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CHOW RING AND GONALITY OF
GENERAL ABELIAN VARIETIES
ANNEAU DE CHOW ET GONALITÉ DES
VARIÉTÉS ABÉLIENNES GÉNÉRALES

Abstract. — We study the (covering) gonality of abelian varieties and their orbits of
zero-cycles for rational equivalence. We show that any orbit for rational equivalence of zero-
cycles of degree k has dimension at most k − 1. Building on the work of Pirola, we show that
very general abelian varieties of dimension g have (covering) gonality at least f(g), where
f(g) grows like log g. This answers a question asked by Bastianelli, De Poi, Ein, Lazarsfeld
and B. Ullery. We also obtain results on the Chow ring of very general abelian varieties A of
dimension g, e.g., if g > 2k − 1, the set of divisors D ∈ Pic0(A) such that Dk = 0 in CHk(A)
is at most countable.
Résumé. — Nous étudions la gonalité des variétés abéliennes ainsi que leurs orbites de

zéro-cycles pour l’équivalence rationnelle. Nous montrons que l’orbite d’un zéro-cycle de degré
k est de dimension au plus k − 1. En développant des idées de Pirola, nous montrons qu’une
variété abélienne très générale a une gonalité au moins égale à f(g), où f(g) croît comme log g.
Ceci répond à une question posée par Bastianelli, De Poi, Ein, Lazarsfeld et B. Ullery. Nous
obtenons aussi des résultats sur l’anneau de Chow des variétés abéliennes A de dimension g ;
par exemple, si g > 2k−1, l’ensemble des diviseurs D ∈ Pic0(A) tels que Dk = 0 dans CHk(A)
est au plus dénombrable.
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1. Introduction

The gonality of a projective variety X is defined in this paper as the minimal
gonality of a smooth projective irreducible curve C admitting a nonconstant mor-
phism j : C → X. In the case of an abelian variety, the gonality is the same as
the covering gonality studied in [BDPE+17]. One of the main results of this paper
answers affirmatively a question asked in [BDPE+17] concerning the gonality of a
very general abelian variety A, namely, whether it grows to infinity with g = dimA.
Theorem 1.1. — Let A be a very general abelian variety of dimension g. If

g > 2k−2(2k − 1) + (2k−2 − 1)(k − 2), the gonality of A is at least k + 1.
In other words, a very general abelian variety of dimension > 2k−2(2k − 1) +

(2k−2−1)(k−2) does not contain a curve of gonality 6 k. This theorem is presumably
not optimal. What seems reasonable is the following bound.
Conjecture 1.2. — Let A be a very general abelian variety of dimension g. If

g > 2k − 1, the gonality of A is at least k + 1.
We will discuss in Section 6 a strategy towards proving this statement and some

evidence for it. Theorem 1.1 generalizes the following result by Pirola [Pir89].
Theorem 1.3 (Pirola). — A very general abelian variety of dimension at least 3

contains no hyperelliptic curve.

We will in fact use in the proof of Theorem 1.1 (and also Theorems 1.4, 1.8 below)
some of the arguments in [Pir89] that we generalize in Section 2. Theorem 1.1 will
be obtained as a consequence of the study of 0-cycles modulo rational equivalence on
abelian varieties. This generalized setting already appears in the paper [AP93] where
some improvements of Theorem 1.3 (for example on the nonexistence of trigonal
curves on very general abelian varieties of dimension > 4) were obtained.
In this article, the Chow groups with Q-coefficients of a variety X are denoted

by CH(X). Rational equivalence of 0-cycles is not very well understood, despite
Mumford’s theorem [Mum69]. The most striking phenomenon is the existence of
surfaces (e.g. of Godeaux type, see [Voi92]) which are of general type but have trivial
CH0-group. In the papers [Voi15a], [Voi16], we emphasized nevertheless the geometric
importance, particularly in the case of K3 surfaces and hyper-Kähler manifolds, of
the study of orbits of 0-cycles Z of X under rational equivalence, namely

|Z| = {Z ′ ∈ X(k), Z ′ rationally equivalent to Z in X}.
Here X(k) is the k-th symmetric product of X, or equivalently the set of effective
0-cycles of X of degree k. This orbit is an analogue for higher dimensional varieties
X of the linear system |Z|, for a divisor Z on a smooth curve.
It is a general fact that these orbits are countable unions of closed algebraic

subsets in the symmetric product of the considered variety, so that their dimension
is well defined. Below we denote by {x} the 0-cycle of a point x ∈ A and 0A will
be the origin of A. The following results concerning orbits |Z| ⊂ A(k) for rational
equivalence, and in particular the orbit |k{0A}|, can be regarded as a Chow-theoretic
version of Theorem 1.1.
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Theorem 1.4
(1) For any abelian variety A and integer k > 1, any orbit |Z| ⊂ A(k) has

dimension 6 k − 1.
(2) If g > 2k−1(2k − 1) + (2k−1 − 1)(k − 2), a very general abelian variety A of

dimension g has no positive-dimensional orbit |Z|, with degZ 6 k.
(3) If k > 2 and A is very general of dimension g > 2k−2(2k−1)+(2k−2−1)(k−2),

A has no positive-dimensional orbit of the form |Z ′+2{0A}|, with Z ′ effective
and degZ ′ 6 k − 2.

(4) If A is a very general abelian variety of dimension g > 2k − 1, the orbit
|k{0A}| is countable.

In fact, Theorem 1.4(3) implies Theorem 1.1, because for a k-gonal irreducible
curve C, with nonconstant morphism j : C → A, any degree-k divisor D ∈ Pic(C)
with h0(C,D) > 2 provides a positive-dimensional orbit {j∗D′}D′∈|D| in A(k) as in (3).
Indeed, C is not rational, so k > 2, and we can assume that one Weierstrass point
c ∈ C of |D|, that is, a point c such that h0(C,D(−2c)) 6= 0, is mapped to 0A by
j, and this provides a positive-dimensional orbit of the form |Z ′ + 2{0A}|, with Z ′
effective and degZ ′ = k − 2.
Item (1) of Theorem 1.4 will be proved in Section 4 (cf. Theorem 4.1). The estimates

in Theorems 1.1 and 1.4(2) can probably be strongly improved. Estimate (1) in
Theorem 1.4 cannot be improved. To start with, it is optimal for g = 1 because for
any degree-k divisor D on an elliptic curve E, we have |D| = Pk−1 ⊂ E(k). This
immediately implies that the statement is optimal for any g because for abelian
varieties A = E ×B admitting an elliptic factor, we have E(k) ⊂ A(k).
In the case g = 2, we observe that orbits |Z| ⊂ A(k) are contained in the generalized

Kummer variety Kk−1(A) constructed by Beauville [Bea83]. (More precisely, this
is true for the open set of |Z| parameterizing cycles where all points appear with
multiplicity 1 but this is a minor point, cf. [Voi15a] for a discussion of cycles with
multiplicities.) This variety is of dimension 2k− 2 and has an everywhere nondegen-
erate holomorphic 2-form for which any orbit |Z| is totally isotropic, which implies
the estimate (1) in the case g = 2. Furthermore they are also orbits for rational
equivalence in Kk−1(A), as proved in [MZ17], hence they are in fact constant cycle
subvarieties in Kk−1(A) in the sense of Huybrechts [Huy14].
The question whether Lagrangian (that is, of maximal dimension) constant cycle

subvarieties exist in hyper-Kähler manifolds is posed in [Voi16]. For a general abelian
variety A, choosing a smooth curve C ⊂ A of genus g′, we have C(k) ⊂ A(k) for any
k and C(k) contains linear systems Pk−g′ , for k > g′. So when k tends to infinity, the
estimate (1) has optimal growth in k.
Theorem 1.4(4), which will be proved in Section 3, has the following immediate

consequence (which is a much better estimate than the one given in Theorem 1.1).

Corollary 1.5. — If A is a very general abelian variety of dimension g > 2k−1
and C → A is any nonconstant morphism from a smooth projective irreducible curve
C, one has h0(C,OC(kc)) = 1 for any point c ∈ C.

This corollary could be regarded as the right generalization of Theorem 1.3.
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Remark 1.6. — Pirola proves in [Pir95] that for a very general abelian variety A
of dimension g > 4, any curve C ⊂ A has genus > g(g−1)

2 + 1. This suggests that
Theorem 1.4(4) is not optimal and that an inequality g > O(

√
k) should already

imply the countability of |k{0A}|.

We will give two proofs of Theorem 1.4(4). One of them will use Theorem 1.8
and Proposition 1.9, which are statements of independent interest concerning the
Chow ring (as opposed to the Chow groups) of an abelian variety A, which we now
describe. Here the product in the Chow ring is the intersection product but one can
also consider the ring structure given by the Pontryagin product ∗ defined by

z ∗ z′ = µ∗(z × z′)
where µ : A × A → A is the sum map and z × z′ = pr∗1z · pr∗2z′ for z, z′ ∈ CH(A).
The two rings are related via the Fourier transform, see [Bea82]. Define
(1.1) Ak ⊂ A

to be the set of points x ∈ A such that ({x} − {0A})∗k = 0 in CH0(A). We can also
define Âk ⊂ Â to be the set of D ∈ Pic0(A) =: Â such that Dk = 0 in CHk(A). These
two sets are related as follows (see Section 3 for a proof): choose a polarization θ on
A, that is, an ample divisor. The polarization gives an isogeny of abelian varieties

A→ Â,

x 7→ Dx := θx − θ.

Lemma 1.7. — One has Dk
x = 0 in CHk(A) if and only if ({x} − {0A})∗k = 0 in

CH0(A).

Our result concerning the sets Ak and Âk is the following.

Theorem 1.8. — Let A be an abelian variety of dimension g. Then, for any
positive integer k, one has

(1) dimAk 6 k − 1 and dim Âk 6 k − 1.
(2) If A is very general and g > 2k − 1, the sets Âk and Ak are countable.

Note that in (1) and (2), the two stated properties are equivalent by Lemma 1.7,
since, if A is very general, so is Â.
The fact that Theorem 1.8 implies Theorem 1.4(4), uses the following intriguing

result that does not seem to be written anywhere, although some related results are
available, in particular in [CvG93], [Her07], [Voi15b].

Proposition 1.9. — Let A be an abelian variety and let x1, . . . , xk be k points
of A such that ∑k

i=1{xi} − k{0A} = 0 in CH0(A). Then for any i ∈ {1, . . . , k}
(1.2) ({xi} − {0})∗k = 0 in CH0(A).
In other words, xi ∈ Ak.

For the proof of Theorem 1.8, we will show how the dimension estimate provided
by (1) implies the nonexistence theorem stated in (2). This is obtained by establishing
and applying Theorem 2.3, which we will state in Section 2. This theorem, which
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is obtained by a direct generalization of Pirola’s arguments in [Pir89], says that
“naturally defined subsets” of abelian varieties (see Definition 2.1), assuming they
are proper subsets for very general abelian varieties of a given dimension g, are at
most countable for very general abelian varieties of dimension > 2g − 1.

2. Naturally defined subsets of abelian varieties

The proof of Theorem 1.3 by Pirola has two steps. First of all, Pirola shows that
hyperelliptic curves in an abelian variety A, one of whose Weierstrass points coincides
with 0A, are rigid. Secondly, he deduces from this rigidity statement the nonexistence
of any hyperelliptic curve in a very general abelian variety of dimension > 3 by an
argument of specialization to abelian varieties isogenous to a product B × E, that
we now extend to cover more situations.
Definition 2.1. — We will say that the data of attaching a subset ΣA ⊂ A to

any abelian variety A provide naturally defined subsets if they satisfy the following
conditions:

(0) ΣA ⊂ A is a countable union of closed algebraic subsets of A.
(1) For any morphism f : A→ B of abelian varieties, f(ΣA) ⊂ ΣB.
(2) For any family A → S, there is a countable union of closed algebraic subsets

ΣA ⊂ A whose set-theoretic fibers over S satisfy ΣA,b = ΣAb , for any b ∈ S.
Remark 2.2. — By a morphism of abelian varieties A, B, we mean a group

morphism, that is, mapping 0A to 0B.
Recall that the dimension of a countable union of closed algebraic subsets is defined

as the supremum of the dimensions of its components (which are well defined since
we are over the uncountable field C).
Theorem 2.3. — Let ΣA ⊂ A be naturally defined.
(1) Assume that for any abelian variety A of dimension g0, one has ΣA 6= A.

Then for a very general abelian variety A of dimension > 2g0 − 1, ΣA is at
most countable.

(2) Assume that dim ΣA 6 k for any A. Then for a very general abelian variety
A of dimension > 2k + 1, the set ΣA is at most countable.

(3) Assume that dim ΣA 6 k−1 for a very general abelian variety A of dimension
g0 > k. Then for a very general abelian variety A of dimension > g0 + k − 1,
the set ΣA is at most countable.

Statement (2) is a particular case of (1) where we take g0 = k+1. Both (1) and (3)
will follow from the following result:
Proposition 2.4
(a) If for a very general abelian variety B of dimension g > k, one has

dim ΣB 6 k

then, for a very general abelian variety A of dimension g + 1, one has
dim ΣA 6 k.
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(a′) In particular, if the set ΣB is countable for a very general abelian variety B
of dimension g > 0, then for a very general abelian variety A of dimension
> g, the set ΣA is countable.

(b) In the situation of (a), if furthermore
0 < dim ΣB 6 k

then, for a very general abelian variety A of dimension g + 1, one has
dim ΣA 6 k − 1.

Indeed, applying Proposition 2.4, we conclude in case (1) that the dimension of ΣA

for A very general is decreasing with g > g0 and strictly decreasing as long as it is
not equal to 0, and by assumption it is not greater than g0− 1 for g = g0. Hence this
dimension must be at most 0 (that is, ΣA is at most countable) for some g 6 2g0− 1.
By Proposition 2.4(a′), we then conclude that ΣA is countable for A very general
for any g > 2g0 − 1.
In case (3) of the theorem, the argument is the same except that we start with

dimension g0 = k + 1 and we conclude similarly that the dimension of ΣA for very
general A is strictly decreasing with g > g0 as long as it is not equal to 0. Furthermore,
for g = g0, this dimension is at most k − 1. Hence the dimension of ΣA for very
general A must be 0 for some g 6 g0 + k − 1 and thus, by Proposition 2.4(a′), ΣA

is countable for any g > g0 + k − 1 and A very general. This proves Theorem 2.3
assuming Proposition 2.4 that we now prove along the same lines as in [Pir89].
Proof of Proposition 2.4. — Assume that dim ΣA = k′ for a very general abelian

variety A of dimension g+1. From the definition of naturally defined subsets, and by
standard arguments involving the properness and countability properties of relative
Chow varieties, there exist, for each universal family A → S of polarized abelian
varieties with given polarization type θ, a generically finite dominant base-change
morphism S ′ → S, and, denoting by AS′ → S ′ the base-changed family, a closed
algebraic subset

Σ′A ⊂ ΣAS′ ⊂ AS′ ,

such that the morphism Σ′A → S ′ is flat with irreducible fibers of dimension k′. In
other words, we choose one k′-dimensional component of ΣA for each A, and we can
do this in families, maybe after passing to a generically finite cover of a Zariski open
set of the base.
The main observation is now the fact that there is a dense countable union of

algebraic subsets S ′λ ⊂ S ′ along which the fiber Ab is isogenous to a product Bλ ×
E where B is a generic abelian variety of dimension g with polarization of type
determined by λ and E is an elliptic curve (λ also encodes the structure of the
isogeny). Along each S ′λ, possibly after passing to a generically finite cover S ′′λ → S ′λ,
we have a universal family BS′′

λ
→ S ′′λ of abelian varieties of dimension g, a morphism

of families of abelian varieties
pλ : AS′′

λ
→ BS′′

λ

and, denoting by Σ′AS′′
λ

the fibered product Σ′AS′
λ

×S′
λ
S ′′λ, we have

pλ(Σ′AS′′
λ

) ⊂ ΣBS′′
λ
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by axiom (1) of Definition 2.1.

Lemma 2.5. — If ΣB ⊂ B is a proper subset for a very general abelian variety
B of dimension g, the morphism pλ,Σ := pλ|Σ′

Ab
: Σ′Ab → Bb is generically finite onto

its image for any point b of S ′′λ.

Proof. — As pλ(Σ′Ab) ⊂ ΣBb for b ∈ S ′′λ, and since we know by assumption that
dim ΣBb < g, we conclude that Σ′Ab ⊂ Ab is a proper algebraic subset for very general
b ∈ S ′′λ, hence also for very general b ∈ S ′. For very general b ∈ S ′, the cycle class
[Σ′Ab ] ∈ H

2l(Ab,Q), where l := codim Σ′Ab , is a nonzero multiple µθl of θl because the
latter generates the space of degree-2l Hodge classes of a very general abelian variety
with polarizing class θ (see [Mat58]). Using the fact that l > 0, we thus conclude
that pλ∗([Σ′Ab ]) = pλ∗(µθl) is nonzero in H2l−2(Bb,Q), and, since Σ′Ab is irreducible
by construction, it follows that pλ,Σ is generically finite on its image. �

Lemma 2.5 implies statement (a) of Proposition 2.4 and also, applied to the case
where ΣB ⊂ B is countable while dimB > 0, statement (a′). We now concentrate on
statement (b) and thus assume that dimB > dim ΣB > 0 for a very general abelian
variety B of dimension g. With the same notation as before, we want to show that
dim Σ′Ab < dim ΣBb which, using as before Lemma 2.5, means that pλ(Σ′Ab) is not a
component of ΣBb when b ∈ S ′′λ is general, for sufficiently general λ.

Lemma 2.6. — In the situation above, the set of varieties (of dimension k′ =
dim Σ′Ab by Lemma 2.5)

Σ′Ab,pλ := pλ(Σ′Ab)
and morphisms pλ,Σ : Σ′Ab → Σ′Ab,pλ , for all λ, is bounded up to birational transfor-
mations.

The meaning of the above lemma will be made clear from its proof. One way to
state boundedness here is to say that the union of the irreducible components of the
subvarieties

Σ′Ab ×Σ′
Ab,pλ

Σ′Ab ⊂ Σ′Ab × Σ′Ab
dominating both factors Σ′Ab have bounded degree for the originally given polarization
on Ab.
Proof of Lemma 2.6. — Recall that Σ′Ab,pλ = pλ(Σ′Ab) is contained in ΣBb ⊂ Bb,

hence is a proper subvariety of a very general abelian variety Bb of dimension g with
polarization of certain type, and Σ′Ab ⊂ Ab is the specialization of a subvariety (of
codimension at least 2 by Lemma 2.5) of a very general abelian variety of dimension
g + 1 at points b which form a Zariski dense subset of S. In both cases, it follows
that the Gauss maps gA of Σ′Ab ⊂ Ab and gB of Σ′Ab,pλ ⊂ Bb, which take their
respective values in G(k′, g+1) = Grass(k′, TAb,0Ab

) and G(k′, g) = Grass(k′, TBb,0Bb
),

are generically finite on their images. We have a commutative diagram

(2.1)

Σ′Ab
gA //

pλ,Σ

��

G(k′, g + 1)
πλ

��
Σ′Ab,pλ

gB // G(k′, g)
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where all the maps are rational maps and the rational map πλ : G(k′, g + 1) 99K
G(k′, g) is induced by the linear map dpλ : TAb,0Ab

→ TBb,0Bb
which is also the

quotient map TAb,0Ab
→ TAb,0Ab

/TE,0E . We observe here that the density of the
countable union of the Sλ in S has the following stronger version.

Lemma 2.7. — The points [TE,0E ] ∈ P(TAb,0Ab
), for b ∈ Sλ are Zariski dense (and

even dense for the usual topology) in the projectivized bundle P(TA/S,0A) over S.

Proof. — View a g-dimensional abelian variety A as a complex torus ΓC/(Γ1,0⊕Γ),
where Γ is a fixed lattice of rank 2g and ΓC is the corresponding complexified vector
space. The lattice Γ is equipped with a skew nondegenerate pairing 〈 · , · 〉 determining
the polarization and when A deforms along S, the complex subspace Γ1,0 ⊂ ΓC, which
naturally identifies with TA,0A varies in an open set of the Lagrangian Grassmannian
of (ΓC, 〈 · , · 〉). The condition that Ab is isogenous to B ×E, that is b ∈ Sλ for some
λ, is equivalent to the fact that the complex line

TE ⊂ TA,0A = Γ1,0 ⊂ ΓC

satisfies the property that the plane TE⊕TE ⊂ ΓC, which is defined over R, is defined
over Q. The lemma then follows from the density for the usual topology of the set
of planes defined over Q in the Grassmannian of real planes in ΓR. �

This lemma shows that the projection πλ above is thus generic when b is taken
generic in a general Sλ so that for general λ and generic b ∈ Sλ, the composition
πλ ◦ gA is generically finite as is gA and, up to shrinking S ′ if necessary, its graph
deforms in a flat way over the space of parameters (namely a Zariski open set of
P(TA/S,0A)).
This is now finished because we first restrict to the Zariski dense open set U

of P(TAS/B ,0A) where the rational map πλ ◦ gA is generically finite and its graph
deforms in a flat way, and then there are finitely many generically finite covers of U
parameterizing a factorization of the rational map πλ ◦ gA. Since the diagram (2.1)
shows that there is a factorization of πλ ◦ gA as

Σ′Ab
pλ,Σ→ Σ′Ab,pλ

gB→ G(k′, g),

we conclude that all the maps Σ′Ab
pλ,Σ→ Σ′Ab,pλ are, up to birational equivalence of

the target, members of finitely many families of generically finite dominant rational
maps ψ : Ab 99K Yb. �

As a corollary, we conclude using the density of the union of the sets S ′λ that there
is, up to replacing S ′ by a generically finite cover, a family of k′-dimensional varieties
Σ′′AS′ , together with a dominant generically finite rational map

(2.2) p : Σ′AS′ 99K Σ′′AS′

identifying birationally to pλ,Σ : Σ′Ab 99K Σ′Ab,pλ along each S ′λ.
We now finish the proof by contradiction. Assume that k′ = k. Then Σ′Ab,pλ must

be a component Γb of ΣBb . In particular it does not depend on the elliptic curve E.
Restricting to a dense Zariski open set S ′′ of S ′ is necessary, we can assume that we
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have desingularizations

(2.3) Σ̃′AS′′ , Σ̃′′AS′′

with smooth fibers over S ′′, together with a surjective generically finite morphism
p̃ : Σ̃′AS′′ → Σ̃′′AS′′ over S ′. Let j̃ : Σ′Ab → Ab be the natural map and consider the
morphism of abelian varieties

p̃∗ ◦ j̃∗ : Pic0(Ab)→ Pic0(Σ̃′′Ab)
which is defined at a general point of S ′′. This morphism is nonzero because when
b ∈ S ′′λ for some λ, it is injective modulo torsion on Pic0(Bb) (which maps by the pull-
back p∗λ to Pic0(Ab) with finite kernel). Indeed, by the projection formula, denoting
by j̃′ : Σ̃′′Ab → B the natural map, we have the equality of maps from Pic0(Bb) to
Pic0(Σ̃′′Ab):

(p̃∗ ◦ j̃∗)|Pic0(Bb) = ((p̃λ,Σ)∗ ◦ j̃∗)|Pic0(Bb) = ((p̃λ,Σ)∗ ◦ (p̃λ,Σ)∗ ◦ j̃′∗ = deg pλ,Σ j̃′
∗
.

(We note here that the morphism j̃′
∗ : Pic0(Bb)→ Pic0(Σ̃′′Ab) has finite kernel because

dim Im j̃′ = k > 0. It is at this point that we use the assumption that dim ΣB > 0.)
As the abelian variety Pic0(Ab) is simple at a very general point b of S ′′, the nonzero

morphism (p̃λ,Σ)∗ ◦ j̃∗ must be injective up to torsion. But then, by specializing at
a point b of S ′′λ, where λ is chosen in such a way that S ′′λ = S ′′ ∩ S ′λ is non-empty,
we find that this morphism is injective up to torsion on the component Pic0(Eb) of
Pic0(Ab). We can now fix the abelian variety Bb and deform the elliptic curve Eb.
We then get a contradiction, because we know that the variety Σ̃′′Ab depends (at least
birationally) only on Bb and not on Eb, so that its Picard variety cannot contain a
variable elliptic curve Eb. �

3. Proof of Theorems 1.8 and 1.4(4)

3.1. Dimension estimate

Recall that for an abelian variety A and a nonnegative integer k, we denote by
Ak ⊂ A the set of points x ∈ A such that ({x} − {0A})∗k = 0 in CH0(A). Let us
first for completeness prove Lemma 1.7, which says that the isogeny between A and
Â provided by a polarization induces a surjection with finite fibers between Ak and
the subset Âk of divisors homologous to 0 in A such that Dk = 0 in CHk(A).
Proof of Lemma 1.7. — We use Beauville’s formulas in [Bea82, Proposition 6].

We get in particular the following equality:

(3.1) θg−k

(g − k)!D
k
x = θg

g! ∗ γ(x)∗k,

where

γ(x) := {0A}−{x}+
1
2({0A}−{x})∗2+· · ·+1

g
({0A}−{x})∗g = − log({x}) in CH0(A).
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Here the logarithm is taken with respect to the Pontryagin product ∗ and the
expansion is finite because 0-cycles of degree 0 are nilpotent for the Pontryagin
product. If ({0A} − {x})∗k = 0, then γ(x)∗k = 0 and thus θg−kDk

x = 0 in CH0(A)
by (3.1). This implies that Dk

x = 0 by the following lemma.

Lemma 3.1. — Let (A, θ) be a polarized abelian variety of dimension g, and
D ∈ Pic0(A) ⊗ Q = CH1(A)hom be a divisor homologous to 0, where k 6 g. Then
θg−kDk = 0 in CH0(A) if and only if Dk = 0 in CHk(A).

Sketch of proof. — This lemma is very similar to [Blo76, Proposition 4.6] and
could be in fact also reduced to it by a Fourier transform argument. We choose a
smooth ample curve C ⊂ A which is a complete intersection of smooth hypersurfaces
of class proportional to θ, inducing by the sum map a surjective morphism

σ : Cg → A.

We then compute σ∗(Dk) in CH(Cg). Using the fact that for a divisor D homologous
to 0 on A, one has σ∗D = ∑g

i=1 pr∗i (D|C), one concludes that σ∗(Dk) = 0 in CHk(Cg)
if and only if σ∗k(Dk) = 0 in CHk(Ck), where σk : Ck → A is the sum map for Ck.
One then computes σ∗(θg−kDk) ∈ CH0(Cg) and shows that it vanishes if and only if
σ∗k(Dk) = 0 ∈ CHk(Ck). One uses for this the fact that σ∗θ is a divisor of the form∑g
i=1 pr∗i H + λ

∑
i 6=j ∆ij, for some divisor H on C, where ∆ij ⊂ Cg is the diagonal

{ci = cj} of Cg. �

Conversely, if Dk
x = 0, then γ(x)∗k = 0 by (3.1). But then also ({0A} − {x})∗k = 0

because {x} = exp(−γ(x)). (Again exp(−γ(x)) is a polynomial in γ(x), hence well
defined since γ(x) is nilpotent for the ∗-product, see [Blo76].) �

The following proves item (1) of Theorem 1.8.

Proposition 3.2. — For k > 0, one has dimAk 6 k − 1.

Proof. — Let g := dimA and let ΓPont
k be the codimension g cycle of A× A such

that
(ΓPont

k )∗(x) = ({x} − {0A})∗k

for any x ∈ A. As ({x} − {0A})∗k = ∑k
i=0(−1)k−i

(
k
i

)
{ix}, we can take

(3.2) ΓPont
k =

k∑
i=0

(−1)k−i
(
k

i

)
Γi,

where Γi ⊂ A×A is the graph of the map mi of multiplication by i. Let us compute
(ΓPont

k )∗η for any holomorphic form on A.

Lemma 3.3. — One has (ΓPont
k )∗η = 0 for any holomorphic form η of degree < k

on A, and (ΓPont
k )∗η = k!η for any holomorphic form of degree k on A.

Proof. — Indeed m∗i η = idη, where d = deg η. By (3.2), the lemma is thus equiva-
lent to

(1) ∑k
i=0(−1)k−i

(
k
i

)
id = 0, d < k,

(2) ∑k
i=0(−1)k−i

(
k
i

)
ik = k!.
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From the formula ∑k
i=0(−1)k−i

(
k
i

)
X i = (X − 1)k, we get that the d-th derivative

of the polynomial ∑k
i=0(−1)k−i

(
k
i

)
X i at 1 is 0 for d < k, and is equal to k! for d = k.

This implies (1) by induction on d, using the fact that i(i− 1) . . . (i− d+ 1)− id is
a polynomial of degree d− 1 in i, and then (2) by the same argument. �

This lemma implies Proposition 3.2. Indeed, by Mumford’s theorem [Mum69], one
has (ΓPont

k )∗η|W = 0 for any smooth algebraic variety W contained in Ak and any
holomorphic form η of positive degree on A, and in particular for any holomorphic
k-form on A. By Lemma 3.3, we conclude that, for any W as above and for any
holomorphic form η of degree k on A, we have η|W = 0. Applying this to the regular
locus W of any component of Ak, one concludes that dimAk < k. �

3.2. Proof of Theorem 1.8

The following result is almost obvious.

Lemma 3.4. — For any integer k > 0, the family of subsets Ak ⊂ A defined
in (1.1) is naturally defined in the sense of Definition 2.1.

Proof. — It is known that the set Ak ⊂ A is a countable union of closed algebraic
subsets. Using the fact that for a morphism f : A→ B of abelian varieties,

f∗ : CH0(A)→ CH0(B)

is compatible with the Pontryagin product, we conclude that f(Ak) ⊂ Bk. Finally,
given a family π : A → S of abelian varieties, the set of points x ∈ A such that
({x} − {0Ab})∗k = 0 in CH0(Ab), where b = π(x), is a countable union of closed
algebraic subsets ofA whose fiber over b ∈ S coincides set-theoretically withAb,k. �
Proof of Theorem 1.8. — The theorem follows from Proposition 3.2, Lemma 3.4,

and Theorem 2.3. �

3.3. Proof of Theorem 1.4(4)

We first prove the following proposition (cf. Proposition 1.9). The elegant proof
given below is due to A. Beauville and simplifies our original proof.

Proposition 3.5. — Let A be an abelian variety and let x1, . . . , xk ∈ A such
that

(3.3)
∑
i

{xi} = k{0A} in CH0(A).

Then

(3.4) ({xi} − {0A})∗k = 0 in CH0(A)

for all i = 1, . . . , k.
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Proof. — Letting act the isogeny of multiplication by l on A, we get from rela-
tion (3.3)
(3.5)

∑
i

{lxi} = k{0A} in CH0(A).

Let yi := {xi}−{0A} ∈ CH0(A). The relations (3.5) and the binomial formulas show
inductively that for any l > 0
(3.6)

∑
i

y∗li = 0 in CH0(A).

The Newton formulas expressing any polynomial symmetric function of degree 6 m
in the yi as a polynomial in the power sums ∑i y

∗l
i for l 6 m then imply that the

elementary symmetric functions sl(y1, . . . , yk) vanish for l = 1, . . . , k. On the other
hand, the yi are roots of the polynomial (where the product is Pontryagin product
in CH0(A))

P (t) :=
k∏
i=1

(t− yi).

The vanishing of the symmetric functions sl(y1, . . . , yk) for l = 1, . . . , k then gives
y∗ki = 0, that is, (3.4). �
Proposition 3.5 says that if {x1} + · · · + {xk} = k{0A} in CH0(A), then xi ∈ Ak.

The locus swept out by the orbit |k{0A}| is thus contained in Ak. We thus deduce
from Theorem 1.8 the following corollary:
Corollary 3.6 (cf. Theorem 1.4(4)). — For any abelian variety A, the locus

swept out by the orbit |k{0A}| has dimension 6 k − 1. For a very general abelian
variety A of dimension g > 2k − 1, the orbit |k{0A}| is countable.
In this statement, the locus swept out by the orbit |k{0A}| is the set of points

x ∈ A such that there exists a cycle x + Z ′, with Z ′ effective of degree k − 1,
which belongs to |k{0A}|. The dimension of this locus can be much smaller than
the dimension of the orbit itself, as shown by the examples of orbits contained in
subvarieties C(k) ⊂ A(k) for some curve C.

4. Proof of Theorem 1.4(1)

We give in this section the proof of item (1) in Theorem 1.4. We first recall the
statement:
Theorem 4.1. — Let A be an abelian variety. The dimension of any orbit |Z| ⊂

A(k) for rational equivalence is at most k − 1.

Proof. — We will rather work with the inverse image |̃Z| of the orbit |Z| in Ak.
By Mumford’s theorem [Mum69], for any holomorphic i-form α on A with i > 0,
one has, along the regular locus |̃Z|reg of |̃Z|:

(4.1)
k∑
j=1

pr∗j α||̃Z|reg
= 0,
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where the prj : Ak → A are the various projections. Let x = (x1, . . . , xk) ∈ |̃Z|reg
and let V := T|̃Z|reg,x

⊂ W k, where W = TA,x = TA,0A . One has dim V = dim |Z|
and (4.1) says that:

(∗) for any α ∈ ∧iW ∗ with i > 0, one has (∑j pr∗j α)|V = 0.
Theorem 4.1 thus follows from the following proposition. �

Proposition 4.2. — Let W be a vector space, and let V ⊂ W k be a vector
subspace satisfying property (∗). Then dim V 6 k − 1.

Remark 4.3. — If dimW = 1, the result is obvious, as V ⊂ W k
0 ⊂ W , where,

denoting by σ the sum map, W k
0 := Ker(σ : W k → W ). If dimW = 2, the result

follows from the fact that, choosing a generator η of ∧2W ∗, the 2-form ∑
j pr∗j η is

nondegenerate on W k
0 (which has dimension 2k − 2). A subspace V satisfying (∗) is

contained in W k
0 and totally isotropic for this 2-form, hence has dimension r 6 k− 1.

Proof of Proposition 4.2. — The group AutW acts onW k, with induced action on
Grass(r,W k) preserving the set of r-dimensional vector subspaces V ⊂ W k satisfying
condition (∗). Choose a C∗-action on W with finitely many fixed points e1, . . . , en,
where n = dimW . The fixed points [V ] ∈ Grass(r,W k) under the induced action of
C∗ on the Grassmannian are of the form V = 〈A1e1, . . . , Anen〉, where Ai ⊂ (Ck)∗
are vector subspaces, with r = ∑

i dimAi. It suffices to prove the inequality r 6 k−1
at such a fixed point, which we do now. The spaces Ai have to satisfy the following
conditions:
(∗∗) For any nonempty subset I = {i1, . . . , is} ⊂ {1, . . . , n} and for any choices

of λl ∈ Ail , l = 1, . . . , s,
k∑
j=1

(λ1 . . . λs)(fj) = 0,

where {f1, . . . , fk} is the natural basis of Ck.
A better way to phrase condition (∗∗) is to use the (standard) pairing 〈 · , · 〉 on

(Ck)∗ given by

〈α, β〉 =
k∑
j=1

α(fj)β(fj).

Condition (∗∗) when there are only two nonzero spaces Ai is the following
∀ α ∈ A1, β ∈ A2, 〈α, β〉 = 0(4.2)

〈α, e〉 = 0, 〈e, β〉 = 0,(4.3)

where e is the vector (1, . . . , 1) ∈ (Ck)∗. Indeed, the case s = 2 in (∗∗) provides (4.2)
and the case s = 1 in (∗∗) provides (4.3). The fact that the pairing 〈 · , · 〉 is nonde-
generate on (Ck)∗0 := e⊥ immediately implies that ∑i dimAi 6 k − 1 when only two
of the spaces Ai are nonzero. By the above arguments, the proof of Proposition 4.2
is finished using the following lemma:

Lemma 4.4. — Let A1, . . . , An be vector subspaces of (Ck)∗ satisfying condi-
tions (∗∗). Then ∑i dimAi 6 k − 1.
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Proof. — We will use the following result:
Lemma 4.5. — Let A and B be two vector subspaces of Ck satisfying the following

conditions:
(1) For any a = (ai) ∈ A and b = (bi) ∈ B, one has ∑i aibi = 0.
(2) For any a = (ai) ∈ A and b = (bi) ∈ B, one has ∑i ai = 0 and ∑i bi = 0.

Then dim(A · B + A + B) > dimA + dimB, where A · B is the vector subspace of
Ck generated by the elements (aibi), a = (ai) ∈ A, b = (bi) ∈ B.
Let us first show how Lemma 4.5 implies Lemma 4.4. Indeed, we can argue induc-

tively on the number n of spaces Ai. As already noticed, Lemma 4.4 is easy when
n = 2. Assuming the statement is proved for n−1, let A1, . . . , An be as in Lemma 4.4
and let A′1 = A1, . . . , A

′
n−2 = An−2 and A′n−1 = An−1 ·An +An−1 +An. Then the set

of spaces A′1, . . . , A′n−1 satisfies conditions (∗∗), and on the other hand Lemma 4.5
applies to the pair (A,B) = (An−1, An) as they satisfy the desired conditions by (∗∗).
Hence we have dimA′n−1 > dimAn−1 + dimAn and by induction on n, we obtain∑n−2
i=1 dimA′i + dimA′n−1 6 k − 1. Hence ∑n

i=1 dimAi 6 k − 1. �

Proof of Lemma 4.5. — Recalling that e = (1, . . . , 1) ∈ Ck, consider the affine
subspaces A1 := e+A and B1 := e+B of Ck. Under the conditions (1) and (2), the
componentwise multiplication map

µ : A1 ×B1 → Ck

((ai), (bi)) 7→ (aibi)
has image in the affine space Ck

1 := e + Ck
0, where Ck

0 = e⊥, and more precisely it
generates the affine space e+ A+B + A ·B ⊂ e+ Ck

0. It thus suffices to show that
the dimension of the algebraic set Imµ is at least dimA+ dimB. Lemma 4.5 is thus
implied by the following:
Claim 4.6. — The map µ has finite fibers near the point (e, e) ∈ A1 ×B1.
The proof of the claim is as follows: Suppose µ has a positive-dimensional fiber

passing through (e, e). We choose an irreducible curve contained in the fiber, passing
through (e, e) and with normalization C. The curve C admits rational functions
σ1, . . . , σk mapping it to A1 such that the functions 1

σi
map C to B1. The condi-

tions (1) and (2) say that ∑
i

σ′i(s)
1

σi(t)
= 0

as a function of (s, t) for any choice of points x, y ∈ C and local coordinates s, t near
x, resp. y, on C. We now take x = y and choose for x a pole (or a zero) of one of the
σl. We assume that the local coordinate s is centered at x and write σi(s) = sdifi(s),
where fi is a holomorphic function of s which is nonzero at 0. We then get

(4.4) σ′i(s)
1

σi(t)
= di

sdi−1

tdi
φi(s, t) + sdi

tdi
ψi(s, t),

where φi(s, t) is holomorphic in s, t and takes value 1 at (0, 0) and ψi(s, t) is holo-
morphic in s, t. Restricting to a curve D ⊂ C ×C defined by the equation s = tl for
some chosen l > 2, the function (σ′i(s) 1

σi(t))|D has order l(di − 1)− di = (l − 1)di − l
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and first nonzero coefficient in its Laurent expansion equal to di. These orders are
different for distinct di and the vanishing ∑i σ

′
i(s) 1

σi
(t) = 0 is then clearly impossible:

indeed, by pole order considerations, for the minimal negative value d of di, hence
minimal value of the numbers (l−1)di− l, the first nonzero coefficient in the Laurent
expansion of (σ′i(s) 1

σi(t))|D should be also 0. However, it is the same as for the sum∑
i, di=d(σ′i(s)

1
σi

(t))|D, which is equal to Mdd, where Md is the cardinality of the set
{i, di = d}, hence it is nonzero.
The claim is proved. �

The proof of Proposition 4.2 is thus finished. �

4.1. An alternative proof of Theorem 1.4(4)

As a first application, let us give a second proof of Theorem 1.4(4). The general
dimension estimate of Theorem 1.4(1) implies that the locus swept out by the orbit of
|k0A| is of dimension 6 k−1 for any abelian variety A. This locus is clearly naturally
defined. Hence by Theorem 2.3(2), it is countable for a very general abelian variety
of dimension > 2k − 1.

5. Proof of Theorem 1.4(2) and 1.4(3)

We will prove the following result by induction on l ∈ {0, . . . , k}.

Proposition 5.1. — For g > 2l(2k−1)+(2l−1)(k−2) and for A a very general
abelian variety of dimension g, any 0-cycle of the form (k− l){0A}+Z, with Z ∈ A(l),
has countable orbit.

The case l = 0, which is the first step in our inductive proof, is precisely Theo-
rem 1.4(4) which was proved in Section 3.3.
The case l = k implies Theorem 1.4(2), because any effective zero-cycle Z of

degree k can be translated using one of its points so as to pass through 0A. The
translation by a given element acts on A, hence on A(k), preserving the dimension
of the orbit. Hence there exists a zero-cycle of degree k with positive-dimensional
orbit for rational equivalence in A if and only if there exists a zero-cycle of degree k
of the form 0A + Z ′, with Z ′ effective of degree k − 1, with a positive-dimensional
orbit for rational equivalence in A.
The case l = k − 2 is Theorem 1.4(3).
It thus only remains to prove Proposition 5.1. For clarity, let us write up the detail

of the first induction step: let
(5.1) Σ1(A) ⊂ A

be the set of points x ∈ A such that the orbit |(k− 1){0A}+ {x}| ⊂ A(k) is positive-
dimensional. The set Σ1(A) is a countable union of closed algebraic subsets of A.
We would like to show that Σ1(A) is naturally defined in the sense of Definition 2.1,
but there is a small difficulty here: suppose that p : A → B is a morphism of
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abelian varieties and let |Z| ⊂ A(k) be a positive-dimensional orbit for rational
equivalence on A. Then p∗(|Z|) ⊂ B(k) could be zero-dimensional. In the case where
Z = (k − 1){0A}+ {x}, this a priori prevents us from proving that Σ1(A) satisfies
axiom (2) of Definition 2.1.
This problem can be circumvented using the following lemma whose main contents

in fact already appeared in the course of the proof of Theorem 2.3 (see Lemma 2.5).
Let A → S be a family of abelian varieties of dimension g which is locally complete
at the generic point. This means that we fixed a polarization type λ and the moduli
map S → Ag,λ is dominant.
Lemma 5.2. — Let W ⊂ A be a closed algebraic subset which is flat over S of

relative dimension k′. Then:
(1) For any b ∈ S, any morphism p : Ab → B of abelian varieties with dimB > k′,

p(Wb) ⊂ B has dimension k′.
(2) Assume k′ > 0. For any b ∈ S, any morphism p : Ab → B of abelian varieties

with dimB > 0, p(Wb) ⊂ B has positive dimension.
Proof. — Let’s first prove Statement (1). Indeed, the locally constant class [Wb] ∈

H2g−2k′(Ab,Q) must be a nonzero multiple of θg−k
′

λ , since for very generic b ∈ S,
these are the only nonzero Hodge classes on Ab by [Mat58]. Using our assumption
that dimB > k′, we thus get that p∗([Wb]) 6= 0 in H2 dimB−2k′(B,Q), which implies
that dim p(Wb) = k′.
Statement (2) is obtained as an application of (1) in the case k′ = 1. By replacing
Wb by a complete intersections in Wb, one can assume that dimWb = 1. Then one
has dimWb 6 dimB if dimB > 0, so (1) applies. �
In the following corollary, the orbits for rational equivalence of 0-cycles of X are

taken in X l rather than X(l). Given a family A → S, we denote by Al/S its l-th
power over S. A family of positive-dimensional orbits for rational equivalence in the
fibers is a closed algebraic subset W ⊂ Al/S for some l, which is of positive relative
dimension over S, and whose fibers Wb for b ∈ S are orbits for rational equivalence
in the fibers Ab.
Corollary 5.3. — Let W ⊂ Al/S be a family of positive-dimensional orbits for

rational equivalence in the fibers. Then, up to shrinking S if necessary, for any b ∈ S,
any morphism p : Ab → B of abelian varieties, where B is an abelian variety of
dimension > 0, pl(Wb) ⊂ Bl is a positive-dimensional orbit of B.
Here pl : Alb → Bl is the morphism induced by p.
Proof. — Indeed, by specialization, Wb is a positive-dimensional orbit for rational

equivalence in Alb. Up to shrinking S, we can assume that the restrictions π|pri(W) :
pri(W)→ S are flat for all i. Our assumption is that for one i, pri(W) has positive
relative dimension over S. Lemma 5.2(2) then implies that pri(pl(Wb)) has positive
dimension, so that pl(Wb) is a positive-dimensional orbit for rational equivalence of
0-cycles of B. �
Proof of Proposition 5.1. — Let A be a very general abelian variety. This means

that for some generically complete family π : A → S of polarized abelian varieties,
A is isomorphic to the fiber of π over a very general point of S. As A is very general,
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the locus Σ1(A) introduced in (5.1) is the specialization of the corresponding relative
locus Σ1(A/S) of A, and more precisely, of the union of its components dominating
S. For any fiber Ab, let us define the deformable locus Σ1(A)def as the one which
is obtained by specializing to Ab the union of the components of the relative locus
Σ1(A/S) dominating S. For a very general abelian variety A, Σ1(A) = Σ1(A)def by
definition.
Corollary 5.3 essentially says that this locus is naturally defined. This is not

quite true because the definition of Σ1(A)def depends on choosing a family A of
deformations of A (that is, a polarization on A). In the axioms of Definition 2.1,
we thus should work, not with abelian varieties but with polarized abelian varieties.
Axiom (1) should be replaced by its family version, where A → S is locally complete,
S ′ ⊂ S is a subvariety, f : AS′ → B is a morphism of abelian varieties over S ′,
and B → S ′ is locally complete. We leave to the reader the task of proving that
Theorem 2.3 extends to this context.
Assume now g > 2k−1. Then Σ1(A), hence a fortiori Σ1(A)def , is different from A.

Indeed, otherwise, for any x ∈ A, (k − 1){0A}+ {x} has positive-dimensional orbit,
hence taking x = 0A, we get that k{0A} has positive-dimensional orbit, contradicting
Theorem 1.4(4). Theorem 2.3(1) then implies that for g > 2(2k − 1) − 1, the set
Σ1(A)def is countable. Hence there are only countably many positive-dimensional
orbits of the form |(k − 1){0A} + {x}| and the locus they sweep-out forms by
Corollary 5.3 a naturally defined locus in A, which is of dimension 6 k − 1 by
Theorem 4.1. It follows by applying Theorem 2.3(3) that for g > 2(2k − 1) + k − 2,
this locus itself is countable, that is, all the orbits |(k− 1){0A}+ {x}| are countable
for A very general.
The general induction step works exactly in the same way, introducing the locus

Σl(A) ⊂ A of points xl ∈ A such that (k−l)0A+x1+· · ·+xl has a positive-dimensional
orbit for rational equivalence in A for some points x1, . . . , xl−1 ∈ A. �

6. Further discussion

It would be nice to improve the estimates in our main theorems. As already
mentioned in the introduction, none of them seem to be optimal. Let us introduce a
naturally defined locus (or the deformation variant of that notion used in the last
section) whose study should lead to a proof of Conjecture 1.2.

Definition 6.1. — The locus ZA ⊂ A of positive-dimensional normalized orbits
of degree k is the set of points x ∈ A such that for some degree-k zero-cycle Z = x+Z ′,
with Z ′ effective, one has

dim |Z| > 0, σ(Z) = 0.

Here σ : A(k) → A is the sum map. It is constant along orbits under rational
equivalence. This locus (or its “def” version discussed in the previous proof) is
naturally defined. Note also that by definition it is either of positive dimension or
empty. The main remaining question is to estimate the dimension of this locus, at
least for very general abelian varieties. Conjecture 1.2 would follow from:
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Conjecture 6.2. — If A is a very general abelian variety, the locus ZA ⊂ A of
positive-dimensional normalized orbits of degree k has dimension 6 k − 1.

Conjecture 6.2 is true for k = 2. Indeed, in this case the normalization condition
reads Z = {x}+ {−x} for some x ∈ A. The positive-dimensional normalized orbits
of degree 2 are thus also positive-dimensional orbits of points in the Kummer variety
K(A) = A/ ± Id of A. These orbits are rigid because on a surface in K(A) swept
out by a continuous family of such orbits, any holomorphic 2-form on K(A) should
vanish while Ω2

K(A)reg
is generated by its sections.

It would be tempting to try to estimate the dimension of the locus of positive-
dimensional normalized orbits of degree k for any abelian variety. Unfortunately, the
following example shows that this locus can be the whole of A.

Example 6.3. — Let A be an abelian variety which has a degree-k − 1 positive-
dimensional orbit Z ⊂ A(k−1). Then for each x ∈ A,

x+ Z := {{x1 + x}+ · · ·+ {xk−1 + x}, {x1}+ · · ·+ {xk−1} ∈ Z}
is also a positive-dimensional orbit. The element ∑i xi of A is constant along Z and
for fixed x, Z, the set

{{x1 + x}+ · · ·+ {xk−1 + x}+ {−
∑
i

xi − (k − 1)x}} ⊂ A(k)

is a positive-dimensional normalized orbit of degree k. In this case, the locus of
positive-dimensional normalized orbits of degree k of A is the whole of A.

Nevertheless, we can observe the following small evidence for Conjecture 6.2.

Lemma 6.4. — Let O ⊂ Ak be a closed irreducible algebraic subset which is
covered by components of positive-dimensional normalized orbits of degree k. Let
Z ∈ Oreg and assume the positive-dimensional orbit OZ passing through Z has a
tangent vector (u1, . . . , uk) such that the vector space 〈u1, . . . , uk〉 ⊂ TA,0A is of
dimension k − 1. Then the locus of A swept out by O, namely the union of the sets
pri(O) ⊂ A has dimension 6 k − 1.

Note that k− 1 is the maximal possible dimension of the vector space 〈u1, . . . , uk〉
because ∑i ui = 0. The example 6.3 is a case where the vector space 〈u1, . . . , uk〉 has
dimension 1.
Applying Theorem 2.3(2), Conjecture 6.2 in fact implies the following.

Conjecture 6.5. — If A is a very general abelian variety of dimension > 2k−1,
A has no positive-dimensional orbits of degree k.

This is a generalization of Conjecture 1.2, because a k-gonal curve j : C → A, D ∈
W 1
k (C) provides a positive-dimensional orbit j∗|D| of degree k of A.
We discussed in this paper only the applications to gonality. The case of higher

dimensional linear systems would be also interesting to investigate. In a similar but
different vein, the following problem is intriguing:

Question 6.6. — Let A be a very general abelian variety. Is it true that there are
no a smooth plane curves C admitting a nonconstant morphism to A ? Equivalently,
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is it true that there is no surjective morphism J(C)→ A of abelian varieties, with
C a smooth plane curve?

If the answer to the above question is affirmative, one could get examples of
surfaces of general type which are not birational to a normal surface in P3. Indeed,
take a surface whose Albanese variety is a general abelian variety as above. If S is
birational to a normal surface S ′ in P3, there are plenty of smooth plane curves in
S ′, which clearly map nontrivially to AlbS, which would be a contradiction.
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