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Abstract. — We consider shape optimization problems for general integral functionals of
the calculus of variations, defined on a domain Ω that varies over all subdomains of a given
bounded domain D of Rd. We show in a rather elementary way the existence of a solution that
is in general a quasi open set. Under very mild conditions we show that the optimal domain is
actually open and with finite perimeter. Some counterexamples show that in general this does
not occur.
Résumé. — On considère des problèmes d’optimisation de forme pour des fonctionnelles

intégrales générales, parmi les domaines Ω parcourant tous les sous-domaines d’un domaine
borné D donné de Rd. Nous montrons de manière assez élémentaire l’existence d’une solution
qui en général est un ensemble quasi ouvert. Sous des conditions très faibles, nous prouvons
que le domaine optimal est en fait ouvert et de périmètre fini. Des contre-exemples montrent
que ce n’est pas toujours le cas.
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1. Introduction

In this paper we consider a shape optimization problem for a general integral
functional of the form

F (u,Ω) =
∫

Ω
f(x, u,∇u) dx.(1.1)

Setting

F(Ω) = min
{
F (u,Ω) : u ∈ W 1, p

0 (Ω)
}

the problem we are dealing with is written as

min
{
F(Ω) : Ω ⊂ D

}
.(1.2)

Here p > 1 is a fixed real number, D is a given bounded domain of Rd, and the
function f : Rd × R × Rd →] −∞,+∞] is a general integrand satisfying suitable
rather mild assumptions. Note that in problem (1.2) the volume constraint can be
incorporated into the cost functional F by means of a Lagrange multiplier of the form
λ|Ω| or more generally

∫
Ω λ(x) dx. For a detailed presentation of shape optimization

problems we refer the interested reader to the books [BB05] and [HM05].
The first result is Theorem 2.1, which gives the existence of an optimal domain

Ωopt. This optimal domain belongs to the class of p-quasi open sets, defined as the
sets {u > 0} for some function u ∈ W 1, p

0 (D). As a consequence, if p > d these
optimal sets are actually open, but if p 6 d this fact does not occur any more under
the very general assumptions we made, see Example 4.3.
The existence of optimal sets Ωopt could have been obtained through a generaliza-

tion of a result in [BDM93] to the case p > 1, making use of a γp–convergence on
the class of p–quasi open sets. However, we have preferred to give an independent
proof that, in the particular case of integral functionals of the form (1.1), is much
simpler.
In order to obtain that the optimal sets Ωopt are open, we need slightly stronger

assumptions: this is the goal of Theorem 3.4, in which we use the Hölder continuity
result of [GG84, Giu03] on the minimizers of general integral functionals.
Finally, in Theorem 5.1 we prove, under rather general assumptions on the in-

tegrand f , that Ωopt has a finite perimeter. This result is obtained by adapting a
previous result of [Buc12] to the general case of an integrand f with a p–growth.

2. Setting of the problem and existence result

We recall here some well-known notions from the Sobolev spaces theory; for all
details we refer to [BB05] and to [Maz11]. In all the paper p > 1 will be a fixed real
number.
For every set E ⊂ Rd the p–capacity of E is defined as

capp(E) = inf
{
‖u‖pW 1, p(Rd) : u ∈ W 1, p(Rd), u > 1 a.e. in a neighborhood of E

}
.

ANNALES HENRI LEBESGUE



Optimal shapes for general integral functionals 263

We say that a property P(x) holds p–quasi everywhere (shortly q.e.) in a set E if
the set of points of x ∈ E for which P(x) does not hold has p–capacity zero; the
expression almost everywhere (shortly a.e.) refers, as usual, to the Lebesgue measure.
A set Ω is called p–quasi open if Ω = {u > 0} for a suitable function u ∈ W 1, p(Rd).

This is equivalent to require that for every ε > 0 there exists an open subset Aε of
Rd with Aε ⊃ A and such that capp(Aε \ A) < ε. It has to be noticed that, since
for p > d the W 1, p(Rd) functions are Hölder continuous, we have that in this case
p–quasi open sets are actually open. On the contrary, since for p 6 d functions in
W 1 ,p(Rd) are not continuous, in general p–quasi open sets are not open.
A function f : D → R is said to be p–quasi continuous (respectively p–quasi

lower semicontinuous) if for every ε > 0 there exists a continuous (respectively lower
semicontinuous) function fε : D → R such that

capp
(
{x ∈ D : f(x) 6= fε(x)}

)
< ε.

It is well known (see for instance Ziemer [Zie89]) that every function u of the Sobolev
space W 1,p(D) has a p–quasi continuous representative ũ, which is uniquely defined
up to a set of capacity zero. The function ũ is given by

ũ(x) = lim
r→0

1
|Br(x)|

∫
Br(x)

u(y) dy,

in the sense that the limit above exists for p–quasi every x ∈ D. In the following we
always identify the function u with its p–quasi continuous representative ũ, so that
pointwise conditions can be imposed on u(x) for p–quasi every x ∈ D. Again, when
p > d p–quasi continuous functions are continuous, because points have a positive
p capacity.
If Ω is a p–quasi open set we may define the Sobolev space W 1, p

0 (Ω) as

W 1, p
0 (Ω) =

{
u ∈ W 1, p(Rd) : u = 0 q.e. on Rd \ Ω

}
.

We notice that this definition coincides, in the case when Ω is open, with the usual
one obtained as the closure of the class of smooth functions compactly supported in
Ω with respect to the W 1,p(Rd) norm

‖u‖W 1, p =
(∫

Rd
|∇u|p + |u|p dx

)1/p
.

It is also important to stress that two sets Ω1 and Ω2 which are equivalent in the
Lebesgue sense, that is |Ω14Ω2| = 0, where 4 denotes the symmetric difference for
sets, may produce very different Sobolev spaces. For instance, in R2 if Ω1 is the unit
disk in R2 and Ω2 is the unit disk minus a radius S, the Sobolev spaces W 1, p

0 (Ω1)
and W 1, p

0 (Ω2) differ a lot: the functions in the second one vanish on the radius S,
which is not the case for functions in the first space. Similarly, in Rd an open set
Ω and Ω without a k–dimensional manifold S provide very different Sobolev spaces
W 1, p

0 whenever p > d− k.
In the following we fix a bounded domain D of Rd and we consider the admissible

class
A =

{
Ω ⊂ D : Ω p–quasi open

}
.
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264 G. BUTTAZZO & H. SHRIVASTAVA

For every Ω ∈ A and u ∈ W 1,p
0 (Ω) we define the integral functional

F (u,Ω) =
∫

Ω
f(x, u,∇u) dx(2.1)

where the integrand f is assumed to verify the following conditions:
(f1) f(x, s, z) is measurable in x, lower semicontinuous in (s, z), convex in z;
(f2) there exist c > 0, a ∈ L1(D), and α < λ1,p(D) such that

c
(
|z|p − α|s|p − a(x)

)
6 f(x, s, z) for every x, s, z,

being λ1,p(D) the first Dirichlet eigenvalue of the p–Laplacian on D, defined
as

λ1, p(D) = min
{∫

D
|∇u|p dx : u ∈ W 1, p

0 (D),
∫
D
|u|p dx = 1

}
.

(f3) f(x, 0, 0) > 0.
It is well-known (see for instance [But89]) that under conditions (f1) and (f2) for
every Ω ∈ A the functional F (·,Ω) defined in (2.1) is lower semicontinuous with
respect to the weak convergence in W 1,p

0 (Ω) and that the minimum problem

min
{
F (u,Ω) : u ∈ W 1, p

0 (Ω)
}

(2.2)

admits a solution. Let us denote by F(Ω) the minimum value in (2.2). The shape
optimization problem we deal with is

min
{
F(Ω) : Ω ∈ A

}
(2.3)

In the following theorem we prove that the shape optimization problem above
admits a solution. For the proof we could use the general theory of γ–convergence
and weak γ–convergence (see [BB05]), and the fact that the shape functional F has
some monotonicity properties with respect to the set inclusion; however, in our case
a simpler proof is available and we report this one.

Theorem 2.1. — Under assumptions (f1),(f2),(f3) the shape optimization prob-
lem (2.3) admits a solution.

Proof. — Consider the auxiliary minimum problem

min
{ ∫

D
f(x, u,∇u)1{u 6= 0} dx : u ∈ W 1, p

0 (D)
}
.(2.4)

Since∫
D
f(x, u,∇u)1{u 6= 0} dx =

∫
D
f(x, u,∇u) dx−

∫
D
f(x, 0, 0)1{u= 0} dx

=
∫
D

[
f(x, u,∇u)− f(x, 0, 0)

]
dx+

∫
D
f(x, 0, 0)1{u 6= 0} dx,

Problem (2.4) can be rewritten as

min
{ ∫

D

[
f(x, u,∇u)− f(x, 0, 0) + f(x, 0, 0)1{u 6= 0}

]
dx : u ∈ W 1,p

0 (D)
}

and, thanks to assumptions (f1) and (f2), it verifies the lower semicontinuity and
coercivity properties that guarantee it admits a solution ū. We claim that the p–quasi
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open set Ω0 = {ū 6= 0} solves the shape optimization Problem (2.3). Indeed, let
Ω ∈ A and let uΩ be the solution of the minimum Problem (2.2); then we have

F(Ω) =
∫

Ω
f(x, uΩ,∇uΩ) dx

=
∫
D
f(x, uΩ,∇uΩ) dx−

∫
D\Ω

f(x, 0, 0) dx

=
∫
D
f(x, uΩ,∇uΩ)1{uΩ 6= 0} dx+

∫
D
f(x, 0, 0)

[
1{uΩ = 0} − 1D\Ω

]
dx

>
∫
D
f(x, ū,∇ū)1{ū 6= 0} dx+

∫
Ω
f(x, 0, 0)1Ω∩{uΩ = 0} dx > F(Ω0)

where the last inequality follows from the definition of Ω0 and from assumption (f3).
�

Remark 2.2. — Notice that, when f(x, 0, 0) = 0, the functional F(Ω) is decreasing
with respect to the set inclusion. Indeed, in this case we have for every u ∈ W 1,p

0 (Ω)∫
Ω
f(x, u,∇u) dx =

∫
D
f(x, u,∇u) dx

so that, if Ω1 ⊂ Ω2

F(Ω1) min
{ ∫

D
f(x, u,∇u) dx : u ∈ W 1, p

0 (Ω1)
}

> min
{ ∫

D
f(x, u,∇u) dx : u ∈ W 1, p

0 (Ω2)
}

= F(Ω2).

Therefore, when f(x, 0, 0) = 0, if Ω0 is a solution of the shape optimization prob-
lem (2.3), then every Ω ⊃ Ω0 is also a solution. In particular, the whole set D is a
solution of (2.3).

3. Existence of open optimal domains

In the present section we show that, under mild additional assumptions on the
integrand f , the optimal domain Ω0 of problem (2.3), obtained in Theorem 2.1 is
actually an open set. To do this we show that the solution ū of the auxiliary minimum
problem (2.4) is a continuous function. This follows by means of a well-known result
of Giaquinta and Giusti in [GG84] (see also [Giu03]), that we summarize here below
for the sake of completeness.
Theorem 3.1. — Let ū be a solution of the minimum problem

min
{∫

D
h(x, u,∇u) dx : u ∈ W 1, p

0 (D)
}

where the integrand h satisfies the condition
(3.1) c

(
|z|p − b(x)|s|γ − g(x)

)
6 h(x, s, z) 6 C

(
|z|p + b(x)|s|γ + g(x)

)
for all x, s, z, where p > 1, 0 < c 6 C, p 6 γ < p∗, b ∈ Lqloc(D), g ∈ Lσloc(D) being
p∗ = dp/(d − p) (p∗ = +∞ if p > d) the Sobolev exponent relative to p, σ > d/p,
q > p∗/(p∗ − γ). Then ū is locally Hölder continuous in D.
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Remark 3.2. — In the paper [GG84] the integrand h above was assumed of
Carathéodory type, but in fact condition (f1) is still enough, provided condition (3.1)
is satisfied. Actually, as the authors say, even the convexity of h with respect to z is
not needed, if we assume that a solution ū exists.

Remark 3.3. — Of course, the result above is nontrivial only in the case p 6 d;
indeed, if p > d the Hölder continuity of ū simply follows from the Sobolev embedding
theorem.

We can now apply Theorem 3.1 to obtain that in a large number of situations the
optimal set Ω0 obtained in Theorem 2.1 is actually an open set.

Theorem 3.4. — Assume that the integrand f satisfies conditions (f1),(f2), (f3),
(3.1). Then the optimal domain Ω0 of problem (2.3), obtained in Theorem 2.1 is an
open set.

Proof. — Since Ω0 = {ū 6= 0} where ū is a solution of the auxiliary problem (2.4),
it is enough to show that the function ū is continuous on D. We have for every
u ∈ W 1, p

0 (D)∫
D
f(x, u,∇u)1{u 6= 0} dx =

∫
D

[
f(x, u,∇u)− f(x, 0, 0)1{u= 0}

]
dx

and the integrand
h(x, s, z) = f(x, s, z)− f(x, 0, 0)1{s= 0}

satisfies the conditions of Theorem 3.1. Then the Hölder continuity of ū follows. �

Remark 3.5. — In general, under the sole existence assumptions (f1), (f2), (f3),
we do not expect that the optimal domain Ω0 be open. In [BHP05] the authors
consider the particular case

F (u,Ω) = 1
2

∫
Ω
|∇u|2 dx− 〈g, u〉

under a volume constraint of the form |Ω| = m, and refer to [Hay99] for a counterex-
ample to the fact that the solution Ω0 is open, when the function g is in H−1(D). In
the following section we show that a counterexample can be constructed even in the
case g ∈ H−1(D) ∩ L1(D).

4. Optimal domains that are not open

As we have seen in Theorem 3.4 quite mild assumptions on the integrand f imply
the existence of open optimal domains Ωopt. In this section we show that, when these
assumptions are not satisfied, there may exist optimal domains which are not better
than quasi open sets, even in very simple cases as the Dirichlet energy

F (u,Ω) =
∫

Ω

[
1
p
|∇u|p − g(x)u

]
dx.

We start by a preliminary result.
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Proposition 4.1. — Let f be an integrand satisfying conditions (f1) and (f2),
and assume that f(x, 0, 0) = 0. Let ū be a solution of the minimum problem

min
{∫

D
f(x, u,∇u) dx : u ∈ W 1, p

0 (D)
}

and denote by Ω0 the p-quasi open set {ū 6= 0}. Then Ω0 is a solution of the shape
optimization problem (2.3).
Proof. — Setting

F(Ω) = min
{∫

Ω
f(x, u,∇u) dx : u ∈ W 1, p

0 (Ω)
}

we have to show that for every p–quasi open set Ω ⊂ D we have
(4.1) F(Ω) > F(Ω0).
Using the optimality of ū and the fact that f(x, 0, 0) = 0 we obtain

min
{∫

Ω
f(x, u,∇u) dx : u ∈ W 1, p

0 (Ω)
}

= min
{∫

D
f(x, u,∇u) dx : u ∈ W 1, p

0 (Ω)
}

> min
{ ∫

D
f(x, u,∇u) dx : u ∈ W 1, p

0 (D)
}

=
∫
D
f(x, ū,∇ū) dx

=
∫

Ω0
f(x, ū,∇ū) dx > min

{ ∫
Ω0
f(x, u,∇u) dx : u ∈ W 1, p

0 (Ω0)
}
,

which implies (4.1). �
We consider here two shape optimization problems for the Dirichlet energy; we set

(4.2) F(Ω) = min
{∫

Ω

[
1
p
|∇u|p − g(x)u

]
dx : u ∈ W 1, p

0 (Ω)
}
.

The first problem, that we may call penalized problem, has the form

(Pλ) min
{
F(Ω) + λ|Ω| : Ω ∈ A

}
,

with λ > 0, while the second one, that we may call constrained problem has the form

(Qm) min
{
F(Ω) : Ω ∈ A, |Ω| 6 m

}
,

with m > 0. From what seen in the previous sections both the shape optimization
problems (Pλ) and (Qm) admit a solution.
Proposition 4.2. — Let λ > 0 and let Ω0 be an optimal domain for the shape

optimization problem (Pλ). Then there exists m > 0 such that Ω0 solves the shape
optimization problem (Qm).
Proof. — Take m = |Ω0| and let Ω ∈ A with |Ω| 6 m. By the optimality of Ω0 for

(Pλ) we have
F(Ω) + λ|Ω| > F(Ω0) + λ|Ω0|,

hence
F(Ω) > F(Ω0) + λ

(
m− |Ω|

)
> F(Ω0),

which proves that Ω0 solves the shape optimization problem (Qm) too. �
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While Proposition 4.2 is rather simple, the opposite implication, showing that an
optimal domain for (Qm) also solves (Pλ) for some λ, is a very delicate issue, which
has been studied in [Bri04]. In particular, a rigorous proof of the equivalence of the
two formulations is not available in full generality, see for instance [Bri04], [BHP05]
and [Hay99] for a discussion on this matter.
Here we show that problem (Qm) may have optimal domains that are not open,

when the summability of the datum g is not strong enough. We consider the uncon-
strained problem

(4.3) min
{
F(Ω) : Ω ∈ A

}
;

if this problem has a solution Ω0 which is not open, taking m = |Ω0| we have that
Ω0 also solves problem (Qm).
The function g is always assumed in W−1,p′(D) ∩ L1(D). By Theorem 3.4, when

in addition g ∈ Lq(D) with q > d/p, we obtain that the optimal domains Ωopt for
problem (4.3) are open sets. In the following example we show that Ωopt may be not
open if p 6 d and q = 1. More precisely, we show that for every p-quasi open set Ω
we can find g ∈ W−1, p′(D)∩L1(D) such that Ω is the optimal domain for the shape
optimization problem (4.3).

Example 4.3. — Let p > 1 and let Ω0 be any quasi open subset of D. Let w be
the torsion function associated to Ω0, that is the unique solution of the PDE

−∆pw = 1 in Ω0, w ∈ W 1, p
0 (Ω0),

intended as the minimizer on W 1,p
0 (Ω0) of the functional

∫
Ω

[
1
p
|∇u|p − u

]
dx

or equivalently as the solution of the PDE in its weak form
∫
D
|∇w|p− 2∇w∇φ dx =

∫
D
wφdx for every φ ∈ W 1, p

0 (Ω0).

By the maximum principle (see for instance [BB05, Lemma 5.3.2]) the solution w
turns out to be positive, more precisely

w(x) > 0 for q.e. x ∈ Ω0,

so that we have Ω0 = {w > 0}.
We claim that the function g = −∆p(wp

′) is in W −1, p′(D) ∩ L1(D). Indeed, by
the maximum principle w is bounded and, since ∇(wp′) = p′w p′− 1∇w, we get that
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wp
′ ∈ W 1, p

0 (D) and so g ∈ W−1, p′(D). Moreover, for every ψ ∈ C∞c (D) we have

〈g, ψ〉 =
∫
D
|∇(w p′)|p− 2∇(wp′)∇ψ dx

=
(

p

p− 1

)p− 1 ∫
D
|∇w|p− 2w∇w∇ψ dx

=
(

p

p − 1

)p− 1 ∫
D
|∇w|p− 2∇w

(
∇(wψ)− ψ∇w

)
dx

=
(

p

p − 1

)p− 1 ∫
D
ψ
(
w − |∇w|p

)
dx

which gives

g =
(

p

p − 1

)p− 1(
w − |∇w|p

)
.

Since w ∈ L∞(D) and w ∈ W 1,p
0 (D) we obtain that g ∈ L1(D).

Now, we apply Proposition 4.1 with g as above; since the functional in the mini-
mization problem (4.2) is strictly convex, its minimizer is unique and so this implies
that the function ū coincides with wp

′ . Hence Ωopt is the set {wp′ 6= 0}, which
coincides with Ω0.

Remark 4.4. — We have seen that if p > d or if the function g in (4.2) is in
Lq(D) with q > d/p then the optimal set Ωopt is open. On the contrary, if q = 1
we can construct a counterexample showing that Ωopt is merely a p–quasi open set,
and actually every p–quasi open set Ω0 can be optimal for some g ∈ L1(D). This
picture is sharp when p = d in the sense that in this case q = 1 is the borderline
situation and q 6 1 gives a counterexample, while q > 1 gives that Ωopt is open.
When p < d we do not know if similar counterexamples hold in the case 1 < q 6 d/p.
In addition, it would be interesting to provide counterexamples showing that also
the optimal domains for the penalized problem (Pλ) may be not open if the data are
not summable enough.

5. Cases when optimal domains have finite perimeter

In this section we show that, under some assumptions slightly stronger than (f1),
(f2), (f3) the optimal set Ω0 obtained in Section 2 has a finite perimeter. We adapt
the proof contained in [Buc12] to our general case. The assumptions we need are:
(f2”) there exist c > 0 and α < λ1,p(D) such that for every x, s, z

c
(
|z|p − α|s|p + 1

)
6 f(x, s, z);

(f3”) there exist K > 0 and a ∈ L1(D) such that for every x, s, t, z∣∣∣f(x, s, z)− f(x, t, z)
∣∣∣ 6 K|s− t|

(
a(x) + |s|p∗ + |t|p∗ + |z|p

)
,

where p∗ = dp/(d−p) (with p∗ any positive number if p = d and | · |p∗ replaced
by any continuous function if p > d) is the Sobolev exponent associated to p.
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Note that in particular condition (f2”) implies a condition stronger than (f3):
f(x, 0, 0) > c with c > 0.

Theorem 5.1. — Under assumptions (f1), (f2”),(f3”), the optimal domain Ω0
obtained in the existence Theorem 2.1 has a finite perimeter.

Proof. — Let u be a solution of the auxiliary minimization problem (2.4) and let,
for every ε > 0

uε = (u− ε)+ − (u− ε)−, Aε =
{

0 < |u| 6 ε
}
.

Note that

uε =


u− ε if u > ε

u+ ε if u < −ε
0 if |u| 6 ε

and ∇uε =

∇u a.e. on {|u| > ε}
0 a.e. on {|u| 6 ε}.

Then, by the optimality of the function u, we have∫
D
f(x, u,∇u)1{u 6= 0} dx 6

∫
D
f(x, uε,∇uε)1{uε 6= 0} dx =

∫
D\Aε

f(x, uε,∇u) dx,

where the last equality follows from the fact that uε = 0 on Aε. Now, using assump-
tion (f3”),∫

Aε

f(x, u,∇u) dx 6
∫
D\Aε

∣∣∣f(x, uε,∇u)− f(x, u,∇u)
∣∣∣ dx

6 C
∫
D
|uε − u|

(
a(x) + |uε|p

∗ + |u|p∗ + |∇u|p
)
dx 6 Cε.

We now use assumption (f2”) and we obtain

Cε >
∫
Aε

f(x, u,∇u) dx > c
∫
Aε

(
|∇u|p − α|u|p

)
dx+ c|Aε|,

which implies, thanks to Poincaré inequality and the fact that α < λ1,p(D),∫
Aε

|∇u|p dx+ |Aε| 6 Cε.

By Hölder inequality this gives∫
Aε

|∇u| dx 6 Cε.

We use now the coarea formula and we deduce∫ ε

0
Hd−1

(
∂∗{|u| > t}

)
dt 6 Cε.

Thus there exists a sequence δn → 0 such that

Hd−1
(
∂∗{|u| > δn}

)
6 C for every n

and finally this implies that

Hd−1(∂∗Ω0) = Hd−1
(
∂∗{|u| > 0}

)
6 C,

as required. �

ANNALES HENRI LEBESGUE



Optimal shapes for general integral functionals 271

BIBLIOGRAPHY

[BB05] Dorin Bucur and Giuseppe Buttazzo, Variational methods in shape optimization problems,
Progress in Nonlinear Differential Equations, vol. 65, Birkhäuser, 2005. ↑262, 264, 268

[BDM93] Giuseppe Buttazzo and Gianni Dal Maso, An existence result for a class of shape opti-
mization problems, Arch. Ration. Mech. Anal. 122 (1993), no. 2, 183–195. ↑262

[BHP05] Tanguy Briançon, Mohamed Hayouni, and Michel Pierre, Lipschitz continuity of state
functions in some optimal shaping, Calc. Var. Partial Differ. Equ. 23 (2005), no. 1, 13–32.
↑266, 268

[Bri04] Tanguy Briançon, Regularity of optimal shapes for the dirichletõs energy with volume
constraint, ESAIM, Control Optim. Calc. Var. 10 (2004), no. 1, 99–122. ↑268

[Buc12] Dorin Bucur, Minimization of the k-th eigenvalue of the dirichlet laplacian, Arch. Ration.
Mech. Anal. 206 (2012), no. 3, 1073–1083. ↑262, 269

[But89] Giuseppe Buttazzo, Semicontinuity, relaxation and integral representation in the calculus
of variations, Pitman Reseqrch Notes in Mathematics Series, vol. 207, Longman Scientific
& Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc.,
New York, 1989. ↑264

[GG84] Mariano Giaquinta and Enrico Giusti, Quasi-minima, Ann. Inst. Henri Poincaré Anal.
Non Linéaire 1 (1984), no. 2, 7–107. ↑262, 265, 266

[Giu03] Enrico Giusti, Direct methods in the calculus of variations, World Scientific Publishing,
Singapore, 2003. ↑262, 265

[Hay99] Mohammed Hayouni, Lipschitz continuity of the state function in a shape optimization
problem, J. Conv. Anal. 6 (1999), no. 1, 71–90. ↑266, 268

[HM05] Antoine Henrot and Pierre Michel, Variation et optimisation de formes. une analyse
géométrique, Mathématiques & Applications, vol. 48, Springer, 2005. ↑262

[Maz11] Vladimir G. Maz’ya, Sobolev spaces with applications to elliptic partial differential equa-
tions, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, 2011. ↑262

[Zie89] William P. Ziemer, Weakly differentiable functions, Springer, 1989. ↑263

Manuscript received on 10th November 2018,
revised on 30th April 2019,
accepted on 21st May 2019.

Recommended by Editor A. Porretta.
Published under license CC BY 4.0.

This journal is a member of Centre Mersenne.

Giuseppe BUTTAZZO
Dipartimento di Matematica, Università di Pisa,
Largo B. Pontecorvo 5,
56126 Pisa, ITALY
giuseppe.buttazzo@unipi.it

TOME 3 (2020)

https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://ahl.centre-mersenne.org/item/AHL_2020__3__261_0
mailto:giuseppe.buttazzo@unipi.it


272 G. BUTTAZZO & H. SHRIVASTAVA

Harish SHRIVASTAVA
Dipartimento di Matematica, Università di Pisa,
Largo B. Pontecorvo 5,
56126 Pisa, ITALY
harish.niser@gmail.com

ANNALES HENRI LEBESGUE

mailto:harish.niser@gmail.com

	1. Introduction
	2. Setting of the problem and existence result
	3. Existence of open optimal domains
	4. Optimal domains that are not open
	5. Cases when optimal domains have finite perimeter
	Bibliography

