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On the algebraic properties of exponentially stable
integrable hamiltonian systems (∗)

Santiago Barbieri (1)

ABSTRACT. — Steepness is a generic geometric property which, together with
complex-analyticity, is needed in order to ensure stability of a nearly-integrable
hamiltonian system over exponentially long times. Following a strategy developed by
Nekhoroshev, we construct sufficient conditions for steepness of a given function that
involve algebraic equations on its derivatives up to order five. This is important in
view of applications (e.g. in Celestial Mechanics). The underlying analysis suggests
some interesting considerations on the genericity of steepness. Moreover, this work
represents a first step towards the construction of sufficient conditions for steepness
involving the derivatives of the studied function up to an arbitrary order.

RÉSUMÉ. — Un système hamiltonien presque intégrable est stable sur un temps
exponentiellement long s’il est holomorphe et si sa partie intégrable satisfait à une
propriété géométrique générique dite d’escarpement (steepness). Suivant une stra-
tégie développée par Nekhoroshev, on donne des conditions algébriques suffisantes
pour garantir qu’une fonction donnée est escarpée, ce qui est important en vue des
applications, notamment en mécanique céleste. Ces conditions portent sur les déri-
vées jusqu’à l’ordre cinq de la fonction étudiée. L’étude de la théorie sous-jacente
permet des considérations intéressantes sur la généricité de la propriété d’escarpe-
ment. De plus, ce travail représente un premier pas vers la construction de conditions
qui garantissent l’escarpement d’une fonction donnée et qui portent sur ses dérivées
à un ordre arbitraire.
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1. Introduction

Hamiltonian formalism is the natural setting appearing in the study of
many physical systems. In the simplest case, we consider the motion of a
point on a Riemannian manifold M, called configuration manifold, governed
by Newton’s second law (q̈ = −∇U(q) for a potential function U in the
euclidean case, with q a system of local coordinates for M). This system can
be transformed by duality thanks to Legendre’s transformation and reads

ṗ = −∂qH(p, q) , q̇ = ∂pH(p, q) ,

where H(p, q) is a real differentiable function on the cotangent bundle T ∗M,
classically called hamiltonian, and p is the coordinate conjugated to q. Sys-
tems integrable by quadrature are an important class of hamiltonian sys-
tems. By the classical Liouville-Arnol’d Theorem, under general topological
assumptions, an integrable system depending on 2n variables (n degrees of
freedom) can be conjugated to a hamiltonian system on the cotangent bundle
of the n-dimensional torus Tn, whose equations of motion take the form

İ = −∂ϑh(I) = 0 , ϑ̇ = ∂Ih(I) ,

where (I, ϑ) ∈ Rn × Tn are called action-angle coordinates. Therefore, the
phase space for an integrable system is foliated by invariant tori carrying the
linear motions of the angular variables (called quasi-periodic motions). Inte-
grable systems are exceptional, but many important physical problems are
governed by hamiltonian systems which are close to integrable. Namely, the
dynamics of a near-integrable hamiltonian system is described by a hamil-
tonian function whose form in action-angle coordinates (I, ϑ) ∈ Rn × Tn

reads
H(I, ϑ) := h(I) + εf(I, ϑ) ,

where ε is a small parameter. The structure of the phase space for this kind of
systems can be inferred with the help of Kolmogorov–Arnol’d–Moser (KAM)
theory. Namely, under a general non-degeneracy condition for h, a Cantor set
of positive measure of invariant tori carrying quasi-periodic motions for the
integrable flow persists under a suitably small perturbation (see e.g. [2, 5]).

For systems with three or more degrees of freedom, KAM theory yields lit-
tle information about trajectories lying in the complementary of this Cantor
set, where instabilities can occur (see e.g. [1]). However, in a series of articles
published during the seventies (see [10, 11]) Nekhoroshev proved an effective
result of stability for an open set of initial conditions holding over a time
which is exponentially long in the inverse of the size ε of the perturbation,
provided that the hamiltonian is analytic and that its integrable part satisfies
a generic transversality property known as steepness.

From a more technical point of view, steepness is defined as follows:
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Definition 1.1. — Let A be an open set of Rn and h : A −→ R a
smooth function. h is steep at I := (I1, . . . , In) ∈ A if ∇h(I) ̸= 0 and if, for
any m = 1, . . . , n − 1, there exist constants Cm > 0, δm > 0 and αm > 1
such that, for all m-dimensional affine subspace ΛI

m orthogonal to ∇h(I), the
gradient of the restriction of h to ΛI

m, which we denote by ∇(h|ΛI
m

), satisfies

max
0⩽η⩽ξ

(
min

I′ ∈ΛI
m, ∥I−I′ ∥=η

∥∇(h|ΛI
m

)(I
′
)∥
)

> Cmξαm , ∀ ξ ∈ (0, δm] . (1.1)

The constants Cm and δm are called the steepness coefficients of h,
whereas the αm are its steepness indices. In particular, in the analytic case,
a function is steep if and only if, on any affine hyperplane ΛI

m, there exists no
curve γ with one endpoint in I such that the restriction ∇(h|ΛI

m
) identically

vanishes on γ, as is showed in [12]. From a heuristic point of view, for any
value m ∈ {1, . . . , n − 1} the gradient ∇h must “bend” towards ΛI

m when
“travelling” along the curve γ ∈ ΛI

m, so that critical points for the restriction
of h to ΛI

m must not accumulate (see [12]). Finally, h is said to be steep in a
given domain if it is steep at each point of this set with uniform indices and
coefficients.

With this notion, Nekhoroshev’s effective result of stability reads

Theorem 1.2 (Nekhoroshev, 1977 [10]). — Consider a near-integrable
system with hamiltonian H(I, ϑ) := h(I)+εf(I, ϑ) analytic in some complex
neighborhood of Br×Tn, where Br is the open ball of radius r in Rn, and sup-
pose h steep. Then there exist positive constants a, b, ε0, C1, C2 such that, for
any ε ∈ [0, ε0) and for any initial condition not too close from the boundary,
one has |I(t) − I(0)| ⩽ C2εa for any time t satisfying |t| ⩽ C1 exp

(
ε−b
)
.

This result also holds under the weaker regularity assumption that the
hamiltonian is in the Gevrey class (see [8]) and by requiring steepness to
be verified only on those subspaces which are spanned by integer vectors
satisfying suitable arithmetic conditions (see [7, 13]). However, one cannot
get completely rid of the steepness hypothesis since examples of instability
over times of order 1/ε may be constructed in case this property is not sat-
isfied on a subspace spanned by integer vectors (see [4, 12]). Therefore, a
crucial step in order to establish stability over exponentially long times for
a near-integrable hamiltonian system consists in building a suitable steep
integrable approximation. This aspect is important when trying to apply
Nekhoroshev’s estimates to concrete examples, as it is shown for example in
[3] and [14]. As we shall see, the steepness property is generic, both in mea-
sure and topological sense. However, since its definition is not constructive,
it is difficult to directly establish wether a given function is steep or not. For-
tunately, Nekhoroshev provided in [11] a scheme which, in principle, allows
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to deduce explicit sufficient algebraic conditions for steepness involving the
derivatives of the studied function up to an arbitrary order. In particular,
let us define the r-jet PI(h, r, n) of a smooth function h of n variables at I
as the vector containing all the coefficients of the Taylor polynomial of h at
I up to order r, with the exception of the constant term, namely

PI(h, r, n) :=
{

1
µ!

∂µh

∂Iµ
, 1 ⩽ |µ| ⩽ r

}
,

where µ := (µ1, . . . µn) is a multi-index of naturals and |µ| =
∑n

i=1 µi.

With this definition, one can pass to the quotient in the set of smooth
functions and consider a representative of the class of smooth functions of n
variables having the same r-jet at I. We also denote by PI(r, n) the polyno-
mial space of the r-jets of smooth functions of n variables calculated at I.
Nekhoroshev showed that, for any r ⩾ 2, one can construct a semi-algebraic
set whose closure contains the r-jets of all non-steep functions with non-zero
gradient at I. Namely, we have the following

Theorem 1.3 (Nekhoroshev, 1979 [11]). — For any n ⩾ 2 and r ⩾ 2,
there exists a semi-algebraic set σr

n(I) ⊂ PI(r, n), whose closure is denoted
with Σr

n(I), such that any given function h satisfying:

(1) h ∈ C2r−1 in a neighborhood of I ,
(2) ∇h(I) ̸= 0 ,
(3) PI(h, r, n) ∈ PI(r, n)\Σr

n(I) ,

is steep in some neighborhood of I.

Moreover, for any m = 1, . . . , n − 1, one has

codim Σr
n ⩾

max
{

0, r − 1 − n(n−2)
4

}
, if n is even,

max
{

0, r − 1 − (n−1)2

4

}
, if n is odd,

(1.2)

and the steepness indices αm of h are superiorly bounded by

αm :=

max
{

1, 2r − 3 − n(n−2)
2 + 2m(n − m − 1)

}
, if n is even,

max
{

1, 2r − 3 − (n−1)2

2 + 2m(n − m − 1)
}

, if n is odd.
(1.3)

As Nekhoroshev points out in his discussion, this result implies a strati-
fication in the space of jets: the strata Σr

n(I), with r ⩾ 2, are semialgebraic
sets of increasing codimension. Hence, as expression (1.2) shows, for fixed n
and sufficiently high r, the steepness property is generic in PI(r, n). More-
over, for fixed values of r and n, in addition to non-steep functions, also all
steep functions with steepness indices greater than αm are contained in the
stratus Σr

n(I). In other words, for increasing values of r, the complementary
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of Σr
n(I) contains more and more jets of steep functions and the steepness

indices of these functions are superiorly bounded by a quantity αm which
increases linearly with r. A way to obtain sufficient conditions for steepness
in the space of jets at a fixed order r consists therefore in knowing the ex-
plicit form of the stratus Σr

n(I) or the form of some closed set containing
it: a function whose r-jet lies outside this set is steep. The sets Σ2

n(I), for
any n ⩾ 2, have been explicitly described by Nekhoroshev in references [10]
and [11]. Before stating Nekhoroshev’s results, we denote by

hk
I [v1, . . . , vk] =

n∑
i1,...,ik=1

∂kh

∂Ii1 . . . ∂Iik

(I)v1
i1

. . . vk
ik

the k-th order multilinear form corresponding to the k-th coefficient of the
Taylor expansion of a function h which is k-times continuously differentiable
in a neighborhood of I. We also give the following

Definition 1.4. — For r ∈ N, r ⩾ 2, a function h of class Cr in a
neighborhood of a point I is said to be r-jet non-degenerate if the system

h1[v] = 0 ; h2[v, v] = 0 , . . . , hr[v, . . . , v] = 0
admits only the trivial solution v = 0. If this is not the case, h is said to be
r-jet degenerate.

With this setup, Nekhoroshev proved that, in the space of jets of order
two, one has PI(h, 2, n) ∈ PI(2, n)\Σ2

n(I) if and only if h is two-jet degen-
erate. This condition is equivalent to requiring that h is quasi-convex (i.e.
convex on level sets) at I and Theorem 1.3 implies that all quasi-convex
functions in C3 class around a non-critical point I are steep in a neigh-
borhood of I. In a similar way, Nekhoroshev found a sufficient condition
for steepness involving the derivatives of order three: namely, if a function
h ∈ C5 around a non-critical point I is three-jet non-degenerate at I, then h
is steep in a neighborhood of I. As we shall see in Subsection 6.3, this result
is more general than the conditions that can be inferred on the jets of order
three by simply following the scheme of Theorem 1.3, since it applies to a
wider set of functions. Its proof is not found in Nekhoroshev’s works (see
[9] and [11]) and it has been explicitly written in an analytic way in [6] for
systems with any number of degrees of freedom. As we shall show in Sub-
section 6.3, the fact that the three-jet non degeneracy of a given function
depending on n = 2, 3, 4, 5 coordinates implies its steepness comes out as
a straightforward corollary of the algebraic structure of the equations that
define the sets Σr

n(I), for r = 4, 5 and n = 2, 3, 4, 5. Following this discus-
sion, we conjecture that the algebraic properties of the sets Σr

n(I), for any
values of r and n, can be used to prove the steepness of all three-jet non-
degenerate functions depending on an arbitrary number of variables; this
would constitute an alternative proof to the one used in [6].
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However, the algebraic form of the strata Σr
n(I), for r ⩾ 4, cannot be

expressed so straightforwardly as in the cases r = 2, 3. In [15] the authors
were able to build closed sets containing the strata Σ4

n(I) for n = 2, 3, 4 by
exploiting Nekhoroshev’s strategy. For n ⩾ 5 and r = 4, on the other hand,
Nekhoroshev’s scheme turns out not to be helpful since it yields conditions
for steepness which are stronger than three-jet non degeneracy.

In this work, we develop the scheme in [15] and we build closed sets
containing Σ5

n(I) for n = 2, 3, 4, 5. This allows us to formulate new explicit
conditions for steepness involving the five-jet of a given function. Similarly
to the case considered in [15], the constraints we find are useful only in the
case of systems with n = 2, 3, 4, 5 degrees of freedom, as we shall discuss
in Subsection 6.1. Moreover, we slightly modify the construction in [15] so
to get rid of some hypotheses of non-degeneracy on the hessian matrix of
the function whose steepness is being tested. Furthermore, this work can
be seen as a first step towards the formulation of sufficient conditions for
steepness in the space of jets of arbitrary order. Indeed, a comparison on the
equations defining the “bad” sets σr

n(I) defined in Theorem 1.3, for r = 4, 5,
suggests hints on the algebraic structure of σr

n(I) for any value of r, which
shall be studied in detail in a further work. By formula (1.2), this would
allow to obtain generic conditions for steepness for functions depending on
an arbitrary number of degrees of freedom. Actually, if the explicit expression
of the sets σn

r (I) were known for all r, n ∈ N, for any fixed value of n one
should then simply find the minimal order r∗, depending on n, for which the
codimension of the bad set σr

n(I) is positive. At that point, steepness would
be generic in the space of jets of order r∗ and a way to test steepness of a
given function would be to see if its r∗-jet belongs to the complementary of
the closure of σr∗

n (I).

This paper is organized as follows: in Section 2 we state our results,
whereas in Section 3 we test these conditions on a couple of polynomial
examples. Section 4 is dedicated to an overview on Nekhoroshev abstract
strategy to construct sets σr

n(I), Section 5 contains the proofs of the state-
ments in Section 2 and, finally, Section 6 contains some remarks and a short
discussion on the possible developements of this work.

2. Results

Below, we state our results separately for each of the possible values of
the number of degrees of freedom n. As a matter of notation, for fixed n
and for any collection of m ∈ {1, . . . , n − 1} vectors v1, . . . , vm in Rn, we
shall indicate with rk(v1, . . . , vm) the linear rank of the matrix (v1, . . . , vm)
generated by this collection.
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For n = 2 we have

Theorem 2.1. — Let A be an open set of R2 and h : A −→ R be a
smooth function. Let I ∈ A be a point such that ∇h(I) ̸= 0. If h is five-jet
non-degenerate at I, then h is steep in some neighborhood of I.

For n = 3 we have

Theorem 2.2. — Let A be an open set of R3 and h : A −→ R be a
smooth function. Let I ∈ A be a point such that ∇h(I) ̸= 0. If

(1) h is five-jet non-degenerate at I;
(2) for any v ̸= 0 such that h is three-jet degenerate at I, any vector u

solving system

h1
I [u] = 0 ; h2

I [u, v] = 0 ; h2
I [u, u]h4

I [v, v, v, v] = 3(h3
I [v, v, u])2

satisfies rk(u, v) < 2;

then h is steep in some neighborhood of I.

For n = 4 we have

Theorem 2.3. — Let A be an open set of R4 and h : A −→ R be a
smooth function. Let I ∈ A be a point such that ∇h(I) ̸= 0.

If

(1) h is five-jet non-degenerate at I;
(2) for all v ̸= 0 such that h is three-jet degenerate at I, any vector u

solving system
h1

I [u] = 0 ; h2
I [u, v] = 0 ; h2

I [u, u]h4
I [v, v, v, v] = 3(h3

I [v, v, u])2

15(h3
I [v, v, u])2h3

I [u, u, v] + h5
I [v, v, v, v, v](h2

I [u, u])2

= 10h4
I [v, v, v, u]h3

I [u, v, v]h2
I [u, u]

(2.1)

satisfies rk(u, v) < 2;
(3) for all v ̸= 0 such that h is three-jet degenerate at I, any couple of

vectors (u, w) solving

h1
I [u] = 0 ; h1

I [w] = 0 ; h2
I [u, v] = 0 ; h2

I [w, v] = 0 (2.2)

satisfies rk(u, v, w) < 3 ;

then h is steep in some neighborhood of I.

For n = 5 we have
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Theorem 2.4. — Let A be an open set of R5 and h : A −→ R be a
smooth function. Let I ∈ A be a point such that ∇h(I) ̸= 0.

If

(1) h is four-jet non-degenerate at I;
(2) for all v ̸= 0 such that h is three-jet degenerate at I, any vector u

solving
h1

I [u] = 0 ; h2
I [u, v] = 0 ; h2

I [u, u]h4
I [v, v, v, v] = 3(h3

I [v, v, u])2

15(h3
I [v, v, u])2h3

I [u, u, v] + h5
I [v, v, v, v, v](h2

I [u, u])2

= 10h4
I [v, v, v, u]h3

I [u, v, v]h2
I [u, u]

(2.3)

satisfies rk(u, v) < 2;
(3) for all v ̸= 0 such that h is three-jet degenerate at I, any couple of

vectors (u, w) solving
h1

I [u] = 0 ; h1
I [w] = 0 ; h2

I [u, v] = 0 ; h2
I [w, v] = 0

{h4
I [v, v, v, v]h2

I [u, u]−6(h3
I [u, v, v])2}{h2

I [w, w]h2
I [u, u]−(h2

I [u, w])2}
+ 12h3

I [u, v, v]h3
I [v, v, w]h2

I [u, u]h2
I [u, w] − 6(h3

I [u, v, v])2(h2
I [u, w])2

− 6(h3
I [v, v, w])2(h2

I [u, u])2 = 0

(2.4)

satisfies rk(u, v, w) < 3 ;
(4) for all v ̸= 0 such that h is two-jet degenerate at I, any triplet of

vectors (u, w, x) solving{
h1

I [u] = 0 ; h1
I [w] = 0 ; h1

I [x] = 0
h2

I [u, v] = 0 ; h2
I [w, v] = 0 ; h2

I [x, v] = 0
(2.5)

satisfies rk(u, w, x, v) < 4 ;

then h is steep in some neighborhood of I.

3. Examples

In this section, we test our results on some polynomial examples.

Example 3.1. — The function

h(I) = h(I1, I2, I3, I4) = I5
2
5 + I3

1
3 − I2

1
2 + I1I2

2 − I2
3
2 − I4 (3.1)

is steep in a neighborhood of the origin I = 0.

– 1372 –



On the algebraic properties of exponentially stable integrable hamiltonian systems

Proof. — We start be remarking that this function is three-jet and four-
jet degenerate at the origin on those vectors v ̸= 0 of the form

v := (v1, v2, v3, v4) = (0, v2, 0, 0) , (3.2)
so that neither Nekhoroshev explicit algebraic conditions for steepness, nor
theorems in [15] apply. However, the claim can be proven by applying The-
orem 2.3. Indeed, it is easy to see that h is five-jet non-degenerate at I = 0.
Moreover, system (2.1) reads

u4 = 0 ; u1v1 + u3v3 − 1
2u1v2 − 1

2u2v1 = 0 ; v5
2(u2

1 + u2
3 − u1u2)2 = 0 (3.3)

and, by taking expression (3.2) into account, one has that the only non-
null solution is given by vectors of the kind u = (0, u2, 0, 0), which satisfy
rk(u, v) < 2.

Finally, system (2.2) reads
u4 = w4 = 0
u1v1 + u3v3 − 1

2 u1v2 − 1
2 u2v1 = 0

w1v1 + w3v3 − 1
2 w1v2 − 1

2 w2v1 = 0
(3.4)

and, by taking expression (3.2) again into account, the only possible solutions
are two families of vectors of the kind u = (0, u2, u3, 0) and w = (0, w2, w3, 0),
which satisfy rk(u, v, w) < 3. Therefore, the hypotheses of Theorem 2.3 are
fulfilled and the proof is concluded. □

Example 3.2. — The function

h(I) = h(I1, I2, I3, I4, I5)

= I4
4
4 + I4

5
4 + I3

3
3 + I3I2

2
2 − I2

1
2 − I2

3
2 − I2

5
2 + I3I4 + I2 (3.5)

is steep in a neighborhood of the origin I = 0.

Proof. — We start by remarking that this function is two-jet degenerate
at the origin on those vectors z ̸= 0 of the form

z := (z1, 0, z3, z4, z5) (3.6)
whose coordinates satisfy

z2
1 + z2

3 + z2
5 − 2z3z4 = 0 , (3.7)

and three-jet degenerate on those vectors v ̸= 0 of the kind
v := (0, 0, 0, v4, 0) . (3.8)

Therefore, Nekhoroshev’s non-degeneracy conditions on the jets of order
two and three are helpless in this case. Moreover, since this function has
five degrees of freedom, the results in [15] cannot be used (they only hold
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for n = 2, 3, 4). However, the claim can be proven by making use of Theo-
rem 2.4. First, it is easy to see that h is four-jet non-degenerate at the origin.
Moreover, by taking expression (3.8) into account, system (2.3) reads

u2 = 0 ; u3 = 0 ; u2
1 + u2

5 = 0 , (3.9)

which is solved by vectors of the kind u = (0, 0, 0, u4, 0), that depend linearly
on v. On the other hand, system (2.4) has the form

u2 = 0 ; w2 = 0 ; u3 = 0 ; w3 = 0 ; (u2
1 + u2

5)(u1w5 − u5w1)2 = 0 , (3.10)

where the particular form (3.8) of vector v has been taken into account once
again.

There are four possible cases

(1) u2
1 + u2

5 = 0, which, by system (3.10), implies u1 = u5 = 0, so that
vector u is of the kind u = (0, 0, 0, u4, 0), which is parallel to v;

(2) u1 = 0, u5 ̸= 0, which, by the last equation in (3.10), implies w1 =
0, so that u and w have the form u = (0, 0, 0, u4, u5) and w =
(0, 0, 0, w4, w5), so that rk(u, v, w) < 3;

(3) u1 ̸= 0, u5 = 0 which is similar to the previous point and yields
u, w of the kind u = (u1, 0, 0, u4, 0), w = (w1, 0, 0, w4, 0), so that
rk(u, v, w) < 3;

(4) u1 ̸= 0, u5 ̸= 0 which, by system (3.10), yields u5w1 − u1w5 = 0.
Therefore, one has

det


0 0 0 v4 0
u1 0 0 u4 u5
w1 0 0 w4 w5
0 1 0 0 0
0 0 1 0 0

 = v4(u5w1 − u1w5) = 0

so that, since

rk

0 0 0 v4 0
0 1 0 0 0
0 0 1 0 0

 = 3 ,

one must have rk(u, w) < 2 and, consequently, rk(u, v, w) < 3.

Finally, system (2.5) reads
u2 = 0 ; w2 = 0 ; x2 = 0
u1z1 + u3z3 + u5z5 − u3z4 − u4z3 = 0
w1z1 + w3z3 + w5z5 − w3z4 − w4z3 = 0
x1z1 + x3z3 + x5z5 − x3z4 − x4z3 = 0

(3.11)
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which means that the vectors u, w, x belong to the three-dimensional sub-
space orthogonal to Span{(0, 1, 0, 0, 0), (z1, 0, z3 − z4, −z3, z5)}. By looking
at expressions (3.6) and (3.7), we see that vector z belongs to the same
subspace, so that rk(u, w, x, z) < 4. The hypotheses of Theorem 2.4 are
therefore fulfilled and the proof is concluded. □

4. The steepness property in the space of jets

We start by recalling Nekhoroshev’s abstract construction (see [11]) of
the sets σr

n(I) in Theorem 1.3, with r, n ⩾ 2, whose closures contain all non
steep functions with non-zero gradient at the point I.

Definition 4.1. — Take two integers r, n ⩾ 2 and define βm := αm+3
2 ,

with αm as in Theorem 1.3.

σr
n(I) ⊂ PI(r, n) is the set containing the r-jets of smooth functions h

such that

(1) ∇h(I) ̸= 0
(2) There exists an m-dimensional subspace ΛI

m orthogonal to ∇h(I)
and a curve γ : R −→ ΛI

m of the form

γ(t) :=
{

x1(t) = t,

xi(t) =
∑βm−1

j=1 bijtj , i ∈ {2, . . . , m} , bij ∈ R,
(4.1)

such that the restriction of the gradient of h to γ(t) has a zero of
order not smaller than βm − 1 at t = 0:

dp(∇h|ΛI
m

)|γ(t)

dtp

∣∣∣∣
t=0

= 0 , p ∈ {1, 2, . . . , βm − 1} . (4.2)

Remark. — The reader might wonder why the value βm = (αm+3)/2 was
chosen in the definition of σr

n(I). In fact, in his first work on the genericity
of steepness, Nekhoroshev proves that, for any fixed βm ∈ N, βm > 1, any
polynomial P ∈ PI(r, n)\σr

n(I) is steep on the subspace ΛI
m with indices

αm = 2(βm − 1) − 1, hence βm = (αm + 3)/2 (see [9, Theorem C and
Lemma 7.2.2]).

With this definition, we can write down the algebraic conditions that the
r-jet PI(h, r, n) of a smooth function h must satisfy in some m-dimensional
subspace ΛI

m in order to belong to σr
n(I). For fixed m, these can be gathered

in a system Ξm(h, I, n) composed of four subsystems ξm,l, with l = 1, 2, 3, 4,

Ξm(h, I, n) :=
{

ξm,1(h) ; ξm,2(h, Ai)
ξm,3(h, Ai) ; ξm,4(h, Ai, bij),
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where i ∈ {1, . . . , m}, j ∈ {1, . . . , βm − 1}, the Ai are linearly independent
vectors (with origin at I) which constitute a basis for ΛI

m and the coefficients
bij are real parameters defining a curve γ(t) as in (4.1). One has that

(1) ξ1(h) imposes ∇h(I) ̸= 0;
(2) ξ2(h, Ai) imposes the vectors A1, . . . , Am to be linearly independent,

rk[A1, . . . , Am] = m ;

(3) ξ3(h, Ai) imposes the vectors A1, . . . , Am to be orthogonal to ∇h(I),

h1
I [A1] = 0 ; . . . ; h1

I [Am] = 0 ;

(4) ξ4(h, Ai, bij) is a system of m(βm −1) equations obtained as follows.
We denote by x1, . . . , xm the coordinates for ΛI

m with respect to the
basis A1, . . . , Am. By construction, these coordinates are null at I.
Then, we consider the Taylor polynomial of h|ΛI

m
at I up to order

βm, namely

P βm
n (x) :=

m∑
i=1

h1
I [Ai]xi + 1

2

m∑
i,j=1

h2
I [Ai, Aj ]xixj

+ · · · + 1
βm!

m∑
i, j, k, . . . , l = 1︸ ︷︷ ︸

βm terms

hβm−1
I [Ai, Aj , Ak, . . . , Al]xixjxk . . . xl . (4.3)

Condition (4.2) can now be imposed by considering the gradient
∇P βm

n (x), by injecting expression (4.1) in each of its m components
and by requiring that the βm − 1 coefficients of the resulting poly-
nomial in t are null. One thus obtains m(βm − 1) equations.

For fixed m, Ξm(h, I, n) is said to be solvable for a given h at I if there exist
a basis A1, . . . , Am and real parameters bij that verify it. PI(h, r, n) belongs
to σr

n(I) if at least one of the systems Ξm(h, I, n), with m ∈ {1, . . . , n − 1},
is solvable for h.

Indeed, following Theorem 1.3, in the sequel we will try to consider the
closure of the algebraic conditions defining σ5

n(I) and, when this turns out
to be too complicated, we will choose suitable closed sets containing σ5

n(I),
with n = 2, 3, 4, 5. We will not deal with the case n ⩾ 6 since in this situation
the conditions we find yield sets of steep functions which are smaller than
those yielded by the three-jet non degeneracy condition, as it was already
pointed out in [15].
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5. Proofs of Theorems 2.1–2.4

For the sake of simplicity, from now on we drop the subscript I in hI

referring to the point where the considered jet is calculated. Moreover, we
denote by ΠΛI

m
the projection onto an m-dimensional linear affine subspace

ΛI
m orthogonal to the gradient. We start by stating the following simple

lemma, which will turn out to be useful when trying to prove the closedness
of the sets which we shall consider in the sequel, namely

Lemma 5.1. — Let E be a metric space, K a compact subset of some
metric space and ∆ a closed subset of E × K. Then, the projection of ∆ on
E, denoted with ΠE(∆), is closed.

Proof. — Let {pn}n∈N be a sequence in ΠE(∆) converging to a point p
and {kn}n∈N a sequence in K satisying (pn, kn) ∈ ∆. Since K is a compact
subset of some metric space, one can extract a subsequence {knl

}l∈N con-
verging to a point k ∈ K. Hence, the sequence {(pnl

, knl
)}l∈N in ∆ converges

to (p, k) ∈ ∆, since ∆ is closed. This implies that p belongs to ΠE(∆), which
is therefore closed. □

The following sets will turn out to be particularly useful in the sequel.

Definition 5.2. — For n = 2, 3, 4, we denote by Ψ∗
1(n) ⊂ PI(5, n) the

set of those jets of order five which satisfy the five-jet degeneracy condition.
Similarly, for n = 5 we denote by Ψ∗

1(5) ⊂ PI(5, 5) the set of those jets of
order five which are four-jet degenerate.

Moreover, for n = 1, 2, 3, 4, 5, we indicate with Ψ1(n) ⊂ PI(5, n) the
intersection between Ψ∗

1(n) and the set containing those jets corresponding
to functions having non-zero gradient at I.

In particular, by Lemma 4.1 in [15] one has

Lemma 5.3. — For n = 2, 3, 4, 5, the set Ψ∗
1(n) is closed and it coincides

with the closure of Ψ1(n).

With this setup, we are now ready to give the proofs of Theorems 2.1–2.4.

5.1. Proof of Theorem 2.1 (n=2)

Proof. — We assume the hypotheses of Theorem 2.1. Since we are in a
domain of R2, the only possible dimension for a subspace orthogonal to the
gradient is m = 1. For n = 2 and r = 5 we have β1 = 5. Now, we build
the set σ5

2(I) by following the strategy described by Nekhoroshev in [11] and
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which we recalled in Theorem 1.3 and Definition 4.1. First, we consider the
Taylor polynomial of the restriction of the function h to the subspace ΛI

1 up
to order β1 = 5:

P 5
2 (x) = h1[v]x + 1

2h2[v, v]x2 + 1
6h3[v, v, v]x3

+ 1
24h4[v, v, v, v]x4 + 1

120h5[v, v, v, v, v]x5 , (5.1)

where v is a non-null vector orthogonal to the gradient. Then, we calculate
∇P 2

5 (x) and we consider its restriction to the curve x(t) = t. By setting all
the coefficients of the polynomial to be equal to zero we obtain the subsystem
ξ4(h, v) described in the previous section, so that system Ξ1(h, I) reads{

∇h(I) ̸= 0 ; v ̸= 0 ; h1[v] = 0 ; h2[v, v] = 0
h3[v, v, v] = 0 ; h4[v, v, v, v] = 0 ; h5[v, v, v, v, v] = 0.

(5.2)

Since this is the only system we can consider in this case, we have that the
set σ5

2(I) coincides with the one defined by Ξ1(h, I) which, in turn, is equal
to Ψ1(2) by Definition 5.2. Theorem 2.1 then follows from Lemma 5.3 and
Theorem 1.3. □

5.2. Proof of Theorem 2.2 (n=3)

Analogously to the case n = 2, we give some suitable definitions.

Definition 5.4. — We denote by Ψ2(3) the set in the space of 5-jets
of smooth functions h of three variables such that there exist two linearly
independent vectors u, v and two real parameters α, β satisfying

∇h(I) ̸= 0
h1[u] = h1[v] = ΠΛI

2
h2[v, · ] = ΠΛI

2

(
2αhI [u, · ] + h3[v, v, · ]

)
= 0

ΠΛI
2
(6βh2[u, · ] + 6αh3[u, v, · ] + h4

I [v, v, v, · ]) = 0 .

(5.3)

Definition 5.5. — We denote by Ψ∗
2(3) the set in the space of 5-jets

of smooth functions h of three variables such that there exists two linearly
independent vectors u, v satisfying{

h1[u] = h1[v] = h2[v, v] = h2[v, u] = h3[v, v, v] = 0
h2[u, u]h4[v, v, v, v] = 3(h3[v, v, u])2 .

(5.4)

The following result holds true

Lemma 5.6. — The set Ψ∗
2(3) is closed and contains the closure of Ψ2(3).
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Proof. — We notice that all equations in (5.4) are homogeneous in u and
v, so that without any loss of generality we can consider (u, v) ∈ S2 × S2.
Moreover, still without any loss of generality we can assume u · v = 0, since
it is easy to see that the component of u which is parallel to v yields a null
contribution to the system in (5.4). Then, system (5.4) defines an algebraic
closed set in PI(5, 3) × S2 × S2, whose projection onto PI(5, 3) is Ψ∗

2(3).
Hence Ψ∗

2(3) is closed by Lemma 5.1. In order to prove inclusion, we write
the system defining Ψ2(3) in its less compact form

∇h(I) ̸= 0 ; h1[u] = 0 ; h1[v] = 0 ; h2[v, v] = 0
h2[v, u] = 0 ; h3[v, v, v] = 0 ; 6αh3[u, v, v] + h4[v, v, v, v] = 0
2αh2[u, u] + h3[u, v, v] = 0
6βh2[u, u] + 6αh3[u, u, v] + h4[v, v, v, u] = 0 .

(5.5)

By applying Gauss elimination method to the last two equations and by
subtracting one to another, one can get rid of parameter α and obtains

3(h3[u, v, v])2 = h4[v, v, v, v]h2[u, u] .

Then, by discarding the last equation and the inequality on the gradient of
h, one reduces to the system defining the set Ψ∗

2(3). Therefore the inclusion
Ψ∗

2(3) ⊃ Ψ2(3) holds. Since Ψ∗
2(3) is closed, one has Ψ∗

2(3) ⊃ Ψ2(3) and the
statement is thus proven. □

We remark that we considered set Ψ∗
2(3) since Ψ2(3) is not closed, as we

show in the following

Example 5.7. — For k ∈ N, consider the sequence of polynomial functions

hk(I1, I2, I3) = 3
2

I4
1 + I4

2
4! − I4

3
4!k − I2I2

1
2k

+ I2
2

2k2 + I3 ,

converging to h(I1, I2, I3) = 3
2

I4
1 +I4

2
4! + I3 . At the origin, the jet P (hk, 5, 3)

associated to hk belongs to the set Ψ2(3) for all k, but the jet P (h, 5, 3)
associated to the limit function does not.

Proof. — For fixed k ∈ N, set αk := k
2 , βk := k2

2 and the vectors u =
(0, 1, 0), v = (1, 0, 0). It is straightforward to see that P (hk, 5, 3) ∈ Ψ2(3)
at the origin, with this choice of vectors and parameters. However, the limit
function h is weakly-convex at the origin and, as the reader can easily verify,
it does not fulfill system (5.5) for any non-null vector v. □

We are now ready to write the proof of Theorem 2.2.

Proof. — We assume the hypotheses of Theorem 2.2. Since we are in a
domain of R3, m can be equal to 1 or 2. For n = 3 and r = 5 we have β1 = 5
and β2 = 4.
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For m = 1, by following the same construction as in the case n = 2, we
have the same expression of (5.2) for Ξ1(h, I, 3).

In order to build up system Ξ2(h, I, 3), we follow the usual strategy de-
scribed by Nekhoroshev in [11] and we consider the Taylor polynomial of
the restriction of the function h to the subspace ΛI

2 up to order β2 = 4. By
calculating ∇P 3

4 (x) = (∂x1P 3
4 (x), ∂x2P 3

4 (x)) along the curve

x1 = t ; x2 = b21t + b22t2 + b23t3

and by setting equal to zero all the coefficients of the resulting polynomial
in t up to order β2 − 1 = 3, one has that

(1) The linear terms yield ΠΛI
2
h2[A1 + b21A2, · ] = 0 ;

(2) The quadratic terms yield

ΠΛI
2

(
2b22h2[A2, · ] + h3[A1 + b21A2, A1 + b21A2, · ]

)
= 0 ; (5.6)

(3) Finally, the cubic terms yield

ΠΛI
2
(6b23h2[A2, · ] + 6b22h3[A2, A1 + b21A2, · ]

+ h4[A1 + b21A2, A1 + b21A2, A1 + b21A2, · ]) = 0 ; (5.7)

where A1, A2 are a basis for ΛI
2.

Thus, system Ξ2(h, I, 3) takes the form
∇h(I) ̸= 0
h1[u] = h1[v] = ΠΛI

2
h2[v, · ] = ΠΛI

2

(
2αh2[u, · ] + h3[v, v, · ]

)
= 0

ΠΛI
2
(6βh2[u, · ] + 6αh3[u, v, · ] + h4[v, v, v, · ]) = 0 ,

(5.8)

with u := A2, v := A1 + b21A2 two linearly independent vectors and α :=
b22, β := b23 two real parameters. With the help of Definitions 5.2 and 5.4
we see that σ5

3(I) = Ψ1(3) ∪ Ψ2(3). As a consequence of Lemmas 5.3 and 5.6
and of Theorem 1.3 one has Σ5

3(I) = σ5
3(I) ⊂ Ψ∗

1(3)∪Ψ∗
2(3) and Theorem 2.2

follows. □

5.3. Proof of Theorem 2.3 (n=4)

We start with the usual definitions

Definition 5.8. — We denote by Ψ2(4) the set in the space of 5-jets
of smooth functions h of four variables such that there exist two linearly
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independent vectors u, v and three real parameters α, β, γ satisfying

∇h(I) ̸= 0
h1[u] = h1[v] = ΠΛI

2
h2[v, · ] = ΠΛI

2

(
2αh2[u, · ] + h3[v, v, · ]

)
= 0

ΠΛI
2
(6βh2[u, · ] + 6αh3[u, v, · ] + h4[v, v, v, · ]) = 0

ΠΛI
2
(24γh2[u, · ] + 24βh3[u, v, · ]

+ 12α2h3[u, u, · ] + 12αh4[v, v, u, · ] + h5[v, v, v, v, · ]) = 0 .

(5.9)

Definition 5.9. — We denote by Ψ∗
2(4) the set in the space of 5-jets

of smooth functions h of four variables such that there exist two linearly
independent vectors u, v satisfying

h1[u] = h1[v] = h2[v, v] = h2[v, u] = h3[v, v, v] = 0
h2[u, u]h4[v, v, v, v] = 3(h3[v, v, u])2

15(h3[v, v, u])2h3[u, u, v] + h5[v, v, v, v, v](h2[u, u])2

= 10h4[v, v, v, u]h3[u, v, v]h2[u, u] .

(5.10)

Definition 5.10. — We denote by Ψ3(4) the set in the space of 5-jets
of smooth functions h of four variables such that there exist three linearly
independent vectors u, v, w and two real parameters α, β satisfying{

∇h(I) ̸= 0 ; h1[u] = h1[v] = h1[w] = ΠΛI
3
h2[v, · ] = 0

ΠΛI
3
(2h2[αu + βw, · ] + h3[v, v, · ]) = 0 .

(5.11)

Definition 5.11. — We denote by Ψ∗
3(4) the set in the space of 5-jets

of smooth functions h of four variables such that there exist three linearly
independent vectors u, v, w satisfying

h1[u] = h1[v] = h1[w] = h2[v, v] = h2[v, u] = h2[v, w] = 0
h3[v, v, v] = 0 . (5.12)

With these definitions, we have the following

Lemma 5.12. — The sets Ψ∗
2(4), Ψ∗

3(4) are closed and one also has the
inclusions Ψ∗

2(4) ⊇ Ψ2(4), Ψ∗
3(4) ⊇ Ψ3(4) .

Proof. — The proof is similar to that of Theorem 5.6: without any loss
of generality, one can always choose the vectors to be perpendicular and
unitary, so that systems (5.10) and (5.12) define algebraic closed sets in
PI(5, n)×S2 ×S2 and PI(5, n)×S3 ×S3, whose projections onto PI(5, n) are
Ψ∗

2(4) and Ψ∗
3(4), which are therefore closed thanks to Lemma 5.1. As for

the inclusions, the relation Ψ3(4) ⊂ Ψ∗
3(4) is immediate from Definition 5.10,

once one projects the equations on the basis u, v, w and compares the system
to the one in Definition 5.11.
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In order to prove that Ψ2(4) ⊂ Ψ∗
2(4) , we consider system (5.9) defining

Ψ2(4) in its most explicit form

∇h(I) ̸= 0 ; h1[u] = h1[v] = 0 ; h2[v, v] = h2[v, u] = 0
h3[v, v, v] = 0 ; 2αh2[u, u] + h3[v, v, u] = 0
6αh3[u, v, v] + h4[v, v, v, v] = 0
6βh2[u, u] + 6αh3[u, u, v] + h4[v, v, v, u] = 0
24βh3[u, v, v] + 12α2h3[u, u, v] + 12αh4[v, v, v, u]

+ h5[v, v, v, v, v] = 0
24γh2[u, u] + 24βh3[u, u, v]

+ 12α2h3[u, u, u] + 12αh4[v, v, u, u] + h5[v, v, v, v, u] = 0 .

(5.13)

Applying Gauss elimination method in order to get rid of parameters α, β
and discarding the last equation containing parameter γ yields system (5.10)
defining Ψ∗

2(4). Therefore, one has Ψ2(4) ⊂ Ψ∗
2(4) . Since Ψ∗

2(4) and Ψ∗
3(4)

are closed, one finally obtains Ψ∗
2(4) ⊇ Ψ2(4) , Ψ∗

3(4) ⊇ Ψ3(4) . □

With this setup, we are ready to prove Theorem 2.3.

Proof. — Since we work in a domain of R4, m can be equal to 1, 2 or 3.
For n = 4 and r = 5 we have β1 = β2 = 5 and β3 = 3.

For m = 1, we follow the same construction as in the cases n = 2, 3 and
system Ξ1(h, I, 4) defines a set Ψ1(4) whose closure concides with Ψ∗

1(4).
In order to build up system Ξ2(h, I, 4), we follow once again the construc-
tion in [11] and we consider the Taylor polynomial of the restriction of the
function h to a subspace ΛI

2 up to order β2 = 5. By calculating ∇P 4
5 (x) =

(∂x1P 4
5 (x), ∂x2P 4

5 (x)) along the curve

x1 = t ; x2 = b21t + b22t2 + b23t3 + b24t4

and by setting equal to zero all the coefficients of the resulting polynomial
in t up to order β2 − 1 = 4, one has that

(1) The linear terms yield ΠΛI
2
h2[A1 + b21A2, · ] = 0 ;

(2) The quadratic terms yield

ΠΛI
2

(
2b22h2[A2, · ] + h3[A1 + b21A2, A1 + b21A2, · ]

)
= 0 ; (5.14)

(3) The cubic terms yield

ΠΛI
2

(
6b23h2[A2, · ] + 6b22h3[A2, A1 + b21A2, · ]

+ h4[A1 + b21A2, A1 + b21A2, A1 + b21A2, · ]
)

= 0 ; (5.15)
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(4) The quartic terms yield

ΠΛ2

(
24b24h2[A2, · ] + 24b23h3[A1 + b21A2, A2, · ] + 12b2

22h3[A2, A2, · ]
+ 12b22h4[A1 + b21A2, A1 + b21A2, A2, · ]
+ h5[A1 + b21A2, A1 + b21A2, A1 + b21A2, A1 + b21A2, · ]

)
= 0 ; (5.16)

where A1, A2 are a basis for ΛI
2. Thus, by following the same strategy as in

the previous section, Ξ2(h, I) has the form

∇h(I) ̸= 0 ; h1[u] = h1[v] = 0 ; ΠΛI
2
h2[v, · ] = 0

ΠΛI
2

(
2αh2[u, · ] + h3[v, v, · ]

)
= 0

ΠΛI
2
(6βh2[u, · ] + 6αh3[u, v, · ] + h4[v, v, v, · ]) = 0

ΠΛ2(24γh2[u, · ] + 24βh3[v, u, · ] + 12α2h3[u, u, · ]
+ 12αh4[v, v, u, · ] + h5[v, v, v, v, · ]) = 0 .

(5.17)

with u := A2, v := A1 + b21A2 two linearly independent vectors and α :=
b22, β := b23, γ := b24 three real parameters. Finally, we construct system
Ξ3(h, I). We consider the Taylor polynomial P 4

5 (x) of the restriction of the
function h to the subspace ΛI

3, up to order β3 = 3. By calculating ∇P 4
5 (x) =

(∂x1P 4
5 (x), ∂x2P 4

5 (x), ∂x3P 4
5 (x)) along the curve

x1 = t ; x2 = b21t + b22t2 ; x3 = b31t + b32t2

and by setting equal to zero all the coefficients of the resulting polynomial
in t up to order β3 − 1 = 2, one has that

(1) The linear terms yield ΠΛI
3
(h2[A1 + b21A2 + b31A3, · ]) = 0 ;

(2) The quadratic terms yield

ΠΛI
3

(
h2[2b22A2 + 2b32A3, · ]

+ h3[A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, · ]
)

= 0 ; (5.18)

where A1, A2, A3 are a basis for ΛI
3.

Thus, by following the same strategy as in the previous section, Ξ3(h, I)
reads{

∇h(I) ̸= 0 ; h1[u] = 0 ; h1[v] = 0 ; h1[w] = 0
ΠΛI

3
h2[v, · ] = 0 ; ΠΛI

3

(
2h2[αu + βw, · ] + h3[v, v, · ]

)
= 0 .

(5.19)

with u := A2, v := A1 + b21A2 + b31A3, w := A3 three linearly indepen-
dent vectors and α := b22, β := b32 two real parameters. With the help of
Definitions 5.2, 5.8 and 5.10, we see that σ5

4(I) = Ψ1(4) ∪ Ψ2(4) ∪ Ψ3(4) ,
so that, as a consequence of Lemma 5.12 and of Theorem 1.3, one has
Σ5

4(I) = σ5
4(I) ⊂ Ψ∗

1(4) ∪ Ψ∗
2(4) ∪ Ψ∗

3(4), which, together with Theorem 1.3
once again, implies Theorem 2.3. □
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5.4. Proof of Theorem 2.4 (n=5)

We start with the usual definitions

Definition 5.13. — We denote by Ψ2(5) the set in the space of 5-jets
of smooth functions h of five variables such that there exist two linearly
independent vectors u, v and three real parameters α, β, γ satisfying

∇h(I) ̸= 0
h1[u] = h1[v] = ΠΛI

2
h2[v, · ] = ΠΛI

2

(
2αh2[u, · ] + h3[v, v, · ]

)
= 0

ΠΛI
2
(6βh2[u, · ] + 6αh3[u, v, · ] + h4[v, v, v, · ]) = 0

ΠΛI
2
(24γh2[u, · ] + 24βh3[u, v, · ]
+ 12α2h3[u, u, · ] + 12αh4[v, v, u, · ] + h5[v, v, v, v, · ]) = 0 .

(5.20)

Definition 5.14. — We denote by Ψ∗
2(5) the set in the space of 5-jets

of smooth functions h of five variables such that there exist two linearly
independent vectors u, v satisfying

h1[u] = h1[v] = h2[v, v] = h2[v, u] = h3[v, v, v] = 0
h2[u, u]h4[v, v, v, v] = 3(h3[v, v, u])2

15(h3[v, v, u])2h3[u, u, v] + h5[v, v, v, v, v](h2[u, u])2

= 10h4[v, v, v, u]h3[u, v, v]h2[u, u] .

(5.21)

Definition 5.15. — We denote by Ψ3(5) the set in the space of 5-jets
of smooth functions h of five variables such that there exist three linearly
independent vectors u, v, w and four real parameters α, β, γ, δ satisfying

∇h(I) ̸= 0 ; h1[u] = h1[v] = h1[w] = ΠΛI
3
h2[v, · ] = 0

ΠΛI
3
(h2[αu + βw, · ] + h3[v, v, · ]) = 0

ΠΛI
3
(6h2[γu + δw, · ] + 6h3[αu + βw, v, · ] + h4[v, v, v, · ]) = 0 .

(5.22)

Definition 5.16. — We denote by Ψ∗
3(5) the set in the space of 5-jets

of smooth functions h of five variables such that there exist three linearly
independent vectors u, v, w satisfying

h1[u] = h1[v] = h1[w] = h2[v, v] = h2[v, u] = h2[v, w] = h3[v, v, v] = 0
12h3[u, v, v]h3[v, v, w]h2[u, u]h2[u, w]

− 6(h3[u, v, v])2(h2[u, w])2 − 6(h3[v, v, w])2(h2[u, u])2

+ {h4[v, v, v, v]h2[u, u] − 6(h3[u, v, v])2}
× {h2[w, w]h2[u, u] − (h2[u, w])2} = 0 .

(5.23)
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Definition 5.17. — We denote by Ψ4(5) the set in the space of 5-jets
of smooth functions h of five variables such that there exist four linearly
independent vectors u, v, w, x satisfying

∇h(I) ̸= 0 ; h1[u] = h1[v] = h1[w] = h1[x] = 0 ; ΠΛI
4
h2[v, · ] = 0 . (5.24)

Definition 5.18. — We denote by Ψ∗
4(5) the set in the space of 5-jets

of smooth functions h of five variables such that there exist four linearly
independent vectors u, v, w, x satisfying

h1[u] = h1[v] = h1[w] = h1[x] = 0 ; ΠΛI
4
h2[v, · ] = 0 . (5.25)

We have the following result:

Lemma 5.19. — The sets Ψ∗
2(5), Ψ∗

3(5), Ψ∗
4(5) are closed and the follow-

ing inclusions hold: Ψ∗
2(5) ⊃ Ψ2(5), Ψ∗

3(5) ⊃ Ψ3(5), Ψ∗
4(5) ⊃ Ψ4(5).

Proof. — Closure of the three sets Ψ∗
2(5), Ψ∗

3(5), Ψ∗
4(5) is proven exactly

in the same way as in the previous paragraphs, with the help of Lemma 5.1.
The proof of the inclusion Ψ∗

2(5) ⊃ Ψ2(5) is identic to the one given in
Lemma 5.12 for the inclusion Ψ∗

2(4) ⊃ Ψ2(4). Inclusion Ψ∗
4(5) ⊃ Ψ4(5) is

immediate when considering the definitions of Ψ4(5) and Ψ∗
4(5) and the

closure of the latter. The only non-trivial inclusion is thus Ψ∗
3(5) ⊃ Ψ3(5).

In order to prove it, we rewrite the system defining Ψ3(5) in its less synthetic
form

∇h(I) ̸= 0
h1[u] = h1[v] = h1[w] = h2[v, v] = h2[v, u] = h2[v, w] = 0
h3[v, v, v] = 0 ; h2[αu + βw, u] + h3[v, v, u] = 0
h2[αu + βw, w] + h3[v, v, w] = 0
6h2[γu + δw, u] + 6h3[αu + βw, v, u] + h4[v, v, v, u] = 0
6h2[γu + δw, w] + 6h3[αu + βw, v, w] + h4[v, v, v, w] = 0
6h3[αu + βw, v, v] + h4[v, v, v, v] = 0 .

(5.26)

Once again, Gauss elimination method can be used in order to get rid
of parameters α and β. Then, by discarding the first inequality and the
two equations containing γ, δ in system (5.26) defining Ψ3(5), one obtains
the system in Definition 5.11, which determines Ψ∗

3(5). Therefore, one has
Ψ∗

3(5) ⊃ Ψ3(5) and Ψ∗
3(5) ⊃ Ψ3(5) since Ψ∗

3(5) is closed. □

With this background, we are ready to prove Theorem 2.4.

Proof. — Since we work in a domain of R5, m can be equal to 1, 2, 3 or
4. For n = 5 and r = 5 we have β1 = 4, β2 = 5, β3 = 4 and β4 = 2.
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For m = 1, by following the same construction as in the cases n = 2, 3, 4,
we find the following expression for Ξ1(h, I, 5):

∇h(I) ̸= 0 ; v ̸= 0 ; h1[v] = h2[v, v] = h3[v, v, v] = h4[v, v, v, v] = 0 , (5.27)

so that Ξ1(h, I, 5) = Ψ1(5) by Definition 5.2.

Now, since β2 = 5 as it was in the case n = 4, we have exactly the same
construction and we can write Ξ2(h, I, 5) in the same form:

∇h(I) ̸= 0
h1[u] = h1[v] = ΠΛI

2
h2[v, · ] = ΠΛI

2

(
2αh2[u, · ] + h3[v, v, · ]

)
= 0

ΠΛI
2
(6βh2[u, · ] + 6αh3[u, v, · ] + h4[v, v, v, · ]) = 0

ΠΛ2(24γh2[u, · ] + 24βh3[v, u, · ] + 12α2h3[u, u, · ]
+ 12αh4[v, v, u, · ] + h5[v, v, v, v, · ]) = 0 .

(5.28)

with u := A2, v := A1 + b21A2 two linearly independent vectors and α :=
b22, β := b23, γ := b24 three real parameters. We now construct Ξ3(h, I, 5).
As usual, we consider the Taylor polynomial P 4

5 (x1, x2, x3) of the restriction
of the function h to the subspace ΛI

3 up to order β3 = 4. By calculating
∇P 4

5 (x) = (∂x1P 4
5 (x), ∂x2P 4

5 (x), ∂x3P 4
5 (x)) along the curve

x1 = t ; x2 = b21t + b22t2 + b23t3 ; x3 = b31t + b32t2 + b33t3

and by setting equal to zero all the coefficients of the resulting polynomial
in t up to order β3 − 1 = 3, one has that

(1) The linear terms yield ΠΛI
3
(h2[A1 + b21A2 + b31A3, · ]) = 0 ;

(2) The quadratic terms yield

ΠΛI
2

(
h2[b22A2 + b32A3, · ]

+ h3[A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, · ]
)

= 0 ; (5.29)

(3) The cubic terms yield

ΠΛI
3

(
6h2[2b23A2 + 2b33A3, · ] + 6h3[b22A2 + b23A3, A1 + b21A2 + b31A3, · ]

+ h4[A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, · ]
)

= 0 ; (5.30)

where A1, A2, A3 are a basis for ΛI
3.

Therefore, Ξ3(h, I, 5) can be compactly formulated as
∇h(I) ̸= 0 ; h1[u] = h1[v] = h1[w] = 0 ; ΠΛI

3
h2[v, · ] = 0

ΠΛI
3
(h2[αu + βw, · ] + h3[v, v, · ]) = 0

ΠΛI
3
(6h2[γu + δw] + 6h3[αu + βw, v, · ] + h4[v, v, v, · ]) = 0 .

(5.31)
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with u := A2, v := A1 + b21A2 + b31A3, w := A3 three linearly independent
vectors and α := b22, β := b32, γ := b23, δ := b33 four real parameters.

Finally, we construct Ξ4(h, I, 5) in the same usual way.

As usual, we consider the Taylor polynomial P 4
5 (x1, x2, x3) of the restric-

tion of the function h to the subspace ΛI
4 up to order β4 = 2.

By calculating ∇P 4
5 (x) = (∂x1P 4

5 (x), ∂x2P 4
5 (x), ∂x3P 4

5 (x)) along the curve
x1(t) = t ; x2(t) = b21t ; x3(t) = b31t ; x4(t) = b41t

and by setting equal to zero all the coefficients of the resulting polynomial
in t up to order β4 − 1 = 1, Ξ4(h, I, 5) reads

∇h(I) ̸= 0 ; h1[u] = h1[v] = h1[w] = h1[x] = 0 ; ΠΛ4h2[v, · ] = 0 , (5.32)
with v = A1 + b21A2 + b31A3 + b41A4, u = A2, w = A3, x = A4. With the
help of definitions 5.2, 5.14 and 5.16, we see that σ5

5(I) = Ψ1(5) ∪ Ψ2(5) ∪
Ψ3(5) ∪ Ψ4(5) so that, as a consequence of Lemma 5.19 and of Theorem 1.3,
one has Σ5

5(I) = σ5
5(I) ⊂ Ψ∗

1(5) ∪ Ψ∗
2(5) ∪ Ψ∗

3(5) ∪ Ψ∗
4(5). This, together with

Theorem 1.3, implies Theorem 2.4. □

6. Final remarks

6.1. The case n ⩾ 6

As the computations in the previous sections showed (see e.g. the case
n = 2 or [15]), Nekhoroshev’s construction on affine linear subspaces of di-
mension m = 1 always yields a subsystem Ξ1(h, I, n) requiring β1-degeneracy
condition. In other words, take an arbitrary integer r ⩾ 2 and compute co-
efficient β1 on a one-dimensional subspace; if there exists v ̸= 0 such that

∇h(I) ̸= 0 ; h1[v] = 0 ; h2[v, v] = 0 ; . . . ; hβ1 [v, . . . , v] = 0 (6.1)
is satisfied, then the r-jet of h belongs to σr

n(I), since it fulfills membership
requirements on subspaces of dimension m = 1. On the other hand, algebraic
conditions for steepness on jets of order strictly greater than three make sense
only at those points I where the function h is three-jet degenerate, since
three-jet non-degeneracy automatically implies steepness. By looking at the
explicit expression for βm in Definition 4.1 and by taking expression (1.3) for
the maximal index of steepness αm into account, one easily sees that β1 ⩽ 3
for r = 5, m = 1 and n ⩾ 6. Therefore, the 5-jet of a function h with six
or more degrees of freedom belongs to σ5

n(I) at those points I where h is
three-jet degenerate. As a consequence, in this case Theorem 1.3 is helpless
at establishing whether h is steep or not at those points where it is three-jet
degenerate.
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6.2. Genericity and further developments

As Nekhoroshev pointed out in [9, 11] and as Theorem 1.3 shows, steep-
ness is a generic property in the space of jets of a sufficiently high order r,
since the codimension of the set containing the jets of all non-steep functions
becomes positive for r sufficiently big. This property is due to the fact that,
for increasing r, one obtains more and more algebraic conditions that a func-
tion must satisfy in order to belong to this set. As Nekhoroshev writes in
[9]: “Hamiltonians that fail to be steep at a non-critical point are infinitely
singular: they satisfy an infinite number of conditions on their Taylor co-
efficients”. This, in turn, is a straightforward consequence of Definition 4.1:
when r increases, so does the order of the zero that the gradient of the
tested function must possess on the minimal path γ so to stay in the bad
set σr

n(I). Indeed, since γ is a polynomial path, this implies that more and
more coefficients of this polynomial must be set equal to zero, which yields
an increasing number of algebraic conditions on the coefficients of the jet of
the studied function.

In the present section, we give some examples of genericity for the suffi-
cient conditions for steepness which we examined throughout the article.

Example 6.1. — Quasi-convexity is a generic property in the space
P(r, 2) of polynomials of fixed degree r ⩾ 2 of two variables.

Proof. — In case h is a non quasi-convex polynomial of order two in two
variables, there exists v ̸= 0 such that system

h1[v] = 0 ; h2[v, v] = 0 (6.2)

is satisfied. Moreover, v can be normalized to one since the system is homo-
geneous in this variable. Therefore, for all non quasi-convex functions h and
for any integer r ⩾ 2, system (6.2) defines an algebraic set of codimension
two in the cartesian space P(r, 2) × S1 of polynomials and vectors. Since S1

has dimension one, by the Theorem of Tarski and Seidenberg, the projection
of this algebraic set in the space of polynomials P(r, 2) is semialgebraic and
its codimension is no less than 2 − 1 = 1. □

By following exactly the same startegy, one can prove also the two fol-
lowing

Example 6.2. — Three-jet non-degeneracy is a generic property in the
space P(r, 3) of polynomials of fixed degree r ⩾ 3 of three variables.

Example 6.3. — The sufficient conditions for steepness of Theorem 2.3
are generic in the space P(r, 4) of polynomials of fixed degree r ⩾ 4 of four
variables.
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We remark that the minimal degree r of the polynomials for which gener-
icity holds in the previous examples is the same one yielded by formula (1.2)
in Theorem 1.3. Therefore, generic conditions for steepness for polynomials
of arbitrary degree can only be inferred if one is able to write sufficient con-
ditions for jets of any order. This task is not straightforward and will be
investigated in future works.

6.3. On the three-jet non-degeneracy condition

By closely looking at the algebraic form of the sets Ψ∗
m(n) for n ∈

{2, 3, 4, 5} and m ∈ {1, . . . , n − 1}, which was developed in the previous
sections, one easily sees that any function whose jet belongs to any of these
sets must be 3-jet degenerate. Therefore, if a function depending on a fixed
number n of degrees of freedom is three-jet non degenerate, it belongs to
the complementary of all sets Ψ∗

m(n), with m ∈ {1, . . . , n − 1}. Since for
fixed n ∈ {2, 3, 4, 5} the bad set σ5

n(I) is contained in the union of closed
sets

⋃
m∈{1,...,n−1} Ψ∗

m(n), by Theorem 1.3 one has that all three-jet non-
degenerate functions depending on n = 2, 3, 4, 5 degrees of freedom are steep.
We conjecture that for functions depending on n ⩾ 6 degrees of freedom the
same result can be proved by closely looking at the algebraic form of the
sets defining the bad set σr

n(I), for a sufficiently high value of the order r.
This would constitute an alternative strategy for proving the steepness of
three-jet non-degenerate functions with respect to the one contained in [6].

Finally, by following a similar reasoning as in Subsection 6.1, for r = 3
one obtains β1 ⩽ 3 for n ⩾ 2, so that the set of jets of order three satisying
the conditions for steepness of Theorem 1.3 is contained in the set of three-
jet non degenerate jets. Therefore, three-jet non-degeneracy yields a wider
set of steep functions with respect to the construction of Theorem 1.3.
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