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1. Introduction

1.1. Classical and probabilistic enumerative geometry

In this paper we deal with the enumerative problem of counting the number of
k-dimensional projective subspaces (called “k-flats”) on a complete intersection in
n-dimensional p-adic projective space.

If this problem is approached over an algebraically closed field, it is a classic of
enumerative geometry and we get a generic answer, e.g. there are 27 lines on a generic
cubic surface in CP3. At this point the word “generic” has its standard meaning from
algebraic geometry: the generic object of a family has a property if this property is
true for all the elements of the family except possibly for a proper algebraic subset
of the family; below we will also exploit the measure-theoretic nature of this notion.
Over a non–algebraically closed field, in general, we do not get such a generic answer
and the number of solutions depends on the choice of the defining equations for the
complete intersection. For instance, on a generic real cubic surface in RP3 the number
of real lines can be either 3, 7, 15 or 27 (meaning that all possibilities occur for open
sets in the space of cubics). Over the field of p-adic numbers, to our knowledge, it is
not even clear what these generic possibilities are. In fact a cubic polynomial over
p-adic fields needs to have a lot of variables (22) to ensure that the cubic surface has
at least one line (see [BD20, Theorem 1.3 and Theorem 1.4]).

This is a generalization of the problem of counting the number of zeroes of a
polynomial of one variable: for the generic polynomial (i.e. for a polynomial whose
discriminant is nonzero) the number of zeroes over C equals the degree of the
polynomial; over a non-algebraically closed field (e.g. R or Qp) it depends on the
coefficients of the polynomial.

This motivates a probabilistic approach to the problem: when there is not a single
generic answer, we can put a probability distribution on the space of polynomials
and ask for the expectation of the number of solutions to the enumerative question.
Over C this approach gives back the classical generic count.

Clearly the expectation of the number of solutions, in the non-algebraically closed
case, depends on the choice of the probability distribution, but there are some
distributions which are especially interesting as they have a clear geometric meaning:
these are the distributions on the space of polynomials which are invariant under
the action of the group of isometries of the projective space by change of variables;
following the notation for the real case, we call them invariant distributions (we will
clarify this notion below). For these distributions there are no preferred points or
directions in the projective space.

Example 1.1. — Let {ξα}|α|=d be a family of independent gaussian variables with:

(1.1) ξα0···αn ∼ N

(
0, d!
α0! · · ·αn!

)
.

Consider the following real polynomial with random coefficients:
(1.2) f(x) =

∑
|α|=d

ξα · xα0
0 · · ·xαn

n .
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Using (1.2) we can turn the space R[x0, . . . , xn](d) of real homogeneous polynomials
of degree d into a gaussian space, i.e. a space with a gaussian probability distribution.
This distribution is called the Kostlan distribution. The scaling coefficient for the
variances of the gaussian variables ξα is what makes the distribution invariant under
isometries: for every orthogonal transformation g ∈ O(n+1) the random polynomial
f ◦R obtained by a linear change of variables has the same distribution as f . In this
way, if we denote by Z(f1, . . . , fν) ⊂ RPn the common zero set of the polynomials
f1, . . . , fν , if they are sampled at random as in (1.2), we have the notion of random
complete intersection. The expected cardinality of Z(f1, . . . , fn) ⊂ RPn, with each
fj of degree dj and defined as in (1.2), is

√
d1 · · · dn, see [SS93]. The expected number

of real lines on a random real cubic surface Z(f) ⊂ RP3 defined by picking f as
in (1.2) is 6

√
2 − 3, see [BLLP19].

Remark 1.2. — In the real case, the probabilistic approach goes back to Kac
[Kac43], who computed the expected number of real zeroes of a random polynomial
with i.i.d. standard gaussian coefficients. The geometric point of view of invariant
distributions was first adopted by Edelman, Kostlan, Shub and Smale [EK95, EKS94,
SS93], for counting the expectation of the number of solutions of a system of ran-
dom equations. The extension of this approach to questions in real enumerative
geometry was initiated by the second named author of this paper together with Bür-
gisser [BL20] and with Basu, Lundberg and Peterson [BLLP19]. In the real gaussian
case the invariant distributions were classified by Kostlan [Kos93] and, in a recent
work [AEMBM21], the first named author of this paper together with Belotti and
Meroni provided a closed formula for the expectation of the number of real lines on
a real random cubic surface for all the possible invariant distributions.

1.2. The p-adic case

Let us now move to the p-adic case. We begin by setting up the geometric frame-
work for the enumerative problems of our interest. Given homogeneous polynomials
f1, . . . , fν with coefficients in Zp and of degrees d1, . . . , dν ∈ N, we denote by
Z(f1, . . . , fν) ⊂ QpPn their common zero set in the p-adic projective space. If the
list of degrees d1, . . . , dν satisfies

(1.3)
ν∑
j=1

(
k + dj
dj

)
= (k + 1)(n− k),

then for the generic choice of the polynomials, the number of k-flats on Z(f1, . . . , fν)
is finite, see [DM98, Théorème 2.1].

As we already observed, the number of solutions to our enumerative problem
strongly depends on the coefficients of the polynomials. For instance, already in the
case ν = 1, k = 0, d = 3 and n = 1, the possibilities for the number of p-adic zeroes
in QpP1 of a cubic polynomial f ∈ Zp[x0, x1](3) with nonzero discriminant are 0, 1
or 3 (note the difference with the real case). It is therefore natural to approach this
problem from the random point of view, and ask for the expectation of this number.
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Remark 1.3. — Before turning to the probabilistic side, let us briefly explain the
meaning of the condition (1.3). We denote by QpGk,n the Grassmannian of k-flats in
QpPn. Every element ℓ ∈ QpGk,n can be seen as the projectivization ℓ = P (L) of a
vector space L ≃ Qk+1

p ⊂ Qn+1
p . The dimension of QpGk,n is (k+ 1)(n− k) (the right

hand side of (1.3)). We denote by τk,n the tautological vector bundle on QpGk,n:

(1.4) τk,n =
{
(P (L), v) ∈ QpGk,n × Qn+1

p

∣∣∣ v ∈ L
}
.

The dual of this bundle is denoted by τ ∗
k,n: the fiber of the dual bundle over a

point ℓ = P (L) is the set of linear functions on L. For every d ∈ N we denote by
Sym(d)(τ ∗

k,n) the dth symmetric power of τ ∗
k,n: the fiber of Sym(d)(τ ∗

k,n) over a point
ℓ = P (L) is the set of homogeneous polynomial functions of degree d on L. Notice
that every f ∈ Zp[x0, . . . , xn](d) gives rise to a section σf of Sym(d)(τ ∗

k,n), defined by
σf (ℓ) = f |L.

Given the list of degrees d1, . . . , dν we can consider the following vector bundle,
with corresponding section:

(1.5)

ν⊕
j=1

Q

(
dj+k
dj

)
p

ν⊕
j=1

Sym(dj)
(
τ ∗
k,n

)

QpGk,n

σf1 ⊕···⊕σfν

The rank of this vector bundle is ∑ν
j=1( k+dj

dj
) (the left hand side of (1.3)). The zero

locus of the section σf1 ⊕· · ·⊕σfν consists of the set of k-flats which are contained in
Z(f1, . . . , fν). In particular we see that, if (1.3) is verified, for the generic choice of
f1, . . . , fν , the corresponding section vanishes at finitely many points (i.e. the zero
locus of the section is zero-dimensional, in the language of [DM98]).

We now move to the probabilistic framework. The first step is to endow Zp[x0, . . . ,
xn](d) with a probability distribution. To this end, we endow Qp with the Haar
measure λ, normalized such that λ(Zp) = 1. In this way the p-adic integers become a
probability space, and we call the corresponding distribution the uniform distribution.
This is a special case of what is called a Gaussian distribution on p-adic fields,
see [EMT19]. Mimicking (1.2), we also turn the space of polynomials with coefficients
in Zp into a probability space.

Definition 1.4. — We define a probability distribution on Zp[x0, . . . , xn](d) by

(1.6) f(x) =
∑

|α|=d
ξα · xα0

0 · · ·xαn
n ,

where now {ξα}|α|=d is a family of i.i.d. uniform elements in Zp. We will call this
distribution the uniform distribution.

The uniform distribution on the space of polynomials is invariant under the action
of GLn+1(Zp) by change of variables (Proposition 2.6) and it has therefore a clear
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geometric meaning. Notice that proper algebraic sets in Zp[x0, . . . , xn](d) have prob-
ability zero: for instance, with probability one the zero set of a random polynomial
is smooth. The natural map f 7→ σf induces a probability distribution on the space
of sections of the bundle (1.5). The zeroes of σf1 ⊕ · · · ⊕ σfν are nondegenerate with
probability one.

Our first theorem computes the expectation (below denoted by “E”) of the num-
ber of zeroes of the random section σf1 ⊕ · · · ⊕ σfν , under the assumption (1.3),
i.e. the expectation of the number of k-flats on a random complete intersection
Z(f1, . . . , fν) ⊂ QpPn.

Theorem 1.5. — Let f1, . . . , fν be independent random polynomials of degrees
d1, . . . , dν sampled from the uniform distribution (1.6). Then
(1.7) lim

p→ ∞
E# {k-flats on Z (f1, . . . , fν) ⊂ QpPn} = 1.

Remark 1.6. — Theorem 1.5 is in sharp contrast with its real analogue, at least
for the case of hypersurfaces. Denoting by Cn the number of lines on a generic
hypersurface of degree 2n− 3 in CPn and by En the expectation of the number of
real lines on a random, Kostlan distributed real hypersurface of degree 2n − 3 in
RPn, [BLLP19, Theorem 12] states that:

(1.8) lim
n→ ∞

logEn
logCn

= 1
2 .

Since Cn grows super-exponentially in n (in fact logCn = 2n log n + O(n)), on
hypersurfaces of degree 2n− 3 in large dimensional projective spaces we expect to
see many real lines – there is in fact a deterministic lower bound for this number,
see Section 1.3 below. Here, at least for large p, as a consequence of Theorem 1.5,
having many p-adic lines is an extremely rare event. In the p-adic case, we will also
prove an asymptotic upper bound on our expectation as n → ∞, see Theorem 3.14
below.

Remark 1.7. — The probabilistic approach in the p-adic case has been introduced
by [Eva06], who first computed the expectation of the number of zeroes of a system
of random equations (with respect to a probability distribution which is different
from (1.6)). In the recent paper [KL21], the second named author of the current paper,
together with Kulkarni, proved a generalization of the integral geometry formula to
the p-adic setting, allowing to deduce some results on random systems of equations
distributed as in (1.6). Independently, the distribution of zeroes of a random uniform
univariate polynomial was also recently studied by Caruso in [Car22]. We notice
that [KL21, Corollary 41] corresponds to the case k = 0, ν = n of Theorem 1.5, in
which case we can actually prove the following result.

Theorem 1.8. — Let f1, . . . , fn be independent random polynomials of degrees
d1, . . . , dn sampled from the uniform distribution (1.6). Then
(1.9) E#Z (f1, . . . , fn) = 1.

As a corollary of this result we compute the expectation of the absolute value of
the determinant of a matrix Mn ∈ Zn×n

p filled with i.i.d. uniform elements in Zp
(Corollary 3.6):
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(1.10) E
{
|detMn; |p

}
= (p− 1)pn

pn+1 − 1 .

Another case of special interest is the count of the number of lines on a cubic surface
in QpP3, for which we can prove the following sharper version of Theorem 1.5.

Theorem 1.9. — The expected number of p-adic lines on a random uniform
p-adic cubic surface in QpP3 is (p3−1)(p2+1)

p5−1 .

We also prove a similar result for the intersection of two random quadrics in QpP4.
Theorem 1.10. — The average number of p-adic lines on the intersection of two

random quadrics in QpP4 is 1.
The proof of Theorem 1.5 is based on a p-adic version of the Kac–Rice formula

for sections of vector bundles (Theorem 3.3), which reduces the computation of the
expectation of the number of zeroes of a random section to the expectation of the
valuation of the determinant of a special random matrix J :
(1.11) E# {k-flats on Z (f1, . . . , fν) ⊂ QpPn} = µ (QpGk,n) · E

{
|det(J)|p

}
.

Here the matrix J is a random square matrix with (n − k)(k + 1) columns and
whose structure depends on ν, k and d1, . . . , dν , and µ is a measure over QpGk,n

defined in (2.5). For instance, when k = 0 the matrix J = Mn is the above matrix
filled with i.i.d. uniform elements in Zp (which explains (1.10)), but the general case
is more complicated. Theorem 1.5 is based on the asymptotic analysis of (1.11);
Theorem 1.9 and Theorem 1.10 require instead a more delicate study, based on a
counting argument in the reduction modulo pm.

1.3. Signed counts

It is interesting to observe that over the reals there is a deterministic lower bound on
the number of real lines on a generic cubic surface. In fact, generalizing a construction
of Segre [Seg42], Okonek and Teleman [OT14] and Kharlamov and Finashin [FK13]
introduced a way to assign a sign to each line on the zero set of a hypersurface of
degree 2n− 3 in RPn. The signed count of the number of real lines does not depend
on the hypersurface and gives (2n− 3)!!, where for an integer k, we denote by k!! the
product of all odd numbers smaller than k. In particular there are always 3 lines on
a smooth real cubic surface, and exactly 3 if counted with signs. This enriched count
has been extended to any field [KW21], and it gives an invariant with values in the
Grothendieck–Witt group of the field. In the p-adic case however this is not enough
to guarantee a solution: there are p-adic cubic surfaces with no lines on them.

In the real case the computation of the signed count can also be done in a proba-
bilistic way, as showed in [BLLP19]. Let us explain this point in the simplest case
of cubics. Using the real version of the Kac–Rice formula, it can be proved that the
expectation E3 of the number of real lines on a random real cubic surface equals:

(1.12) E3 = 1
12π2 · µ(RG(1, 3)) · E |det J |

ANNALES HENRI LEBESGUE



Probabilistic enumerative geometry over p-adic numbers 1335

where µ(RG(1, 3)) = 2π2 is the volume of the real Grassmannian, and J is the
following matrix, filled with the random gaussian variables defined in (1.1):

(1.13) J =


ξ2010 0 ξ2001 0
ξ1110 ξ2010 ξ1101 ξ2001
ξ0210 ξ1110 ξ0201 ξ1101

0 ξ0210 0 ξ0201

 .
Note that this matrix is the Jacobian, in local coordinates, of the random section
σf at ℓ0 = P (L0), where L0 = {x2 = x3 = 0} ⊂ R4. As we already mentioned, the
Kac–Rice approach works also over the p-adics, and it is our starting point for the
proofs of Theorem 1.5 and Theorem 1.9. For instance, in the case of cubics:

(1.14) E#{p-adic lines on a random cubic surface} = µ(QpG(1, 3)) · E |det J |p
where now µ(QpG(1, 3)) denotes the volume of the p-adic Grassmannian (defined
in Section 2.1 below) and J is the same matrix as in (1.13), this time filled with
uniform variables in Zp.

The interesting point now is that in the real case the signed count can be obtained
simply by computing the expectation of the quantity on the r.h.s. of (1.12), but
where we remove the modulus from the determinant of J see [BLLP19, Proposition 3].
(A similar statement holds true for higher dimensions/degrees). Mimicking the proof
of [BLLP19, Proposition 2] we can compute the expectation of the determinant of J
in the p-adic case. Computing this expectation amounts now to compute the integral
of a function with values in Qp. We do this using the notion of Volkenborn integral,
which for a continuous function f : Zkp → Qp is defined by the following limit (if it
exists): ∫

Zk
p

f(x)dy = lim
n→ +∞

1
pkn

pn−1∑
a1=0

· · ·
pn−1∑
ak=0

f (a1, . . . , ak) .

In the case of cubics, this would give:

E{det(J)}

= E
{

(ξ2010ξ0201 − ξ0210ξ2001)2 − (ξ2010ξ1101 − ξ1110ξ2001) (ξ1110ξ0201 − ξ0210ξ1101)
}

=
∫
Z6

p

(x1x6 − x3x4)2 − (x1x5 − x2x4)(x2x6 − x3x5)dx1 . . . dx6

= lim
n→ +∞

1
p6n

∑
0⩽ a1, ..., a6 ⩽ pn−1

(a1a6 − a3a4)2 − (a1a5 − a2a4)(a2a6 − a3a5)

= lim
n→ +∞

1
p6n · p

6n (pn − 1)2 (5p2n + pn − 4)
36

= −1
9 ∈ Qp.

We do not have a clear interpretation of the meaning of this number, but we believe
this can be the starting point for future investigations.
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1.4. Structure of the paper

The rest of the paper is organized as follow: Section 2 contains definitions and
properties used to prove the main results. In Section 3.1 we prove our p-adic version
of the Kac–Rice formula. The answer involves the expectation of the p-adic absolute
value of the determinant of a random matrix of a certain shape, where in Section 3.2
we present the shape of that random matrix in different cases. Section 3.3 contains
the proof of Theorem 1.5 which is based on the fact that our random matrix does
not vanish with probability 1. Sections 3.5, 3.6 contain proofs of Theorem 1.9, and
Theorem 1.10. These proofs rely on the p-adic version of the Kac–Rice formula
theorem 3.3 and computing the expectation of the p-adic absolute value of the
determinant of our random matrix in the cases of lines on a cubic and lines on the
intersection of two quadrics respectively. In Section 3.7 we give an asymptotic limit
of the average of the number of lines on an hypersurface of degree 2n− 3.

Acknowledgements

The authors wish to thank Yassine El Maazouz and Avinash Kulkarni for stim-
ulating discussions, Bernd Sturmfels for his constant support, and the anonymous
referee for her/his helpful comments.

2. Preliminaries

2.1. p-adic spaces as metric measure spaces

Let p be a prime number and denote by | · |p the p-adic absolute value. We endow
the space Qn

p with the norm ∥ · ∥p defined by:
(2.1) ∀ (a1, . . . , an) ∈ Qn

p : ∥(a1, . . . , an)∥p := sup
i

|ai|p.

In this way Qn
p becomes a metric space. We endow it also with the Haar measure

λ normalized over the unit ball Znp . i.e. λ(Znp) = 1. In particular, for any ball
B(x; p−m) ⊂ Qn

p we have:

(2.2) λ
(
B
(
x; p−m

))
= p−nm.

The measure λ is invariant under the group GLn(Zp), i.e. for every measurable set
U ⊆ Qn

p and every element M ∈ GLn(Zp) we have λ(M(U)) = λ(U).
Once restricted to Znp , the measure λ becomes a probability measure. We call

the corresponding probability distribution on Znp the uniform distribution. Using
this terminology, we can restate the GLn(Zp)–invariance of λ as follows: let ξ be a
uniformly distributed random vector in Znp ; then for every M ∈ GLn(Zp) the vectors
ξ and Mξ have the same distribution.

We view the set of n × n matrices as a subset of Qn×n
p , with the corresponding

measure. Under this identification, the set GLn(Zp) is contained in Zn×n
p and it
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consists of matrices which are invertible modulo p; its measure is given by [Eva02,
Theorem 4.1]:

(2.3) λ (GLn (Zp)) =
(
1 − 1

p

)
· · ·

(
1 − 1

pn

)
.

More generally, again by [Eva02], we have:

(2.4) λ
({

|det(M)|p = p−m
})

= Πnp
−m Πn+m−1

Πm · Πn−1

where Πk =
(
1 − 1

p

)
· · ·

(
1 − 1

pk

)
.

We endow the Grassmannian QpGk,n with the normalized pushforward measure

(2.5) µ := 1
λ (GLn−k(Zp))λ (GLk+1(Zp))

q∗λ,

where the map q : GLn+1(Zp) → QpGk,n is given by

(2.6) q : M 7→ im
(
M

(
1k+1

0

))
.

In this way the measure of the Grassmannian equals

(2.7) µ (QpGk,n) = λ (GLn+1(Zp))
λ (GLn−k(Zp))λ (GLk+1(Zp))

,

reflecting the real case.
We refer the reader to [KL21] for more details on the properties of Qn

p and related
spaces as metric measure spaces. On these spaces continuous functions can be in-
tegrated and a useful proposition for the sequel is the following change of variable
formula from [Eva06].

Proposition 2.1. — Let X be an open subset of Qm
p and f : X → Qn

p a
continuously differentiable map. For all measurable subsets Y of Qn

p we have:∫
Y

#{f = y}dy =
∫
f−1(Y )

|det (Jf(x))|p dy.

The next lemma, which is going to be used in the proofs of Theorem 1.9 and
Theorem 1.10, gives the analogue of Riemann sums for performing integrals of
continuous functions on Znp .

Lemma 2.2. — Let f : Znp → R be a continuous function. Then f is integrable
and its integral is given by:

(2.8)
∫
Zn

p

f(x)dy = lim
m→ +∞

1
pmn

∑
0⩽ a1, ..., an ⩽ pm−1

f (a1, . . . , an)

Proof. — The proof is elementary. Since f is continuous, it is bounded and therefore
integrable. For every m ∈ N, consider the function:

(2.9) fm(x) :=
∑

0⩽ a1, ..., an ⩽ pm−1
f (a1, . . . , an) · χB(a;p−m)(x),
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where a = (a1, . . . , an) and χB(a;p−m) is the indicator function of B(a; p−m). The
sequence of functions {fm}m∈N converge pointwise to f and is dominated by the
constant maxx∈Zn

p
|f(x)|. Therefore:∫

Zn
p

f(x)dx =
∫
Zn

p

lim
m→ ∞

fm(x)dx(2.10)

= lim
m→ ∞

∫
Zn

p

fm(x)dx(2.11)

= lim
m→ +∞

λ
(
B
(
0; p−m

)) ∑
0⩽ a1, ..., an ⩽ pm−1

f(a1, . . . , an)(2.12)

= lim
m→ +∞

1
pmn

∑
0⩽ a1, ..., an ⩽ pm−1

f(a1, . . . , an).(2.13)

□

Let us also recall the following proposition, which is going to be used in the proofs
of Lemma 3.8 and Lemma 3.11; it is a consequence of the p–adic singular value
decomposition, see [Eva02, Theorem 3.1].

Proposition 2.3. — Let M ∈ (Z/pnZ)k×k with det(M) ̸= 0, then there exist
unique integers 0 ⩽ u1 ⩽ · · · ⩽ uk ⩽ n− 1 and U, V ∈ GLk(Z/pnZ) such that:

M = U


pu1

. . .
puk

V.

2.2. The reduction modulo pm

For every m ∈ N, let us denote by

(2.14) πm : Zkp → (Z/pmZ)k

the map that sends a vector to its reduction modulo pm. This map is a ring homo-
morphism and for a set U ⊆ Znp we denote by Nm(U) the cardinality of πm(U). The
following result from [KL21] relates the volume of a set with the cardinality of its
reduction modulo pm.

Lemma 2.4 (Lemma 25 from [KL21]). — Let U ⊆ Znp be an open and compact
subset of an algebraic set. Then Nm(U) equals the minimum number of affine balls
of radius p−m that we need to cover U . In particular, if U ⊆ Znp is an open set, then

(2.15) λ(U) = lim
m→ ∞

p−mnNm(U).

In particular, since πm(GLn(Zp)) = GLn(Zp/pmZp), using (2.3) we see that:

(2.16) #GLn (Zp/pmZp) = pmn
2
λ (GLn(Zp)) = pmn

2 (1 − 1
p

)
· · ·

(
1 − 1

pn

)
.
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More generally, for ℓ < m, we have:

(2.17) #
{
M ∈ (Z/pmZ)n×n

∣∣∣∣∣ |det(M)|p = p−ℓ
}

= pmn
2
λ

({
M ∈ Zn×n

p

∣∣∣∣∣ |det(M)|p = p−ℓ
})

.

2.3. Random p-adic polynomials

Let Qp[x0, . . . , xn](d) be the space of homogeneous polynomials of degree d, n+ 1
variables and coefficients in Qp; denote by Dd,n =

(
d+n
d

)
its dimension.

Definition 2.5. — We define a random polynomial f in Zp[x0, . . . , xn](d) as
follows:
(2.18) f =

∑
|α|=d

ξαx
α0
0 · · ·xαn

n

where ξα are independent random variables uniformly distributed in Zp. We call the
probability distribution induced by (2.18) on Zp[x0, . . . , xn](d) the uniform distribu-
tion.

Identifying a polynomial in Zp[x0, . . . , xn](d) with the list of its coefficients (in
the monomial basis), we see that the uniform distribution (2.18) coincides with the
uniform distribution on the unit ball ZDd,n

p defined in Section 2.1.
Proposition 2.6. — The uniform probability distribution on Zp[x0, . . . , xn](d)

is invariant under the action of GLn+1(Zp) by change of variables.
Proof. — Let us denote by ρ : GLn+1(Zp) → GLDd,n

(Qp) = GL(Qp[x0, . . . , xn](d))
the representation by change of variables. Observe that for a matrix M ∈ GLn+1(Zp),
the matrix ρ(M) has coefficients in Zp and, since ρ(M)−1 = ρ(M−1), its inverse also
has coefficients in Zp. It follows that ρ(M) ∈ GLDd,n

(Zp). The uniform probability
distribution on ZDd,n

p is invariant under elements in GLDd,n
(Zp) and therefore it is

in particular invariant under change of variables in GLn+1(Zp). □

3. Linear spaces on complete intersections
3.1. Counting k-flats as zeroes of sections

We are going now to perform some preliminary reductions for our problem of
counting the expectation of the number of k-flats on a random complete intersection.

Let U ⊂ QpGk,n be the open set consisting of all projective spaces ℓ = P (L) whose
first entry of the Plücker coordinates is nonzero and denote by ϕ : U → Q(n−k)×(k+1)

p

the map:

(3.1) ϕ(ℓ) = ϕ

(
im
(

1k+1
A

))
= A.

This map is well defined and (U, ϕ) is a chart of the p-adic manifold QpGk,n.
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Lemma 3.1. — Let Um = ϕ−1(B(0; p−m)). There exists g1, . . . , gNm ∈ GLn+1(Zp)
such that the Grassmannian can be written as a disjoint union:

(3.2) QpGk,n =
Nm⋃
i=1

(gi · Um) .

Moreover:

(3.3) µ(Um) = p−m(k+1)(n−k) and Nm = µ (QpGk,n) · pm(k+1)(n−k).

Proof. — First observe that for every g ∈ GLn+1(Zp) the set g·Um is open in QpGk,n

and {g · Um}g ∈ GLn+1(Zp) is an open cover of the Grassmannian. By compactness we
can extract a finite subcover, and it remains to prove that the open sets from this
finite cover can be taken to be disjoint.

Let us consider the following subgroup of GLn+1(Zp):

Hm :=
{[

A B
C D

]
∈ GLn+1(Zp)

∣∣∣∣∣A ∈ GLk+1 (Zp) , D ∈ GLn−k(Zp),(3.4)

C ∈ B
(
0; p−m

)
, B ∈ Z(k+1)(n−k)

p

}
.(3.5)

We will show that given g ∈ GLn+1(Zp) and X ∈ Um, then g · X ∈ Um if and
only if g ∈ Hm. Moreover, ∀ g1, g2 ∈ GLn+1(Zp): either g1 · Um = g2 · Um or
g1 · Um ∩ g2 · Um = ∅. From this it follows that the previous cover of QpGk,n can be
taken to be disjoint.

Set X = [ 1k+1
X̂

] where X̂ ∈ B(0; p−m) and g = [ A B
C D ] ∈ GLn+1(Zp). With this

notation we have

g ·X =
[
A+BX̂

C +DX̂

]
∈ Um ⇔

det
(
A+BX̂

)
̸= 0(

C +DX̂
) (
A+BX̂

)−1
∈ B (0; p−m) .

Suppose first that g ·X = [ A+BX̂
C+DX̂ ] ∈ Um. Since A+BX̂ ∈ Z(k+1)×(k+1)

p , we have∣∣∣C +DX̂
∣∣∣
p
⩽
∣∣∣∣(C +DX̂

) (
A+BX̂

)−1
∣∣∣∣
p
.

It follows that C + DX̂ ∈ B(0; p−m), which implies C ∈ B(0; p−m). By reducing g
modulo p, we get that

det(g) = det(A) · det(D) (mod p)

Therefore A ∈ GLk+1(Zp), and D ∈ GLn−k(Zp). The converse is trivial.
We will now prove that either g1 · Um ∩ g2 · Um = ∅ or g1 · Um = g2 · Um. Suppose

that g1 ·Um ∩ g2 ·Um ≠ ∅ i.e. g−1
1 g2 ·Um ∩Um ≠ ∅. By the previous point g−1

1 g2 ∈ Hm

which implies g−1
1 g2 ·Um ⊆ Um. But by changing g1 with g2 we also have g−1

2 g1 ∈ Hm,
and therefore g−1

2 g1 · Um ⊆ Um. Thus

Um = g−1
2 g1 ·

(
g−1

1 g2 · Um
)

⊆ g−1
2 g1 · Um ⊆ Um.

Which implies g−1
2 g1 · Um = Um i.e. g1 · Um = g2 · Um.
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The properties (3.3) follow immediately from the definition of the pushforward
measure µ and the structure of Hm. Indeed,

µ(Um) = λ (q−1(Um))
λ(GLk+1(Zp))λ(GLn−k(Zp))

= λ(Hm)
λ(GLk+1(Zp))λ(GLn−k(Zp))

= p−m(k+1)(n−k),

and

µ(QpGk,n) = Nm · µ(Um). □

Recall now that for every d ∈ N we have denoted by Sym(d)(τ ∗
k,n) the vector bundle

which is the d th symmetric power of the dual of the tautological bundle on QpGk,n:
the fiber over a point ℓ = P (L) is the set of homogeneous polynomials of degree d on
L ≃ Qk+1

p . Given the list of degrees d1, . . . , dν satisfying (1.3), we define the vector
bundle:

(3.6) E =
ν⊕
j=1

Sym(dj)
(
τ ∗
k,n

)
→ QpGk,n

Over the open set U we have a trivialization of the vector bundle E:

(3.7)

E|U U ×

 ν⊕
j=1

Q

(
dj+k
dj

)
p



U

π

h

p1

Given the list of polynomials f1, . . . , fν with degrees respectively d1, . . . , dν that
satisfy (1.3), we get a section σf : QpGk,n → E of the form

(3.8) σf = σf1 ⊕ · · · ⊕ σfν .

If the polynomials f1, . . . , fν are random, we use the section σf to define the random
map

(3.9) ψf := p2 ◦ h ◦ σf |U ◦ ϕ−1 : Q(n−k)(k+1)
p → Q(n−k)(k+1)

p .

This map takes a matrix A ∈ Q(n−k)×(k+1)
p and gives the list of coefficients of the

restriction of the polynomials f1, . . . , fν to the subspace ϕ−1(A). These coefficients
clearly depend on the choice of the trivialization h and we choose such trivialization
in such a way that the components of the random map ψf = (ψf1 , . . . , ψfν ) are the
coefficients of the polynomials

(3.10) fj

((
1k+1
A

)
y

)
∈ Qp[y0, . . . , yk](dj), y = (y0, . . . , yk),

where the monomials are ordered w.r.t lexicographical ordering.
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Lemma 3.2. — Using the above notations, for every m ∈ N we have
(3.11) E# {σf = 0} = Nm · E#

{
ψf
∣∣∣B(0 ; p−m) = 0

}
.

Proof. — Using Lemma 3.1, we can cover the Grassmannian with disjoint open
sets {giUm}Nm

i=1 and therefore:

E# {σf = 0} =
Nm∑
i=1

E# {σf = 0} ∩ giUm(3.12)

=
Nm∑
i=1

E# {σf ◦ gi = 0} ∩ Um(3.13)

=
Nm∑
i=1

E# {σf = 0} ∩ Um(3.14)

= Nm · E# {σf = 0} ∩ Um,(3.15)
where from the second to the third line we have used the GLn+1(Zp)–invariance. On
the other hand σf vanishes at ℓ ∈ Um if and only if ψf vanishes at ϕ(ℓ) ∈ B(0; p−m)
and the conclusion follows. □

Recall that the total volume of the Grassmannian is given in (2.7) by:

µ (QpGk,n) = λ (GLn+1(Zp))
λ (GLn−k(Zp))λ (GLk+1(Zp))

.

The next result is our version of the p-adic Kac–Rice formula for sections of vector
bundles: it allows us to reduce the calculation of the expectation of the number of
zeroes of σf to the evaluation of a random determinant.

Theorem 3.3. — Let f1, . . . , fν be random polynomial as before. The expected
number of k-flats on Z(f1, . . . , fν) is given by:

E# {σf = 0} = µ (QpGk,n) · E
{
|det (Jψf (0))|p

}
.

Proof. — Let D = (k + 1)(n− k). For every

a = (a1, . . . , aν) ∈
ν⊕
j=1

Zp [x0, . . . , xk](dj) ≃ ZDp

denote by fa = (fa1 , . . . , faν ) the list of polynomials in n+1 variables and of degrees
(d1, . . . , dν) obtained as follows. For every i = 1, . . . , ν consider the polynomial
gai

∈ Qp[x0, . . . , xk](dj) whose coefficients are the entries of the vector ai, and then
set:
(3.16) fa(x0, . . . , xn) := ga(x0, . . . , xk).
(So fai

is a polynomial on Qn+1
p which depends only on the first k + 1 variables).

If ξ ∈ ZDp denotes the list of coefficients of the random vector f , the list of the
coefficients of f − fa is ξ − a. Observe that, given a random uniform vector ξ ∈ ZDp
and a ∈ ZDp the random vector ξ − a is also uniformly distributed in the unit ball;
therefore f and f − fa have the same distribution. It follows that for every m ∈ N
(3.17) E# {σf = 0} ∩ Um = E# {σf−fa = 0} ∩ Um.
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On the other hand, by (3.10), ψfa ≡ a, and A ∈ B(0; p−m) = ϕ−1(Um) is a zero of
ψfa if and only if ψf (A) = a. Therefore:

(3.18) E# {σf = 0} ∩ Um = E# {ψf = a} ∩B
(
0; p−m

)
= E#

{
ψf
∣∣∣B(0 ; p−m) = a

}
.

We use now Proposition 2.1 and write:
E#

{
ψf
∣∣∣B(0 ; p−m) = a

}
= E#

{
ψf
∣∣∣B(0 ; p−m) = 0

}
(3.19)

=
∫
ZD

p

E#
{
ψf
∣∣∣B(0 ; p−m) = a

}
da(3.20)

= E
∫
ZD

p

#
{
ψf
∣∣∣B(0 ; p−m) = a

}
da(3.21)

= E
∫
B(0 ; p−m)

|det (Jψf (x))|p dx.(3.22)

Notice that as x → 0 we have
(3.23) |det (Jψf (x))|p = |det (Jψf (0))|p + o(∥x∥),
where the implied constant is uniformly bounded because the coefficients of the
random vector f range in the unit ball. Therefore, using (3.22) and Lemma 3.2, we
can write for every m ∈ N:

E# {σf = 0} = NmE#
{
ψf
∣∣∣B(0 ; p−m) = 0

}
(3.24)

= NmE
∫
B(0 ; p−m)

|det Jψf (x)|p dx(3.25)

= µ (QpGk,n) · pm(k+1)(n−k)E
∫
B(0 ; p−m)

|det Jψf (x)|p dx (3.3)(3.26)

= µ (QpGk,n) · pm(k+1)(n−k)E(3.27) ∫
B(0 ; p−m)

(
|det (Jψf (0))|p + o(∥x∥)

)
dx (3.23)

= lim
m→ ∞

(
µ (QpGk,n) · pm(k+1)(n−k)E(3.28) ∫

B(0 ; p−m)

(
|det (Jψf (0))|p + o(∥x∥)

)
dx

)
= µ (QpGk,n)E |det (Jψf (0))|p(3.29)

This concludes the proof of Theorem 3.3. □

3.2. The structure of the matrix Jψf (0)

The random matrix J(ψf (0)) is filled with random variables uniformly distributed
in Zp and it has a special shape that we are going to compute.

Let us start with the case of points on the intersection of n hypersurfaces in QpPn

i.e. ν = n. For all 1 ⩽ j ⩽ n, the polynomial fj has the form :
(3.30) fj =

∑
|α|=dj

ξ(j)
α xα0

0 · · · xαn
n .
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Using (3.10), we have:

ψfj
(A) = fj

y0


1
t1
...
tn


 =

∑
|α|=dj

ξ(j)
α tα1

1 · · · tαn
n y

dj

0 .(3.31)

Therefore ∂ψfj
(0)

∂ti
= ξ

(j)
dj−1,0, ..., 1, ..., 0, thus Jψf (0) has the following shape:

(3.32) Jψf (0) =


ξ

(1)
d1−1,1,0, ..., 0 . . . ξ

(1)
d1−1,0, ..., 0,1

... ...
ξ

(n)
dn−1,1,0, ..., 0 . . . ξ

(n)
dn−1,0, ..., 0,1

 .
Let us now consider the case of lines on a cubic surface i.e. n = 3, ν = 1, and

d = 3. In this case, for a matrix A = ( t1 t2
t3 t4 ), using (3.10), we can write:

ψf (A) = f

y0


1
0
t1
t3

+ y1


0
1
t2
t4




=
∑

|α|=3
ξαy

α0
0 yα1

1 (y0t1 + y1t2)α2 (y0t3 + y1t4)α3

Therefore Jψf (0) has the following shape:

Jψf (0) =


ξ2010 0 ξ2001 0
ξ1110 ξ2010 ξ1101 ξ2001
ξ0210 ξ1110 ξ0201 ξ1101

0 ξ0210 0 ξ0201

 .
A simple computation generalizing this shows that for the case of lines on an hyper-
surface of degree 2n− 3 we have (nonzero entries are uniform random variables in
the unit ball):

Jψf (0) =



ξ1,1 0 . . . ξ1,n−1 0
ξ2,1 ξ1,1 . . . ξ2,n−1 ξ1,n−1
... ξ2,1

... ξ2,n−1

ξ2n−3,1
... ξ2n−3,n−1

...
0 ξ2n−3,1 . . . 0 ξ2n−3,n−1


(here the variables ξi,j are some of the coefficients of f).

Before giving the general construction let us study the case of lines on the inter-
section of two quadrics i.e. the case when ν = 2, d1 = 2, d2 = 2, and n = 4.

In this case the matrix A has the form

A =


t
(1)
0 t

(1)
1

t
(2)
0 t

(2)
1

t
(3)
0 t

(3)
1

 ,
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which implies

(3.33) ψf1(A)

= f1

((
12
A

)(
y0
y1

))
=
∑

|α|=2
ξ(1)
α yα0

0 yα1
1

(
t
(1)
0 y0 + t

(1)
1 y1

)α2 (
t
(2)
0 y0 + t

(2)
1 y1

)α3 (
t
(3)
0 y0 + t

(3)
1 y1

)α4
.

Note that we have the following:

(3.34) dψf1 (0)
dt

(1)
0

=

ξ
(1)
1,0,1,0,0
ξ

(1)
0,1,1,0,0

0

 , dψf1 (0)
dt

(1)
1

=


0

ξ
(1)
1,0,1,0,0
ξ

(1)
0,1,1,0,0

 , dψf1 (0)
dt

(2)
0

=

ξ
(1)
1,0,0,1,0
ξ

(1)
0,1,0,1,0

0



(3.35) dψf1 (0)
dt

(1)
1

=


0

ξ
(1)
1,0,0,1,0
ξ

(1)
0,1,0,1,0

 , dψf1 (0)
dt

(3)
0

=

ξ
(1)
1,0,0,0,1
ξ

(1)
0,1,0,0,1

0

 , dψf1 (0)
dt

(1)
1

=


0

ξ
(1)
1,0,0,0,1
ξ

(1)
0,1,0,0,1

 .
Therefore

Jψf1(0) =


ξ

(1)
1,0,1,0,0 0 ξ

(1)
1,0,0,1,0 0 ξ

(1)
1,0,0,0,1 0

ξ
(1)
0,1,1,0,0 ξ

(1)
1,0,1,0,0 ξ

(1)
0,1,0,1,0 ξ

(1)
1,0,0,1,0 ξ

(1)
0,1,0,0,1 ξ

(1)
1,0,0,0,1

0 ξ
(1)
0,1,1,0,0 0 ξ

(1)
0,1,0,1,0 0 ξ

(1)
0,1,0,0,1

 .
In a similar way we find that

Jψf2(0) =


ξ

(2)
1,0,1,0,0 0 ξ

(2)
1,0,0,1,0 0 ξ

(2)
1,0,0,0,1 0

ξ
(2)
0,1,1,0,0 ξ

(2)
1,0,1,0,0 ξ

(2)
0,1,0,1,0 ξ

(2)
1,0,0,1,0 ξ

(2)
0,1,0,0,1 ξ

(2)
1,0,0,0,1

0 ξ
(2)
0,1,1,0,0 0 ξ

(2)
0,1,0,1,0 0 ξ

(2)
0,1,0,0,1

 .
Therefore Jψf (0) is given as follow:

Jψf (0) =



ξ
(1)
1,0,1,0,0 0 ξ

(1)
1,0,0,1,0 0 ξ

(1)
1,0,0,0,1 0

ξ
(1)
0,1,1,0,0 ξ

(1)
1,0,1,0,0 ξ

(1)
0,1,0,1,0 ξ

(1)
1,0,0,1,0 ξ

(1)
0,1,0,0,1 ξ

(1)
1,0,0,0,1

0 ξ
(1)
0,1,1,0,0 0 ξ

(1)
0,1,0,1,0 0 ξ

(1)
0,1,0,0,1

ξ
(2)
1,0,1,0,0 0 ξ

(2)
1,0,0,1,0 0 ξ

(2)
1,0,0,0,1 0

ξ
(2)
0,1,1,0,0 ξ

(2)
1,0,1,0,0 ξ

(2)
0,1,0,1,0 ξ

(2)
1,0,0,1,0 ξ

(2)
0,1,0,0,1 ξ

(2)
1,0,0,0,1

0 ξ
(2)
0,1,1,0,0 0 ξ

(2)
0,1,0,1,0 0 ξ

(2)
0,1,0,0,1


.

For the general case of k-flats on the complete intersection Z(f1, . . . , fν):

Jψf (0) =



M1
...
Mj
...
Mν

 ,
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where Mj is the Jacobian of the map given by the restriction of the polynomial fj
to the space {xk+1 = . . . = xn = 0}. Using again (3.10) we get:

(3.36) fj

((
1k+1
A

)
y

)
=
∑
α

ξ(j)
α yα0

0 · · · yαk
k

(
y0t

(1)
0 + . . .+ ykt

(1)
k

)αk+1 · · ·
(
y0t

(n−k)
0 + . . .+ ykt

(n−k)
k

)αn

Thus the row corresponding to yu0
0 · · · yuk

k (u0 + . . . + uk = dj) in the matrix Mj is
given as follows: (

β
(j)
u0−1,u1, ··· , uk,1,0, ··· , 0, · · · , β(j)

u0,u1, ··· , uk−1,1,0, ..., 0

)
. . .(3.37)

. . .
(
β

(j)
u0−1,u1, ··· , uk,0, ··· , 0,1, · · · , β(j)

u0,u1, ··· , uk−1,0, ··· , 0,1

)
),(3.38)

where

β
(j)
u0, ..., ui−1, ..., uk,0 ..., 1, ..., 0 =

0 if ui = 0
ξ

(j)
u0, ..., ui−1, ..., uk,0 ..., 1, ..., 0 if ui ⩾ 1

Remark 3.4. — Every entry that is not 0 in the matrix Jψf (0) is repeated exactly
k + 1 times and appears in different rows.

3.3. Proof of Theorem 1.5

We first need to prove the following lemma:
Lemma 3.5. — Let F ∈ Z[x1, . . . , xn] be a non-zero polynomial then:

lim
p→ +∞

# {F = 0 in Z/pZ}
pn

= 0.

Proof. — Let m1 the degree of x1 in the polynomial F . We can write F as follows:
F = Pm1x

m1
1 + · · · + P1x1 + P0.

Then #{F = 0 in Z/pZ} ⩽ m1p
n−1 + #{Pm1 = 0 in Z/pZ} where Pm1 involves a

lower number of variables. We apply the same procedure several times and we get:
# {F = 0 in Z/pZ} ⩽ m1p

n−1 +m2p
n−2 + · · · +mn

which conclude the proof. □
Now we apply the previous lemma to prove Theorem 1.5. Note the:

E
{
|det (Jψf (0))|p

}
⩾ P

(
|det (Jψf (0))|p = 1

)
= 1 − P (det (Jψf (0)) = 0 (mod p))

= 1 − # {det (Jψf (0)) = 0 in Z/pZ}
ps

where s denotes the number of random variables involved in the random matrix
Jψf (0).

Recall that Jψf (0) is given as the jacobian matrix of the random section σf of the
vector bundle (1.5). Since σf is transversal to the zero section generically (by [DM98,
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Théorème 2.1]) then Jψf(0) is non-singular with probability 1, hence det(Jψf(0))
can not be identically zero. Thus applying Lemma 3.5 we have that:

(3.39) lim
p→ +∞

E
{
|det (Jψf (0))|p

}
⩾ 1.

On the other hand we have:

(3.40) E
{
|det (Jψf (0))|p

}
⩽ 1,

because det(Jψf (0)) takes its values in Zp. Using (2.3) for λ(GLm(Zp)), we see that

(3.41) lim
p→ +∞

λ (GLn+1(Zp))
λ (GLk+1(Zp)) · λ (GLn−k(Zp))

= 1.

Hence, using Theorem 3.3, (3.39), (3.40) and (3.41), we conclude that

(3.42) lim
p→ ∞

E# {k-flats on Z (f1, . . . , fν) ⊂ QpPn} = 1.

3.4. Proof of Theorem 1.8

From Section 3.2, the matrix Jψf (0) is given in (3.32) as a random matrix with all
entries which are random independent variables uniformly distributed in Zp. This is
independent of the choice of the degrees d1, . . . , dn. Therefore, the expected number
of points on Z(f1, . . . , fn) when the degrees d1, . . . , dn are arbitrary is the same
when d1 = . . . = dn = 1. Thus this is exactly the number of points in the intersection
of n generic hyperplanes lying in QpPn. Therefore,

E#Z (f1, . . . , fn) = 1.

Corollary 3.6. — Let Mn a random matrix in Zn×n
p whose entries are random

independent variables uniformly distributed in Zp. Then:

(3.43) E
{
|det(Mn)|p

}
= (p− 1)pn

pn+1 − 1 .

Proof. — This is a direct consequence of Theorem 1.8 and Theorem 3.3:

1 = E#Z(f1, . . . , fn) = µ (QpPn) · E
{
|detMn|p

}
= pn+1 − 1
pn(p− 1) · E

{
|detMn|p

}
,

(3.44)

from which (3.43) follows. □

Remark 3.7. — The previous corollary can be also obtained by an inductive
process on the size of the matrix. We refer to [Eva02] for more results about the
distribution of the random matrix Mn.
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3.5. Proof of Theorem 1.9

Proof. — Applying Theorem 3.3 in the case k = 1, ν = 1 and d = 3 we get:

E# {σf = 0} = λ (GL4(Zp))
λ (GL2(Zp))2 · E

{
|det (Jψf (0))|p

}
.

By (2.3) we have:

(3.45) λ (GL4(Zp))
λ (GL2(Zp))2 = (p3 − 1) (p2 + 1)

p4(p− 1) ,

it remains to compute E{| det(Jψf (0)|p} where

Jψf (0) =


ξ1 0 ξ4 0
ξ2 ξ1 ξ5 ξ4
ξ3 ξ2 ξ6 ξ5
0 ξ3 0 ξ6


and ξ1, . . . , ξ6 are random variables i.i.d uniformly distributed in Zp.

By Lemma 2.2, we can compute the expectation of det(Jψf(0)) = (ξ1ξ6 − ξ3ξ4)2

− (ξ1ξ5 − ξ2ξ4)(ξ2ξ6 − ξ3ξ5) as:

(3.46) E
{
|det (Jψf (0))|p

}
= lim

n→ ∞

1
p6n

∑
0⩽ ξ1, ..., ξ6 ⩽ pn−1

∣∣∣(ξ1ξ6 − ξ3ξ4)2 − (ξ1ξ5 − ξ2ξ4) (ξ2ξ6 − ξ3ξ5)
∣∣∣
p
.

We are going now to introduce an alternative way of performing the summation
in (3.46).

Let us introduce first the following notation:
(3.47) P2 (Z/pnZ) :=

(
(Z/pnZ)3 \ (0, 0, 0)

)/
∼,

where (x, y, z) ∼ (x′, y′, z′) if and only if there exists λ invertible in Z/pnZ such that
(x, y, z) = λ(x′, y′, z′). We call [k1 : k2 : k3] ∈ P2(Z/pnZ) unit if at least one of the
coordinates ki is invertible in Z/pnZ

Observe that to every element ξ := (ξ1, . . . , ξ6) ∈ Z6
p we can associate a matrix

M(ξ) in Z3×2
p :

(3.48) M(ξ) =

ξ1 ξ4
ξ2 ξ5
ξ3 ξ6

 ,
as well as its reduction πn(M(ξ)) ∈ (Z/pnZ)3×2 modulo pn. The determinant of
Jψf(0) is a function of the minors of M(ξ). Let M ⊂ (Z/pnZ)3×2 be the subset of
matrices of maximal rank and let us consider the following map:

h : M ⊂ (Z/pnZ)3×2 → P2 (Z/pnZ)
(ξ1, . . . , ξ6) 7→ [ξ1ξ5 − ξ2ξ4 : ξ1ξ6 − ξ3ξ4 : ξ2ξ6 − ξ3ξ5] .

Observe that h is surjective. Denote by Q the set of elements [k1 : k2 : k3] ∈
P2(Z/pnZ) such that k2

2 − k1k3 = 0, and by S := h−1(Q) the set of matrices in M
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for which the corresponding matrices in Z4×4
p have valuation of determinant greater

or equal to n. Using this notation we see that the sum

(3.49)
∑

0⩽ ξ1, ..., ξ6 ⩽ pn−1

∣∣∣(ξ1ξ6 − ξ3ξ4)2 − (ξ1ξ5 − ξ2ξ4) (ξ2ξ6 − ξ3ξ5)
∣∣∣
p

is bounded from below by

(3.50) Ln :=
∑

[k1:k2:k3] ̸∈Q
#h−1 ([k1 : k2 : k3]) ·

∣∣∣k2
2 − k1k3

∣∣∣
p
,

and bounded from above by

(3.51) Rn :=
∑

[k1;k2;k3] ̸∈Q
#h−1 ([k1 : k2 : k3]) ·

∣∣∣k2
2 − k1k3

∣∣∣
p

+ #S
pn

.

In particular, from (3.46), it will follow that:

(3.52) lim
n→ ∞

Ln
p6n ⩽ E

{
|det (Jψf (0))|p

}
⩽ lim

n→ ∞

Rn

p6n .

In Lemma 3.9 below we will prove that

(3.53) lim
n→ +∞

#S
p7n = 0,

from which we deduce that:

(3.54) E
{
|det (Jψf (0))|p

}
= lim

n→ ∞

1
p6n

∑
[k1:k2:k3] ̸∈Q

#h−1 ([k1 : k2 : k3]) ·
∣∣∣k2

2 − k1k3

∣∣∣
p
.

Let us compute the cardinality of the fibers of h. To this end, let [k1 : k2 : k3] ∈
P2(Z/pnZ). Without loss of generality we can assume that:

(3.55) [k1 : k2 : k3] = [pm1 : pm2λ2 : pm3λ3]

with m1 ⩽ m2,m3. In Lemma 3.8 we will show that:

(3.56) #h−1 ([pm1 : λ2p
m2 : λ3p

m3 ]) = p4n−3−m1(p− 1)(p+ 1)
(
pm1+1 − 1

)
.

Let 0 ⩽ m ⩽ n − 1 be such that pm is the largest power of p that divides all
ki in [k1 : k2 : k3]; such elements [k1 : k2 : k3] with this property are in bijection
with the unit elements in P2(Z/pn−mZ), via the map that sends [k1 : k2 : k3] to
[k1/p

m : k2/p
m : k3/p

m]. Then by (3.56) we have

(3.57) Ln ⩽
n−1∑
m=0

∑
[k1:k2:k3] unit

in P2(Z/pn−mZ)

αn ·
(
pm+1 − 1

)
·

|k2
2 − k1k3|p
p3m ⩽ Rn

where αn := p4n−3(p− 1)(p+ 1).
We will need a further step of reduction. For 1 ⩽ k let us denote by A(k) the

number of unit elements (k1, k2, k3) ∈ (Z/pkZ)3 such that

k2
2 − k1k3 = 0

(
mod pk

)
,
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and set A(0) = 1 − 1/p3. We claim that:

(3.58) lim
n→ ∞

Ln
p6n = lim

n→ ∞

Rn

p6n

(3.59) = lim
n→ ∞

1
p6nαn ·

n−1∑
m=0

pm+1 − 1
p3m

n−m−1∑
k=0

p3(n−m−k)A(k) − p3(n−m−k−1)A(k + 1)
pn−m−1(p− 1)pk .

In fact p3(n−m−k)A(k) represents the number of unit elements

(k1, k2, k3) ∈
(
Z/pn−mZ

)3

such that |k2
2 − k1k3|p ⩽ p−k. Therefore,

p3(n−m−k)A(k) − p3(n−m−k−1)A(k + 1)
pn−m−1(p− 1)

represents the number of unit elements [k1 : k2 : k3] ∈ P2(Z/pn−mZ) such that
|k2

2 − k1k3|p = p−k. Therefore (3.59) follows from (3.57).
Using the formula for A(k), given below in Lemma 3.10, we have:
n−m−1∑
k=1

A(k)p3(n−m−k) − A(k + 1)p3(n−m−k−1)

pk

=
n−m−1∑
k=1

p3(n−m−1)
(
p−2k+3 − p−2k+1 − p−2k+2 + p−2k

)
= p3(n−m−1)

(
p− p−2(n−m−1)+1 − 1 + p−2(n−m−1)

)
,

and, for k = 0:
A(0)p3(n−m) − A(1)p3(n−m−1)

p0 = p3(n−m−1)
(
p3 − p2

)
In particular we have

αn
n−1∑
m=0

pm+1 − 1
p2m

n−m−1∑
k=0

p3(n−m−k)A(k) − p3(n−m−k−1)A(k + 1)
pn+k−1(p− 1)

=αn
n−1∑
m=0

(pm+1 − 1)p2n−5m−2
(
p3 − p2 + p− 1 + p−2(n−m−1) − p−2(n−m−1)+1

p− 1

)

=αn
n−1∑
m=0

(pm+1 − 1)
(
p2n−2

(
p2 + 1

)
p−5m − p−3m

)

=αnp2n−2
(
p2 + 1

) n−1∑
m=0

(
p−4m+1 − p−5m

)
− αn

n−1∑
m=0

(
p−2m+1 − p−3m

)

=αnp2n−2
(
p2 + 1

)((p4n − 1) p5

p4n (p4 − 1) − (p5n − 1) p5

p5n (p5 − 1)

)

− αn

(
p2n − 1

p2n−3 (p2 − 1) − p3n − 1
p3n−3 (p3 − 1)

)
.
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It remains now to put the pieces together. Combining (3.54) with (3.59), and sub-
stituting the value for αn, we get:

E
{
|det (Jψf (0))|p

}
= lim

n→ ∞

1
p6np

4n−3(p− 1)(p+ 1)p2n−2
(
p2 + 1

)( p5

p4 − 1 − p5

p5 − 1

)

= p4

p4 + p3 + p2 + p+ 1 .

Together with (3.45) this finally gives:

E# {σf = 0} = (p3 − 1) (p2 + 1)
p5 − 1 .

This concludes the proof of Theorem 1.9. It remains to prove the lemmas that we
have used in the proof. □

Lemma 3.8. — Using the above notations:

(3.60) #h−1 ([pm1 : λ2p
m2 : λ3p

m3 ]) = p4n−3−m1(p− 1)(p+ 1)
(
pm1+1 − 1

)
.

Proof. — Now we need to compute #h−1([k1 : k2 : k3]). This depends only on
m1 if we consider [k1 : k2 : k3] = [pm1 : λ2p

m2 : λ3p
m3 ] as before. Indeed, let

g ∈ h−1([pm1 : λ2p
m2 : λ3p

m3 ]). By Proposition 2.3, g has the following form:

g =

U
(
pu 0
0 pv

)
V

x y

 ∈ h−1 ([pm1 : λ2p
m2 : λ3p

m3 ]) ,

where u+ v = m1 and U, V are invertible matrices in (Z/pnZ)2×2. This is equivalent
to U

(
pu 0
0 pv

)
x′ y′

 ∈ h−1 ([pm1 : λ2p
m2 : λ3p

m3 ]) ,

where (x′, y′) = (x, y) · V −1. Set U = ( a bc d ), then we have

(3.61)

ay′pu − bx′pv = λ2p
m2(ad− bc)

cy′pu − dx′pv = λ3p
m3(ad− bc)

.

The previous system is equivalent to(
a b
c d

)(
y′pu

−x′pv

)
=
(
λ2p

m2(ad− bc)
λ3p

m3(ad− bc)

)
,

which gives:

(3.62)
(
y′pu

−x′pv

)
=
(
a b
c d

)−1 (
λ2p

m2(ad− bc)
λ3p

m3(ad− bc)

)
.

Notice that m2,m3 ⩾ u, v. For all z ∈ Z/pnZ the equation pvx′ = pvz has pv solutions
in Z/pnZ. In fact, this is equivalent to pn−v divides x′ − z. Thus (3.62) has exactly
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pupv = pm1 solutions, which means that we have pm1 choices for (x, y). Therefore,
using Lemma 2.4 and (2.4) we finally get:

(3.63) #h−1 ([pm1 : λ2p
m2 : λ3p

m3 ])

= pm1 · #
{
M ∈ (Z/pnZ)2×2

∣∣∣ |det(M)|p = p−m1
}

= pm1 · p4n · λ
({
M ∈ (Zp)2×2

∣∣∣ |det(M)|p = p−m1
})

(3.64)

= p4n−3−m1(p− 1)(p+ 1)
(
pm1+1 − 1

)
.(3.65)

□

Lemma 3.9. — Using the above notations we have:

(3.66) lim
n→ ∞

#S
p7n = 0.

Proof. — We claim first that the number of triples (k1, k2, k3) ∈ (Z/pnZ)3 such
that k2

2 − k1k3 = 0 is less than 2p2n.
Indeed, suppose first that k1 = puk′

1 ̸= 0 (0 ⩽ u ⩽ n− 1) with k′
1 invertible. Then

k1k3 − k2
2 = 0 if and only if puk3 = k2

2 · k′−1
1 . Fixing k′

1 and k2, the last equation has
either pu or 0 solutions for k3, depending on whether the valuation of k2 is less than
u/2 or not. Then the number of elements k2 for which the equation has solutions
is ⩽ pn−u/2. Therefore, the number of triples (k1, k2, k3) such that k2

2 = k1k3 and
k1 ̸= 0 is less than or equal to

n−1∑
u=0

pn−u−1(p− 1)pupn−u/2 = p2n−1(p− 1) · p
n/2 − 1
pn/2 · pn/2

pn/2 − 1 ⩽ 2p2n−1(p− 1).

For the case when k1 = 0 we must have also k2 = 0, hence in this case there exist
pn triples (k1, k2, k3) solving k2

2 − k1k3 = 0. In particular the number of solution of
k2

2 − k1k3 = 0 in (Z/pnZ)3 is less than 2p2n−1(p− 1) + pn ⩽ 2p2n, as claimed.
By (3.56), for every element [k1 : k2 : k3] ∈ P2(Z/pnZ) we have

#h−1([k1; k2; k3]) ⩽ p4n−3(p− 1)(p+ 1)p
n − 1
pn−1 .

Therefore,
#S ⩽ p4n−3(p− 1)(p+ 1)p

n − 1
pn−1 2p2n ⩽ O

(
p6n
)
,

which immediately implies:
lim
n→ ∞

#S
p7n = 0. □

Lemma 3.10. — Using the above notations,
(3.67) ∀ k ⩾ 1 : A(k) = p2k − p2k−2

Proof. — Suppose k2 is invertible, then also k1 and k3 must be invertible. By fixing
specific values for k1 and k2, there exists only one possible value for k3 for which
k2

2 − k1k3 = 0. Therefore in this case we have p2(k−1)(p − 1)2 elements (k1, k2, k3)
satisfying the equation k2

2 − k1k3 = 0. Let us now suppose that k2 is not invertible,
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then either k1 or k3 is invertible. Without loss of generality suppose k1 is invertible,
again k3 can have only one unique value whenever you fix k2 and k1. Therefore in
this case we have 2p2(k−1)(p− 1), and hence we get A(k) = p2k − p2k−2. □

3.6. The intersection of two quadrics

Let us consider now the problem of counting lines on a complete intersection of
two quadrics (ν = 2 and d1 = d2 = 2). Using Section 3.2, the matrix Jψf (0) in this
case is given as follow:

(3.68) Jψf (0) =



a1 0 b1 0 c1 0
a2 a1 b2 b1 c2 c1
0 a2 0 b2 0 c2
a′

1 0 b′
1 0 c′

1 0
a′

2 a′
1 b′

2 b′
1 c′

2 c′
1

0 a′
2 0 b′

2 0 c′
2


.

We can exchange some rows and columns, without changing the valuation of the
determinant, and get the following matrix:

a1 b1 c1 0 0 0
a2 b2 c2 a1 b1 c1
a′

1 b′
1 c′

1 0 0 0
a′

2 b′
2 c′

2 a′
1 b′

1 c′
1

0 0 0 a2 b2 c2
0 0 0 a′

2 b′
2 c′

2


.

Notice that in this case det(Jψf (0)) = k1k4 − k2k3 where k1, . . . , k4 are the minors
of the matrix 

a1 b1 c1
a2 b2 c2
a′

1 b′
1 c′

1
a′

2 b′
2 c′

2

 .
The special shape of this matrix allows us to apply the ideas of the proof of Theo-
rem 1.9 and get the following result.

3.6.1. Proof of Theorem 1.10

Proof. — Applying Theorem 3.3 in the case k = 1, ν = 2, and n = 4 we get:

(3.69) E# {σf = 0} = λ (GL5(Zp))
λ (GL3(Zp)) · λ (GL2(Zp))

E
{
|det (Jψf (0))|p

}
,

where Jψf (0) is given by (3.68). By (2.3) we have:

(3.70) λ (GL5(Zp))
λ (GL3(Zp)) · λ (GL2(Zp))

= (p4 − 1) (p5 − 1)
p6(p− 1) (p2 − 1) .
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It remains to compute E{| det(Jψf (0))|p}. By Lemma 2.2 we have:

(3.71) E
{
|det (Jψf (0))|p

}
= lim

n→ +∞

1
p12n

∑
0⩽ ξ1 ... ξ12 ⩽ pn−1

|det (M (ξ1, . . . , ξ12))|p

where

(3.72) M (ξ1, . . . , ξ12) =



ξ1 ξ2 ξ3 0 0 0
ξ4 ξ5 ξ6 ξ1 ξ2 ξ3
ξ7 ξ8 ξ9 0 0 0
ξ10 ξ11 ξ12 ξ4 ξ5 ξ6
0 0 0 ξ7 ξ8 ξ9
0 0 0 ξ10 ξ11 ξ12


.

We are going to follow the same reasoning of the proof of Theorem 1.9. Let us first
consider the following surjective map:

h : M ⊂ (Z/pnZ)4×3 → P3(Z/pnZ)
(ξ1, . . . , ξ12) 7→ [k1 : k2 : k3 : k4] ,

where M is the subset of matrices with full rank, and k1, . . . , k4 are the minors of
the following matrix:

(3.73)


ξ1 ξ2 ξ3
ξ4 ξ5 ξ6
ξ7 ξ8 ξ9
ξ10 ξ11 ξ12

 .
Therefore the sum

(3.74)
∑

0⩽ ξ1 ... ξ12 ⩽ pn−1
|det (M (ξ1, . . . , ξ12))|p

is bounded from below by:

L′
n :=

∑
[k1:···:k4] ∈P2(Z/pnZ)\Q

#h−1 ([k1 : k2 : k3 : k4]) |k1k4 − k2k3|p

and from above by:

R′
n :=

∑
[k1:···:k4] ∈P2(Z/pnZ)\Q

#h−1 ([k1 : k2 : k3 : k4]) |k1k4 − k2k3|p + #S
pn

.

Here Q is the set of [k1 : k2 : k3 : k4] ∈ P3(Z/pnZ) such that k1k4 − k2k3 = 0,
and S := h−1(Q) consists of matrices M for which the corresponding matrices
M(ξ1, . . . , ξ12) ∈ (Zp)6×6 have valuation of determinant greater or equal n.

We will show in Lemma 3.12 below that:

(3.75) lim
n→ +∞

#S
p13n = 0,

which implies:
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E
{
|det (Jψf (0))|p

}
= lim

n→ +∞

L′
n

p12n(3.76)

= lim
n→ +∞

R′
n

p12n(3.77)

Let us compute the cardinality of the fibers of h. To this end, let [k1 : k2 : k3 :
k4] ∈ P3(Z/pnZ). Without loss of generality we can assume that:
(3.78) [k1 : k2 : k3 : k4] = [pm1 : pm1λ2 : pm3λ3 : pm4λ4] ,
with m1 ⩽ m2,m3,m4. In Lemma 3.11 we will show that:

(3.79) h−1 ([pm1 : λ2p
m2 : λ3p

m3 : λ4p
m4 ])

= p9n−6−m1
(
p3 − 1

) (
pm1+1 − 1

) (
pm1+2 − 1

)
.

Set B(0) = 1− 1
p4 and for k ⩾ 1, let us denote by B(k) the number of unit elements

(k1, k2, k3, k4) ∈ (Z/pkZ)4 such that
(3.80) k1k4 − k2k3 = 0
Reasoning as in the proof of Theorem 1.9 we get:

(3.81) L′
n

⩽ βn ·
n−1∑
m=0

(pm+1 − 1)(pm+2 − 1)
p3m(p− 1)

n−m−1∑
k=0

B(k)p4(n−m−k) −B(k + 1)p4(n−m−k−1)

pn−m−1+k

⩽ R′
n,

where βn = p9n−6(p3 − 1).
By (3.76) we get

(3.82) E
{
|det (Jψf (0))|p

}
= lim

n→ ∞

Tn
p12n ,

where:

(3.83) Tn :=

βn
n−1∑
m=0

(pm+1 − 1) (pm+2 − 1)
p3m(p− 1)

n−m−1∑
k=0

B(k)p4(n−m−k) −B(k + 1)p4(n−m−k−1)

pn−m−1+k .

Using the formula for B(k) which is given in Lemma 3.13 below we have, for k ⩾ 1:
B(k)p4(n−m−k) −B(k + 1)p4(n−m−k−1)

pk
= p4(n−m−1)

(
p−2k+4 − 2p−2k+2 + p−2k

)
,

and
n−m−1∑
k=1

B(k)p4(n−m−k) −B(k + 1)p4(n−m−k−1)

pk

= p4(n−m−1)
(
p2 − 1 − p−2n+2m+4 + p−2n+2m+2

)
.
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For k = 0 we have
B(0)p4(n−m) −B(1)p4(n−m−1)

p0 = p4(n−m−1)(p4 − p3 − p2 + p).

Putting these two together, we have:
n−m−1∑
k=0

B(k)p4(n−m−k) −B(k + 1)p4(n−m−k−1)

pk

= p4(n−m−1)
(
p3 + 1

)
(p− 1) − p2(n−m−1)

(
p2 − 1

)
.

In particular,

Tn = βn
n−1∑
m=0

(pm+1 − 1) (pm+2 − 1)
p3m

(
p3 + 1

)
p3(n−m−1)(3.84)

− βn
n−1∑
m=0

(pm+1 − 1) (pm+2 − 1)
p3m (p+ 1)pn−m−1(3.85)

= βn
(
p3 + 1

)
p3(n−1)

n−1∑
m=0

p2m+3 − pm+2 − pm+1 + 1
p6m − βnO (pn)(3.86)

= βn
(
p3 + 1

)
p3(n−1)

n−1∑
m=0

(
p−4m+3 − p−5m+2 − p−5m+1 + p−6m

)
−O(p10n)(3.87)

= βn
(
p3 + 1

)
p3(n−1)(3.88) (

p3p
4n − 1
p4 − 1

p4

p4n − p2p
5n − 1
p5 − 1

p5

p5n − p
p5n − 1
p5 − 1

p5

p5n + p6n − 1
p6 − 1

p6

p6n

)
−O

(
p10n

)
(3.89)
Therefore,

E
{
|det (Jψf (0))|p

}
= lim

n→ +∞

Tn
p12n =p

6 − 1
p3

(
p

p4 − 1 − p+ 1
p5 − 1 + 1

p6 − 1

)
.(3.90)

Multiplying this equation with (3.70) we get:
E#

{
lines on the intersection of two quadrics in QpP4

}
= 1.

This concludes the proof of our Theorem 1.10. □
It remains to prove the lemmas that we have used.
Lemma 3.11. — Using the above notations we have:

(3.91) h−1 ([pm1 : λ2p
m2 : λ3p

m3 : λ4p
m4 ])

= p9n−6−m1
(
p3 − 1

) (
pm1+1 − 1

) (
pm1+2 − 1

)
.

Proof. — Arguing as before, let us write a point in the fiber of h as:

g =

U
p

u 0 0
0 pv 0
0 0 pw

V
x y z

 ∈ h−1 ([pm1 : λ2p
m2 : λ3p

m3 : λ4p
m4 ])
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where u+ v + w = m1 and U, V are invertible matrices in (Z/pnZ)3×3.
Set

U =

a b c
d e f
g h k

 .
Then

gV −1 =


apu bpv cpw

dpu epv fpw

gpu hpv kpw

x′ y′ z′

 ∈ h−1 ([pm1 : λ2p
m2 : λ3p

m3 : λ4p
m4 ])

if and only if
x′pv+w(bf − ce) − y′pu+w(af − cd) + z′pu+v(ae− bd) = λ2p

m2 det(U)
x′pv+w(bk − ch) − y′pu+w(ak − cg) + z′pu+v(ah− bg) = λ3p

m3 det(U)
x′pv+w(ek − fh) − y′pu+w(dk − fg) + z′pu+v(dh− eg) = λ4p

m4 det(U)

In other words:  pv+wx′

−pu+wy′

pu+vz′

 = co(U)−1

λ4p
m4

λ3p
m3

λ2p
m2

 det(U),

where co(U) is the matrix of cofactors of U . This system has pv+w solutions for x′,
pu+w for y′, and pu+v for z′. This means that we have p2m1 solutions for (x, y, z).
Therefore,

(3.92) h−1([pm1 : λ2p
m2 : λ3p

m3 : λ4p
m4 ]

= p2m1 · #
{
M ∈ (Z/pnZ)3×3

∣∣∣ | det(M)|p = p−m1
}

= p2m1 · p9n · λ
({
M ∈ (Zp)3×3

∣∣∣ |det(M)|p = p−m1
})

(3.93)

= p9n−6−m1
(
p3 − 1

) (
pm1+1 − 1

) (
pm1+2 − 1

)
.(3.94)

□

Lemma 3.12. — Using the notations above we have:

(3.95) lim
n→ +∞

#S
p13n = 0

Proof. — Notice that the number of elements (k1, k2, k3, k4) ∈ (Z/pnZ)4 such that
k1k4 − k2k3 = 0, viewing (Z/pnZ)4 ≃ (Z/pnZ)2×2 represents the number of matrices
in (Z/pnZ)2×2 with determinant 0. Let us call this number Sn. It can be computed
using (2.17) and (2.4) as follows:
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Sn = p4n −
n−1∑
m=0

#
{
M ∈ (Z/pnZ)2×2

∣∣∣ |det(M)|p = p−m
}

= p4n − p4n ·
n−1∑
m=0

λ
({
M ∈ (Zp)2×2

∣∣∣ |det(M)|p = p−m
})

= p4n − p4n ·
n−1∑
m=0

(p2 − 1) (pm+1 − 1)
p2m+3

= p4n − p3n−1(p+ 1) (pn − 1) + p2n−1
(
p2n − 1

)
= p3n + p3n−1 − p2n−1.

Let [pm1 : λ1p
m2 : λ3p

m3 : λ4p
m4 ] ∈ P3(Z/pnZ) with m1 ⩽ m2,m3,m4: this el-

ement has pn−m1−1(p − 1) representatives in (Z/pnZ)4. Moreover, the number of
(k1, k2, k3, k4) ∈ (Z/pnZ)4 such that pm1 divides all the coordinates is p4(n−m1). There-
fore the number of [k1 : k2 : k3 : k4] such that k1k4 = k2k3 is less than or equal
to:

n−1∑
m=⌊n

2 ⌋

p4(n−m)

p(n−m−1)(p− 1) + p3n + p3n−1 − p2n−1

pn−⌊n
2 ⌋(p− 1)

= O
(
p5n/2

)
.

On the other hand, by (3.94) every [k1 : k2 : k3 : k4] has at most p8n−5(p3 − 1)
(pn − 1)(pn+1 − 1) preimages under h. Thus, #S = O(p12n+n/2), and hence

lim
n→ +∞

#S
p13n = 0. □

Lemma 3.13. — Using the above notations we have:

∀ k ⩾ 1 : B(k) = p3k + p3k−1 − p3k−2 − p3k−3.

Proof. — Suppose first that k1 is invertible. Then k4 = k3k2k
−1
1 , and in this case

we have p3k−1(p− 1) elements satisfying the equation k1k4 = k2k3.
Suppose now that k1 is not invertible, then there are two cases:

- k2 invertible. In this case k1k4k
−1
2 = k3, and the number of elements (k1, k2, k3,

k4) satisfying k1k4 = k2k3 is p3k−2(p− 1).
- k2 not invertible. Then either k3 or k4 is invertible. Suppose k3 is invertible:

then k2 = k1k4k
−1
3 . In this case we have p3k−2(p − 1) elements verifying

k4 = k3k2k
−1
1 . Suppose now k3 is not invertible, then k4 is invertible and we

have k1 = k2k3k
−1
4 . In this case the number of solutions to our equation is

p3k−1(p− 1).
Adding up the resulting numbers from the previous cases, we get

B(k) = p3k + p3k−1 − p3k−2 − p3k−3. □
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3.7. Lines on hypersurfaces: the limit as n → ∞

Theorem 3.14. — Let f ∈ Zp[x0, . . . , xn](2n−3) be a random uniform polynomial.
Then:

(3.96) lim sup
n→ ∞

E# {lines on Z(f) ⊂ QpPn} ⩽
1

λ (GL2(Zp))
.

Proof. — From Theorem 3.3 we know that:

E# {lines on Z(f) ⊂ QpPn} = λ (GLn+1(Zp))
λ (GL2(Zp))λ (GLn−1(Zp))

E
{
|det (Jψf (0))|p

}
.

Notice that
lim

n→ +∞

λ (GLn+1 (Zp))
λ (GLn−1 (Zp))

= 1

and also E{| det(Jψf (0))|p} ⩽ 1, then

lim sup
n→ ∞

E# {lines on Z(f) ⊂ QpPn} ⩽
1

λ (GL2 (Zp))
. □

Remark 3.15. — When ν = 1, it still makes sense to consider the previous limit
over the numbers n satisfying

(
d+k
k

)
= (n− k)(k+ 1) for some d and we get a similar

result. However in the general case of more equations, it is not clear which type of
asymptotic to consider.
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