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ANTON BERNSHTEYN

BOREL FRACTIONAL COLORINGS
OF SCHREIER GRAPHS
COLORIAGES FRACTIONNAIRES BORÉLIENS
DE GRAPHES DE SCHREIER

Abstract. — Let Γ be a countable group and let G be the Schreier graph of the free
part of the Bernoulli shift Γ y 2Γ (with respect to some finite subset F ⊆ Γ). We show that
the Borel fractional chromatic number of G is equal to 1 over the measurable independence
number of G. As a consequence, we asymptotically determine the Borel fractional chromatic
number of G when Γ is the free group, answering a question of Meehan.
Résumé. — Soit Γ un groupe dénombrable. Considérons G le graphe de Schreier de la

partie libre du décalage de Bernoulli Γ y 2Γ (par rapport à un ensemble fini F ⊆ Γ). Nous
montrons que le nombre chromatique fractionnaire borélien de G est égal à 1 sur le nombre
d’indépendance mesurable de G. Comme conséquence, nous déterminons l’asymptotique du
nombre chromatique fractionnaire borélien de G lorsque Γ est le groupe libre, ce qui répond à
une question de Meehan.

1. Definitions and results

All graphs in this paper are undirected and simple. Recall that for a graph G, a
subset I ⊆ V (G) is G-independent if no two vertices in I are adjacent in G. The
chromatic number of G, denoted by χ(G), is the least ` ∈ N such that there exist
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1152 A. BERNSHTEYN

G-independent sets I1, . . . , I` whose union is V (G). (If no such ` exists, we set
χ(G) :=∞.) The sequence I1, . . . , I` is called an `-coloring of G, where we think of
the vertices in Ii as being assigned the color i.
Fractional coloring is a well-studied relaxation of graph coloring. For an introduc-

tion to this topic, see the book [SU97] by Scheinerman and Ullman. Given k ∈ N,
the k-fold chromatic number of G, denoted by χk(G), is the least ` ∈ N such that
there are G-independent sets I1, . . . , I` which cover every vertex of G at least k
times (such a sequence I1, . . . , I` is called a k-fold `-coloring). Note that the sets
I1, . . . , I` need not be distinct. In particular, if I1, . . . , Iχ(G) is a χ(G)-coloring of G,
then, by repeating each set k times, we obtain a k-fold kχ(G)-coloring, which shows
that

χk(G) 6 kχ(G) for all k.
This inequality can be strict; for example, the 5-cycle C5 satisfies χ(C5) = 3 but
χ2(C5) = 5. It is therefore natural to define the fractional chromatic number χ∗(G)
of G by the formula

χ∗(G) := inf
k> 1

χk(G)
k

.

In this note we investigate fractional colorings from the standpoint of Borel com-
binatorics. For a general overview of Borel combinatorics, see the surveys [KM20]
by Kechris and Marks and [Pik21] by Pikhurko. The study of fractional colorings
in this setting was initiated by Meehan [Mee18]; see also [KM20, § 8.6]. We say
that a graph G is Borel if V (G) is a standard Borel space and E(G) is a Borel
subset of V (G)× V (G). The Borel chromatic number χB(G) of G is the least ` ∈ N
such that there exist Borel G-independent sets I1, . . . , I` whose union is V (G). The
Borel k-fold chromatic number χkB(G) is defined analogously, and the Borel fractional
chromatic number χ∗B(G) is

χ∗B(G) := inf
k> 1

χkB(G)
k

.

A particularly important class of Borel graphs are Schreier graphs of group actions.
Let Γ be a countable group with identity element 1 and let F ⊆ Γ be a finite subset.
The Cayley graph G(Γ, F ) of Γ is the graph with vertex set Γ in which two distinct
group elements γ, δ are adjacent if and only if γ = σδ for some σ ∈ F ∪ F−1.
This definition can be extended as follows. Let Γ y X be a Borel action of Γ on a
standard Borel space X. The action Γ y X is free if

γ · x 6= x for all x ∈ X and 1 6= γ ∈ Γ.
The Schreier graph G(X,F ) of an action Γ y X is the graph with vertex set X
in which two distinct points x, y ∈ X are adjacent if and only if y = σ · x for
some σ ∈ F ∪ F−1. Note that the Cayley graph G(Γ, F ) is a special case of this
construction corresponding to the left multiplication action Γ y Γ. More generally,
when the action Γ y X is free, G(X,F ) is obtained by putting a copy of the Cayley
graph G(Γ, F ) onto each orbit.
A crucial example of a Borel action is the (Bernoulli) shift Γ y 2Γ, given by the

formula
(γ · x)(δ) := x(δγ) for all x : Γ→ 2 and γ, δ ∈ Γ.
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Borel fractional colorings of Schreier graphs 1153

We use β to denote the “coin flip” probability measure on 2Γ, obtained as the product
of countably many copies of the uniform probability measure on 2 = {0, 1}. Note
that β is invariant under the shift action. The free part of 2Γ, denoted by Free(2Γ),
is the set of all points x ∈ 2Γ with trivial stabilizer. In other words, Free(2Γ) is the
largest subspace of 2Γ on which the shift action is free. It is easy to see that the shift
action Γ y 2Γ is free β-almost everywhere, i.e., β(Free(2Γ)) = 1.
Let G be a Borel graph and let µ be a probability (Borel) measure on V (G).

The µ-independence number of G is the quantity αµ(G) := supI µ(I), where the
supremum is taken over all µ-measurable G-independent subsets I ⊆ V (G). Note
that if I1, . . . , I` is a Borel k-fold `-coloring of G, then

`αµ(G) > µ(I1) + · · ·+ µ(I`) > k,

which implies χ∗B(G) > 1/αµ(G). Our main result is a matching upper bound for
Schreier graphs:

Theorem 1.1. — Let Γ be a countable group and let F ⊆ Γ be a finite set. If
Γ y X is a free Borel action on a standard Borel space, then

(1.1) χ∗B(G(X,F )) 6 1
αβ (G (Free (2Γ) , F )) .

In particular,

(1.2) χ∗B
(
G
(
Free

(
2Γ
)
, F
))

= 1
αβ (G (Free (2Γ) , F )) .

While (1.2) is a special case of (1.1), it is possible to deduce (1.1) from (1.2) using
a theorem of Seward and Tucker–Drob [STD16], which asserts that every free Borel
action of Γ admits a Borel Γ-equivariant map to Free(2Γ). Nevertheless, we will give
a simple direct proof of (1.1) in § 2.
An interesting feature of Theorem 1.1 is that it establishes a precise relationship

between a Borel parameter χ∗B and a measurable parameter αβ. We find this somewhat
surprising, since ignoring sets of measure 0 usually significantly reduces the difficulty
of problems in Borel combinatorics. For instance, given a Borel graph G and a
probability measure µ on V (G), one can consider the µ-measurable chromatic number
χµ(G), i.e., the least ` ∈ N such that there exist µ-measurable G-independent sets
I1, . . . , I` whose union is V (G). By definition, χµ(G) 6 χB(G), and it is often
the case that this inequality is strict—see [KM20, § 6] for a number of examples.
By contrast, as an immediate consequence of Theorem 1.1 we obtain the opposite
inequality χ∗B(G) 6 χβ(G), where G is the Schreier graph of the free part of the
shift:

Corollary 1.2. — Let Γ be a countable group and let F ⊆ Γ be a finite set.
Set G := G(Free(2Γ), F ). Then χ∗B(G) 6 χβ(G).

Proof. — Follows from Theorem 1.1 and the inequality αβ(G) > 1/χβ(G). �
As a concrete application of Theorem 1.1, consider the free group case. For n > 1,

let Fn be the free group of rank n generated freely by elements σ1, . . . , σn and let Gn

denote the Schreier graph of the free part of the shift action Fn y 2Fn with respect
to the set {σ1, . . . , σn}. Then every connected component of Gn is an (infinite)

TOME 5 (2022)



1154 A. BERNSHTEYN

2n-regular tree. In particular, the chromatic number of Gn is 2. On the other hand,
Marks [Mar16] proved that χB(Gn) = 2n+ 1. Meehan inquired where between these
two extremes the Borel fractional chromatic number of Gn lies:
Question 1.3 ([Mee18, Question 4.6.3]; see also [KM20, Problem 8.17]). —

What is the Borel fractional chromatic number of Gn? Is it always equal to 2?
Using Theorem 1.1 together with some known results we asymptotically determine

χ∗B(Gn) (and, in particular, give a negative answer to the second part of Question 1.3):
Corollary 1.4. — For all n > 1, we have

χ∗B(Gn) = (2 + o(1)) n

log n,

where o(1) denotes a function of n that approaches 0 as n→∞.
In other words, the Borel fractional chromatic number of Gn is less than its ordinary

Borel chromatic number roughly by a factor of log n. We present the derivation of
Corollary 1.4 in § 3.

2. Proof of Theorem 1.1

We shall use the following theorem of Kechris, Solecki, and Todorcevic:
Theorem 2.1 (Kechris–Solecki–Todorcevic [KST99, Proposition 4.6]). — If G is

a Borel graph of finite maximum degree d, then χB(G) 6 d+ 1.
Fix a countable group Γ and a finite subset F ⊆ Γ. Without loss of generality, we

may assume that 1 6∈ F . Say that a set I ⊆ 2Γ is independent if I ∩ (σ · I) = ∅ for all
σ ∈ F (when I ⊆ Free(2Γ), this exactly means that I is G(Free(2Γ), F )-independent).
For brevity, let

αβ := αβ
(
G
(
Free

(
2Γ
)
, F
))
.

Lemma 2.2. — For every α < αβ, there is a clopen independent set I ⊆ 2Γ such
that β(I) > α.
Proof. — Let J ⊆ Free(2Γ) be a β-measurable independent set with β(J) > α.

Since β is regular [Kec95, Theorem 17.10] and 2Γ is zero-dimensional, there is a
clopen set C ⊆ 2Γ with

µ(J M C) 6 β(J)− α
|F |+ 1 .

Set I := C \ ⋃σ∈F (σ · C). By construction, I is clopen and independent. Moreover,
if x ∈ J \ I, then either x ∈ J \C or x ∈ (σ ·C) \ (σ · J) for some σ ∈ F . Therefore,

β(I) > β(J) − (|F |+ 1)β(J M C) > α. �

Let Γ y X be a free Borel action on a standard Borel space. Fix an arbitrary
clopen independent set I ⊆ 2Γ. We will prove that χ∗B(G(X,F )) 6 1/β(I), which
yields Theorem 1.1 by Lemma 2.2. Since I is clopen, there exist finite sets D ⊆ Γ
and Φ ⊆ 2D such that

I =
{
x ∈ 2Γ : x|D ∈ Φ

}
,
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Borel fractional colorings of Schreier graphs 1155

where x|D denotes the restriction of x to D. Note that

β(I) = |Φ|
2|D| .

Let N := |DD−1| and consider the graph H := G(X,DD−1). Every vertex in H has
precisely N − 1 neighbors (we are subtracting 1 to account for the fact that a vertex
is not adjacent to itself). By Theorem 2.1, this implies that χB(H) 6 N . In other
words, we may fix a Borel function f : X → N such that f(u) 6= f(v) whenever u,
v ∈ X are distinct points satisfying v ∈ DD−1 · u. This implies that for each x ∈ X,
the restriction of f to the set D · x is injective. Now, to each mapping ϕ : N → 2,
we associate a Borel Γ-equivariant function πϕ : X → 2Γ as follows:

πϕ(x)(γ) := (ϕ ◦ f)(γ · x) for all x ∈ X and γ ∈ Γ.
Let Iϕ := π−1

ϕ (I). Since πϕ is Γ-equivariant, Iϕ is G(X,F )-independent. Consider
any x ∈ X and let

Sx := {f(γ · x) : γ ∈ D}.
By the choice of f , Sx is a subset of N of size |D|. Whether or not x is in Iϕ is
determined by the restriction of ϕ to Sx; furthermore, there are exactly |Φ| such
restrictions that put x in Iϕ. Thus, the number of mappings ϕ : N → 2 for which
x ∈ Iϕ is

|Φ|2N−|D| = β(I)2N .
Since this holds for all x ∈ X, we conclude that the sets Iϕ cover every point in X
exactly β(I)2N times. Therefore, χ∗B(G(X,F )) 6 1/β(I), as desired.

3. Proof of Corollary 1.4

Thanks to Theorem 1.1, in order to establish Corollary 1.4 it is enough to verify
that

αβ (Gn) =
(1

2 + o(1)
) log n

n
.

There are a number of known constructions that witness the lower bound

αβ (Gn) >
(1

2 + o(1)
) log n

n
;

see, e.g., [LW07] by Lauer and Wormald and [GG10] by Gamarnik and Goldberg.
Moreover, by [Ber19, Corollary 1.2], even the inequality χβ(Gn) 6 (2 + o(1))n/ log n
holds. For the upper bound

(3.1) αβ(Gn) 6
(1

2 + o(1)
) log n

n
,

we shall use a theorem of Rahman and Virág [RV17], which says that the largest
density of a factor of i.i.d. independent set in the d-regular tree is at most (1 +
o(1)) log d/d. In the remainder of this section we describe their result and explain
how it implies the desired upper bound on αβ(Gn).
Fix an integer n > 1. For our purposes, it will be somewhat more convenient to

work on the space [0, 1]Fn instead of 2Fn , where [0, 1] is the unit interval equipped with
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1156 A. BERNSHTEYN

the usual Lebesgue probability measure. The product measure on [0, 1]Fn is denoted
by λ. Let Hn be the Schreier graph of the shift action Fn y [0, 1]Fn corresponding
to the standard generating set of Fn. We remark that, by a theorem of Abért and
Weiss [AW13] (see also [KM20, Theorem 6.46]), αβ(Gn) = αλ(Hn), so it does not
really matter whether we are working with Gn or Hn.
Set d := 2n and let Td denote the Cayley graph of the free group Fn with respect

to the standard generating set. In other words, Td is an (infinite) d-regular tree. We
view Td as a rooted tree, whose root is the vertex 1, i.e., the identity element of Fn.
Let A be the automorphism group of Td, i.e., the set of all bijections A : Fn → Fn
that preserve the edges of Td, and let A• ⊆ A be the subgroup comprising the root-
preserving automorphisms, i.e., those A ∈ A that map 1 to 1. The space [0, 1]Fn is
equipped with a natural right action [0, 1]Fn � A. Namely, for A ∈ A and x ∈ [0, 1]Fn ,
the result of acting by A on x is the function x · A : Fn → [0, 1] given by

(x · A)(δ) := x(A(δ)) for all δ ∈ Fn.
For each γ ∈ Fn, there is a corresponding automorphism Aγ ∈ A sending every group
element δ ∈ Fn to δγ. The mapping Fn → A : γ 7→ Aγ is an antihomomorphism of
groups, that is, we have

Aγσ = Aσ ◦ Aγ for all γ, σ ∈ Fn,
where ◦ denotes composition. In particular, {Aγ : γ ∈ Fn} is a subgroup of A
isomorphic to Fn. The right action [0, 1]Fn � A and the left action Fn y [0, 1]Fn are
related by the formula

x · Aγ = γ · x for all x ∈ [0, 1]Fn .

A set X ⊆ [0, 1]Fn is called A•-invariant if x ·A ∈ X for all x ∈ X and A ∈ A•. The
Rahman–Virág theorem can now be stated as follows:

Theorem 3.1 (Rahman–Virág [RV17, Theorem 2.1]). — If I ⊆ [0, 1]Fn is an
A•-invariant λ-measurable Hn-independent set, then

λ(I) 6 (1 + o(1)) log d
d

=
(1

2 + o(1)
) log n

n
.

Theorem 3.1 is almost the result we want, except that we need an upper bound on
the measure of every (not necessarily A•-invariant) λ-measurable Hn-independent
set I. To remove the A•-invariance assumption, we use the following consequence of
Theorem 3.1:

Corollary 3.2. — There exists a Borel graph Q with a probability measure µ
on V (Q) such that:

• every connected component of Q is a d-regular tree; and
• αµ(Q) 6 (1/2 + o(1)) log n/n.

Proof. — We use a construction that was studied by Conley, Kechris, and Tucker–
Drob in [CKTD13]. Let Ω be the set of all points x ∈ [0, 1]Fn such that x ·A 6= x for
every non-identity automorphism A ∈ A. Let us make a couple observations about
Ω. Notice that, by definition, the set Ω is invariant under the action [0, 1]Fn � A;
in particular, it is invariant under the shift action Fn y [0, 1]Fn . Furthermore, the
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Borel fractional colorings of Schreier graphs 1157

induced action of Fn on Ω is free (indeed, even the action Ω � A is free). Since
every injective mapping Fn → [0, 1] belongs to Ω, we conclude that λ(Ω) = 1. Now
consider the quotient space V := Ω/A•. As the group A• is compact, the space
V is standard Borel [CKTD13, paragraph preceding Lemma 7.8]. Let µ be the
push-forward of λ under the quotient map Ω → V , and let Q be the graph with
vertex set V in which two vertices x, y ∈ V are adjacent if and only if there are
representatives x ∈ x and y ∈ y that are adjacent in Hn. Conley, Kechris, and
Tucker–Drob [CKTD13, Lemma 7.9] (see also [Tho20, Proposition 1.9]) showed that
every connected component of Q is a d-regular tree. Furthermore, by construction,
a set I ⊆ V is Q-independent if and only if its preimage under the quotient map
is Hn-independent. Since the quotient map establishes a one-to-one correspondence
between subsets of V and A•-invariant subsets of Ω, Theorem 3.1 is equivalent to
the assertion that αµ(Q) 6 (1/2 + o(1)) log n/n, as desired. �

In view of Corollary 3.2, the following lemma completes the proof of (3.1):

Lemma 3.3. — Let Q be a Borel graph in which every connected component is a
d-regular tree and let µ be a probability measure on V (Q). Then αµ(Q) > αβ(Gn).

In the case when Q is the Schreier graph of a free measure-preserving action of
Fn, the conclusion of Lemma 3.3 follows from the Abért–Weiss theorem [AW13]. To
handle the general case, we rely on a strengthening of a recent result of Tóth [Tót21]
due to Grebík [Gre22], which, roughly, asserts that every d-regular Borel graph is
“approximately” induced by an action of Fn.
To state this result precisely, we introduce the following terminology. A Borel

partial action p of Fn on a standard Borel space X, in symbols p : Fn y∗ X, is a
sequence of Borel partial injections p1, . . . , pn : X 99K X. Given a Borel graph Q,
we say that a Borel partial action p : Fn y∗ V (Q) is a partial Schreier decoration
of Q if pi(x) is adjacent to x for all 1 6 i 6 n and x ∈ dom(pi). If p is a partial
Schreier decoration of a graph Q, then we let C(Q,p) be the set of all vertices
x ∈ V (Q) such that x belongs to both the domain and the image of every pi and the
neighborhood of x in Q is equal to the set {p1(x), . . . , pn(x), p−1

1 (x), . . . , p−1
n (x)}.

A Schreier decoration of Q is a partial Schreier decoration p such that C(Q,p)
= V (Q). It is easy to see that Q admits a Schreier decoration if and only if it is the
Schreier graph of a Borel action of Fn.
Now we can state Grebík’s result:

Theorem 3.4 (Grebík [Gre22, Theorem 0.2(III)]). — Let Q be a d-regular Borel
graph and let µ be a probability measure on V (Q). Then for every ε > 0, Q admits
a partial Schreier decoration p such that µ(C(Q,p)) > 1− ε.

With Theorem 3.4 in hand, we are ready to establish Lemma 3.3.
Proof of Lemma 3.3. — Recall that we denote the generators of Fn by σ1, . . . , σn.

Let Q be a Borel graph in which every connected component is a d-regular tree and
let µ be a probability measure on V (Q). Thanks to Lemma 2.2, it suffices to show
that αµ(Q) > β(I) for every clopen independent set I ⊆ 2Fn , where, as in § 2, we
say that I is independent if I ∩ (σi · I) = ∅ for each 1 6 i 6 n.
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1158 A. BERNSHTEYN

Fix a clopen independent set I ⊆ 2Fn . Since I is clopen, we can write

I =
{
x ∈ 2Fn : x|D ∈ Φ

}
,

where D ⊂ Fn and Φ ⊆ 2D are finite sets. Furthermore, we may assume without
loss of generality that D = {γ ∈ Fn : |γ| 6 k} for some k ∈ N, where |γ| denotes
the word norm of γ. For a vertex x ∈ V (Q), we let Nk(x) be the set of all vertices
that are joined to x by a path of length at most k. Since every connected component
of Q is a d-regular tree, we have |Nk(x)| = |D| for all x ∈ V (Q). This allows us to
define a probability measure µk on V (Q) via

µk(A) :=
∫ ∣∣∣A ∩Nk(x)

∣∣∣
|D|

dµ(x) for all Borel A ⊆ V (Q).

We have now prepared the ground for an application of Theorem 3.4. Fix ε > 0
and let p be a partial Schreier decoration of Q such that

µk(C(Q,p)) > 1− ε

|D|
,

which exists by Theorem 3.4. Let Ck be the set of all x ∈ V (Q) such that Nk(x) ⊆
C(Q,p). Then

1− ε

|D|
6 µk (C (Q,p))

=
∫ ∣∣∣C (Q,p) ∩Nk(x)

∣∣∣
|D|

dµ(x) 6 µ(Ck) +
(

1− 1
|D|

)
(1− µ (Ck))

= 1
|D|

µ(Ck) + 1− 1
|D|

,

which implies that µ(Ck) > 1 − ε. The importance of the set Ck lies in the fact
that for each x ∈ Ck and γ ∈ D, there is a natural way to define the notation γ · x.
Namely, we write γ as a reduced word:

γ = σs1
i1 · · ·σ

s`
i`
,

where 0 6 ` 6 k, each index ij is between 1 and n, and each sj is 1 or −1. Since
Nk(x) ⊆ C(Q,p), there is a unique sequence x0, x1, . . . , x` of vertices with

x0 = x and xj = p
sj

ij (xj−1) for all 1 6 j 6 `.

We then set γ · x := x`. Note that we have Nk(x) = {γ · x : γ ∈ D}.
The remainder of the argument utilizes a construction similar to the one in the

proof of Theorem 1.1 given in § 2. Consider the graph R with the same vertex set as
Q in which two distinct vertices are adjacent if and only if they are joined by a path
of length at most 2k in Q. Since every connected component of Q is a d-regular tree,
each vertex in R has the same finite number of neighbors, so, by Theorem 2.1, the
Borel chromatic number χB(R) is finite. Let N := χB(R) and fix a Borel function
f : V (Q) → N such that f(u) 6= f(v) whenever u and v are adjacent in R. Then
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Borel fractional colorings of Schreier graphs 1159

for each x ∈ V (Q), the restriction of f to the set Nk(x) is injective. Now, to each
mapping ϕ : N → 2, we associate function πϕ : Ck → 2D as follows:

πϕ(x)(γ) := (ϕ ◦ f)(γ · x) for all x ∈ Ck and γ ∈ D.
Let Iϕ := {x ∈ Ck : πϕ(x) ∈ Φ}. The independence of I implies that the set Iϕ is
Q-independent. We will show that for some choice of ϕ : N → 2, µ(Iϕ) > (1−ε)β(I).
Since ε is arbitrary, this yields the desired bound αµ(Q) > β(I) and completes the
proof of Lemma 3.3.
Consider any x ∈ Ck and let

Sx := {f(γ · x) : γ ∈ D} .
Since f is injective on Nk(x), Sx is a subset of N of size |D|. Whether or not x is
in Iϕ is determined by the restriction of ϕ to Sx; furthermore, there are exactly |Φ|
such restrictions that put x in Iϕ. Thus, the number of mappings ϕ : N → 2 for
which x ∈ Iϕ is

|Φ|2N−|D| = β(I)2N .
Since this holds for all x ∈ Ck, we conclude that∑

ϕ : N→ 2
µ(Iϕ) > µ (Ck) β(I)2N > (1− ε)β(I)2N ,

where the second inequality uses that µ(Ck) > 1 − ε. In other words, the average
value of µ(Iϕ) over all ϕ : N → 2 is at least (1 − ε)β(I). Thus, the maximum is at
least (1− ε)β(I) as well, and the proof is complete. �
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