right) \tag{2.7}
\end{align*}
$$

Consider the sets

$$
\begin{aligned}
& A:=\bigcup_{\substack{k=1 \\
\sigma_{k}=1}}^{N}\left\{\varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k} \mid \varepsilon_{1}, \ldots, \varepsilon_{k} \in\{-1,0,1\}, \varepsilon_{k} \neq 0\right\}, \\
& B:=\bigcup_{\substack{k=1 \\
\sigma_{k}=0}}^{N}\left\{\varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k} \mid \varepsilon_{1}, \ldots, \varepsilon_{k} \in\{-1,0,1\}, \varepsilon_{k} \neq 0\right\} .
\end{aligned}
$$

Since the sequence $\left(a_{k}\right)_{k=1, N}$ is component-wise lacunary, we have $(\{0\} \times$ $\mathbb{Z}) \cap(A \cup B)=\varnothing,(\mathbb{Z} \times\{0\}) \cap(A \cup B)=\varnothing$ and $A \cap B=\varnothing$, while clearly $|A \cup B| \leqslant 3^{N}$. In particular, $|A| \leqslant 3^{N},|B| \leqslant 3^{N}$.

Using now (2.7), we have

$$
P_{A} G_{N} * g_{N}(t)=\sum_{k=1}^{N} \frac{i \sigma_{k}}{2 k} \cos \left\langle t, a_{k}\right\rangle \prod_{j=1}^{k-1}\left(1+\frac{i}{2 j} \cos \left\langle t, a_{j}\right\rangle\right),
$$

and from (2.5) we obtain

$$
\begin{equation*}
\left|P_{A} G_{N} * g_{N}(0)\right|=\left|\sum_{k=1}^{N} \frac{i \sigma_{k}}{2 k} \prod_{j=1}^{k-1}\left(1+\frac{i}{2 j}\right)\right| \geqslant \frac{1}{2 \pi} \ln N \tag{2.8}
\end{equation*}
$$

where P_{A} is the linear operator on trigonometric polynomials, satisfying $P_{A} e^{i\langle t, n\rangle}=e^{i\langle t, n\rangle}$ if $n \in A$ and $P_{A} e^{i\langle t, n\rangle}=0$ otherwise.

On the other hand, according to our assumption and (2.6), we can find $f_{0}, f_{1}, f_{2} \in S_{\lambda}\left(\mathbb{T}^{2}\right)$, satisfying $g_{N}=f_{0}+\partial_{1} f_{1}+\partial_{2} f_{2}$, with the properties that $\partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{2}\right)$ and

$$
\left\|f_{0}\right\|_{S_{\lambda}}+\left\|f_{1}\right\|_{S_{\lambda}}+\left\|f_{2}\right\|_{S_{\lambda}}+\left\|\partial_{2} f_{2}\right\|_{L^{\infty}} \leqslant 3 C
$$

Let us note that

$$
\begin{equation*}
P_{A} G_{N} * g_{N}=P_{A} G_{N} * f_{0}+P_{A} G_{N} * \partial_{1} f_{1}+P_{A} G_{N} * \partial_{2} f_{2} \tag{2.9}
\end{equation*}
$$

We next estimate each term on the right hand side of (2.9).
For the second term, we have:

$$
\begin{aligned}
\| P_{A} G_{N} * & \partial_{1} f_{1} \|_{L^{\infty}} \\
& =\left\|G_{N} * P_{A} \partial_{1} f_{1}\right\|_{L^{\infty}} \leqslant\left\|G_{N}\right\|_{L^{1}}\left\|P_{A} \partial_{1} f_{1}\right\|_{L^{\infty}}=\left\|P_{A} \partial_{1} f_{1}\right\|_{L^{\infty}} \\
& \leqslant|A| \max _{n \in A}\left|\widehat{\partial_{1} f_{1}}(n)\right|=|A| \max _{n \in A}|n(1)|\left|\widehat{f_{1}}(n)\right| \\
& \leqslant|A| \max _{n \in A}|n(1)| \lambda(|n|)\left\|f_{1}\right\|_{S_{\lambda}} \leqslant|A| \max _{n \in A}|n(1)| \lambda(|n(2)|)\left\|f_{1}\right\|_{S_{\lambda}} \\
& \leqslant 3^{N} 4^{-N} 3 C<3 C
\end{aligned}
$$

where we have used (ii).
For the third term, we observe that, thanks to the identity $G_{N}=P_{A} G_{N}+$ $P_{B} G_{N}+1$, we have $P_{A} G_{N} * \partial_{2} f_{2}=G_{N} * \partial_{2} f_{2}-P_{B} G_{N} * \partial_{2} f_{2}$. Hence, we can write:

$$
\begin{aligned}
& \left\|P_{A} G_{N} * \partial_{2} f_{2}\right\|_{L^{\infty}} \\
& =\left\|G_{N} * \partial_{2} f_{2}-P_{B} G_{N} * \partial_{2} f_{2}\right\|_{L^{\infty}} \leqslant\left\|G_{N} * \partial_{2} f_{2}\right\|_{L^{\infty}}+\left\|P_{B} G_{N} * \partial_{2} f_{2}\right\|_{L^{\infty}} \\
& \leqslant\left\|G_{N}\right\|_{L^{1}}\left\|\partial_{2} f_{2}\right\|_{L^{\infty}}+\left\|G_{N}\right\|_{L^{1}}\left\|P_{B} \partial_{2} f_{2}\right\|_{L^{\infty}}=\left\|\partial_{2} f_{2}\right\|_{L^{\infty}}+\left\|P_{B} \partial_{2} f_{2}\right\|_{L^{\infty}} \\
& \leqslant 3 C+|B| \max _{n \in B}\left|\widehat{\partial_{2} f_{2}}(n)\right|=3 C+|B| \max _{n \in B}\left|n(2) \| \widehat{f_{2}}(n)\right| \\
& \leqslant 3 C+3^{N} \max _{n \in B}|n(2)| \lambda(|n|)\left\|f_{2}\right\|_{S_{\lambda}} \leqslant 3 C+3^{N} \max _{n \in B}|n(2)| \lambda(|n(1)|)\left\|f_{2}\right\|_{S_{\lambda}} \\
& \leqslant 3 C+3^{N} 4^{-N} 3 C<6 C,
\end{aligned}
$$

where we have used (iii) to pass from the fourth to the fifth line.
Finally, the first term is easier to handle. We have:

$$
\begin{aligned}
\left\|P_{A} G_{N} * f_{0}\right\|_{L^{\infty}} & =\left\|G_{N} * P_{A} f_{0}\right\|_{L^{\infty}} \leqslant\left\|P_{A} f_{0}\right\|_{L^{\infty}} \leqslant|A| \max _{n \in A}\left|\widehat{f_{0}}(n)\right| \\
& \leqslant|A| \max _{n \in A} \lambda(|n|)\left\|f_{0}\right\|_{S_{\lambda}} \leqslant|A| \max _{n \in A}|n(1)| \lambda(|n(2)|)\left\|f_{0}\right\|_{S_{\lambda}} \\
& \leqslant 3^{N} 4^{-N} 3 C<3 C
\end{aligned}
$$

These estimates together with (2.9) give us

$$
\left\|P_{A} G_{N} * g_{N}\right\|_{L^{\infty}} \leqslant 3 C+6 C+3 C=12 C
$$

which contradicts (2.8), since $\ln N>25 \pi C$.
Remarks. -
(1). - Similarly, a closer look to the proof in [6] gives the following analogue of Theorem 1.2 in the case of L^{1}.

ThEOREM 2.2. - Suppose $\lambda: \mathbb{N} \rightarrow(0, \infty)$ is decreasing to 0 . There exists $g \in L^{1}\left(\mathbb{T}^{2}\right)$ such that there are no $f_{0}, f_{1}, f_{2} \in S_{\lambda}\left(\mathbb{T}^{2}\right)$ with $\partial_{2} f_{2} \in$ $L^{1}\left(\mathbb{T}^{2}\right)$ and

$$
g=f_{0}+\partial_{1} f_{1}+\partial_{2} f_{2}
$$

(2). - The d-dimensional case, with $d \geqslant 3$, can be easily obtained from Theorem 1.2. More precisely, we have

Theorem 2.3. - Let $d \geqslant 2$. Suppose $\lambda: \mathbb{N} \rightarrow(0, \infty)$ is decreasing to 0 . There exists $g \in L^{\infty}\left(\mathbb{T}^{d}\right)$ such that there are no $f_{0}, f_{1}, f_{2}, \ldots, f_{d} \in \mathcal{D}^{\prime}\left(\mathbb{T}^{d}\right)$ with $f_{0}, f_{1}, f_{2} \in S_{\lambda}\left(\mathbb{T}^{d}\right), \partial_{2} f_{2} \in L^{\infty}\left(\mathbb{T}^{d}\right)$ and

$$
g=f_{0}+\partial_{1} f_{1}+\partial_{2} f_{2}+\cdots+\partial_{d} f_{d}
$$

Indeed, consider a $g^{\prime} \in C^{\infty}\left(\mathbb{T}^{2}\right)$ and $\psi \in C^{\infty}\left(\mathbb{T}^{d-2}\right)$ such that $0 \leqslant$ $\psi \leqslant 1$ and $\int_{\mathbb{T}^{d-2}} \psi=1$. If the above result were not true, we could find $f_{0}, f_{1}, f_{2}, \ldots, f_{d} \in \mathcal{D}^{\prime}\left(\mathbb{T}^{d}\right)$ such that

$$
g^{\prime} \otimes \psi=f_{0}+\partial_{1} f_{1}+\partial_{2} f_{2}+\cdots+\partial_{d} f_{d}
$$

and

$$
\left\|f_{0}\right\|_{S_{\lambda}\left(\mathbb{T}^{d}\right)}+\left\|f_{1}\right\|_{S_{\lambda}\left(\mathbb{T}^{d}\right)}+\left\|f_{2}\right\|_{S_{\lambda}\left(\mathbb{T}^{d}\right)}+\left\|\partial_{2} f_{2}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)} \leqslant C\left\|g^{\prime}\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}
$$

Without loss of generality, we can suppose that $f_{0}, f_{1}, f_{2}, \ldots, f_{d}$ are smooth. Integrating this equation in the last $d-2$ coordinates, we reduce the problem to the 2 -dimensional case: $g^{\prime}=f_{0}^{\prime}+\partial_{1} f_{1}^{\prime}+\partial_{2} f_{2}^{\prime}$ where

$$
f_{j}^{\prime}(t):=\int_{\mathbb{T}^{d-2}} f_{j}(t, \tau) \mathrm{d} \tau, \quad \text { for } j=0,1,2
$$

satisfy

$$
\left\|f_{0}^{\prime}\right\|_{S_{\lambda}\left(\mathbb{T}^{2}\right)}+\left\|f_{1}^{\prime}\right\|_{S_{\lambda}\left(\mathbb{T}^{2}\right)}+\left\|f_{2}^{\prime}\right\|_{S_{\lambda}\left(\mathbb{T}^{2}\right)}+\left\|\partial_{2} f_{2}^{\prime}\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)} \leqslant C\left\|g^{\prime}\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)} .
$$

Here, we have used the fact that, for all $n^{\prime} \in \mathbb{Z}^{2}$,

$$
\left|\widehat{f}_{j}^{\prime}\left(n^{\prime}\right)\right|=\left|\widehat{f}_{j}\left(n^{\prime}, 0\right)\right| \leqslant \lambda\left(\left|\left(n^{\prime}, 0\right)\right|\right)\left\|f_{j}\right\|_{S_{\lambda}\left(\mathbb{T}^{d}\right)}=\lambda\left(\left|n^{\prime}\right|\right)\left\|f_{j}\right\|_{S_{\lambda}\left(\mathbb{T}^{d}\right)}
$$

(3). - Using Lemma 2.1, and adapting the technique in [1], we can obtain similar anisotropic Ornstein type inequalities adapted to the L^{∞} case. We give below an example. For any $\varepsilon>0$, there exists a trigonometric polynomial f on \mathbb{T}^{2}, depending on ε, such that

$$
\varepsilon\left\|\partial_{1}^{3} \partial_{2}^{2} f\right\|_{L^{\infty}} \geqslant\left\|\partial_{1}^{4} f\right\|_{L^{\infty}}+\left\|\partial_{1}^{2} \partial_{2}^{4} f\right\|_{L^{\infty}}+\left\|\partial_{1} \partial_{2}^{6} f\right\|_{L^{\infty}}+\left\|\partial_{2}^{8} f\right\|_{L^{\infty}}
$$

Bibliography

[1] K. Kazaniecki \& M. Wojciechowski, "Ornstein's non-inequalities: Riesz product approach", https://arxiv.org/abs/1406.7319, 2014.
[2] C. T. McMullen, "Lipschitz maps and nets in Euclidean space", Geom. Funct. Anal. 8 (1998), no. 2, p. 304-314.
[3] D. Ornstein, "A non-inequality for differential operators in the L_{1} norm", Arch. Ration. Mech. Anal. 11 (1962), p. 40-49.
[4] D. Preiss, "Additional regularity for Lipschitz solutions of PDE", J. Reine Angew. Math. 485 (1997), p. 197-207.
[5] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, 1987.
[6] M. Wojciechowski, "On the representation of functions as a sum of derivatives", C. R. Acad. Sci. Paris 328 (1999), no. 4, p. 303-306.

[^0]: ${ }^{(*)}$ Reçu le 10 février 2020, accepté le 29 mai 2020.
 Keywords: divergence equation, Riesz products, function spaces.
 2020 Mathematics Subject Classification: 42B37, 42B05.
 (1) Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France eduard.curca@staff.uaic.ro

 The author was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir"
 (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
 Article proposé par Radu Ignat.

