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Asymptotic of the largest Floquet multiplier for
cooperative matrices *)

PuiLipPE CARMONA (1)

ABSTRACT. — The aim of this note is to give a link between the spectral radius
of the monodromy matrix of a linear differential equation with periodic coefficients
‘(ii—f(t) = A(t) z(t), with A(t) a cooperative irreducible matrix, and the mean spectral
abscissa fol s(A(u)) du.

RESUME. — Le but de cet article est d’établir un lien entre le rayon spectral de
la matrice de monodromie d’une équation différentielle linéaire & coefficients pério-
diques i—f(t) = A(t) z(t), avec A(t) une matrice coopérative irréductible, avec la

moyenne de l'abcisse spectrale fol s(A(u)) du.

1. Introduction

The motivation of our main result, Theorem 2.1 comes from the study of
the spread of infectious diseases for periodic systems in populations whose
individuals can be divided into a finite number of distinct groups.

The most famous threshold quantity used is the basic reproduction num-
ber Ry which has the following property: if Ry > 1, then the introduction
of one infectious individual (of any type) has a positive probability of in-
ducing a major epidemic; if Ry < 1, then the introduction of one infectious
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individual (of any type) has a null probability of inducing a major epidemic
(see [1, 5, 11]).

The value of Ry is determined by the study of a linear system
dzx
— = A(t)x(t 1.1
= A1), (1)
where A(t) is a d X d continuous matrix function.
Let us consider an example in a periodic case: a vector host model of the

African Horse Sickness (see [7, Section 3]). There, z1(t) (resp. z2(t)) denotes
the population of infected hosts (resp. vectors) at time ¢, and

—r b/ s(t)>
A(t) = , 1.2
) <5 s(t)  —n (12)
with 7 the removal rate of hosts, p the death rate of vectors, b (resp. ) the
rate constant for infection of hosts by vectors (resp. vectors by hosts), and
s(t) the population of susceptible vectors taken to be

s(t) = soerdsint) (1.3)

By construction,, the matrices involved in these compartmental models
are cooperative: A;;(t) > 0 if i # j.

Then Ry is defined to be the spectral radius of the next generation op-
erator named K in [6, Equation (4.6)] and L in [13, Equation (2.6)]. In the
periodic case, not only do the authors of [6, 13] establish the stability prop-
erties of Ry, but they also link it to another threshold quantity A4, whose
precise definition we give now.

Assume A(t) continuous periodic with period T, and let ¢4 be the fun-
damental matrix, that is the solution of

% = AB)oa(t),  6a(0) =1La. (14)

Let Aq = p(¢4(T)) be the spectral radius of the monodromy matrix ¢4 (7).
We have
Ry>1 < M\ >1, Ry<1l < N <1, (1.5)
(see [6, Theorem 1] or [13, Theorem 2]).
The easiest quantity to compute numerically is Ay by simulating the ODE

system on one period, even if efficient computation methods of Ry have been
devised (see e.g. [3]).

However estimating the influence of a small periodic perturbation on a
constant system may prove very difficult even when using the threshold A4
(see [4]).
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We introduce in this paper a new quantity, the mean spectral abscissa,
that is also a threshold quantity for large periods: this is our main theorem.

Perturbation theory is much easier to apply to the mean spectral abscissa
(see [4]).

2. Statement of the main result

Let us consider the linear system of differential equations
dz
3 (1) = Al) z(t) (2.1)

where A : R — My,q is a continuous matrix function. The fundamental
matrix is the matrix ¢ = ¢4 (t) solution of

d
D —AWe),  6(0) = Iu. (2.2
Assume that A is T periodic, that is

AT +1t) = A(t). (2.3)

Floquet’s theorem, see e.g. [12, Theorem 3.15, Chapter 3.6], establishes the
existence of a possibly complex matrix B and a continuous T-periodic matrix
function P such that P(0) = I; and

p(t) = P(t)e'B. (2.4)

For a matrix M with spectrum o (M) we let s(M) and p(M) be its spectral
abscissa and its spectral radius:

s(M) = sup {R(2),z € o(M)}, p(M) =sup{|z],z € o(M)}. (2.5)

The characteristic multipliers are the eigenvalues of the monodromy ma-
triz ¢(T) = eTP. The eigenvalues of B are called the characteristic expo-
nents.

If the spectral radius of ¢(T) = eTP is also an eigenvalue, then the largest
(in modulus) characteristic exponent is the spectral abscissa of B, also an
eigenvalue of B, and we have the relation:

= p($(T) = 5(B). (2.6)

Therefore when A is constant, and p(et?) is an eigenvalue of ¢4, we have
#Inp(¢(T)) = s(A) and our goal is to find a similar equation valid for
periodic matrices A, in the limit T — +4oc.
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We say that a matrix M is non negative, M > 0, if for all 4,7, M;; > 0
and we say that M is positive, M > 0 if for all 4, j, M;; > 0.

A matrix M is irreducible if for any i # j there exists an integer k > 1
and ig = i,41,...,ix = j such that M; ;  #0for 0 <p<k— 1.

We say that a matrix M is cooperative if M;; > 0 for i # j.

Let A : R — Myxq be a continuous 1-periodic matrix function, with
fundamental matrix ¢(t). We let ¢(T)(¢) be the fundamental matrix of the
T periodic matrix t — A(t/T).

THEOREM 2.1. — Assume that the matriz function t — A(t) is Lipschitz
and 1 periodic. Assume that for every t > 0 the matriz A(t) is cooperative
and irreducible. Then

lim %lnp(q[)(T)(T)): /O s(A(u)) du. (2.7)

T—+oco

Remark 2.2. — The assumption that A(t) is irreducible is important.
One easily sees, by taking a diagonal 2 x 2 matrix

Alt) = (“ff) v?t)) : (2.8)

that the quantities
= p(§(T)) = max ( /0 " (s) ds. /O Co(s) ds) ,
[ staenar= [ mastuts) o) as.

are in general different.

3. Proof of the main theorem

We shall need the following Lemmas, whose proof is postponed.

LEMMA 3.1. — Assume that A and B are continuous matriz functions
on I =[0,a] such that:

(1) B(0) is irreducible and for all t, B(t) is cooperative.
(2) Foranyt >0, B(t) > A(t) >0 and fort >0, B(t) — A(t) # 0.

(D) in other words the directed graph with vertices 1, ..., d and directed edges (i, j) for
M;; # 0 is connected by directed paths.
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Let ¢4 and ¢ be the fundamental matrices associated with A and B. Then,
foranytel,

da(t) < ¢p(t). (3.1)

The following Lemma results from an application of Perron Frobenius
Theorem to e?.

LEMMA 3.2. — Let A be a cooperative irreducible matriz. Then the spec-
tral abscissa s(A) is an isolated eigenvalue of A with a positive eigenvector.
Consequently, s(A) = p(A) is also A’s spectral radius.

If z,y > 0 are positive vectors then we consider the vector (%)1 = z’— and

we have obviously = < H%Hmy A non negative matrix is primitive if there
exists an integer k > 1 such that M+ > 0.

Observe that if a matrix is primitive, then it is irreducible and coopera-
tive.

Let us state a simple, but useful, bound on the spectral radius of the
product of primitive matrices that has been established by [8]. For sake of
completeness we supply a proof later.

LEMMA 3.3. — Let Ay, Ao, ..., A, be primitive non negative matrices
with associated eigenvectors u; > 0: Aju; = p(A;)u;. Then
p(A1As ... Ap) < p(Ar) - p(An)a(ur, uz) ... a(tp—1, un) (3.2)
with a(z,y) = H%HOOH%HOO > 1. Similarly we have the lower bound

p(A1Ag . An) = p(AL) - p(An)(aug, uz) . . . a(tn_1,un)) . (3.3)

Proof of the upper bound of the main theorem. — Since t — A(t) is
continuous, and A(t) is cooperative irreducible, by Lemma 3.2, for every ¢,
s(A(t)) is an isolated eigenvalue associated to a positive eigenvector. By the
continuity of the isolated eigenvalue and the corresponding eigenvector (see
e.g. [9, 10]) there exists a continuous function ¢ — u(t) such that u(t) > 0
satisfies

A(t)u(t) = s(A(t)) u(t) . (3.4)
Let us fix v > 0. Let J be the matrix with all coefficients equal to 1. Again, by
continuity of both the isolated eigenvalue and the corresponding eigenvector
there exists 19 = 1o (y) such that for n € [0,79) there exists a positive vector

u,f (t) such that

(A()+nT)uyy (t) = s(A(t) +0TJuy (1),
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Let C be a Lipschitz constant such that

|Aij(s) — A @) < Cls —t[ (Y s,1,4,5). (3.7)
Let N be a large integer. For any integer k, with n = %
C k k+1
< — —,— . 3.8
A(t) < A(k/N) + NJ<A(I<:/N)+77J fort € {N N } (3.8)

Therefore if 7 = %, then
A(t/T) < A(k/N) +nJ for t € [kr, (k4 1)7]. (3.9)

Applying Lemma 3.1 to ¢t — A(% + k/N) and to the constant irreducible
cooperative matrix A(k/N) + nJ ylelds then

T ((k + 1)7) o1 (k) ~F < T AR, (3.10)

Since all the matrices are non negative, we can combine the inequalities to
infer

o) (T) < eT(AN-1)/N)+nJ) . 7(AQ/N)+nJ) ;7(A0/N)+nJ) (3.11)
We now apply Lemma 3.3 to obtain

N-1
p(@ (1)) < exp (T > s(Ak/N) + 77J)>

k=0
xHa (k/N),uf((k+1)/N)). (3.12)

By continuity of the functions « and w and the bounds (3.5) we have, for
N > Ny(v) that ensures n < n9(7),

Cy=Ci(y) = sup a(uf (t),uf (t+1/N)) < +oo. (3.13)

SIn(p( (1)) <7+ 1 3 A/ + Lm(cy).  (3.14)
Therefore,
. 1
I%Hiilif T In(p(o™(T))) < v+ — Z A(k/N)) (3.15)

Hence, by the convergence of Riemann sums, letting N — +o0,

lim sup % In(p(6™(T))) < v+ /0 s(A(w))du. (3.16)

T—4+oc0
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We conclude by letting v — 0. |
Proof of the lower bound. — The proof follows the same steps except

that we need to be sure to have cooperative matrices. We define
Y (M) g5 = (Mg — ) Ly + (Mg — m)" Lizjy - (3.17)

For 7 = T/N we have
A(t/T) = 4, (A(k/N)) for t € [kr, (k+ 1)7]. (3.18)
We apply Lemma 3.1 and get
D ((k+ 1)7)p D (k1) ™t > e™¥n AR/ (3.19)

We know that e™¥n (AR/N) > 0 since ¥, (A(t)) is cooperative for all
t € [0,1]. Then we resume the proof as before, mutatis mutandis. ]

4. Postponed proofs of Lemmas

Proof of Lemma 3.1. —

First Step. — Assume that xg and yg are vectors such that zg > 0 and
Yo > xo. If 2(t) = pa(t)xo and y(t) = ¢p(t)yo then these are continuous
functions such that y(0) = yo > x(0) = xo. We let z(t) = y(t) — x(¢t) and
assume that there exists ¢ > 0 such that z(¢) > 0 is false. We let

7=inf{t > 0: 2(¢t) > 0 is false} (4.1)
be the first time this happens. We have 0 < 7 < +00.

Then on [0, 7) the function z(¢) > 0 and there exists an index ¢ such that
zi(7) = 0. Since z is C', we have z/(7) < 0. Therefore, since A(7) > 0 and
2(1) 20,

0> zj(7) = (1) — i(7)
= (B(r)y(r) — A(7)2(7))i
Z ((B=A)(1)y(r))i -
Since B(0) is irreducible and for all ¢, B(t) cooperative, we know from [2,
Lemma 2| that, since 7 > 0, y(7) > 0. Moreover, (B — A)(1) > 0 and

(B—A)(1) # 0 therefore (B — A)(7)y(r) > 0 and we obtain a contradiction.
We have thus established that for all ¢ > 0, y(¢) > =(t).

(B = A)(M)y(7))i + (A(7)2(7)),
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Second Step. — Consider a sequence (yo(n))nen of vectors such yg(n) >
xo and yo(n) — xo, then, by the first step, for all ¢ > 0,

¢B(t)yo(n) > da(t)zo.
By continuity of the flow, letting n — +o00 we get that for all ¢, for all
Zo > 07
¢B(t)$0 2 (bA(t)fL'(). O

Proof of Lemma 3.2. — From [2, Lemma 2] we deduce that e? > 0.
Therefore, by Perron Frobenius, its spectral radius p > 0 is an isolated
eigenvalue with a positive eigenvector u: eu = pu. Since

e Au = Aetu = pAu (4.2)

and the eigenspace of p is of dimension 1, we obtain that for a constant c,
Au = cu. Thus, e*u = eCu, that is e = p. We conclude by observing the
functional relation between the spectra

o(e?)={e*: z € a(A)}, (4.3)
that entails that ¢ = s(A) and that s(A) is an isolated eigenvalue of A. O

Proof of Lemma 3.3. — The proof is quite elementary and relies on the
fact that A > 0 and =z < y implies Az < Ay. Indeed,

A1A2 N Anun = p(An)AlAQAnflun

u
< p(An) = A1A2An71un71
Un—1 || oo
u
= p(An) - p(An—l)Al cee An—Zun—l
Un—1 || oo
n n—2 u
< < p(Ax) nk 41
n n—2 u u
< Ay nok — 1 uy
Lot I 22 el
n n—2
<< ] p(Ar) [ ein—rs ttn—r—1) un -
k=1 k=0

By Perron Frobenius theorem applied to the matrix M = A; --- A,,, we have
a vector u, > 0 and a constant r > 0 such that Mu,, < ru,, and therefore
p(M) < r. The proof of the lower bound is similar. O
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