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Résumé. — Nous étudions une équation de Schrödinger qui décrit la dynamique d’un
électron dans un crystal en présence d’impuretés et nous considérons des longueurs d’onde de
la taille des cellules du crystal. Lorsque la donnée initiale satisfait à des hypothèses ad-hoc, il
est bien connu que l’on peut rendre compte des propriétés de la fonction d’onde en considérant
la solution d’une équation de Schrödinger plus simple, appelée équation de masse effective. En
utilisant la décomposition de Floquet–Bloch, comme il est classique dans ce domaine, nous
exhibons des équations de masse effective dans un cadre plus général que dans les travaux
antérieurs, en autorisant notamment des dégénérescences des points critiques des bandes de
Bloch (ce qui ne peut arriver qu’en dimension plus grande que 1). Notre analyse repose sur
l’utilisation des mesures de Wigner et leur application à l’analyse de la dispersion dans des
edp-s et aboutit à l’introduction d’équations de masse effective de type Heisenberg.

1. Introduction

1.1. The dynamics of an electron in a crystal and the effective mass
equation

The dynamics of an electron in a crystal in the presence of impurities is described
by a wave function Ψ(t, x) that solves the Schrödinger equation:

(1.1)

i~∂tΨ(t, x) + ~2

2m∆xΨ(t, x)−Qper (x) Ψ(t, x)−Qext(t, x)Ψ(t, x) = 0,
Ψ|t=0 = Ψ0.

The potential Qper is periodic with respect to some lattice in Rd and describes
the interactions between the electron and the crystal. The external potential Qext
takes into account the effects of impurities on the otherwise perfect crystal. Here
~ denotes the Planck constant and m is the mass of the electrons. In many cases
of physical interest, the ratio ε between the mean spacing of the lattice and the
characteristic length scale of variation of Qext is very small. After performing a
suitable change of units, and rescaling the external potential and the wave function
(see for instance [PR96]) the Schrödinger equation becomes:

(1.2)

i∂tψ
ε(t, x) + 1

2∆xψ
ε(t, x)− 1

ε2Vper

(
x

ε

)
ψε(t, x)− Vext(t, x)ψε(t, x) = 0,

ψε|t=0 = ψε0.

The potential Vper is periodic with respect to a fixed lattice in Rd, which, for the
sake of definiteness will be assumed to be Zd.
Effective Mass Theory consists in showing that, under suitable assumptions on the

initial data ψε0, the solutions of (1.2) can be approximated for ε small by those of a
simpler Schrödinger equation, the effective mass equation, which is of the form:

(1.3) i∂tφ(t, x) + 1
2〈BDx, Dx〉φ(t, x)− Vext(t, x)φ(t, x) = 0,

where, as usual, Dx = 1
i
∂x. The approximation has to be understood in the sense

that any weak limits of the density |ψε(t, x)|2dxdt is the density |φ(t, x)|2dxdt as
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ε goes to 0. In the equation (1.3), B is a d×d matrix called the effective mass tensor,
it generates the effective Hamiltonian

Heff(x, ξ) = 1
2Bξ · ξ − Vext(t, x).

The effective mass tensor is an experimentally accessible quantity that can be
used to study the effect of the impurities on the dynamics of the electrons. Both
the question of finding those initial conditions for which the corresponding solutions
of (1.2) converge (in a suitable sense) to solutions to the effective mass equation
and that of clarifying the dependence of B on the sequence of initial data have been
extensively studied in the literature [AP05, BBA11, BLP78, HW11, PR96]. The
effective mass tensor is related to the critical points of the Bloch modes. These are
the eigenvalues of the operator P (ξ) on L2(Td) which is canonically associated with
the equation (1.2),

(1.4) P (ξ) = 1
2 |ξ − i∇y|2 + Vper(y), y ∈ Td, ξ ∈ Rd.

We focus here on initial data which are structurally related with one of the Bloch
mode in a sense that we will make precise later, we assume that this Bloch mode
is of constant multiplicity and we introduce a new method for deriving rigorously
the equation (1.3). The advantage of this method is that it allows to treat the case
where the critical points of the considered Bloch modes are degenerate, leading to
the introduction of a new family of Effective mass equations which are of Heisenberg
type. Our strategy is based on the analysis of the dispersion of PDEs by a Wigner
measure approach which has led us to develop global two microlocal Wigner measures
in this specific context, while they are only defined locally in general ([FK00, FK05]).
Note that different scaling limits for equation (1.1) have been studied in the

literature: the interested reader can consult, among many others, references [AP06,
BMP01, CS12, DGR06, Gér91a, GMMP97, HST01, PR96, PST03].

1.2. Floquet–Bloch decomposition

The analysis of Schrödinger operators with periodic potentials has a long history
that has its origins in the seminal works by Floquet [Flo83] on ordinary differential
equations with periodic coefficients, and by Bloch [Blo28], who developed a spectral
theory of periodic Schrödinger operators in the context of solid state physics. Floquet–
Bloch theory can be used to study the spectrum of the perturbed periodic Schrödinger
operator:

−ε
2

2 ∆x + Vper

(
x

ε

)
+ ε2Vext(t, x),

see for instance [Kuc01, Kuc04, Kuc16, RS78] and the references therein, and [GMS91,
HW11, Out87] for results in the semiclassical context. The Floquet–Bloch decom-
position gives as a result that the corresponding Schrödinger evolution can be
decoupled in an infinite family of dispersive-type equations for the so-called Bloch
modes. We briefly recall the basic facts that we shall need by following the approach
in [Gér91a, GMS91].
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The Floquet–Bloch decomposition is based on assuming that the solutions to (1.2)
depend on both the “slow” x and the “fast” x/ε variables. The fast variables should
moreover respect the symmetries of the lattice. This leads to the following Ansatz
on the form of the solutions ψε of (1.2):

(1.5) ψε(t, x) = U ε
(
t, x,

x

ε

)
,

where U ε(t, x, y) is assumed to be Zd-periodic with respect to the variable y (and,
therefore, that it can be identified to a function defined on R× Rd × Td, where Td
denotes the torus Rd/Zd). The function U ε then satisfies the equation:

(1.6)

iε2∂tU
ε(t, x, y) = P (εDx)U ε(t, x, y) + ε2Vext(t, x)U ε(t, x, y),

U ε|t=0 = U ε
0 (x, y), such that ψε0 = LεU ε

0 ,

where the operator Lε maps functions F defined on Rd × Td on functions on Rd

according to:

(1.7) LεF (x) := F
(
x,
x

ε

)
,

and P (εDx) denotes the operator-valued Fourier multiplier associated with the
symbol ξ 7→ P (εξ) defined in (1.4). The initial condition in (1.6) can be interpreted
in terms of the natural embedding L2(Rd

x) ↪→ L2(Rd
x × Tdy) by taking

U ε
0 (x, y) = ψε0(x)⊗ 1(y).

One can also have more elaborated identifications depending on the structure of the
initial data, as we shall see later. Identity (1.5) makes sense, since one can check that,
under suitable assumptions on the initial datum, U ε(t, x, · ) has enough regularity
with respect to the variable y (the fact that ψε must be given by (1.5) following from
the uniqueness of solutions to the initial value problem (1.2)).
Assuming that the function y 7→ Vper(y) is smooth is enough for proving that the

operator P (ξ) is self-adjoint on L2(Td) (with domain H2(Rd)) and has a compact
resolvent. For the sake of simplicity, we shall make here this assumption, even
though it can be relaxed into assuming Vper ∈ Lp(Td) for some convenient set of
indices p which authorizes Coulombian singularity in dimension 3 (see [Lew17]). As a
consequence of the fact that P (ξ) has compact resolvent, there exist a non-decreasing
sequence of eigenvalues (the so-called Bloch energies):

%1(ξ) 6 %2(ξ) 6 · · · 6 %n(ξ) 6 · · · −→ +∞,
and an orthonormal basis of L2(Td) consisting of eigenfunctions (ϕn(ξ, · ))n∈N (called
Bloch waves):

P (ξ)ϕn(y, ξ) = %n(ξ)ϕn(y, ξ), for y ∈ Td.
Moreover, the Bloch energies %n(ξ) are 2πZd-periodic whereas the Bloch waves satisfy

ϕn(y, ξ + 2πk) = e−i2πk·yϕn(y, ξ), for every k ∈ Zd.
This follows from the fact that for every k ∈ Zd, the operator P (ξ+ 2πk) is unitarily
equivalent to P (ξ) since P (ξ + 2πk) = e−i2πk·yP (ξ)ei2πk·y. It is proved in [Wil78]
that the Bloch energies %n are continuous and piecewise analytic functions of ξ ∈ Rd.
Actually, the set {(ξ, %n(ξ)), n ∈ N, ξ ∈ Rd} is an analytic set of Rd+1. Moreover, if
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the multiplicity of the eigenvalue %n(ξ) is equal to the same constant for all ξ ∈ Rd,
then %n and the eigenprojector Πn on this mode are globally analytic functions of ξ.
The reader can refer to [Kuc16] for a survey on the subject.
Observing that, via the decomposition in Fourier series, any U ∈ L2(Rd

x ×Tdy) can
be written as:

U(x, y) =
∑
k∈Zd

Uk(x)ei2πk·y with ‖U‖2
L2(Rd×Td) =

∑
k∈Zd
‖Uk‖2

L2(Rd),

we denote by Hs
ε (Rd×Td), for s > 0, the Sobolev space consisting of those functions

U ∈ L2(Rd × Td) such that there exists C > 0

(1.8) ∀ ε > 0, ‖U‖2
Hs
ε (Rd×Td) :=

∑
k∈Zd

∫
Rd

(1 + |εξ|2 + |k|2)s|Ûk(ξ)|2dξ 6 C,

where
Ûk(ξ) =

∫
Rd

e−ix·ξUk(x)dx.

1.3. Main result

We consider the following set of assumptions.
(H1) Assume Vper is smooth and real-valued and that Vext is a continuous function

in time taking values in the set of smooth, real-valued, bounded functions
on Rd with bounded derivatives.

(H2) Assume that %n is a Bloch mode of constant multiplicity and that the set of
critical points of %n

Λn := {ξ ∈ Rd, ∇%n(ξ) = 0}
is a submanifold of Rd.

(H3) Assume that the Hessian d2%n(ξ) is of maximal rank above each point ξ ∈ Λn

(or equivalently that Ker d2%n(ξ) = TξΛn for all ξ ∈ Λn),
(H4) Assume that the initial data ψε0(x) satisfies

ψε0(x) = U ε
0

(
x,
x

ε

)
with Û ε

0 (ξ, · ) ∈ Ran Πn(εξ),

with U ε
0 uniformly bounded in Hs

ε (Rd × Td) for some s > d/2.
It will be convenient to identify %n to a function defined on (Rd)∗ rather than Rd

(via the standard identification by duality). Then we define the cotangent bundle
of Λn as the union of all cotangent spaces to Λn

(1.9) T ∗Λn := {(x, ξ) ∈ Rd × Λn : x ∈ T ∗ξ Λn},
each fibre T ∗ξ Λn is the dual space of the tangent space TξΛn. Note that this is well-
defined, since T ∗Λn ⊂ (Rd)∗∗ = Rd. We shall denote byM+(T ∗Λn) the set of positive
Radon measures on T ∗Λn. We also define the normal bundle of Λn which is the union
of those linear subspaces of Rd that are normal to Λn:
(1.10) NΛn := {(z, ξ) ∈ Rd × Λn : z ∈ NξΛn},
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whereNξΛn consists of those x ∈ (Rd)∗∗ = Rd that annihilate TξΛn. Every x ∈ Rd can
be uniquely written as x = v+ z, where v ∈ T ∗ξ Λn and z ∈ NξΛn. Given φ ∈ L∞(Rd)
we write mφ(v, ξ), where v ∈ T ∗ξ Λn, to denote the operator acting on L2(NξΛn) by
multiplication by φ(v + · ). Note that assumption (H3) implies that the Hessian of
%n defines an operator d2%n(ξ)Dz ·Dz acting on NξΛn for any ξ ∈ Λn.
In the statement below, the weak limit of the energy density are described by

means of a time-dependent family Mn of trace-class operators acting on a certain L2-
space. More precisely, the operators Mn depend on t ∈ R and on ξ ∈ Λn, v ∈ T ∗ξ Λn;
for every choice of these parameters,Mn(t, v, ξ) is a trace-class operator acting on L2

functions of the vector space NξΛ. Note that Mn(t, · ) can also be viewed as a section
of a vector bundle over T ∗Λn, namely: ⊔(v,ξ)∈T ∗Λ L1

+ (L2(NξΛn)).

Theorem 1.1. — Assume the hypotheses (H1) to (H4). Then, there exist a
subsequence (εk)k∈N, a positive measure νn ∈M+(T ∗Λn), and a measurable family
of self-adjoint, positive, trace-class operator
M0,n : T ∗ξ Λn 3 (v, ξ) 7−→M0,n(v, ξ) ∈ L1

+(L2(NξΛn)), TrL2(NξΛn) M0,n(v, ξ) = 1,

such that for every for every a < b and every φ ∈ Cc(Rd) one has:

lim
k→∞

∫ b

a

∫
Rd
φ(x)|ψεk(t, x)|2dxdt

=
∫ b

a

∫
T ∗Λn

TrL2(NξΛn) [mφ(v, ξ)Mn(t, v, ξ)] νn(dv, dξ)dt,

where Mn( · , v, ξ) ∈ C(R;L1
+(L2(NξΛn)) solves the Heisenberg equation:

(1.11)

i∂tMn(t, v, ξ) +
[1
2d2%n(ξ)Dy ·Dy +mVext(t,·)(v, ξ),Mn(t, v, ξ)

]
= 0,

Mn|t=0 = M0,n.

Remark 1.2. — We point out that the measure νn and the family of operatorsM0,n
only depend on the subsequence ψεk0 of initial data. The way of computing them will
be made clear in Section 5.

When the critical points of %n(ξ) are all non degenerate, then the set Λn is discrete
and 2πZd-periodic, T ∗Λn = Λn × {0} and NΛn = Rd. We then have the following
corollary.

Corollary 1.3. — Assume we have assumptions (H1) to (H4) and that the
critical points of %n(ξ) are all non degenerate. Then the measure νn and the operator
Mn of Theorem 1.1 above satisfy:

(1) The operator Mn(t, ξ) is the orthogonal projection on ψξ which solves the
effective mass equation:

(1.12) i∂tψξ(t, x) = 1
2d2%n(ξ)Dx ·Dxψξ(t, x) + Vext(t, x)ψξ(t, x),

with initial data:
ψξ|t=0 is the weak limit in L2(Rd) of the sequence

(
e−

i
εk
ξ·x
ψεk0

)
.
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(2) The measure νn is given by

νn =
∑
ξ∈Λn

αξδξ, αξ = ‖ψξ|t=0‖L2(Rd).

This corollary is well known and we refer to the work by Allaire and Piatnit-
ski [AP05] or to [AP06] for similar results in a related problem; in that work ho-
mogenization and two-scale convergence techniques are used to obtain a precise
description of the solution profile for similar data than ours and for Bloch mode hav-
ing non-degenerated critical points. In [BBA11], Barletti and Ben Abdallah obtained
a result similar to Corollary 1.3 by following the approach initiated by Kohn and
Luttinger in [LK55] consisting in introducing a (non-canonical) basis of modified
Bloch functions.
The starting point in our approach is conceptually closer to that in [PR96], in

the sense that we analyse the structure of Wigner measures associated to sequences
of solutions. The main novelty here is the use of two-microlocal Wigner measures,
that give a more explicit geometric description of the mechanism that underlies the
Effective Mass Approximation, showing that it is a result of the dispersive effects
associated to high-frequency solutions to the semiclassical Bloch band equations.
Moreover, we are able to deal with the presence of non-isolated critical points on
the Bloch energies and to prove Theorem 1.1. We believe our approach is sufficiently
robust to be implemented on a Bloch band, isolated from the remainder of the
spectrum, and consisting of several Bloch modes which may present crossings. We
will devote further works to this specific problem. It is also interesting to notice
that our result generalizes to initial data which are a finite sum of data satisfying
Assumption (H4). The weak limit of the energy density associated with the solution
corresponding to this new data is the sum of weak limits of the energy densities of
the solution associated with each term of the data, without any interference (see
Section 6.5 for a precise statement).

1.4. Strategy of the proof

The proof of Theorem 1.1 relies on the analysis of the solution U ε to equation (1.6)
with initial data U ε

0 as introduced in Assumption (H4), and more precisely on its
component U ε

n on the nth Bloch mode and its restriction ψεn by Lε:

U ε
n = Πn(εDx)U ε, ψεn = LεU ε

n.

It is shown in Section 6.3 that the family (ψεn) solves the equation

(1.13)

iε2∂tψ
ε
n(t, x)− %n(εDx)ψεn(t, x)− ε2Vext(t, x)ψεn(t, x) = ε2f εn(t, x),

ψεn|t=0(x) = ψε0(x)

with
f εn = Lε [Π(εDx), Vext]U ε,
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There, we prove that
(1.14) ∀ T ∈ R, ∃ CT > 0, sup

t∈[0,T ]
‖ψε(t, · )− ψεn(t, · )‖L2(Rd) 6 CT ε.

and
(1.15) ∃ C > 0, ∀ t ∈ R, ‖f εn(t, · )‖L2(Rd) 6 Cε.

Equation (1.14) shows that no other Bloch modes is concerned in the decomposition
of U ε and ψε: the mass of ψε remains above the specific mode %n because it is
separated from the other ones. Therefore, a crucial step in this strategy consists in
performing a detailed analysis of the dispersive equation (1.13).

1.5. Structure of the article

Sections 2 to 5 are devoted to the analysis of a dispersive equation of the form (1.13)
in a more general setting. For this, we use pseudodifferential operators and semi-
classical measures (Section 3) and we introduce two-microlocal tools (Section 4) that
allow us to prove the main results of Section 2 in Section 5. Finally, in Section 6 we
come back to the effective mass equations and prove Theorem 1.1, which requires
additional results on the restriction operator Lε, the projector Πn(ξ) and energy
estimates for solutions to (1.6). Some Appendices are devoted to basic results about
pseudodifferential calculus and trace-class operator-valued measures, and to the
proof of technical lemma.

2. Quantifying the lack of dispersion

As emphasized in the introduction, understanding the limiting behavior as ε→ 0
of the position densities of solutions to the Schrödinger equation (1.2) relies on a
careful analysis of the solutions of equations of the form:

(2.1)

iε2∂tu
ε(t,x) =λ(εDx)uε(t,x)+ε2Vext(t,x)uε(t,x)+ε3gε(t,x), (t,x)∈R×Rd,

uε|t=0 = uε0,

where (gε(t, · )) is locally uniformly bounded with respect to t in L2(Rd).
This equation ceases to be dispersive as soon as λ(ξ) has critical points ξ 6= 0,

and this is always the case if λ is a Bloch energy. Heuristically, one can think that
one of the consequences of a dispersive time evolution is a regularization of the
high-frequency effects (that is associated to frequencies εξ = c 6= 0) caused by the
sequence of initial data. These heuristics have been made precise in many cases; a
presentation of our results from this point of view can be found in [CFKM19]. The
reader can also find there a detailed account on the literature on the subject.
Here we show that, in the presence of critical points of λ, some of the high-

frequency effects exhibited by the sequence of initial data persist after applying the
time evolution (2.1). We provide a quantitative picture of this persistence by giving
a complete description of the asymptotic behavior of the densities |uε(t, x)|2dxdt
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associated to a bounded sequence (uε) of solutions to (2.1). We give an explicit
procedure to compute all weak-? accumulation points of the sequence of positive
measures (|uε(t, x)|2dxdt) in terms of quantities that can be obtained from the
sequence of initial data (uε0). These results are of independent interest; we have thus
chosen to present them in a more general framework than what is necessary in our
applications to Effective Mass Theory.
In order to obtain a non trivial result we must make sure that the characteristic

length-scale of the oscillations carried by the sequence of initial data is of the order
of ε. The following assumption is sufficient for our purposes:
(H0) The sequence (uε0) is uniformly bounded in L2(Rd) and ε-oscillating, in the

sense that its energy is concentrated on frequencies smaller or equal than 1/ε:

(2.2) lim sup
ε→0+

∫
|ξ|>R/ε

∣∣∣ûε0(ξ)
∣∣∣2 dξ −→

R→+∞
0.

We shall assume that λ is smooth and grows at most polynomially, and that its
set of critical points is a submanifold of Rd. More precisely, we impose the following
hypotheses on λ and V :
(H1) Vext ∈ C∞(R×Rd) is bounded together with its derivatives and λ ∈ C∞(Rd),

together with its derivatives, grows at most polynomially; i.e. there exists
N > 0 such that, for every α ∈ Nd

+, one has:

sup
ξ∈Rd

∣∣∣∂αξ λ(ξ)
∣∣∣ (1 + |ξ|N)−1 <∞.

(H2) The set
Λ :=

{
ξ ∈ Rd : ∇λ(ξ) = 0

}
is a connected, closed embedded submanifold of Rd of codimension 0 < p 6 d
and the Hessian d2λ is of maximal rank over Λ.

The hypothesis (H2) implies the existence of tubular coordinates in a neighborhood
of Λ. A stronger version of (H2) is to suppose that all critical points of λ are non-
degenerate (that is, the Hessian of λ, d2λ(ξ) is a non-degenerate quadratic form for
every ξ ∈ Λ). This implies that p = d and Λ is a discrete set in Rd; if moreover one
has that λ is Zd-periodic, which is the situation when λ is a Bloch energy, this set is
finite modulo Zd. We first state the main result of this section under this stronger
hypothesis.

Theorem 2.1. — Suppose that the sequence of initial data (uε0) verifies (H0),
denote by (uε) the corresponding sequence of solutions to (2.1). Suppose in addition
that (H1) is satisfied and all critical points of λ are non-degenerate. Then there
exists a subsequence (uεk0 ) such that for every a < b and every φ ∈ Cc(Rd) the
following holds:

(2.3) lim
k→∞

∫ b

a

∫
Rd
φ(x)|uεk(t, x)|2dxdt =

∑
ξ∈Λ

∫ b

a

∫
Rd
φ(x)|uξ(t, x)|2dxdt,

where uξ solves the following Schrödinger equation:
(2.4) i∂tuξ(t, x) = d2λ(ξ)Dx ·Dxuξ(t, x) + Vext(t, x)uξ(t, x),
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with initial data:

uξ|t=0 is the weak limit in L2(Rd) of the sequence
(

e−
i
εk
ξ·x
uεk0

)
.

If Λ = ∅ then the right-hand side of (2.3) is equal to zero.

Note that uξ may be identically equal to zero even if the sequence (uε0) oscillates
in the direction ξ. For instance, if the sequence of initial data is a coherent state:

uε0(x) = 1
εd/4

ρ

(
x− x0√

ε

)
e iε ξ0·x,

centered at a point (x0, ξ0) in phase space with ρ ∈ C0(Rd), then uξ|t=0 = 0 for every
ξ ∈ Rd. Theorem 2.1 allows us to conclude that the corresponding solutions (uε)
converge to zero in L2

loc(R× Rd).
Theorem 2.1 can be interpreted as a description of the obstructions to the validity of

smoothing-type estimates for the solutions to equation (2.1) in the presence of critical
points of the symbol of the Fourier multiplier. We refer the reader to [CFKM19] for
additional details concerning this issue and a simple proof of Theorem 2.1. Here, we
obtain Theorem 2.1 as a particular case of a more general result which requires some
geometric preliminaries.
As for the mode Bloch %n in the Introduction, we identify λ to a function defined

on (Rd)∗ rather than Rd, and we associate with Λ its cotangent bundle T ∗Λ and its
normal bundle NΛ. In the analogue of Theorem 2.1 in this context, the sum over
critical points is replaced by an integral with respect to a measure over T ∗Λ, and
the Schrödinger equation (2.4) becomes a Heisenberg equation for a time-dependent
family M of trace-class operators of ⊔(v,ξ)∈T ∗Λ L1

+ (L2(NξΛ)).

Theorem 2.2. — Let (uε0) be a sequence of initial data satisfying (H0), and
denote by (uε) the corresponding sequence of solutions to (2.1). If (H1) and (H2)
hold, then there exist a subsequence (uεk0 ), a positive measure ν ∈M+(T ∗Λ) and a
measurable family of self-adjoint, positive, trace-class operators

M0 : T ∗ξ Λ 3 (v, ξ) 7−→M0(v, ξ) ∈ L1
+

(
L2(NξΛ)

)
, TrL2(NξΛ)M0(v, ξ) = 1,

such that for every a < b and every φ ∈ Cc(Rd) one has:

(2.5) lim
k→∞

∫ b

a

∫
Rd
φ(x)|uεk(t, x)|2dxdt

=
∫ b

a

∫
T ∗Λ

TrL2(NξΛ) [mφ(v, ξ)Mt(v, ξ)] ν(dv, dξ)dt,

where t 7→Mt(v, ξ) ∈ C(R;L1
+(L2(NξΛ)) solves the following Heisenberg equation:

(2.6)

i∂tMt(v, ξ) =
[1
2d2λ(ξ)Dz ·Dz +mVext(t,·)(v, ξ),Mt(v, ξ)

]
,

M |t=0 = M0.

Remark 2.3. — When the (H2) hypothesis about the rank of the Hessian d2λ is
dropped, then an additional term appears in (2.5) (see [CFKM19]).
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When Λ consists of a set of isolated critical points, Theorems 2.1 and 2.2 are
completely equivalent. Note that in this case, T ∗Λ = {0} × Λ and the measure ν
(which in this case is a measure depending on ξ ∈ Rd only) is simply

ν =
∑
ξ∈Λ

αξδξ,

where αξ = ‖uξ|t=0‖2
L2(Rd). In addition, NξΛ = Rd and the operator Mt(ξ) (which

again does not depend on z) is the orthogonal projection onto uξ(t, · ) in L2(Rd)
(recall that uξ solves the Schrödinger equation (1.12)). These orthogonal projections
satisfy the Heisenberg equation (2.6).
The proof of Theorem 2.2 follows a strategy developed in the references [AFKM15,

AM12, Mac10] in a different (though related) context. As in those references, the
measure ν and the family of operators M0 only depend on the subsequence of initial
data (uεk0 ); we will see in Section 3 that they are defined as two microlocal Wigner
measures of (uεk0 ) in the sense of [FK95, FK00, FK05, Mac10]. At this point, it
might be useful to stress out that in this regime the limiting objects M, ν cannot be
computed in terms of the Wigner/semiclassical measure of the sequence of initial
data, as it is the case when dealing with the semiclassical limit. In [CFKM19], we
have explicitly constructed sequences of initial data having the same semiclassical
measure but such that their time dependent measures differ. This type of behavior
was first remarked in this context in the case of the Schrödinger equation on the
torus, see [Mac09, Mac10].
We also emphasize that the original definition of two-microlocal Wigner measures

performed in [FK00] and their extension to more general geometric setting [FK05]
were only defined locally. We prove here that they extend to global objects in the
geometric context of closed simply connected embedded submanifolds of Rd; related
constructions were performed in the torus [AFKM15, AM12, Mac10, MR18] and the
disk [ALM16].
See also, that as soon as Λ has strictly positive dimension (i.e. it is not a union

of isolated critical points), the measure ν may be singular with respect to the
z variable, while when Λ consists in isolated points, the weak limit of the densities
|ψε(t, x)|2dx are proved to be uniformly continuous with respect to the measure dx.
See [CFKM19] for specific examples exhibiting this type of behavior; see also that
reference for examples proving the necessity of Hypothesis (H2); it is shown there
that different types of behavior can happen whenever the Hessian of λ is not of full
rank on Λ.
The main idea of the proof comes from the following remark. If vε(t, x) = uε(εt, x),

then (vε) solves the semi-classical equation

(2.7)

iε∂tvε(t,x) =λ(εDx)vε(t,x)+ε2Vext(t,x)vε(t,x)+ε3gε(t,x), (t,x)∈R×Rd,

vε|t=0 = uε0,

which means that, in the preceding analysis, we performed the semiclassical limit
ε→ 0 in (2.7) simultaneously with the limit t/ε→ +∞. Such analysis, combining
high-frequencies (ε → 0) and long times (t ∼ tε → +∞) is relevant if one wants
to understand the behavior of solutions of (2.7) beyond the Ehrenfest time. This
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approach was followed in the case of confined geometries in the references [AFKM15,
Mac09, MR16]. Note also that in the particular case when λ(ξ) is homogeneous of
degree two, this change of time scale transforms the semiclassical equation (2.7) into
the non-semiclassical one (that is, the one corresponding to ε = 1). Therefore, it
is possible to derive results on the dynamics of the Schrödinger equation via this
scaling limit, see [ALM16, AM14, AR12, Mac10]. The reader can consult the survey
articles [AM12, Mac11] and the introductory lecture notes [Mac15] for additional
details and references on this approach.

3. Pseudodifferential operators and semiclassical measures –
preliminaries

In this section we recall some basic facts on Wigner distributions and semiclassical
measures, which are the tools we are going to use to prove Theorem 2.2, and derive
preliminary results about Wigner measures associated with families of solutions of
equations of the form (2.1).

3.1. Wigner transform and Wigner measures

Wigner distributions provide a useful way for computing weak-? accumulation
points of a sequence of densities |f ε(x)|2dx issued from a L2-bounded sequence (f ε)
of solutions of a semiclassical (pseudo) differential equation. They provide a joint
physical/Fourier space description of the energy distribution of functions in Rd. The
Wigner distribution of a function f ∈ L2(Rd) is defined as:

W ε
f (x, ξ) :=

∫
Rd
f
(
x− εv

2

)
f
(
x+ εv

2

)
eiξ·v dv

(2π)d ,

and has several interesting properties (see, for instance, [Fol89]).
• W ε

f ∈ L2(Rd × Rd).
• Projecting W ε

f on x or ξ gives the position or momentum densities of f
respectively:∫

Rd
W ε
f (x, ξ)dξ = |f(x)|2,

∫
Rd
W ε
f (x, ξ)dx = 1

(2πε)d

∣∣∣∣∣f̂
(
ξ

ε

)∣∣∣∣∣
2

.

Note that despite this, W ε
f is not positive in general.

• For every a ∈ C∞c (Rd × Rd) one has:

(3.1)
∫
Rd×Rd

a(x, ξ)W ε
f (x, ξ)dx dξ = (opε(a)f, f)L2(Rd),

where opε(a) is the semiclassical pseudodifferential operator of symbol a
obtained through the Weyl quantization rule:

opε(a)f(x) =
∫
Rd×Rd

a
(
x+ y

2 , εξ
)

eiξ·(x−y)f(y)dy dξ
(2π)d .
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If (f ε) is a bounded sequence in L2(Rd) then (W ε
fε) is a bounded sequence of

tempered distributions in S ′(Rd ×Rd). This is proved using identity (3.1) combined
with the fact that the operators opε(a) are uniformly bounded by a suitable semi-
norm in S(Rd × Rd), see (A.1). Appendix A contains additional facts on the theory
of pseudodifferential operators, as well as references to the literature.
In addition, every accumulation point of (W ε

fε) in S ′(Rd × Rd) is a positive distri-
bution and therefore, by Schwartz’s theorem, a positive measure on Rd × Rd. These
measures are called semiclassical or Wigner measures. See references [Gér91a, GL93,
GMMP97, LP93] for different proofs of the results we have presented so far.
Now, if µ ∈ M+(Rd × Rd) is an accumulation point of (W ε

fε) along some subse-
quence (εk) and (|f εk |2) converges weakly-? towards a measure ν ∈ M+(Rd) then
one has:

(3.2)
∫
Rd
µ( · , dξ) 6 ν.

Equality holds if and only if (f ε) is ε-oscillating:

(3.3) lim sup
ε→0+

∫
|ξ|>R/ε

|f̂ ε(ξ)|2dξ −→
R→+∞

0,

see [Gér91a, GL93, GMMP97]. The Hypothesis (H0) that we made on the initial
data for equation (2.1), is this ε-oscillating property. Note also that (3.2) implies
that µ is always a finite measure of total mass bounded by supε ‖f ε‖2

L2(Rd).

Remark 3.1. — If ‖〈εDx〉sf ε‖L2(Rd) is uniformly bounded for some constant s > 0,
then the family f ε is ε-oscillating.

3.2. Wigner measure and family of solutions of dispersive equations

We will now consider Wigner distributions associated to solutions of the evolu-
tion equation (2.1) where Vext and λ satisfy hypothesis H1 and (gε(t, · )) is locally
uniformly bounded with respect to t in L2(Rd).
When the sequence (uε0) of initial data is uniformly bounded in L2(Rd), so is the

corresponding sequence (uε(t, · )) of solutions to (2.1) for every t ∈ R. Therefore
the sequence of Wigner distributions (W ε

uε(t,·)) is bounded in C(R;S ′(Rd × Rd)).
Nevertheless, its time derivatives are unbounded and, in general, one cannot hope
to find a subsequence that converges pointwise (or even almost everywhere) in t
(see Proposition 3.4 below). This difficulty can be overcome if one considers the
time-average of the Wigner distributions.

Proposition 3.2. — Let (uε) be a sequence of solutions to (2.1) issued from
an L2(Rd)-bounded family of initial data (uε0). Then there exist a subsequence (εk)
tending to zero as k → ∞ and a t-measurable family µt ∈ M+(Rd × Rd) of finite
measures, with total mass essentially uniformly bounded in t ∈ R, such that, for
every θ ∈ L1(R) and a ∈ C∞c (Rd × Rd):

lim
k→∞

∫
R×Rd×Rd

θ(t)a(x, ξ)W εk
uεk (t,·)(x, ξ)dx dξ dt =

∫
R×Rd×Rd

θ(t)a(x, ξ)µt(dx, dξ)dt.
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If moreover, the families (uε0) and gε(t, · ) are ε-oscillating, then for every θ ∈ L1(R)
and φ ∈ C∞c (Rd):

lim
k→∞

∫
R

∫
Rd
θ(t)φ(x)|uεk(t, x)|2dx dt =

∫
R

∫
Rd×Rd

θ(t)φ(x)µt(dx, dξ)dt.

This result is proved in [Mac09, Theorem 1]; see also [MR16, Appendix B]. Note
that its proof uses the following observation.

Remark 3.3. — Let (uε(t, · )) be a sequence of solutions to (2.1) with ε-oscillating
sequence of initial data (uε0) and assume gε(t, · ) is ε-oscillating for all time t ∈ R.
Then, uε(t, · ) also is ε-oscillating for all t ∈ R.

3.3. Localisation of Wigner measures on the critical set

The fact that (uε(t, · )) is a sequence of solutions to (2.1) imposes restrictions on
the measures µt that can be attained as a limit of their Wigner functions. In the
region in the phase space Rd

x ×Rd
ξ where equation (2.1) is dispersive (i.e. away from

the critical points of λ) the energy of the sequence (uε(t, · )) is dispersed at infinite
speed to infinity. These heuristics are made precise in the following result.

Proposition 3.4. — Let (uε(t, · )) be a sequence of solutions to (2.1) issued
from an L2(Rd)-bounded and ε-oscillating sequence of initial data (uε0), and suppose
that the measures µt are given by Proposition 3.2. Then, for almost every t ∈ R the
measure µt is supported above the set of critical points of λ:

suppµt ⊂ Λ = {(x, ξ) ∈ Rd × Rd : ∇λ(ξ) = 0}.

The result of Proposition 3.4 follows from a geometric argument : the fact that uε
are solutions to (2.1) translates in an invariance property of the measures µt.

Lemma 3.5. — For almost every t ∈ R, the measure µt is invariant by the flow
φ1
s : Rd × Rd 3 (x, ξ) 7−→ (x+ s∇λ(ξ), ξ) ∈ Rd × Rd, s ∈ R.

This means that for every function a on Rd × Rd that is Borel measurable one has:∫
Rd×Rd

a ◦ φ1
s(x, ξ)µt(dx, dξ) =

∫
Rd×Rd

a(x, ξ)µt(dx, dξ), s ∈ R.

This result is part of [Mac09, Theorem 2]. We reproduce the argument here for
the reader’s convenience, since we are going to use similar techniques in the sequel.
Proof of Lemma 3.5. — It is enough to show that, for all a ∈ C∞c (Rd × Rd) and

θ ∈ C∞c (R), the quantity

Rε(θ, a) :=
∫
R×Rd×Rd

θ(t) d
ds(a ◦ φ1

s(x, ξ))
∣∣∣∣∣
s=0

W εk
uεk (t,·)(x, ξ)dx dξ dt

tends to 0 for the subsequence εk of Proposition 3.2. Note that
d
ds(a ◦ φ1

s)
∣∣∣∣∣
s=0

= ∇ξλ · ∇xa = {λ, a};
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therefore, by the symbolic calculus of semiclassical pseudodifferential operators,
Proposition A.1:

opε
(

d
ds(a ◦ φ1

s)
∣∣∣∣∣
s=0

)
= i

ε
[λ(εD) , opε(a)] +OL(L2(Rd))(ε)

and, using the fact that uε solves (2.1):

i

ε

∫
R
θ(t)

(
[λ(εD), opε(a)]uε(t, · ), uε(t, · )

)
dt+O(ε)

= −ε
∫
R
θ(t) d

dt (opε(a)uε(t, · ), uε(t, · )) dt

= ε
∫
R
θ′(t) (opε(a)uε(t, · ), uε(t, · )) dt = O(ε).

This estimate together with identity (3.1) show that Rε(θ, a) = O(ε), which gives
the result that we wanted to prove. �

Proposition 3.4 follows easily from Lemma 3.5 and the following elementary fact.

Lemma 3.6. — Let Ω ⊂ Rd and Φs : Rd × Ω −→ Rd × Ω a flow satisfying: for
every compact K ⊂ Rd × Ω such that K contains no stationary points of Φ there
exist constants α, β > 0 such that:

α|s| − β 6 |Φs(x, ξ)| 6 α|s|+ β, ∀ (x, ξ) ∈ K.
Let µ be a finite, positive Radon measure on Rd×Ω that is invariant by the flow Φs.
Then µ is supported on the set of stationary points of Φs.

Proof. — It suffices to show that µ(K) = 0 for every compact set K ⊂ Rd×Ω as in
the statement of the Lemma 3.6. By the assumption made on Φs, it is possible to find
a sequence sk → +∞ such that Φsk(K), k ∈ N, are mutually disjoint. The invariance
property of µ implies that µ(Φsk(K)) = µ(K) and therefore, for every N > 0:

µ

(
N⋃
k=1

Φsk(K)
)

= Nµ(K).

Since µ is finite, we must have µ(K) = 0. �

4. Two-microlocal Wigner distributions

The localization result for semiclassical measures that we obtained in the preceding
section is still very far from the conclusions of Theorems 2.1 and 2.2. In particular,
Proposition 3.4 does not explain how the measures µt depend on the sequence of
initial data of the sequence of solutions (uε(t, · )). For obtaining more information,
we use two-microlocal tools that we introduce in a rather general framework in
this section.
From now on, we assume that X is a connected, closed embedded submanifold

of (Rd)∗ with codimension p > 0. Given any σ ∈ X, TσX and NσX will stand for the
cotangent and normal spaces of X at σ respectively (as defined in (1.9) and (1.10)).
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The tubular neighborhood theorem (see for instance [Hir94]) ensures that there exists
an open neighborhood U of {(σ, 0) : σ ∈ X} ⊆ NX such that the map:

U 3 (σ, v) 7−→ σ + v ∈ (Rd)∗,
is a diffeomorphism onto its image V . Its inverse is given by:

V 3 ξ 7−→ (σ(ξ), ξ − σ(ξ)) ∈ U,
for some smooth map σ : V −→ X. When X = {ξ0} consists of a single point, the
function σ is constant, identically equal to ξ0.
We extend the phase space T ∗Rd := Rd

x × (Rd)∗ξ with a new variable η ∈ Rd,
where Rd is the compactification of Rd obtained by adding a sphere Sd−1 at infinity.
The test functions associated with this extended phase space are those functions
a ∈ C∞(T ∗Rd

x,ξ × Rd
η) which satisfy the two following properties:

(1) There exists a compact K ⊂ T ∗Rd such that, for all η ∈ Rp, the map
(x, ξ) 7→ a(x, ξ, η) is a smooth function compactly supported in K.

(2) There exists a smooth function a∞ defined on T ∗Rd × Sd−1 and R0 > 0 such
that, if |η| > R0, then a(x, ξ, η) = a∞(x, ξ, η/|η|).

We denote by A the set of such functions and for a ∈ A we write:

(4.1) aε(x, ξ) := a

(
x, ξ,

ξ − σ(ξ)
ε

)
.

Given f ∈ L2(Rd), we define the two-microlocal Wigner distribution WX,ε
f as the

element of D′(Rd × V × Rd) defined by:

(4.2)
〈
WX,ε
f , a

〉
:= (opε(aε)f |f)L2(Rd), ∀ a ∈ A.

Since aε(x, εξ) = a
(
x, εξ, εξ−σ(εξ)

ε

)
has derivatives that are uniformly bounded in ε,

the Calderón–Vaillancourt Theorem (see Appendix A) gives the uniform boundedness
of the family of operators (opε(aε))ε>0 in L2(Rd). In addition, any a ∈ C∞c (Rd × V )
can be naturally identified to a function in A which does not depend on the last
variable. For such a, one clearly has〈

WX,ε
f , a

〉
=
∫
Rd×Rd

a(x, ξ)W ε
f (x, ξ)dx dξ.

Putting the above remarks together, one obtains the following.

Proposition 4.1. — Let (f ε)ε>0 be bounded in L2(Rd); suppose in addition that
this sequence has a semiclassical measure µ. Then, (WX,ε

fε )ε>0 is a bounded sequence
in D′(Rd × V × Rd) whose accumulation points µX satisfy:〈

µX , a
〉

=
∫
Rd×Rd

a(x, ξ)µ(dx, dξ), ∀ a ∈ C∞c (Rd × V ).

The distributions µX turn out to have additional structure (they are not positive
measures on Rd×V ×Rd, though) and can be used to give a more precise description
of the restriction µeRd×X of semiclassical measures. The measure µX decomposes
into two parts: a compact part, which is essentially the restriction of µX to the
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interior Rd × V × Rd of Rd × V × Rd, and a part at infinity, which corresponds to
the restriction to the sphere at infinity Rd × V × Sd−1.

4.1. The compact part

For σ ∈ X, we define functions of L2(NσX) as functions
Rp 3 z 7→ f(z)

where z is the parameter of a parametrization of NσX. These parametrizations
depend on the system of equations of X that we choose in a neighborhood of the
point σ. Let ϕ(ξ) = 0 be such a system in an open set Ω that we can assume included
in the set V where the map σ is defined. Then, a parametrization of NσX associated
to this system of equations is

NσX = {tdϕ(σ)z, z ∈ Rp}.
Besides, one associate with the system ϕ(ξ) = 0 a smooth map ξ 7→ B(ξ) from the
neighborhood Ω of σ into the set of d× p matrices such that
(4.3) ξ − σ(ξ) = B(ξ)ϕ(ξ), ξ ∈ Ω.
Given a function a ∈ C∞c (Rd × Ω× Rd) and a point (σ, v) ∈ TX, we can use the

system of coordinates ϕ(ξ) = 0 to define an operator acting on f ∈ L2(NσX) given
by:

Qϕ
a (σ, v)f(z) =

∫
Rp×Rp

a
(
v + tdϕ(σ)z + y

2 , σ, B(σ)η
)
f(y)eiη·(z−y) dη dy

(2π)p .

In other words, Qϕ
a (σ, v) is obtained from a by applying the non-semiclassical Weyl

quantization to the symbol

(z, η) 7→ a
(
v + tdϕ(σ)z, σ,B(σ)η

)
∈ C∞c (Rp × Rp).

We write
Qϕ
a (σ, v) = aW

(
v + tdϕ(σ)z, σ,B(σ)Dz

)
.

If one changes the system of coordinates into ϕ̃(ξ) = 0 on some open neighbor-
hood Ω̃ of σ, then, there exists a smooth map R(ξ) defined on the open set Ω ∩ Ω̃
(where both system of coordinates can be used), and valued in the set of invert-
ible p × p matrices, such that ϕ̃(ξ) = R(ξ)ϕ(ξ). One then observe that the matrix
B̃(ξ) associated with the choice of ϕ̃ is given by B̃(ξ) = B(ξ)R(ξ)−1. Besides, for
a ∈ C∞c (Rd × (Ω ∩ Ω̃)× Rd),

Qϕ̃
a (σ, v) =

∫
Rp×Rp

a
(
v + tdϕ̃(σ)z + y

2 , σ, B̃(σ)η
)
f(w)eiη·(z−y) dη dy

(2π)p

=
∫
Rp×Rp

a
(
v + tdϕ(σ) tR(σ)z + y

2 , σ, B(σ)R(σ)−1η
)
f(w)eiη·(z−y) dη dy

(2π)p .

We obtain
Qϕ̃
a (σ, v) = U(σ)Qϕ

a (σ, v)U∗(σ),
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where U(σ) is the unitary operator of L2(NσX) ∼ L2(Rp) associated with the linear
map from Rp into itself : z 7→ tR(σ)z. More precisely,

∀ f ∈ L2(Rp), U(σ)f(z) = |detR(σ)|
p
2 f( tR(σ)z).

This map is the one associated with the change of parametrization on NσX
induced by turning ϕ into ϕ̃, and the map (z, ζ) 7→ ( tR(σ)z,R(σ)−1ζ) is a sym-
plectic transform of the cotangent of Rp. This is the standard rule of transformation
of pseudodifferential operators through linear change of variables (see [AG07] for an
example or any textbook about pseudodifferential calculus).
Because of this invariance property with respect to the change of system of coor-

dinates, we shall say that a defines an operator Qa on L2(NσX). Clearly, Qa(σ, v) is
smooth and compactly supported in (σ, v); moreover, Qa(σ, v) ∈ K(L2(NσX)), for
every (σ, v) ∈ TX, where K(L2(NσX)) stands for the space of compact operators
on L2(NσX).

Proposition 4.2. — Let µX be given by Proposition 4.1. Then there exist a
positive measure ν on T ∗X and a measurable family:

M : T ∗X 3 (σ, v) 7−→M(σ, v) ∈ L1
+(L2(NσX)),

satisfying
TrL2(NσX) M(σ, v) = 1, for ν-a.e. (σ, v) ∈ T ∗X,

and such that, for every a ∈ C∞c (Rd × V × Rd) one has:〈
µX , a

〉
=
∫
T ∗X

TrL2(NσX)(Qa(σ, v)M(σ, v))ν(dσ, dv).

Proof. — We suppose that ϕ(ξ) = 0 is a local system of p equations of X. With-
out loss of generality, we may assume that dξ′ϕ(ξ) is invertible. We consider the
smooth valued function B satisfying ξ−σ(ξ) = B(ξ)ϕ(ξ) and we introduce the local
diffeomorphism

Φ : (ϕ(ξ), ξ′′) 7→ ξ.

Note that if ξ = Φ(ζ), ζ = (ζ ′, ζ ′′), we have ζ ′ = ϕ(ξ) = ϕ(Φ(ζ)) and ζ ′′ = ξ′′. We
use this diffeomorphism according to the next Lemma 4.3.

Lemma 4.3. — For all f ∈ L2(Rd) and a ∈ A,

(opε(aε)f , f) =
(

opε
(
a

(
tdΦ(ξ)−1x,Φ(ξ), B (Φ(ξ)) ξ

′

ε

))
Uεf , Uεf

)
+O(ε)‖f‖2

where f 7→ Uεf is an isometry of L2(Rd).

The proof of this lemma is in the Appendix C. This lemma reduces the problem
to the analysis of the concentration of the bounded family f̃ ε = (Uεf) on the
submanifold Λ0 = {ξ′ = 0} which has the additional property to be a vector space.
This special case has been studied in [CFKM19, p. 96–97, Proposition 2] where it is
proved that up to a subsequence, there exist a positive measure ν0 on T ∗Rd−p and a
measurable family of trace 1 operators:

M0 : T ∗Rd−p 3 (σ, v) 7−→M0(σ, v) ∈ L1
+(L2(Rp)),
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satisfying for any b ∈ C∞c (R2d+p),

lim
ε→0

(
opε(bε)f̃ ε , f̃ ε

)
=
∫
Rd−p×Rd−p

TrL2(Rp)

(
bW ((z, u′′), (0, θ′′), Dz) M0(u′′, θ′′)

)
dν0(du′′, dθ′′).

The reader will find in Appendix B comments on the operator-valued families. There-
fore, for compactly supported a ∈ A, and choosing

b(x, ξ, η′) = a
(
tdΦ(ξ)−1x,Φ(ξ), B (Φ(ξ)) η′

)
,

one obtains

lim
ε→0

(opε(aε)f ε , f ε)

=
∫
Rd−p×Rd−p

TrL2(Rp)

(
aW

(
tdΦ(0, θ′′)−1(z, u′′),Φ(0, θ′′), B(Φ(0, θ′′))Dz

)
× M0(u′′, θ′′)

)
dν0(du′′, dθ′′).

Note that the map θ′′ 7→ σ = Φ(0, θ′′) is a parametrization of X with associated
parametrization of T ∗X,

(θ′′, u′′) 7→ (σ, v) =
(
Φ(0, θ′′),t dΦ(0, θ′′)−1(0, u′′)

)
.

Since the Jacobian of this mapping is 1, after a change of variable, we obtain an
operator valued measurable family M on T ∗X and a measure ν on T ∗X such that

lim
ε→0

(opε(aε)f , f)

=
∫
T ∗X

TrL2(Rp)
(
aW

(
tdΦ(0, θ′′(σ))−1(z, 0) + v, σ, B(σ)Dz

)
M(σ, v)

)
dν(dσ, dv).

We now take advantage of the fact that ϕ(Φ(ζ)) = ζ ′ for all ζ ∈ Rd in order to write

dϕ(Φ(ζ))dΦ(ζ) = (Id, 0).

We deduce
∀ z ∈ Rp, tdΦ(ζ) tdϕ(Φ(ζ))z = (z, 0),

which implies
∀ z ∈ Rp, tdϕ(Φ(ζ))z = tdΦ(ζ)−1(z, 0).

Therefore,

lim
ε→0

(opε(aε)f , f) =
∫
T ∗X

TrL2(Rp)
(
aW

(
tdϕ(σ)z+ v, σ, B(σ)Dz

)
M(σ, v)

)
dν(dσ, dv)

=
∫
T ∗X

TrL2(NσX) (Qa(σ)M(σ, v)) dν(dσ, dv). �
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4.2. Measure structure of the part at infinity

To analyze the part at infinity, we use a cut-off function χ ∈ C∞c (Rd) such that
0 6 χ 6 1, χ(η) = 1 for |η| 6 1 and χ(η) = 0 for |η| > 2,

and we write 〈
WX,ε
f , a

〉
=
〈
WX,ε
f , aR

〉
+
〈
WX,ε
f , aR

〉
,

with
(4.4) aR(x, ξ, η) := a(x, ξ, η)χ

(
η

R

)
and aR(x, ξ, η) := a(x, ξ, η)

(
1− χ

(
η

R

))
.

Observe that aR is compactly supported in all variables. We thus focus on the second
part, and more precisely on the quantity

lim sup
R→∞

lim sup
ε→0+

〈
WX,ε
f , aR

〉
.

We denote by SΛ the compactified normal bundle to Λ, viewed as a submanifold
of Rd × Rd, the fiber of which is T ∗σRd × SσΛ above σ with SσΛ being obtained by
taking the quotient of NσΛ by the action of R∗+ by homotheties.

Proposition 4.4. — Let (f ε) be a bounded family of L2(Rd). There exists a
subsequence εk and a measure γ on SΛ such that for all a ∈ A,

lim
R→∞

lim
k→+∞

〈
WX,εk
fεk , aR

〉
=
∫
Rd×X×Sd−1

a∞(x, σ, ω)γ(dx, dσ, dω)+
∫
Rd×Xc×Sd−1

a∞

(
x, ξ,

ξ − σ(ξ)
|ξ − σ(ξ)|

)
µ(dx, dξ),

where Xc denotes the complement of the set X in Rd.

Proof. — We begin by recalling the arguments that prove the existence of the
measure γ, which are the same that the one developed in the vector case in [CFKM19].
Since a = a∞ for |η| large enough, we have aR = aR∞ as soon as R is large enough
and the quantity

lim sup
R→∞

lim sup
ε→0+

〈
WX,ε
fε , a

R
〉

will only depend on a∞. Therefore, by considering a dense subset of Cc(T ∗Rd×Sd−1),
we can find a subsequence (εk) by a diagonal extraction process such that the
following linear form on Cc(T ∗Rd × Sd−1) is well-defined

` : a∞ 7→ lim
R→∞

lim
k→+∞

〈
WX,εk
fεk , aR

〉
.

We then observe that
∀ α, β ∈ Nd, ∃ Cα,β > 0, sup

R2d

∣∣∣∂αx∂βξ (aR)ε∣∣∣ 6 Cα,β
(
ε|β| +R−|β|

)
.

This implies that the symbolic calculus on symbols (aR)ε is semiclassical with respect
to the small parameter

√
ε2 +R−2. To be precise, one has the following weak Gårding

inequality: if a > 0, then, for all κ > 0, there exists a constant Cκ such that〈
WX,ε
fε , a

R
〉
> −

(
κ+ Cκ

(
ε+ 1

R

))
‖f ε‖2

L2(Rd).
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We then conclude that the linear form ` defined above is positive and defines a
positive Radon measure ρ̃. It remains to compute ρ̃ outside X. In this purpose,
we set

aR = aRδ + aR,δ with aRδ (x, ξ, η) = aR(x, ξ, η)(1− χ)
(
ξ − σ(ξ)

δ

)

and we observe that, by the definition of µ:

lim
δ→0

lim
R→∞

lim
ε→0

〈
WX,εk
fεk , aRδ

〉
=
∫
Rd×Xc×Sd−1

a∞

(
x, ξ,

ξ − σ(ξ)
|ξ − σ(ξ)|

)
µ(dx, dξ),

which concludes the proof of the existence of the measure γ.
Let us now analyze the geometric properties of this measure. We choose a system

of local coordinates of Λ and introduce the matrix B as in (4.3). By Lemma 4.3
and the result of [CFKM19] for vector spaces: up to a subsequence, there exists a
measure γ̃0 on Rd × Rd−p × Sp−1 such that

lim
δ→0+

lim
R→∞

lim
ε→0+

〈
WX,ε
f , aR,δ

〉
=
∫
Rd×Rd−p×Sp−1

a∞

(
tdΦ(0, ξ′′)−1x,Φ(0, ξ′′), B (Φ(0, ξ′′))ω

|B (Φ(0, ξ′′))ω|

)
γ̃0(dx, dξ, dω).

The mapping ξ′′ 7→ Φ(0, ξ′′) is a parametrization of X and the mapping

(x, ξ) 7→
(
tdΦ(0, ξ′′)−1x,Φ(0, ξ′′)

)
is the associated mapping of T ∗XRd. Therefore, this relation defines a measure γ̃ on
the bundle T ∗X × Sp−1 such that

(4.5) lim
δ→0+

lim
R→∞

lim
ε→0+

〈
WX,ε
f , aR,δ

〉
=
∫
T ∗X×Sp−1

a∞

(
x, σ,

B (σ)ω
|B (σ)ω|

)
γ̃(dx, dξ, dω).

Besides, using that

(4.6) Id = dσ(σ0) +B(σ0)dϕ(σ0)

for any σ0 ∈ X, we deduce that for any ζ ∈ Tσ0Rd, we have the decomposition

ζ = dσ(σ0)ζ +B(σ0)dϕ(σ0)ζ, with dσ(σ0)ζ ∈ TσX and B(σ0)dϕ(σ0)ζ ∈ Nσ0X.

Now, since dϕ is of rank p, one can write any ω ∈ Sp−1 as ω = dϕ(σ0)ζ and the
points B(σ0)ω are in Nσ0X. By identification of γ in (4.5), we deduce that γ(x, σ, · )
is a measure on the set{

B (σ)ω
|B (σ)ω| , ω ∈ Sp−1

}
= NσX/R∗+ = SσX,

which completes the proof of the Proposition 4.4. �
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5. Two microlocal Wigner measures and families of
solutions to dispersive equations

We now consider families of solutions to equation (2.1). As proved in Proposi-
tion 3.4, the Wigner measure of the family (uε(t, · )) concentrates on the critical set
Λ = {∇λ(ξ) = 0}. In order to analyze µt above Λ, we perform a second microlocal-
ization above the set X = Λ, with average in time. We consider for θ ∈ L1(R) the
quantities ∫

R
θ(t)

〈
WΛ,ε
uε(t,·), a

〉
dt

for symbols a ∈ A. Up to extracting a subsequence εk, we construct L∞ maps
t 7→ γt(dx, dσ, dω), t 7→ νt(dσ, dv), t 7→Mt(σ, v)

valued respectively on the set of positive Radon measures on Rd × Λ × Sd−1, on
the set of positive Radon measures on T ∗Λ and finally on the set of measurable
families from T ∗Λ onto the set of positive trace class operators on L2(NΛ), such
that for θ ∈ L1(R) and a ∈ A:∫

R
θ(t)

〈
WΛ,εk
uεk (t,·), a

〉
dt −→

k→+∞

∫
R

∫
Rd×Λ×Sd−1

θ(t)a∞(x, σ, ω)γt(dx, dσ, dω)dt

+
∫
R

∫
T ∗Λ

θ(t)TrL2(NσΛ)(Qa(σ, v)Mt(σ, v)νt(dσ, dv)dt.

The measures γt and νt, and the map M t satisfy additional properties coming from
the fact that the family (uε(t, · )) solves a time-dependent equation. These properties
are discussed in the next two sections. We shall see that the measures γt are invariant
under a linear flow and that we can choose the sequence εk such that the map t 7→Mt

is continuous (and even C1).

5.1. Transport properties of the compact part

Since Λ is the set of critical points of λ, the matrix d2λ is intrinsically defined
above points of Λ. Thus, using the formalism of the preceding sections,

Qd2λ(σ)η·η = d2λ(σ)Dz ·Dz.

Proposition 5.1. — The map t 7→ νt is constant and the map
t 7→Mt(σ, v) ∈ C(R;L1

+(L2(NσΛ))
solves the Heisenberg Equation (2.6).

Proof. — We analyze for a ∈ C∞c (R3d) the time evolution of the quantity〈
WΛ,ε
uε(t,·), a

〉
. We have

d
dt
〈
WΛ,ε
uε(t,·), a

〉
= 1
iε2

(
[opε(aε), λ(εD)]uε(t, · ), uε(t, · )

)
+ 1
i

(
[opε(aε), Vext]uε(t, · ) , uε(t, · )

)
+O(ε).
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By standard symbolic calculus for Weyl quantization, we have in L(L2(Rd))
1
iε2 [opε(aε), λ(εD)] = 1

ε
opε(∇λ(ξ) · ∇xaε) +O(ε).

Besides, by Taylor formula and by use of ∇λ(σ(ξ)) = 0, we have
(5.1) ∇λ(ξ) = d2λ(σ(ξ)) (ξ − σ(ξ)) + Γ(ξ) (ξ − σ(ξ)) · (ξ − σ(ξ)) ,
where Γ is a smooth matrix. This yields

1
ε
∇λ(ξ) · ∇xaε(x, ξ) = bε(x, ξ)

with
b(x, ξ, η) = d2λ(σ(ξ))η · ∇xa(x, ξ, η) + Γ(ξ) (ξ − σ(ξ)) · η∇xa(x, ξ, η).

At this stage of the proof, we see that d
dt

〈
WΛ,ε
uε(t,·), a

〉
is uniformly bounded in ε,

thus using a suitable version of Ascoli’s theorem and a standard diagonal extraction
argument, we can find a sequence (εk) such that the limit exists for all a ∈ C∞c (R3d)
and all time t ∈ [0, T ] (for some T > 0 fixed) with a limit that is a continuous map
in time. The transport equation that we are now going to prove shall guarantee the
independence of the limit from T > 0.
We observe that for any local system of equations of Λ, ϕ(ξ) = 0, the operator Qϕ

b

satisfies for (σ, v) ∈ TΛ,

Qϕ
b (σ, v) = bW

(
v + tdϕ(σ)z, σ,B(σ)Dz

)
= op1

(
d2λ(σ)B(σ)η · ∇xa(v + tdϕ(σ)z, σ,B(σ)η)

)
.

On the other hand, we observe that, setting

θ(ξ, η) = 1
2d2λ(ξ)η · η,

we have

(5.2) i [Qϕ
θ (σ), Qϕ

a (σ, v)]

= i
[
tB(σ)d2λ(σ)B(σ)Dz ·Dz , Q

ϕ
a (σ, v)

]
= op1

(
tdϕ(σ) tB(σ)d2λ(σ)B(σ)η · ∇xa(v + tdϕ(σ)z, σ,B(σ)η)

)
,

and we now focus on the matrix tdϕ(σ)tB(σ)d2λ(σ)B(σ), and thus on the properties
of the hessian d2λ(σ).
For ξ ∈ Λ, the bilinear form d2λ(ξ) is defined intrinsically on TξRd and d2λ(ξ) = 0

on TξΛ. We deduce from (4.6) that any ζ ∈ TξRd satisfies
ζ = dσ(ξ)ζ +B(ξ)dϕ(ξ)ζ with dσ(ξ)ζ ∈ TσΛ.

Therefore,
∀ ξ ∈ Λ, d2λ(ξ) = d2λ(ξ)B(ξ)dϕ(ξ).

Taking into account this information, Equation (5.2) becomes

i [Qϕ
θ (σ), Qϕ

a (σ, v)] = op1

(
d2λ(σ)B(σ)η · ∇xa(v + tdϕ(σ)z, σ,B(σ)η)

)
.
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We conclude
Qϕ
b (σ, v) = i [Qϕ

θ (σ), Qϕ
a (σ, v)] .

This implies that

i∂t(Mt(σ, v)νt(dσ, dv)) =
[1
2d2λ(σ)Dz ·Dz +mVext(t,·)(v, σ),Mt(σ, v)

]
νt(dσ, dv).

Taking the trace, we get ∂tνt = 0, thus νt is equal to some constant measure ν
and Mt satisfies Equation (2.6), which proves the Proposition 5.1. �

5.2. Invariance and localization of the measure at infinity

We are concerned with the property of the L∞-map t 7→ γt(dx, dσ, dω) valued in
the set of positive Radon measures on SΛ. We now define a flow on SΛ by setting
for s ∈ R

φs2 : (x, σ, ω) 7→ (x+ s d2λ(σ)ω, σ, ω).

Proposition 5.2. — The measure γt is invariant by the flow φs2.

Proof. — The proof essentially follows the lines of the proof of [AFKM15, Theo-
rem 2.5]. We use the cut-off function χ introduced before and set

aR,δ(x, ξ, η) = a(x, ξ, η)χ
(
ξ − σ(ξ)

δ

)(
1− χ

(
η

R

))
;

we introduce the smooth symbol

bR,δs (x, ξ, η) = aR,δ
(
x+ sd2λ(ξ) η

|η|
, ξ, η

)
,

which satisfies (bRs )∞ = a∞ ◦ φs2. Using Equation (5.1), we obtain(
bR,δs

)
ε
(x, ξ) = aR,δ

(
x+ s

|ξ − σ(ξ)|∇λ(ξ), ξ, ξ − σ(ξ)
ε

)
+ δ rR,δε (x, ξ)

where for all multi-index α, β ∈ Nd, there exists a constant Cα,β > 0 such that rR,δε

satisfies:
sup
x,ξ∈Rd

∣∣∣∂αx∂βξ rR,δε

∣∣∣ 6 Cα,β.

As a consequence, 〈WΛ,ε
uε(t,·), r

R,δ
ε 〉 is uniformly bounded in R, δ, ε and:

〈WΛ,ε
uε(t,·), b

R,δ
s 〉 = 〈WΛ,ε

uε(t,·), b̃
R,δ
s 〉+O(δ),

uniformly with respect to R and ε, with

b̃R,δs (x, ξ, η) = aR,δ
(
x+ s

|ξ − σ(ξ)|∇λ(ξ), ξ, η
)
.

Note that this symbol is smooth because |ξ−σ(ξ)| > Rε on the support of aR,δ. We
are going to prove that for all θ ∈ C∞c (R),

lim
δ→0+

lim
R→∞

lim
ε→0+

∫
R
θ(t) d

ds〈W
Λ,ε
uε(t,·), b̃

R,δ
s 〉dt = 0.
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Indeed, by the calculus of the preceding section, we have
d
ds
〈
WΛ,ε
uε(t,·), b̃

R,δ
s

〉
=
〈
WΛ,ε
uε(t,·),∇λ · ∇xc

R,δ
s

〉
with

cR,δs (x, ξ, η) = 1
|ξ − σ(ξ)|a

R,δ

(
x+ s

|ξ − σ(ξ)|∇λ(ξ), ξ, η
)
.

The symbol cR,δs is such that for all multi-index α ∈ Nd, there exists Cα > 0 for which:

sup
x,ξ∈Rd

∣∣∣∂αx (cR,δs )ε
∣∣∣ 6 Cα(Rε)−1.

This implies in particular: ∥∥∥opε((cR,δs )ε)
∥∥∥
L(L2(Rd))

6
C

Rε
.

By symbolic calculus, we have
1
iε

[
opε((cR,δs )ε), λ(εD)

]
= opε

(
∇λ(ξ) · ∇x(cR,δs )ε

)
+O

(
ε

R

)
.

We deduce that for all θ ∈ C∞c (R),∫
R
θ(t) d

ds
〈
WΛ,ε
uε(t,·), b̃

R,δ
s

〉
dt

=
∫
R
θ(t)

( 1
iε

[
opε((cR,δs )ε), λ(εD)

]
uε(t, · ) , uε(t, · )

)
dt+O

(
ε

R

)
=
∫
R
θ(t)

( 1
iε

[
opε((cR,δs )ε), λ(εD) + ε2Vext(t, x)

]
uε(t, · ) , uε(t, · )

)
dt+O

( 1
R

)
= −ε

∫
R
θ(t) d

dt
(
opε((cR,δs )ε)uε(t, · ) , uε(t, · )

)
dt+O

( 1
R

)
= O(ε) +O

( 1
R

)
.

As a conclusion,〈
WΛ,ε
uε(t,·), b

R,δ
s

〉
=
〈
WΛ,ε
uε(t,·), b̃

R,δ
s

〉
+O(δ)

=
〈
WΛ,ε
uε(t,·), b̃

R,δ
0

〉
+O(|s|ε) +O(|s|R−1) +O(δ)

=
〈
WΛ,ε
uε(t,·), b

R,δ
0

〉
+O(|s|ε) +O(|s|R−1) +O(δ),

which implies the Proposition 5.2. �

5.3. Proofs of Theorems 2.1 and 2.2

Remind that Theorem 2.2 implies Theorem 2.1, thus we focus on Theorem 2.2. We
first observe that the measure γt is zero. Indeed, by (H2); for σ ∈ Λ, d2λ(σ) is one
to one on NσΛ. Therefore, since γt is a measure on SΛ, the invariance property of
Proposition 5.2 and an argument similar to the one of Lemma 3.6 yields that γt = 0.
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As a consequence, the semi-classical measure µt is only given by the compact part
and one has for any a ∈ C∞c (R2d) and θ ∈ L1(R),∫

R
θ(t)

∫
R2d

a(x, ξ)µt(dx, dξ)

=
∫
R
θ(t)

∫
T ∗Λ

TrL2(NσΛ)(Qa(v, σ)Mt(v, σ))ν(dv, dσ)dt.

Then, taking θ = 1[a,b] for a, b ∈ R, a < b, and in view of Proposition 3.2 and of
Lemma 3.3, we deduce that for every φ ∈ Cc(Rd) one has for the subsequence defining
Mt and νt:

lim
ε→0

∫ b

a

∫
Rd
φ(x)|uε(t, x)|2dxdt =

∫ b

a

∫
T ∗Λ

TrL2(NξΛ) [Qφ(v, ξ)Mt(v, ξ)] ν(dv, dξ)dt,

where Mt satisfies (2.6). This concludes the proof of Theorem 2.2. We emphasize
that the measure ν and the operator valued family M0 are utterly determined by
the initial data.

6. Bloch projectors and semiclassical measures

In this section we prove Theorem 1.1, as a result of the analysis in Section 4. We
shall use properties of the operator of restriction Lε defined in (1.7) and of the pro-
jector Πn(εDx). Then, we prove a priori estimates for solutions of equation (1.6) and
use them to reduce the dynamics of our original problem to those of equation (1.13)
(Corollary 6.8).
Note that, modulo adding a positive constant to equation (1.2), we may assume

that P (εDx) is a non-negative operator. With this in mind, the following estimates,
that will repeatedly used in what follows, hold.

Remark 6.1. — There exists a constant c > 0 such that:
c−1‖U‖Hs

ε (Rd×Td) 6 ‖〈εDx〉s U‖L2(Rd×Td) + ‖P (εDx)s/2U‖L2(Rd×Td) 6 c‖U‖Hs
ε (Rd×Td),

for every U ∈ L2(Rd × Td) and ε > 0, where, as usual, 〈ξ〉 = (1 + |ξ|2)1/2 and where
the sets Hs

ε have been defined in (1.8).

6.1. High frequency behavior of the operator of restriction to the
diagonal and of the Bloch projectors

We first focus on the properties of the operator of restriction to the diagonal Lε
and prove its boundedness in appropriate functional spaces.

Lemma 6.2. — Suppose s > d/2, then the operator
Lε : L2(Rd

x;Hs(Tdy)) −→ L2(Rd)
is uniformly bounded in ε. Moreover, if U ε ∈ L2(Rd

x;Hs(Tdy)) satisfies the estimate:
(6.1) lim sup

ε→0+
‖1R(εDx)U ε‖L2(Rd;Hs(Td)) −→

R→∞
0,
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where 1R is the characteristic function of {|ξ| > R}, then the sequence (LεU ε) is
bounded in L2(Rd) and ε-oscillating.
Remark 6.3. — Suppose that (U ε) is bounded in Hr

ε (Rd × Td) for some r > d/2.
Then condition (6.1) is satisfied for every d/2 < s < r. This follows from the bound:

‖1R(εDx)U ε‖L2(Rd;Hs(Td)) 6 Rs−r‖U ε‖Hr
ε (Rd×Td).

In particular, if ψε0 satisfies (H4), then (ψε0) is ε-oscillating.
Proof. — Let U ε ∈ L2(Rd

x;Hs(Tdy)) and write

U ε(x, y) =
∑
k∈Zd

U ε
k(x)ei2πk·y,

and
‖U ε‖2

L2(Rdx;Hs(Tdy)) =
∑
k∈Zd
〈k〉2s ‖Ukε‖2

L2(Rd).

Then there exist constants C,Cd,s > 0 such that

∑
k∈Zd
‖U ε

k‖L2(Rd) 6 C

∑
k∈Zd
|k|2s‖U ε

k‖2
L2(Rd)

1/2

6 Cd,s‖U ε‖L2(Rdx;Hs(Tdy)),

and therefore:
(6.2) ‖LεU ε‖L2(Rd) 6

∑
k∈Zd
‖U ε

k‖L2(Rd) 6 Cd,s‖U ε‖L2(Rdx;Hs(Tdy)).

Let us now show that, under the hypothesis of the proposition, vε := LεU ε defines
an ε-oscillating sequence. Given δ > 0, since s > d/2, there exists Nδ > 0 such that∑

|k|>Nδ

|k|−2s < δ2.

Define:
vεδ(x) =

∑
|k|6Nδ

U ε
k(x)ei2πk·xε .

Clearly,
‖vε − vεδ‖L2(Rd) 6 δ‖U ε‖L2(Rdx;Hs(Tdy)).

Therefore, it suffices to show that for any δ > 0 the sequence (vεδ) is ε-oscillating.
The Fourier transform of vεδ is:

v̂εδ(ξ) =
∑
|k|6Nδ

Û ε
k

(
ξ − 2πk

ε

)
.

Therefore,
‖1R(εDx)vεδ‖L2(Rd) 6

∑
|k|6Nδ

‖1R(εDx + 2πk)U ε
k‖L2(Rd).

If R > R0 for R0 > 0 large enough, one has 1R(·+ 2πk) 6 1R/2 for every |k| 6 Nδ.
This allows us to conclude that for R > R0:
‖1R(εDx)vεδ‖L2(Rd) 6

∑
|k|6Nδ

‖1R/2(εDx)U ε
k‖L2(Rd) 6 Cd,s‖1R(εDx)U ε‖L2(Rd;Hs(Td))

and the conclusion follows. �
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We shall also need information on the derivatives with respect to ξ of the opera-
tor Πn(ξ). We recall the formula

Πn(ξ) = − 1
2iπ

N∑
j=1

χj(ξ)
∮
Cj

(P (ξ)− z)−1dz

where the functions χj ∈ C∞(Rd/2πZd) form a partition of unity and, for j =
1, . . . , N , the set Cj is a contour in the complex plane separating %n(ξ), for ξ ∈ suppχj,
form the remainder of the spectrum. The existence of such contours is guaranteed by
the fact that %n(ξ) is of constant multiplicity for all ξ ∈ Rd and, thus, is separated
from the remainder of the spectrum. As a consequence of this formula, of Lemma 6.1
and of the relation[

Πn(εDx), P (εDx)s/2
]

=
[
Πn(εDx), 〈εDx〉s

]
= 0,

we deduce the following result.

Lemma 6.4. — The map ξ 7→ Πn(ξ) is a smooth bounded map from Rd into
L(L2(Td)). In addition, the operator Πn(εDx) maps the space Hs

ε (Rd × Td) into
itself.

6.2. A priori estimates on U ε(t, · )

In order to derive the desired properties of ψεn(t, x), the solution to (1.13), we need
to prove some a priori estimates for the solutions of equation (1.6). We will use them
for reducing the analysis of ψε(t, · ) (the solution to our original problem (1.2)) to
that of ψεn(t, · ).

Lemma 6.5. — Given s > 0, there exists a constant Cs > 0 such that any
solution U ε to (1.6) with initial datum U ε

0 ∈ Hs(Rd × Td) satisfies:

(6.3) ‖U ε(t, · )‖Hs
ε (Rd×Td) 6 ‖U ε

0‖Hs
ε (Rd×Td) + Csε|t|,

uniformly in ε > 0.

Corollary 6.6. — Lemma 6.5 and Remark 6.3 imply that for all t ∈ R, the
family (ψε(t, · )) is ε-oscillating.

Proof. — In view of Remark 6.1, we are first going to study the families

(〈εDx〉U ε) and (P (εDx)1/2U ε).
Start noticing that 〈εDx〉U ε satisfies the equation

(6.4) iε2∂t(〈εDx〉U ε) = P (εDx)(〈εDx〉U ε) + ε2Vext 〈εDx〉U ε − ε2[Vext, 〈εDx〉]U ε.

As a consequence, using the boundedness of ∇xVext on R × Rd, we obtain by the
symbolic calculus of semiclassical pseudodifferential operators, that the source term
can be estimated by:

‖[Vext(t, · ), 〈εDx〉]U ε(t, · )‖L2(Rd×Td) 6 Cε‖U ε(t, · )‖L2(Rd×Td),
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for some constant C > independent of ε > 0 and t ∈ R. Using standard energy
estimates, we deduce the existence of a constant C1 > 0 such that for all t ∈ R,

‖ 〈εDx〉U ε(t, · )‖L2(Rd×Td) 6 ‖ 〈εDx〉U ε
0‖L2(Rd×Td) + C1ε|t|.

A completely analogous argument yields the estimate:
‖P (εDx)1/2U ε(t, · )‖L2(Rd×Td) 6 ‖P (εDx)1/2U ε

0‖L2(Rd×Td) + C1ε|t|.
A standard recursive argument gives, for all s ∈ N, the existence of a constant Cs > 0
such that for all t ∈ R,

‖ 〈εDx〉s U ε(t, · )‖L2(Rd×Td) +
∥∥∥P (εDx)s/2U ε(t, · )

∥∥∥
L2(Rd×Td)

6 ‖ 〈εDx〉s U ε
0‖L2(Rd×Td) +

∥∥∥P (εDx)s/2U ε
0

∥∥∥
L2(Rd×Td)

+ Csε|t|,

and the result follows for any s ∈ R+ by interpolation. �

We now focus on the case where the initial data U ε
0 belongs to a particular Bloch

eigenspace: U ε
0 = Πn(εDx)U ε

0 . We set
Ũ ε(t, · ) = Πn(εDx)U ε(t, · ).

Note that by Lemma 6.4, for any t ∈ R, the family Ũ ε(t, · ) is uniformly bounded in
Hs
ε (Rd × Td).

Lemma 6.7. — Assume U ε
0 = Πn(εDx)U ε

0 and consider Ũ ε(t, · ) as defined above.
Then, for all T > 0, there exists CT > 0 such that

sup
t∈[0,T ]

∥∥∥U ε(t, · )− Ũ ε(t, · )
∥∥∥
Hs
ε (Td×Rd)

6 CT ε.

Let us prove now Lemma 6.7.
Proof. — Note first that, in view of Remark 6.1, it is enough to prove the uniform

boundedness in L2(Td × Rd) of
U ε(t, · )− Ũ ε(t, · ), P (εDx)s/2(U ε(t, · )− Ũ ε(t, · )) and 〈εDx〉s(U ε(t, · )− Ũ ε(t, · )).
We have U ε(0, · ) = Ũ ε(0, · ) and Ũ ε solves
(6.5) iε2∂tŨ

ε(t, x) = P (εDx)Ũ ε(t, x) + ε2Vext(t, x)Ũ ε(t, x) + ε2Bε(t)U ε(t, x),
with

Bε(t) = [Πn(εDx), Vext(t, · )].
The symbolic calculus of semiclassical pseudodifferential operators implies that:

‖Bε(t)U ε(t, · )‖L2(Rd×Td) = O(ε), locally uniformly in t.

As for 〈εDx〉Ũ ε one has:

iε2∂t(〈εDx〉Ũ ε)
= P (εDx)〈εDx〉Ũ ε + ε2Vext〈εDx〉Ũ ε + ε2Cε〈εDx〉U ε − ε2[Vext, 〈εDx〉]Ũ ε,

with,
Cε =

[
Πn(εDx), 〈εDx〉Vext〈εDx〉−1

]
.
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Again, the symbolic calculus gives that ‖Cε(t)〈εDx〉U ε(t, · )‖L2(Rd×Td) = O(ε) locally
uniformly in t. Taking into account that 〈εDx〉U ε satisfies equation (6.4) and is
bounded in L2(Rd × Td), one concludes that:∥∥∥〈εDx〉

(
U ε(t, · )− Ũ ε(t, · )

)∥∥∥
L2(Rd×Td)

6 Cε|t|.

An analogous reasoning holds for P (εDx)1/2(U ε(t, · )− Ũ ε(t, · )). One concludes using
an inductive argument following the lines of the end of the proof of Lemma 6.5. �

6.3. Analysis of the Bloch component ψεn

By the definition of ψεn(t, x), we have
ψεn(t, · ) = LεŨ ε(t, · );

and the family is bounded in L2(Rd) for all t ∈ R. Moreover, as a corollary of
Lemma 6.7, the following holds.
Corollary 6.8. — Suppose that ψε and ψεn are the respective solutions of

equations (1.2) and (1.13) with the same initial datum LεU ε
0 , where U ε

0 = Πn(εDx)U ε
0 .

Then for every T > 0 there exist CT > 0 such that, uniformly in ε,
sup
t∈[0,T ]

‖ψε(t, · )− ψεn(t, · )‖L2(Rd) 6 CT ε.

The proof is a direct consequence of Lemma 6.7, since Lemma 6.2 ensures that
‖ψε(t, · )− ψεn(t, · )‖L2(Rd) 6 C‖U ε(t, · )− Ũ ε(t, · )‖L2(Rd,Hs(Td)).

We now conclude our analysis of the Bloch component ψεn(t, · ). The following result
gathers the remaining information that we will need in order to conclude, together
with Corollary 6.8, the proof of Theorem 1.1.
Proposition 6.9. — The family ψεn solves equation (1.13)iε2∂tψ

ε
n(t, x)− %n(εDx)ψεn(t, x)− ε2Vext(t, x)ψεn(t, x) = ε2f εn(t, x),

ψεn|t=0(x) = ψε0(x)

with (1.15): ‖f εn(t, · )‖L2(Rd) 6 Cε for all t ∈ R, ε > 0.
Proof. — Let us first prove that ψεn solves (1.13). We denote by J the set of the

indexes of the Bloch eigenfunctions ϕj( · , ξ) which form an orthonormal basis of
Ran Πn(ξ). Define for j ∈ J ,

uεj(t, x) :=
∫
Td
ϕj(y, εDx)Ũ ε(t, x, y)dy,

and notice that:
ψεn(t, x) = (LεŨ ε)(t, x) =

∑
j∈J

ϕj

(
x

ε
, εDx

)
uεj(t, x).

Since Ũ ε solves (6.5) and P (ξ)ϕj( · , ξ) = %n(ξ)ϕj( · , ξ) for all ξ ∈ Rd, the family uεj
solves:

iε2∂tu
ε
j(t, x) = %n(εDx)uεj(t, x) + ε2Vext(t, x)uεj(t, x) + ε2gεj (t, x),
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where:
gεj (t, x) :=

∫
Td

[ϕj(y, εDx), Vext(t, x)]U ε(t, x, y)dy.

Since %n(ξ) is 2πZd-periodic, it is easy to check that:

[Lεϕj( · , εDx), %n(εDx)] = 0.

Summing the relations over j ∈ J , this implies (1.13) with f εn = Lε[Πn(εDx), Vext]U ε.
Now, Lemma 6.2 and the symbolic calculus of pseudodifferential operators gives, for
any t ∈ R:

‖f εn(t, · )‖L2(Rd) 6 C ‖[Πn(εDx), Vext(t, · )]U ε(t, · )‖L2(Rd;Hs(Td))

6 C ′ε‖U ε(t, · )‖L2(Rd;Hs(Td)),

which concludes the proof of Proposition 6.9. �

6.4. Proofs of Theorems 1.1

The proof of Theorem 1.1 (which implies Corollary 1.3) easily follows from our
results so far.
Proof. — By Corollary 6.6, the family (ψε(t, · )) is ε-oscillating. Therefore, the weak

limits of |ψε(t, x)|2dx are the projection on Rd
x of the Wigner measures associated

with (ψε(t, · )). By Corollary 6.8, the Wigner measures of (ψε(t, · )) coincide with
those of (ψεn(t, · )). Finally, Proposition 6.9 allows us to use the results of Theorem 2.1
for determining the Wigner measure of (ψεn(t, · )). �

6.5. Some comments on initial data that are a finite superposition of
Bloch modes

Our results also apply to initial data that are a finite linear combination of the
form:

(6.6) ψε0 =
∑
n∈N

LεU ε
0,n

with N a finite subset of N such that for all n ∈ N , P (εDx)U ε
0,n = %n(εDx)U ε

0,n, for
distinct %n of constant multiplicity and U ε

0,n uniformly bounded in Hs
ε (Rd × Td) for

all n ∈ N .

Proposition 6.10. — Assume we turn assumption (H4) into (6.6) in the hy-
potheses and that assumptions (H2), (H3) hold for every %n with n ∈ N . Then,
there exist a subsequence (εk)k∈N, positive measures νn ∈M+(T ∗Λn), and measur-
able families of self-adjoint, positive, trace-class operators

M0,n : T ∗ξ Λn 3 (v, ξ) 7−→M0,n(v, ξ) ∈ L1
+(L2(NξΛn)), TrL2(NξΛn) M0,n(v, ξ) = 1,
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such that for every a < b and φ ∈ Cc(Rd) one has:

lim
k→∞

∫ b

a

∫
Rd
φ(x)|ψεk(t, x)|2dxdt

=
∑
n∈N

∫ b

a

∫
T ∗Λn

TrL2(NξΛn) [mφ(v, ξ)Mn(t, v, ξ)] νj(dv, dξ)dt,

where Mn( · , v, ξ) ∈ C(R;L1
+(L2(NξΛn)) solves the Heisenberg equation (1.11) with

initial data M0,n associated with the concentration of ψε0 on Λn.

Proof. — We associate to any n ∈ N their respective Bloch components ψεn(t, · ) of
ψε(t, · ) as we previously did. We juste have to prove that for all n, n′ ∈ N , n 6= n′,∫

R
θ(t) (opε(a)ψεn(t, · ), ψεn′(t, · ))−→ε→0

0,

which implies that the Wigner measure of∑n∈N ψ
ε
n is the sum of the Wigner measures

of the ψεn. We take a ∈ C∞c (R2d) and ã = (%n−%n′)−1a ∈ C∞c
(
R2d

)
; then for all t ∈ R,

(opε(a)ψεn(t, · ), ψεn′(t, · ))

=
(
opε(ã)%n(εDx)ψεn(t, · ), ψεn′(t, · )

)
−
(
opε(ã)ψεn(t, · ), %n′(εDx)ψεn′(t, · )

)
+O(ε)

from which we deduce:(
opε(a)ψεn(t, · ), ψεn′(t, · )

)
= iε2 d

dt
(
opε(ã)ψεn(t, · ), ψεn′(t, · )

)
+O(ε).

Therefore, if θ ∈ C∞c (R), then∫
R
θ(t) (opε(a)ψεn(t, · ), ψεn′(t, · )) dt

= O(ε) + iε2
∫
R
θ(t) d

dt (opε(ã)ψεn(t, · ), ψεn′(t, · )) dt

= O(ε)− iε2
∫
R
θ′(t) (opε(ã)ψεn(t, · ), ψεn′(t, · )) dt

= O(ε). �

Appendix A. Semiclassical pseudodifferential operators

In this appendix we recall a few basic notions on the theory of pseudodifferential
operators that we use trough this article. The reader can consult the references [AG07,
DS99, FK14, Mar02, Zwo12] for additional background and for proofs of the results
that follow.
Recall that given a function a ∈ C∞(Rd × Rd) that is bounded together with

its derivatives (we denote the space of all such functions by S), one defines the
semiclassical pseudodifferential operator of symbol a obtained through the Weyl
quantization rule to be the operator opε(a) that acts on functions f ∈ S(Rd) by:

opε(a)f(x) =
∫
Rd×Rd

a
(
x+ y

2 , εξ
)

eiξ·(x−y)f(y)dy dξ
(2π)d .
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These operators are bounded in L2(Rd). The Calderón–Vaillancourt Theorem [CV71]
ensures the existence of a constant Cd > 0 such that for every a ∈ S one has
(A.1) ‖ opε(a)‖L(L2(Rd)) 6 CdN(a),
where

Nd(a) :=
∑

α∈N2d,|α|6J0

sup
Rd×Rd

|∂αx,ξa|

for some J0 ∈ N depending only on d. We make use repeatedly of the following result,
known as the symbolic calculus for pseudodifferential operators.

Proposition A.1. — Let a, b ∈ S, then

opε(a) opε(b) = opε(ab) + ε

2i opε({a, b}) + ε2R(2)
ε ,

with {a, b} = ∇ξa · ∇xb−∇xa · ∇ξb and

[opε(a), opε(b)] = ε

i
opε({a, b}) + ε3R(3)

ε ,

‖R(j)
ε ‖L(L2(Rd)) 6 C sup

|α|+|β|=j
Nd(∂αξ ∂βxa)Nd(∂βξ ∂αx b), j = 1, 2,

for some constant C > 0 independent of a, b and ε.

Appendix B. Trace operator-valued measures

In this appendix we recall general considerations on operator-valued measures.
Let X be a complete metric space and (Y, σ) a measure space; write H := L2(Y, σ)
and denote by L1(H), K(H) and L(H) the spaces of trace-class, compact and
bounded operators on H respectively. A trace-operator valued Radon measure on X
is a linear functional:

M : C0(X) −→ L1(H)
satisfying the following boundedness condition. For every compact K ⊂ X there
exist a constant CK > 0 such that:

Tr |M(φ)| 6 CK sup
K
|φ|, ∀ φ ∈ C0(K).

Such an operator-valued measure is positive if for every φ > 0,M(φ) is an Hermitian
positive operator. Let M be a positive trace operator-valued measure on X, denote
by ν ∈M+(X) the positive real measure defined by:∫

X
φ(x)ν(dx) = TrM(φ),∀ φ ∈ C0(X).

The Radon–Nikodym theorem for operator valued measures (see, for instance,
[Gér91b, the Appendix]) ensures the existence of a ν-locally integrable function:

Q : X 7−→ L1(H), TrQ(x) = 1, Q(x) positive Hermitian for ν-a.e.x ∈ X,
such that:

M(φ) =
∫
X
φ(x)Q(x)ν(dx), ∀ φ ∈ C0(X).
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Note that this formula implies that M can be identified to a positive element of the
dual of C0(X;K(H)) via:

〈M,T 〉 ≡
∫
X

Tr[T (x)M(dx)] :=
∫
X

Tr(T (x)Q(x))ν(dx), T ∈ C0(X;K(H)).

It can be also shown that every such positive functional arises in this way.
Consider (ej(x))j∈N denote an orthonormal basis of H consisting of eigenfunctions
of Q(x):

Q(x)ej(x) = %j(x)ej(x),
∞∑
j=1

%j(x) = 1, ν-a.e..

Clearly, both %j and ej, j ∈ N, are locally ν-integrable and

Q(x) =
∞∑
j=1

%j(x)|ej(x)〉〈ej(x)|, ν-a.e.,

where, as usual, |ej(x)〉〈ej(x)| denotes the orthogonal projection in H onto ej(x).
Moreover, as a consequence of the monotone convergence theorem, the following
result easily follows.
Lemma B.1. — Let M be a positive trace operator-valued measure on X. Then

there exist a non-negative function ρ ∈ L1
loc(X, ν;L1(Y, σ)) such that, for every

a ∈ C0(X;L∞(Y, σ)) one has:∫
X

Tr[ma(x)M(dx)] =
∫
X

∫
Y
a(x, y)ρ(x, y)σ(dy)ν(dx),

where ma(x) denotes the operator acting on H by multiplication by a(x, · ). The
density ρ is given by:

ρ(x, y) =
∞∑
j=1

%j(x)|ej(x, y)|2.

Appendix C. Proof of Lemma 4.3

We denote by Fε the semi-classical Fourier transform defined for f ∈ L2(Rd) by

Fεf(ξ) = (2πε)−d/2f̂
(
ξ

ε

)
and we observe that for a ∈ C∞c (R3d),

(opε(aε)f , f) = (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
e iεx·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)dξ dξ′ dx,

where aε is associated with a according to (4.1). We consider a smooth cut-off
function χ which is equal to 1 on the support of a so that we have a(x, ξ)χ(ξ) = a(x, ξ)
and we write

(opε(aε)f , f)

= (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
e iεx·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)χ(ξ)χ(ξ′)dξ dξ′ dx+O(ε).

ANNALES HENRI LEBESGUE



Wigner measures and effective mass theorems 1083

The rest term O(ε) comes from Taylor formula close to ξ+ξ′
2 , the observation that

(ξj − ξ′j)e
i
ε
x·(ξ−ξ′) = ε

i
∂xj

(
e iεx·(ξ−ξ′)

)
, 1 6 j 6 d,

and the use of integration by parts in x. Similarly, we just need to consider vec-
tors (ξ, ξ′) which are close to the diagonal and if we introduce a smooth function Θ
compactly supported on |ξ| 6 1 and equal to 1 close to 0, then for some δ > 0 (that
will be chosen small enough later), we have

(opε(aε)f, f) = (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)

× e iεx·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)Θ
(
ξ − ξ′

δ

)
χ(ξ)χ(ξ′)dξ dξ′ dx+O(ε).

We are left with the integral

Iε = (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
e iεx·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)χ(ξ)χ(ξ′)

× Θ
(
ξ − ξ′

δ

)
dξ dξ′ dx

= (2πε)−d
∫
R3d

aε

(
−x, Φ(ζ) + Φ(ζ ′)

2

)
e iεx·(Φ(ζ)−Φ(ζ′))Fεf(Φ(ζ ′))

× Fεf(Φ(ζ))JΦ(ζ) JΦ(ζ ′)χ ◦ Φ(ζ)χ ◦ Φ(ζ ′)Θ
(

Φ(ζ)− Φ(ζ ′)
δ

)
dζ dζ ′ dx

where ζ 7→ JΦ(ζ) is the Jacobian of the diffeomorphism Φ. Setting

ζ = θ + ε
v

2 and ζ ′ = θ − εv2 ,

we have for t ∈ R,

Φ(θ + εtv) = Φ(θ) + εtdΦ(θ)v + ε2
∫ 1

0
d2Φ(θ + εtsv)[v, v](1− s)ds,

whence
1
2 (Φ(ζ) + Φ(ζ ′)) = Φ(θ)+ε2

2 B
+
ε (θ, v)[v, v],Φ(ζ)−Φ(ζ ′) = εdΦ(θ)v+ε2B−ε (θ, v)[v, v],

with
B±ε (θ, v) =

∫ 1

0
d2
(

Φ
(
θ + εs

v

2

)
± Φ

(
θ − εsv2

))
(1− s)ds.

Note that the functions B±ε are smooth, bounded and with bounded derivatives,
uniformly in ε, as soon as the variables θ and εv are in a compact. We obtain

Iε = (2π)−d
∫
R3d

aε

(
−x,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)
eix·(dΦ(θ)v+εB−ε (θ,v)[v,v])

×Fεf
(

Φ
(
θ − εv2

))
Fεf

(
Φ
(
θ + ε

v

2

))
JΦ

(
θ + ε

v

2

)
JΦ

(
θ − εv2

)
dθ dθ′ dx,
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where we have omitted the localization functions in θ+ εv2 and θ− εv2 , which makes
that the integral is compactly supported in θ and εv Moreover, we have ε|v| 6 δ on
the domain of integration. We shall crucially use this information later.
The change of variable x =t dΦ(θ)−1u gives

Iε = (2π)−d
∫
R3d

aε

(
− tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)

× eiu·v+iεu· tdΦ(θ)−1B−ε (θ,v)[v,v]Fεf
(

Φ
(
θ − εv2

))
Fεf

(
Φ
(
θ + ε

v

2

))
× JΦ

(
θ + ε

v

2

)
JΦ

(
θ − εv2

)
J−1

Φ (θ) dθ dθ′ du,

with the same property on the domain of integration (θ in a compact and ε|v| < δ).
Note that

aε

(
− tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)

= a

(
− tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v],

1
ε
B

(
Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)
ϕ

(
Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

))

= a

(
− tdΦ(θ)−1u,Φ(θ), B (Φ(θ)) θ

′

ε

)
+ εrε

(2)(θ, u, v)[v, v].

The matrix r(2)
ε is supported in a compact independent of ε in the variables (u, θ).

Besides, the matrix r(2)
ε is smooth, bounded, and with bounded derivatives, uniformly

in ε, as soon as the variable εv is in a compact, which is the case on the domain of
integration of the integral Iε. Using Taylor formula on the Jacobian terms, we write

aε

(
− tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)
JΦ

(
θ + ε

v

2

)
JΦ

(
θ − εv2

)

= a

(
− tdΦ(θ)−1u,Φ(θ), B (Φ(θ)) θ

′

ε

)
JΦ(θ)2 + εr(2)

ε (θ, u, v)[v, v] + εr(1)
ε (θ, u, v) · v,

where the vector r(1)
ε is supported in a compact independent of ε in the variables (u, θ)

and, as rε(2), is smooth, bounded, and with bounded derivatives, uniformly in ε on
the domain of integration of the integral Iε (where θ is in a compact and ε|v| 6 δ, δ
to be chosen later).
Denote by Uε the isometry of L2(Rd) :

f ε 7→ JΦ(·) d2Fεf (Φ ( · )) ,
then

(opε(aε)f , f) = (opε (ãε)Uεf , Uεf) + ε (RεUεf , Uεf) ,
with

ãε(u, θ) = a

(
− tdΦ(θ)−1u,Φ(θ), B (Φ(θ)) θ

′

ε

)
,
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and where Rε is the operator of kernel

(θ, θ′) 7→ (2πε)−dKε

(
θ + θ′

2 ,
θ − θ′

ε

)
,

with Kε = K(1)
ε +K(2)

ε ,

K(1)
ε (θ, v) =

∫
Rd

(
r(1)
ε (θ, u, v) · v + r(2)

ε (θ, u, v)[v, v]
)

eiu·v+iεu· tdΦ(θ)−1B−ε (θ,v)[v,v]du,

K(2)
ε (θ, v) =

∫
Rd
aε

(
tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)
eiu·v

× 1
ε

[
eiεu· tdΦ(θ)−1B−ε (θ,v)[v,v] − 1

]
du.

The proof concludes by Schur lemma and the next result.

Lemma C.1. — Let us fix δ small enough. Then, for any j ∈ {1, 2}, there exists
a constant Cj > 0 such that for all ε > 0,∫

Rd
sup
θ∈Rd
|K(j)

ε (θ, v)|dv 6 Cj.

Indeed, by this Lemma, we obtain that for all ε > 0

(2πε)−d
∫
Rd

sup
θ∈Rd

∣∣∣∣∣Kε

(
θ + θ′

2 ,
θ − θ′

ε

)∣∣∣∣∣ dθ′
= (2π)−d

∫
Rd

sup
θ∈Rd
|Kε (θ − εv, v) |dv 6 (2π)−d

∫
Rd

sup
θ∈Rd
|Kε (θ, v) |dv 6 C1 + C2,

and similarly

(2πε)−d
∫
Rd

sup
θ′∈Rd

∣∣∣∣∣Kε

(
θ + θ′

2 ,
θ − θ′

ε

)∣∣∣∣∣ dθ
= (2π)−d

∫
Rd

sup
θ′∈Rd

|Kε (θ′ + εv, v) |dv 6 (2π)−d
∫
Rd

sup
θ′∈Rd

|Kε (θ′, v) |dv 6 C1 + C2,

By Schur Lemma, these two inequalities yield the boundedness of Rε uniformly in ε
as an operator on L2(Rd).
Let us now prove Lemma C.1.
Proof. — Note first that the functions K(j)

ε are compactly supported in the vari-
able θ, uniformly in ε. We are going to prove that for any N > 0, there exists a
constant CN,j such that, for |v| > 1,

(1 + |v|2)N
∣∣∣K(j)

ε (θ, v)
∣∣∣ 6 CN,j.

These inequalities are enough to conclude as in the lemma. For proving these
inequalities, we crucially use that the domain of integration in u is compact and we
shall gain the decrease in v by using the oscillations inside the integral.
Let us first focus on K(1)

ε . Since θ is in a compact and B−ε is bounded, we have∣∣∣v + ε tdΦ(θ)−1B−ε (θ, v)[v, v]
∣∣∣ > |v| −Mδ|v|
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for some constant M . Therefore, if δM < 1/2, we have∣∣∣v + ε tdΦ(θ)−1B−ε (θ, v)[v, v]
∣∣∣ > 1

2 |v|,

and, for |v| > 1, integration by parts give

K(1)
ε (θ, v)

=
∫
Rd

∣∣∣v + ε tdΦ(θ)−1B−ε (θ, v)[v, v]
∣∣∣−2N (

∆N
u r

(1)
ε (θ, u, v) · v + ∆N

u r
(2)
ε [v, v]

)
× eiu·v+iεu· tdΦ(θ)−1B−ε (θ,v)[v,v]du.

Since r(1)
ε and r(2)

ε have smooth compactly supported derivatives in u, uniformly
bounded in ε, we obtain the existence of a constant CN,1 such that

|K(1)
ε (θ, v)| 6 |v|−2NCN,1.

Let us now study K(2)
ε that we turn into

K(2)
ε (θ, v)

= i
∫ 1

0

∫
Rd
utdΦ(θ)−1B−ε (θ, v)aε

(
tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)
× eiu·v+itεu· tdΦ(θ)−1B−ε (θ,v)[v,v]dudt.

Once written on this form, one can see that the arguments developed for K(1)
ε apply

again since the function

u 7→ utdΦ(θ)−1B−ε (θ, v)aε
(
tdΦ(θ)−1u,Φ(θ) + ε2

2 B
+
ε (θ, v)[v, v]

)
is compactly supported in the variable u, smooth and bounded with derivatives that
are bounded uniformly in ε. �
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