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Résumé. — Nous prouvons que la cohomologie Lp continue des groupes localement com-
pacts à base dénombrable d’ouverts est un invariant de quasi-isométrie. En guise d’applications,
nous obtenons des résultats partiels dans le sens d’une réponse positive à une question posée
par M. Gromov, suggérant un comportement classique de la cohomologie Lp continue des
groupes de Lie réels simples. Outre l’invariance par quasi-isométrie, les ingrédients utilisés sont
un argument de suite spectrale et des résultats d’annulation pour les espaces hyperboliques
dus à P. Pansu. Dans les cas de groupes de Lie les mieux adaptés, nous obtenons la moitié des
annulations attendues.

1. Introduction

Let G be a locally compact second countable group. Then G is metrizable and
countable at infinity, i.e. is a countable union of compact subsets [Bou07, Chapter IX,
§ 2.9, Corollary to Proposition 16, p. 21]. Therefore we can use Fubini’s theorem on
G and the group admits a left-invariant proper metric defining its topology [CdlH16,
Struble Theorem 2.B.4]. In addition, it is also equipped with a left invariant Haar
measure [Bou63, Chapter VII, § 1.2, Theorem 1], which enables us to define the
spaces Lp(G) [Bou65, Chapter IV, § 3.4, Definition 2].
In this paper we study the group Lp-cohomology of G for p > 1. By definition,

this is the continuous cohomology of G [BW00, Chapter IX], with coefficients in the
right-regular representation on Lp(G). It shall be denoted by H∗ct(G,Lp(G)). We also
consider the associated reduced cohomology, denoted by H∗ct(G,Lp(G)) (they are the
largest Hausdorff quotients of the previous spaces – see Definition 2.1).
Our first result is the quasi-isometry invariance of these cohomology spaces (see

Corollary 3.7 for details).

Theorem 1.1. — Let G1, G2 be locally compact second countable groups, equip-
ped with left-invariant proper metrics. Every quasi-isometry F : G1 → G2 induces
canonically an isomorphism of graded topological vector spaces

F ∗ : H∗ct

(
G2, L

p(G2)
)
→ H∗ct

(
G1, L

p(G1)
)
.

The same holds for the reduced cohomology.

For example the group Lp-cohomology of a group G as above is isomorphic to
the group Lp-cohomology of any of its cocompact lattices. When G is semisimple,
its group Lp-cohomology is isomorphic to the group Lp-cohomology of any of its
parabolic subgroups; this generalizes in fact to (the points of) any connected real
algebraic group.
Theorem 1.1 was already known for the finite K(π, 1)-groups by M. Gromov

(see [Gro91, p. 219] and Remark 3.3), and then proved for finitely generated groups
by G. Elek [Ele98]. In degree 1, the theorem is due to Cornulier–Tessera [CT11]. We
prove it (in any degree) by relating the group Lp-cohomology with the asymptotic
Lp-cohomology. The latter has been defined by Pansu, and it is known to be a
quasi-isometry invariant [Pan95]. The equivalence between the group Lp-cohomology
and the asymptotic Lp-cohomology was established by G. Elek [Ele98] for finitely
generated groups, and by R. Tessera [Tes09] in degree 1. We recently learnt from
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R. Sauer and M. Schrödl that they established the coarse invariance of vanishing
of `2-Betti numbers for unimodular locally compact second countable groups [SS18].
To prove this result they established a coarse equivalence version of Theorem 1.1,
by using the same comparison strategy – see [SS18, Theorem 12].
Our motivation for Theorem 1.1, which leads to the second main theorem of

this paper, is understanding the Lp-cohomology of semisimple groups of real rank
> 2 (for the precise conventions on Lie groups in the paper, we refer to the end
of this introduction). In fact, we have in mind the following question, asked by
M. Gromov [Gro91, p. 253].

Question 1.2. — Let G be a simple real Lie group. We assume that l = rkR(G)
> 2. Let k be an integer < l and p be a real number > 1. Do we have:

Hk
ct

(
G,Lp(G)

)
= {0}?

Theorem 1.1 allows one to reduce the study of the group Lp-cohomology of a Lie
group G as in the question, to the group Lp-cohomology of any of its parabolic
subgroups. Such a parabolic subgroup, say P , admits a Levi decomposition, which
is a semi-direct product decomposition P = M n AN where M is semi-simple
and AN is the (solvable) radical of P . The class for which we can fruitfully use
Theorem 1.1 consists of the simple Lie groups in which some maximal parabolic
subgroup has suitable geometric properties. By lack of better terminology, we will
call them admissible. Here is their definition:

Definition 1.3. — A simple real Lie group is called admissible if it admits a
parabolic subgroup whose radical is quasi-isometric to a real hyperbolic space.

Theorem 1.4. — Let G be an admissible simple real Lie group, and let d be
the dimension of the corresponding real hyperbolic space. Let also D denote the
dimension of the Riemannian symmetric space attached to G.

(1) We have: H0
ct (G,Lp(G)) = {0}, and also: Hk

ct (G,Lp(G)) = {0} for k > D.
(2) Suppose now that k ∈ {1, . . . , D − 1}. Then we have:

Hk
ct

(
G,Lp(G)

)
= {0} for k 6 d− 1

p
and for k > d− 1

p
+D − d+ 2.

Our results also deal with reduced cohomology – see Theorem 6.1 for details.
The prototype of a simple Lie group, namely SLn(R), is admissible, and in this

case we obtain (see Example 6.5 for details):

Corollary 1.5. — For G = SLn(R), one has Hk
ct(G,Lp(G)) = {0} for

k 6 bn2

4 c ·
1
p
and for k > bn2

4 c ·
1
p

+ b (n+1)2

4 c.

We also note that the same circle of ideas can be used to prove the following
result, which is a particular case of a general result of Pansu [Pan07] and Cornulier–
Tessera [CT11], saying that H1

ct(G,Lp(G)) = {0} for every p > 1 and every connected
Lie group G, unless G is Gromov hyperbolic or amenable unimodular.

Corollary 1.6. — For every admissible simple Lie group G such that rkR(G)
> 2 and every p > 1, we have: H1

ct(G,Lp(G)) = {0}.
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This result also follows from the fixed point property for continuous affine isometric
actions of semi-simple groups of real rank > 2 on Lp-spaces, which is established
in [BFGM07].
Let us finish this introduction by describing roughly our method and by discussing

its efficiency and its validity.
The main idea is to combine tools from homological algebra, namely the Hochschild–

Serre spectral sequence [BW00, Chapter IX, § 4], together with geometric results such
as Pansu’s description of the Lp-cohomology of real hyperbolic spaces [Pan08, Pan99].
We also use resolutions already considered in [Bla79], whose measurable nature makes
them flexible enough to describe nicely intermediate spaces involved in the spectral
sequences.
The general outcome is a new description of the Lp-cohomology of G – see Theo-

rem 6.1 and Remark 6.4.
In order to discuss the efficiency of the method, let us reformulate Theorem 1.4 as

follows: for each admissible group G and each exponent p > 1, we exhibit an interval
of degrees, whose explicit length does not depend on p and outside of which vanishing
of Lp-cohomology is guaranteed (i.e., this interval is a strip of potential non-vanishing
of Lp-cohomology). First, by Lie-theoretic considerations, we can provide the full
list of admissible simple Lie groups. It contains several infinite sequences of groups,
say {Gl}l>2 where l = rkR(G). In the best cases, the dimension Dl of the symmetric
space of Gl and the dimension dl of the radical of the suitable parabolic subgroup
are quadratic polynomials in l, and we have

lim
l→∞

dl
Dl

= 1
2 .

Since the width of the strip of potential non-vanishing is Dl − dl + 2, this makes us
say that we obtain in the best cases of admissible groups nearly half of the relevant
vanishings.
At last, our results can also be compared with Borel’s result [Bor85] about the

L2-cohomology of connected semi-simple Lie groups G, which makes heavy use of
representation theory while we use a more geometric approach. It asserts that:

• Hk
ct

(
G,L2(G)

)
= 0 unless k = D

2 ,
• Hk

ct

(
G,L2(G)

)
6= 0 at least for k ∈

(
D
2 −

l0
2 ,

D
2 + l0

2

]
,

where D is the dimension of the Riemannian symmetric space G/K, and where l0
is the difference between the complex rank of G and the complex rank of K. In the
case G = SLn(R), one has D = n2+n−2

2 and l0 = bn−1
2 c. See also [BFS14] for related

results about vanishing of the reduced L2-cohomology.

Conventions on Lie groups

Let us collect here our conventions on Lie groups. In what follows, all Lie groups
are assumed to be connected. In fact, we assume that any semisimple group G we
consider here is obtained as the identity component of the real points of an algebraic
semisimple R-group G, assumed to connected as a linear algebraic group. In other
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words, we have: G = G(R)◦. Recall that if H is any connected linear algebraic
group defined over R, then the group H(R)◦ is a finite index normal subgroup in
H(R) [BT65, 14.1]. Moreover if S is a maximal R-split torus in G as before, that
is a subgroup isomorphic over R to some power Gd

m of the multiplicative group
Gm, then we have: G(R) = G · S(R) [BT65, Theorem 14.4]. The classical notation
for the identity component S(R)◦ is A; the latter group is a maximal subgroup
diagonalizable over R in G and, in view of its construction, we will still call it a
maximal R-split torus. It is checked in [BT65, 14.7] that, in the case of semisimple
groups as in our convention, the root system and the Weyl group arising from
considerations from algebraic groups, e.g. as in [Bor91, § 21], coincide with the root
system and the Weyl group as defined by É. Cartan in terms of symmetric spaces –
see also [Bor91, § 24.C].

Remarks and Questions

(1) The definition of an admissible simple Lie group (Definition 1.3) generalizes
to semisimple Lie groups. It is straightforward that a semisimple real Lie group is
admissible if and only if one of its simple factors is. Theorem 1.4 is still valid for
admissible semisimple Lie groups (the proof is the same). However we think that
some Lp-version of the Künneth formula may be true for products of groups and
could give better results. More precisely, suppose that G1, G2 are locally compact
second countable groups, such that for some p ∈ (1,+∞) and n1, n2 ∈ N, one
has Hk

ct(Gi, L
p(Gi)) = 0 for every k 6 ni. Is Hk

ct(G1 × G2, L
p(G1 × G2)) = 0 for

every k 6 n1 + n2 + 1 ? We remark that these problems are discussed in [Gro91,
p. 252].
(2) Even if a simple real Lie group is non-admissible, the solvable radical of any

maximal proper parabolic subgroup decomposes as R nN , where N is a nilpotent
Lie group on which R acts by contracting diffeomorphisms. Such a group belongs
to the class of the so-called Heintze groups, i.e. the (connected) Lie groups which
admit a left-invariant Riemannian metric of negative curvature. The Lp-cohomology
of negatively curved manifolds has been investigated by P. Pansu [Pan08, Pan99]
(see also [Bou16]). However, apart from the real hyperbolic spaces, only a partial
description is known. To keep the exposition of the paper as simple as possible, we
have chosen to restrict ourself to the class of admissible simple Lie groups.

Organization of the paper

Section 2 is a brief presentation of some standard topics in cohomology of groups.
Section 3 discusses group Lp-cohomology: we first consider the discrete group case and
recall some classical connections with the simplicial Lp-cohomology; in the general
case, we state the existence of an isomorphism between the group Lp-cohomology
and the asymptotic Lp-cohomology (Theorem 3.6). This result, whose proof is given
in Section 4, implies the first quasi-isometric invariance theorem (Theorem 1.1 of
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the introduction). Section 5 contains some preliminary results on the group Lp-
cohomology of semi-direct products via the Hochschild–Serre spectral sequence.
Section 6 focuses on applications of the previous sections to the group Lp-cohomology
of admissible simple real Lie groups (an improved version of Theorem 1.4 of the
introduction). Corollary 1.5 is proved in this section. Section 7 provides the list of
admissible groups and Section 8 gives tables in which the numerical efficiency of the
method can be discussed. Finally, in Section 9 we prove Corollary 1.6 on vanishing
in degree 1.
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2. Continuous cohomology

We review some of the basic notions of the continuous cohomology of topological
groups. We refer to [BW00, Chapter IX] or to [Gui80], and to the references they
contain, for more details.
For topological spaces X and Y , we denote by C(X, Y ) the set of continuous

mappings from X to Y , equipped with the compact open topology.
Let G be a locally compact second countable group, and let (π, V ) be a topological

G-module i.e. a Hausdorff locally convex vector space over R on which G acts via
a continuous representation π. In this case, we denote by V G ⊂ V the subspace of
π(G)-invariant vectors. A map f : A→ B between topological G-modules is called
a G-morphism if it is a continuous G-equivariant linear map.
For k ∈ N, let Ck(G, V ) := C(Gk+1, V ) be the set of continuous maps from Gk+1

to V equipped with the compact open topology. Then Ck(G, V ) is a topological
G-module by means of the following action: for g, x0, . . . , xk ∈ G,

(g · f)(x0, . . . , xk) = π(g)
(
f
(
g−1x0, . . . , g

−1xk
))
.

Consider the following complex

C0(G, V )G d0→ C1(G, V )G d1→ C2(G, V )G d2→ . . . ,

where, for k ∈ N and x0, . . . , xk+1 ∈ G,

(2.1) (dkf)(x0, . . . , xk+1) =
k+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xk+1).

We first define the cohomologies we are interested in thanks to the above standard
homogeneous resolution.
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Definition 2.1. —
(1) The continuous cohomology of G with coefficients in (π, V ) is the cohomology

of this complex. It is the collection of groups

H∗ct(G, V ) =
{

Hk
ct(G, V )

}
k∈N

,where H0
ct(G, V ) = Ker d0 ' V G

and Hk
ct(G, V ) = Ker dk

Im dk−1
for k > 1.

(2) The reduced continuous cohomology is the collection

H∗ct(G, V ) =
{

Hk
ct(G, V )

}
k∈N

, where H0
ct(G, V ) = Ker d0 ' V G,

and where Hk
ct(G, V ) = Ker dk

Im dk−1

for k > 1(here Im dk−1 denotes the closure of Im dk−1 in Ck(G, V )) .
(3) When G is a discrete group, we omit the subscript “ct” and simply write

Hk(G, V ) and Hk(G, V ).

We now recall some notions in relative homological algebra, see [Gui80, Chapter I,
§ 2 and Chapter III, § 1] and [BW00, Chapter IX, § 1.5].

• If A and B are topological G-modules as above, we say that a G-morphism
f : A → B is strong if its kernel and its image are closed direct topological
summands in A and B respectively, and if f is strict in the sense that it
induces a topological isomorphism between A/Ker(f) and Im(f); in [BW00,
Chapter IX, § 1.5, p. 172], such a map f is also called an s-morphism.
• An exact sequence consisting of G-morphisms between topological G-modules
is called strong if all the involved maps are strong ; in [BW00, Chapter IX,
§ 1.5, p. 172], such an exact sequence is also called an s-exact sequence.
• A topological G-module U is called relatively injective if for every strong
injection 0 → A → B between topological G-modules, every G-morphism
A → U extends to a G-morphism B → U ; in [BW00, Chapter IX, § 1.5,
p. 172], such a module is also called s-injective.
• A complex of topological G-modules and G-morphisms

0→ V
d−1→ A0 d0→ A1 d1→ A2 d2→ . . .

is a strong G-resolution of V if for every k ∈ N, there exists a continuous
linear map hk : Ak → Ak−1 (not requested to be a G-morphism) such that
h0 ◦ d−1 = id and for every k ∈ N

dk−1 ◦ hk + hk+1 ◦ dk = id .
• A relatively injective strong G-resolution of V is a strong G-resolution

0→ V
d−1→ A0 d0→ A1 d1→ A2 d2→ . . .

in which the Ak’s are relatively injective (in Borel–Wallach’s terminology, it
is an s-exact sequence in which the topological G-modules are s-injective).

Let A∗ = (A0 d0→ A1 d1→ A2 d2→ . . . ) and B∗ = (B0 d0→ B1 d1→ B2 d2→ . . . ) be
complexes of Hausdorff locally convex vector spaces.
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• They are homotopy equivalent if there exist continuous homomorphisms ϕ∗ :
A∗ → B∗, ψ∗ : B∗ → A∗, α∗ : A∗ → A∗−1, β∗ : B∗ → B∗−1, such that ϕ∗ and
ψ∗ commute with d∗, and such that for every k ∈ N:

dk−1 ◦ αk + αk+1 ◦ dk = id−ψk ◦ ϕk
dk−1 ◦ βk + βk+1 ◦ dk = id−ϕk ◦ ψk,

with the convention A−1 = B−1 = 0 and d−1 = α0 = β0 = 0.

Example 2.2. — The complex

0→ V
d−1→ C0(G, V ) d0→ C1(G, V ) d1→ C2(G, V ) d2→ . . .

is a relatively injective strong G-resolution of V . First it is a strong resolution: one
defines the hk’s by (hkf)(x0, . . . , xn−1) = f(1, x0, . . . , xn−1). Secondly, Ck(G, V ) is
isomorphic to C0(G,Ck−1(G, V )); and for every topological G-module (π,W ) the
module C0(G,W ) is relatively injective. Indeed given a G-injection 0 → A

i→ B
and a continuous linear map h : B → A such that h ◦ i = id, every G-morphism
f : A→ C0(G,W ) extends to f : B → C0(G,W ) by letting for b ∈ B and x ∈ G:

f(b)(x) = π(x)
(
f
(
h(x−1b)

)
(1)
)
.

Example 2.3. — Suppose G is a discrete group that acts properly discontinuously
and freely on a contractible locally finite simplicial complex X by simplicial auto-
morphisms. Let X(k) be the set of k-simplices of X and let Ck(X, V ) be the set of
linear maps from the vector space RX(k+1) to V . Let δk : Ck(X, V )→ Ck+1(X, V )
be defined as follows; for f ∈ Ck(X, V ), and σ ∈ X(k+1),

(δkf)(σ) = f(∂σ).
The Ck(X, V )’s are G-modules for the following action: for g ∈ G, f ∈ Ck(X, V )
and σ ∈ X(k),

(g · f)(σ) = π(g)
(
f(g−1(σ)

)
.

The δk’s are G-morphisms. The complex

0→ V
δ−1→ C0(X, V ) δ0→ C1(X, V ) δ1→ C2(X, V ) δ2→ . . .

is a relatively injective strong G-resolution of V . Indeed one defines the hk’s by
induction on k by using a retraction of X to a point. To show that Ck(X, V ) is
relatively injective for every k, one considers a fundamental domain D in X, the
associated set

X
(k)
D :=

{
σ ∈ X(k)

∣∣∣ the first vertex of σ belongs to D
}

and the vector space Ck
D(X, V ) of linear maps from RX(k+1)

D to V . Then one can
show that Ck(X, V ) ' C0(G,Ck

D(X, V )). The latter is relatively injective (see the
discussion in Example 2.2 above).

We now want to see that relatively injective strong G-resolutions compute the
continuous cohomology (and, in fact, we will quote a better statement needed
later). More precisely, if V and W are topological G-modules, if we are given a
relatively injective strong G-resolution 0 → V → A∗ and a complex of G-modules
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0 → W → B∗, then (by dévissage and induction) any G-morphism V → W can
be extended to a morphism of G-complexes A∗ → B∗ [Gui80, Chapter III, § 1,
Proposition 1.1 p. 177].
Proposition 2.4. — Let V be a topological G-module. Assume we are given

two relatively injective strong G-resolutions 0→ V → A∗ and 0→ V → B∗ of V.
(i) The complexes of invariants

K∗A :
(
A0
)G
→
(
A1
)G
→
(
A2
)G
→ . . .

and
K∗B :

(
B0
)G
→
(
B1
)G
→
(
B2
)G
→ . . .

are homotopically equivalent.
(ii) If we start from the identity map idV in order to obtain an extension

u : A∗ → B∗, hence a map K∗A → K∗B, then the resulting morphism
H∗(K∗A) → H∗(K∗B) is a topological isomorphism which does not depend
on the choice of u.

This is [Gui80, Chapter III, § 1, Corollary 1.1 p. 177] and the same holds for reduced
cohomology. Since homotopy equivalent complexes have the same cohomology, one
obtains in particular:
Corollary 2.5. — Suppose 0 → V → A∗ is a relatively injective strong G-

resolution of V . Then, the cohomology and the reduced cohomology of the complex
(A∗)G are topologically isomorphic to H∗ct(G, V ) and H∗ct(G, V ), respectively.
Proof. — From Example 2.2 and Proposition 2.4 above, the complexes (A∗)G

and C∗(G, V )G are homotopy equivalent. Therefore, by standard arguments, their
cohomological spaces (equipped with the quotient topology) are topologically iso-
morphic. By definition, the cohomology of C∗(G, V )G is H∗ct(G, V ). Thus the coho-
mology H∗((A∗)G) of (A∗)G is topologically isomorphic to H∗ct(G, V ). The reduced
cohomological spaces of (A∗)G and C∗(G, V )G are respectively topologically isomor-
phic to Hk((A∗)G)/{0} and Hk

ct(G, V )/{0}, where {0} denotes the closure of the
null subspace. Since Hk((A∗)G) and Hk

ct(G, V ) are topologically isomorphic, so are
Hk((A∗)G)/{0} and Hk

ct(G, V )/{0}. �

3. Continuous group Lp-cohomology

The group Lp-cohomology is defined in this section (Definition 3.1). When the
group is a finite K(π, 1), we relate its group Lp-cohomology with the simplicial
Lp-cohomology (Proposition 3.2). For locally compact second countable topological
groups, the group Lp-cohomology is isomorphic to the asymptotic Lp-cohomology
(Theorem 3.6). This implies Theorem 1.1 of the introduction.
Definition 3.1. — Let G be a locally compact second countable topological

group, and H be a left-invariant Haar measure. Let p ∈ (1,+∞). The group Lp-
cohomology of G is the continuous cohomology of G, as in Definition 2.1, with
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coefficients in the right-regular representation of G on Lp(G,H), i.e. the representa-
tion defined by (

π(g)u
)
(x) = u(xg) for u ∈ Lp(G,H) and g, x ∈ G.

It will be denoted by H∗ct(G,Lp(G)). The reduced group Lp-cohomology of G is
defined similarly and is denoted by H∗ct(G,Lp(G)). When G is discrete we omit the
subscript “ct” and simply write H∗(G,Lp(G)) and H∗(G,Lp(G)).
Observe that the right regular representation is isometric if and only if H is

bi-invariant.

The discrete group case

In this paragraph we relate the group Lp-cohomology of certain discrete groups
with the simplicial Lp-cohomology of some simplicial complexes (Proposition 3.2).
This is standard material. We present it for completeness and also because its proof
can be seen as a model for the general case.
Let X be a simplicial complex and let X(k) be the set of its k-simplices. We will

always assume that X has bounded geometry i.e. that there is an N ∈ N such that
each simplex intersects at most N simplices of arbitrary dimension (in other words,
X is finite-dimensional and uniformly locally finite).
Let Ck,p(X) be the Banach space of linear maps u : RX(k) → R such that

‖u‖p :=
∑

σ ∈X(k)

|u(σ)|p <∞.

The simplicial Lp-cohomology of X is the cohomology of the complex

C0,p(X) δ0→ C1, p(X) δ1→ C2, p(X) δ2→ . . . ,

where the δk’s are defined as in Example 2.3. The reduced simplicial Lp-cohomology
is defined similarly. They are denoted by LpH∗(X) and LpH∗(X) respectively.
Proposition 3.2. — Suppose that G acts by simplicial automorphisms, properly

discontinuously, freely and cocompactly, on a locally finite contractible simplicial
complex X. Then the complexes C∗(G,Lp(G))G and C∗, p(X) are homotopy equiva-
lent. In particular there are topological isomorphisms H∗(G,Lp(G)) ' LpH∗(X) and
H∗(G,Lp(G)) ' LpH∗(X).
Proof. — According to Corollary 2.5 and Example 2.3, C∗(G,Lp(G))G is homotopy

equivalent to the complex

C0
(
X,Lp(G)

)G δ0→ C1
(
X,Lp(G)

)G δ1→ C2
(
X,Lp(G)

)G δ2→ . . . .

In particular their cohomologies (reduced or not) are topologically isomorphic. To
prove the proposition it is enough to show the latter complex is topologically iso-
morphic to the complex C∗, p(X).
To this end, one considers the map Φ : Ck, p(X) → Ck(X,Lp(G)) defined by

Φ(u) = f with f(σ)(g) := u(gσ). With the norms expressions, one sees that it
is a topological embedding. Its image is Ck(X,Lp(G))G. Indeed Φ(u) is clearly
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G-invariant. Moreover, for f ∈ Ck(X,Lp(G))G, one defines u : X(k) → R by u(σ)
= f(σ)(1). Since f is invariant, one has u(gσ) = f(σ)(g). Because G acts properly
discontinuously and cocompactly on X, by using the partition of X(k) into orbits,
one gets that u ∈ Ck, p(X). �

Remark 3.3. — Equip every simplicial complex X with the length metric ob-
tained by identifying every simplex with the standard Euclidean one. A simplicial
complex is called uniformly contractible if it is contractible and if there exists a
function ρ : (0,+∞)→ (0,+∞) such that every ball B(x, r) ⊂ X can be contracted
to a point in B(x, ρ(r)). Among bounded geometry uniformly contractible simpli-
cial complexes, the simplicial Lp-cohomology (reduced or not) is invariant under
quasi-isometry. Indeed if X and Y are quasi-isometric bounded geometry uniformly
contractible simplicial complexes, then the complexes C∗, p(X) and C∗, p(Y ) are ho-
motopy equivalent (see [Gro91, p. 219], and [BP03] for a detailed proof). As a conse-
quence, the above proposition implies that the group Lp-cohomology of fundamental
groups of finite aspherical simplicial complexes is invariant under quasi-isometry. We
will give below another proof of this fact that applies in a much greater generality.

The general case

Suppose that G is a locally compact second countable topological group. We will
relate the group Lp-cohomology and the asymptotic Lp-cohomology of G. The latter
has been considered by Pansu in [Pan95], see also [Gen14]. It is a quasi-isometric
invariant (see Theorem 3.5 below).
Following [Pan95], we define the asymptotic Lp-cohomology in the context of metric

spaces. Let (X, d) be a metric space equipped with a Borel measure µ. Suppose
it satisfies the following “bounded geometry” condition. There exists increasing
functions v, V : (0,+∞)→ (0,+∞) such for every ball B(x, r) ⊂ X one has

v(r) 6 µ(B(x, r)) 6 V (r).

For s > 0 and k ∈ N, let ∆(k)
s = {(x0, x1, . . . , xk) ∈ Xk+1 | d(xi, xj) 6 s}. Let

ASk,p(X) be the set of the (classes of) functions u : Xk+1 → R such that for every
s > 0 one has

Ns(u)p :=
∫

∆(k)
s

|u(x0, . . . , xk)|pdµ(x0) . . . dµ(xk) <∞.

We equip ASk, p(X) with the topology induced by the set of the semi-norms
Ns (s > 0).

Definition 3.4. — The asymptotic Lp-cohomology of X is the cohomology of
the complex AS0, p(X) d0→ AS1, p(X) d1→ AS2, p(X) d2→ . . . , where the dk’s are defined
as in (2.1). The reduced asymptotic Lp-cohomology is defined similarly. They are
denoted by LpH∗AS(X) and LpH∗AS(X) respectively.

Asymptotic Lp-cohomology (reduced or not) is invariant under quasi-isometry. In
fact one has
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Theorem 3.5 ([Pan95]). — Let X and Y be metric spaces. We assume that each
of them admits a Borel measure with respect to which it is of bounded geometry (as
defined above). Let F : X → Y be a quasi-isometry. Then F induces a homotopy
equivalence between the complexes AS∗, p(X) and AS∗, p(Y ). Moreover the associ-
ated isomorphism of graded topological vector spaces F ∗ : LpH∗AS(Y )→ LpH∗AS(X)
depends only on the bounded perturbation class of F .

See also [Gen14] for a more detailed proof. In the next Section 4 we will prove the
following Theorem 3.6.

Theorem 3.6. — Suppose G is a locally compact second countable topological
group, equipped with a left-invariant proper metric. Then the complexes

C∗
(
G,Lp(G)

)G
and AS∗, p(G)

are homotopy equivalent. In particular there exist topological isomorphisms:

H∗ct

(
G,Lp(G)

)
' LpH∗AS(G) and H∗ct

(
G,Lp(G)

)
' LpH∗AS(G).

In combination with Theorem 3.5 one obtains the following result, which implies
Theorem 1.1 of the introduction:

Corollary 3.7. — Let G1 and G2 be locally compact second countable topo-
logical groups, equipped with left-invariant proper metrics and let F : G1 → G2 be
a quasi-isometry. Then F induces a homotopy equivalence between the complexes

C∗
(
G1, L

p(G1)
)G1 and C∗

(
G2, L

p(G2)
)G2

.

Moreover the associated isomorphism of graded topological vector spaces

F ∗ : H∗ct

(
G2, L

p(G2)
)
→ H∗ct

(
G1, L

p(G1)
)

depends only the bounded perturbation class of F .

Remark 3.8. — Suppose X is a bounded geometry simplicial complex. In gen-
eral its asymptotic and simplicial Lp-cohomologies are different (for example the
asymptotic Lp-cohomology of a finite simplicial complex is trivial since it is quasi-
isometric to a point). Pansu [Pan95] asked whether the asymptotic and the simpli-
cial Lp-cohomologies coincide for uniformly contractile bounded geometry simplicial
complexes. He proved that it is indeed the case for those which are in addition
non-positively curved; for these spaces the complexes C∗, p(X) and AS∗, p(X) are
homotopy equivalent.

4. Proof of quasi-isometric invariance

As explained in the previous section the quasi-isometric invariance of the group
Lp-cohomology is a consequence of Theorem 3.6. We prove this theorem in this
section. The proof is inspired by the one of Proposition 3.2. It will use a relatively
injective strong G-resolution (Lemma 4.1) that appears in Blanc [Bla79]. As already
mentioned in the introduction, Theorem 3.6 was proved by G. Elek [Ele98] for finitely

ANNALES HENRI LEBESGUE



Group Lp-cohomology: quasi-isometric invariance and vanishings 1303

generated groups. In degree 1, it was established by R. Tessera [Tes09]. R. Sauer and
M. Schrödl obtained a result very similar to Theorem 3.6 by using the same strategy
– see [SS18, Theorem 10]. They applied it to show that vanishing of `2-Betti numbers
is a coarse equivalence invariant for unimodular locally compact second countable
groups.
Suppose that the topological vector space V is Fréchet (i.e. metrizable and com-

plete). Let X be a locally compact second countable topological space endowed with
a Radon measure µ, i.e. a Borel measure which is finite on compact subsets. Let
p ∈ (1,+∞). We denote by Lploc(X, V ) the set of (classes of) measurable functions
f : X → V such that for every compact K ⊂ X and every semi-norm N on V
defining its topology, one has

‖f‖K,N :=
(∫

K
N
(
f(x)

)p
dµ(x)

) 1
p

<∞.

Suppose that G acts on X continuously by preserving µ. Equipped with the set of
semi-norms ‖ ·‖K,N , the vector space Lploc(X, V ) is a Fréchet G-module for the action
(g · f)(x) = π(g)(f(g−1x)), see [Bla79]. Let H be a left-invariant Haar measure on G;
it is a Radon measure. Denote by Gk the cartesian product of k copies of G equipped
with the product measure.

Lemma 4.1 ([Bla79]). — The complex

0→ V
d−1→ Lploc(G, V ) d0→ Lploc(G2, V ) d1→ Lploc(G3, V ) d2→ . . . ,

with the dk’s defined as in (2.1), is a relatively injective strong G-resolution of V .

In the special case V = Lp(G), one can express the spaces Lploc(X, V )G as follows.

Lemma 4.2. — Let X,µ,G,H as above. Let E be the topological vector space
that consists of the (classes of the) Borel functions u : X → R such that for every
compact subset K ⊂ X one has

‖u‖pK :=
∫
G

∫
K
|u(gx)|pdµ(x)dH(g) <∞.

Then E is topologically isomorphic to the Fréchet space Lploc (X,Lp(G))G.

Proof. — Let u ∈ E. Since u is Borel and since the map
ϕ : (g, x) ∈ G×X 7→ gx ∈ X

is continuous, the function u ◦ ϕ is Borel too, and its class depends only on the
class of u. Moreover u ◦ ϕ = 0 almost everywhere if and only if u = 0 almost
everywhere. Indeed, given A ⊂ X, one has ϕ−1(A) = ∪g∈G({g} × g−1A), and thus
(H× µ)

(
ϕ−1(A)

)
= 0 if and only if µ(A) = 0.

Define Φ : E → Lploc

(
X,Lp(G)

)
by Φ(u) = f with

f(x)(g) := u(gx) = (u ◦ ϕ)(g, x) for every x ∈ X, g ∈ G.
An element f ∈ Lploc(X,Lp(G)) is null if and only if f(x)(g) = 0 for almost all
(g, x) ∈ G×X. Therefore the above discussion in combination with the semi-norm
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expressions and the Fubini–Tonelli theorem imply that Φ is a topological embedding.
It remains to prove that its image is the subspace Lploc(X,Lp(G))G.
Let u ∈ E, we show that Φ(u) is G-invariant. Write f = Φ(u) for simplicity. One

has for h ∈ G and for almost all x ∈ X and g ∈ G:
(h · f)(x)(g) = f(h−1x)(gh) = u(gx) = f(x)(g).

Thus f is G-invariant.
Let f ∈ Lploc(X,Lp(G))G, we are looking for u ∈ E such that Φ(u) = f . One

would like to define u by u(x) = f(x)(1); but this has no meaning in general since
f(x) ∈ Lp(G). We will give two constructions for the function u.
First construction. — The first construction uses Lebesgue differentiation theo-

rem. We do not know whether this theorem is valid for all locally compact second
countable topological groups. However among them, it applies to Lie groups [Hei01,
Theorem 1.8], and to totally discontinuous groups [Fed69, Theorems 2.8.19 and 2.9.8].
It states that for every ϕ ∈ L1

loc(G), and almost all g ∈ G, one has

lim
r→0

1
H (B(g, r))

∫
B(g, r)

ϕ(h)dH(h) = ϕ(g).

Let again f ∈ Lploc(X,Lp(G))G be as above. Define a Borel function u : X → R by

u(x) = lim sup
n→∞

1
H
(
B
(
1, 1

n

)) ∫
B(1, 1

n)
f(x)(h−1)dH(h).

Let g ∈ G. Since f is G-invariant and H is left-invariant, one has for almost every
x ∈ X ∫

B(1, 1
n)
f(gx)(h−1)dH(h) =

∫
B(1, 1

n)
f(x)(h−1g)dH(h)

=
∫
B(g−1, 1

n)
f(x)(h−1)dH(h).

Therefore Lebesgue differentiation theorem implies that u(gx) = f(x)(g) for almost
all g ∈ G and x ∈ X.
Second construction. — Our second construction holds for every locally compact

second countable topological group. It will use the following lemma which is a
particular case of [Zim84, Appendices, Proposition B.5 p. 198].
Lemma 4.3. — Let Z be a locally compact second countable topological space

on which G acts continuously by preserving a Borel measure η. Suppose f : Z → R
is a Borel function such that for all g ∈ G one has f(gz) = f(z) for almost all z ∈ Z.
Then there exists a G-invariant conull Borel subset Z0 ⊂ Z and a Borel G-invariant
map f̃ : Z0 → R such that f̃ = f almost everywhere.

Let again f ∈ Lploc(X,Lp(G))G be as above. By the exponential law [Bla79,
Lemma 1.4], one has

Lploc

(
X,Lploc(G)

)
' Lploc(X ×G).

By abuse of notation we will still denote by f : X ×G→ R a Borel function which
represents our f ∈ Lploc(X,Lp(G))G. According to the above Lemma 4.3, applied
with (Z, η) = (X ×G, µ×H) and with the action g · (x, h) = (gx, hg−1), there exists
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a G-invariant conull Borel subset Z0 and a Borel G-invariant map f̃ : Z0 → R such
that f̃ = f almost everywhere. Since Z0 is conull and G-invariant, Fubini theorem
implies that for every g ∈ G, the subset {x ∈ X | (x, g) ∈ Z0} is conull and Borel.
Let X0 = {x ∈ X | (x, 1) ∈ Z0}, and let u : X → R be defined by u(x) = f̃(x, 1)
when x ∈ X0, and by 0 otherwise. By construction u is Borel.
We claim that u(gx) = f(x, g) for almost all (x, g) ∈ X × G. Indeed, since X0

is conull, the subset {(x, g) ∈ X × G | gx ∈ X0} is conull too (see the argument
in the first part of the proof). Therefore for almost all (x, g) ∈ X × G, one has
(gx, 1) ∈ Z0. Since f̃ is G-invariant on Z0 and since f̃ = f a.e, one obtains for almost
all (x, g) ∈ X ×G:

u(gx) = f̃(gx, 1) = f̃(x, g) = f(x, g). �

According to Proposition 2.4 and Lemma 4.1, to finish the proof of Theorem 3.6,
it is enough to establish:

Lemma 4.4. — The complexes Lploc (G∗+1, Lp(G))G and AS∗, p(G) are topologi-
cally isomorphic.

Proof. — Denote by Hn the product measure on Gn. According to Lemma 4.2, it is
enough to show that the following two sets of semi-norms (on the space of measurable
functions u : Gk+1 → R) define the same topology. The first set of semi-norms is
the one considered in Lemma 4.2 in the case X = (Gk+1,Hk+1). These are the NK ’s,
with K ⊂ Gk+1 compact, defined by

NK(u)p =
∫
G

∫
K

∣∣∣u(gx0, . . . , gxk)
∣∣∣pdHk+2(g, x0, . . . , xk).

The second one is the set of semi-norms that appears in the definition of the asymp-
totic Lp-cohomology of (G, d,H). These are the Ns’s, with s > 0, defined by

Ns(u)p =
∫

∆s

∣∣∣u(y0, . . . , yk)
∣∣∣pdHk+1(y0, . . . , yk).

For a compact subset U ⊂ G, set

KU
s := {(x0, x1, . . . , xk) ∈ ∆s | x0 ∈ U}.

Since the metric on G is proper, KU
s is compact. Moreover every compact subset of

Gk+1 is contained in such a subset. Let ∆ be the modular function on G. Since the
metric and the measure are left-invariant, one has

NKU
s

(u)p =

=
∫
g∈G

∫
x∈U

∫
(1,y1,...,yk)∈∆s

∣∣∣u(gx, gxy1, . . . , gxyk)
∣∣∣pdHk+2(g, x, y1, . . . , yk)

=
∫
g∈G

∫
x∈U

∫
(1,y1, ..., yk)∈∆s

∆(x)
∣∣∣u(g, gy1, . . . , gyk)

∣∣∣pdHk+2(g, x, y1, . . . , yk)

= C(U) · Ns(u)p,

where C(U) :=
∫
U ∆(x)dH(x). Thus the two sets of semi-norms define the same

topology. �
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5. Semi-direct products

We partially relate the Lp-cohomology of semi-direct products P = Q n R with
the Lp-cohomology of the normal subgroups R (see Corollaries 5.4 and 5.5). The
next section will contain examples of application.

Some generalities

Let V be a Fréchet vector space, and let X be a locally compact second countable
topological space endowed with a Radon measure µ. Let p ∈ (1,+∞). We denote by
Lp(X, V ) the set of (classes of) measurable functions f : X → V such that for every
semi-norm N on V defining the topology of V , one has

‖f‖pN :=
∫
X
N
(
f(x)

)p
dµ(x) <∞.

Equipped with the set of semi-norms ‖ · ‖N , the vector space Lp(X, V ) is a Fréchet
space.
Proposition 5.1. — Suppose X, Y are topological spaces as above endowed

with Radon measures. Then
Lp
(
X,Lploc(Y, V )

)
is topologically isomorphic to Lploc

(
Y, Lp(X, V )

)
.

Proof. — Let f : X × Y → V be a measurable function. For a compact subset
K ⊂ Y and a continuous semi-normN on V , denote byNK,N and ‖·‖N the associated
semi-norms on Lploc(Y, V ) and Lp(X, V ) respectively. One has by Fubini–Tonelli

‖f‖pNK,N
=
∫
X

∫
K
N
(
f(x, y)

)p
dµX(x)dµY (y) = ‖f‖pK, ‖ · ‖N

.

Moreover, by the exponential law [Bla79, Lemma 1.4], one has
Lploc

(
X,Lploc(Y, V )

)
' Lploc(X × Y, V ) ' Lploc

(
Y, Lploc(X, V )

)
.

Therefore the proposition follows. �

Hochschild-Serre spectral sequence

Let R be a closed normal subgroup of a locally compact second countable group
P and let (π, V ) be a topological P -module. The P -action on C∗(R, V ), defined by

(g · f)(x0, . . . , xk) = π(g)
(
f
(
g−1x0g, . . . , g

−1xkg
))

for every g ∈ P , f ∈ Ck(R, V ) and x0, . . . , xk ∈ R, induces a P/R-action on the
topological vector spaces H∗ct(R, V ) [Gui80, p. 50].
The Hochschild–Serre spectral sequence relates the continuous cohomology

H∗ct(P, V ) to the cohomologies H∗ct(P/R,H∗ct(R, V )) – see e.g. [BW00, Chapter IX,
Theorem 4.1 p. 178] or [Gui80, Proposition 5.1 p. 214].
In the special case when (π, V ) is the right regular representation on Lp(P ) and P

is a semi-direct product P = QnR (where Q and R are closed subgroups) we give in
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this subsection a more comprehensive description of these cohomological spaces. In
the following statement the measures HQ and HR are left-invariant Haar measures
on Q and R respectively.

Proposition 5.2. — Let k ∈ N. Assume that Hk
ct(R,Lp(R)) is Hausdorff and

that the complex C∗(R,Lp(R))R is homotopically equivalent to a complex of Banach
spaces. Then Hk

ct(R,Lp(P )) is Hausdorff and there is a canonical isomorphism of
topological Q-modules:

Hk
ct

(
R,Lp(P )

)
' Lp

(
Q,Hk

ct

(
R,Lp(R)

))
,

where, in the latter space, the groups Q and R are equipped with the measures HQ

and HR, and where the Q-action is induced by

(q · f)(y)(x0, . . . , xk, x) = f(yq)
(
q−1x0q, . . . , q

−1xkq, q
−1xq

)
,

for every q, y ∈ Q, f : Q→ Ck(R,Lp(R)) and x0, . . . , xk, x ∈ R.

Proof. — As a consequence of Blanc’s lemma (see Lemma 4.1) and of Propo-
sition 2.4(ii), the inclusion of the subcomplex C∗(R,Lp(P ))R into the complex
Lploc(R∗+1, Lp(P ))R induces a canonical isomorphism in cohomology. Thus, it is not
only that these two complexes have the same cohomology, but the Q-action on the
cohomology can be expressed in the same manner.
We claim that Lp(P ) ' Lp(Q,Lp(R)) as topological P -modules, where Q and R

are equipped with the measures HQ and HR, and where the expression of the right-
regular representation of P on the latter module is (π(q, r)f)(y, x) = f(yq, q−1xqr)
for every q, y ∈ Q and r, x ∈ R.
Indeed this follows from Fubini, by observing that HQ × HR is a left-invariant

measure on P = QnR.
Therefore, with Proposition 5.1, we obtain that Lploc(R∗+1, Lp(P ))R is isomorphic

to Lp(Q,Lploc(R∗+1, Lp(R))R). In this representation, one can check that the Q-action
on the latter complex can be written as in the statement of the proposition.
It remains to prove that the kth-cohomology space of the complex

Lp
(
Q,Lploc

(
R∗+1, Lp(R)

)R)
is isomorphic to

Lp
(
Q,Hk

ct

(
R,Lp(R)

))
.

By assumption and from Lemma 4.1, the complex Lploc(R∗+1, Lp(R))R is homotopy
equivalent to a complex of Banach spaces that we denote by B∗. Since every contin-
uous linear map ϕ : V1 → V2 between Fréchet spaces extends to a continuous linear
map ϕ∗ : Lp(Q, V1) → Lp(Q, V2) defined by ϕ∗(f) = ϕ ◦ f , the above homotopy
equivalence induces a homotopy equivalence between the complexes

Lp
(
Q,Lploc

(
R∗+1, Lp(R)

)R)
and Lp(Q,B∗).

Since
Hk(B∗) ' Hk

ct

(
R,Lp(R)

)
,
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the following Lemma 5.3 ends the proof of the Proposition 5.2. �

Lemma 5.3. — Suppose k ∈ N and that B∗ is a complex of Banach spaces such
that Hk(B∗) is Hausdorff. Then the kth-cohomology space of the complex Lp(Q,B∗)
satisfies Hk(Lp(Q,B∗)) ' Lp(Q,Hk(B∗)) canonically and topologically.
Proof of Lemma 5.3. — Consider the complex Lp(Q,B∗). One has clearly

Ker d|Lp(Q,Bk) = Lp(Q,Ker d|Bk). We claim that

Im
(
d : Lp

(
Q,Bk−1

)
→ Lp

(
Q,Bk

))
= Lp

(
Q, Im

(
d : Bk−1 → Bk

))
.

The direct inclusion is obvious. For the reverse one, we use the assumption that
Im(d : Bk−1 → Bk) is a Banach space in combination with the following Michael’s
theorem [Mic56, Proposition 7.2], that previously appears in [Mon01, p. 93] in the
context of bounded cohomology:

Suppose ϕ : B → C is a continuous surjective linear map between Banach spaces.
Then for every λ > 1 there exists a continuous (non linear) section σ : C → B such
that for every c ∈ C one has

‖σ(c)‖ 6 λ inf{‖b‖ ; ϕ(b) = c}.
The natural map Lp(Q,Ker d|Bk)→ Lp(Q,Hk(B∗)) and the above equalities induce
an injective continuous map

Hk
(
Lp(Q,B∗)

)
→ Lp

(
Q,Hk(B∗)

)
.

It is surjective, thanks again to Michael’s theorem, since the projection map
Ker d|Bk → Hk(B∗) is a surjective continuous linear map between Banach spaces.
Since Hk(B∗) is a Banach space, so is Lp(Q,Hk(B∗)). From the previous description

of Ker d|Lp(Q,Bk) and Im d|Lp(Q,Bk−1), the cohomological space Hk(Lp(Q, B∗)) is also
a Banach space (for the quotient norm). Therefore Banach’s theorem implies that
the above isomorphism is a topological one. �
As a consequence of Proposition 5.2, the Hochschild–Serre spectral sequence for

Lp-cohomology takes the following form:
Corollary 5.4. — Suppose that P = QnR where Q and R are closed subgroups

of P . Assume that C∗(R,Lp(R))R is homotopically equivalent to a complex of Banach
spaces and that every cohomology space Hk

ct(R,Lp(R)) is Hausdorff. Then, there
exists a spectral sequence (Er), abutting to H∗ct(P,Lp(P )), in which

Ek,`
2 = Hk

ct

(
Q,Lp

(
Q,H`

ct(R,Lp(R))
))
.

Corollary 5.5. — Suppose that P = Q n R where Q and R are closed sub-
groups of P . Assume that C∗(R,Lp(R))R is homotopically equivalent to a complex
of Banach spaces. Suppose also that there exists n ∈ N, such that Hk

ct(R,Lp(R)) = 0
for 0 6 k < n and such that Hn

ct(R,Lp(R)) is Hausdorff. Then Hk
ct(P,Lp(P )) = 0 for

0 6 k < n and there is a linear isomorphism

Hn
ct

(
P,Lp(P )

)
' Lp

(
Q,Hn

ct(R,Lp(R))
)Q
.

We notice that the latter isomorphism is just a linear one, in particular it does
not imply that Hn

ct(P,Lp(P )) is Hausdorff.
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6. The (possibly) non-vanishing strip
In this section, we use the notation and conventions on Lie groups explained at

the end of the introduction. Let G = G(R)◦ be a non-compact simple Lie group and
let A = S(R)◦ be a maximal R-split torus.
Recall that the Lie algebra g of G decomposes as a direct sum of A-stable subspaces

in the adjoint representation of G on g [Bor91, 3.5]. The choice of a Weyl chamber
in A (or in the corresponding maximal flat in the symmetric space [Mau09, 6.4])
defines a system of positive roots, and the connected subgroup integrating the
subspaces of g on which A acts trivially or via a character which is a positive
root, is a minimal parabolic subgroup in G. All minimal parabolic subgroups are
obtained thanks to such a choice of a Weyl chamber in a maximal R-split torus
A; moreover G acts transitively on them by conjugation. A parabolic subgroup is a
connected subgroup containing a minimal parabolic subgroup; it can also be defined
via considerations from Lie algebras [Kna02, VII.7]. Combinatorially, the collection
of parabolic subgroups of G and its Weyl group come from a Tits system [Bor91,
§ 21 and § 24.C], and geometrically parabolic subgroups can be defined as stabilizers
in G of points in the visual boundary of the symmetric space of G – see [Mau09, 6.6]
and [BS87].
As a consequence of Corollary 3.7, the group Lp-cohomology of G is isomorphic to

the group Lp-cohomology of any of its parabolic subgroups. Indeed, every parabolic
subgroup acts cocompactly on G, and thus is quasi-isometric to G.
Recall that a parabolic subgroup decomposes as P = MnAN withM semi-simple,

A ' Rr, and N nilpotent [Kna02, Proposition 7.83]. One can expect to use this
decomposition to derive, from the Hochschild–Serre spectral sequence, some informa-
tion about the group Lp-cohomology of P . To do so, and according to Corollaries 5.4
and 5.5, one has to know a bit of the Lp-cohomology of the group AN . When the
rank r of A is at least 2, very little is known about the Lp-cohomology of AN (apart
from the vanishing of H1

ct(AN,Lp(AN)) for all p – see [CT11, Pan07]).
In contrast, when the rank of A is one, i.e. when P is a maximal proper parabolic

subgroup, the group AN admits an invariant negatively curved Riemannian metric,
and the Lp-cohomology of negatively curved manifolds has been investigated by
Pansu [Pan08, Pan99].
We focus on the class of simple Lie groups G that admit a maximal proper par-

abolic subgroup P = M n AN with AN quasi-isometric to a real hyperbolic space
Hd of constant negative curvature. According to Definition 1.3 such groups G are
called admissible. They will be classified in the next section. The elementary case
G = SLn(R) is discussed in Example 6.5. We obtain the following partial description
of their cohomology:
Theorem 6.1. — Let G be an admissible simple Lie group. Let P = M n AN

be a maximal proper parabolic subgroup with radical AN quasi-isometric to Hd. Let
X = G/K be the associated symmetric space and let D = dimX. One has:

(1) H0
ct

(
G,Lp(G)

)
= Hk

ct

(
G,Lp(G)

)
= 0 for k > D.

(2) Suppose k ∈ {1, . . . , D − 1}. Then:
• Hk

ct

(
G,Lp(G)

)
= 0 for k 6 d−1

p
and for k > d−1

p
+D − d+ 2,
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• Hk
ct

(
G,Lp(G)

)
= 0 for d−1

p
+D − d+ 1 6 k < d−1

p
+D − d+ 2,

• Suppose in addition that d−1
p

/∈ N, and let ` = bd−1
p
c + 1. Then for

k > d−1
p
, there is a linear isomorphism:

Hk
ct

(
G,Lp(G)

)
' Hk−`

ct

(
M,Lp

(
M,H`

ct

(
AN,Lp(AN)

)))
.

In particular the possible couples (p, k) for which Hk
ct(G,Lp(G)) 6= 0 lie in the strip

d−1
p
< k < d−1

p
+D − d+ 2 of width D − d+ 2. The numerical computation of the

width will occupy Section 8.
A key ingredient in the proof of Theorem 6.1 is the following lemma which is a

straightforward consequence of Pansu’s results.

Lemma 6.2. — Suppose that AN is a Lie group quasi-isometric to a real hyper-
bolic space Hd. Then for p > 1, its group Lp-cohomology satisfies

(1) H0
ct

(
AN,Lp(AN)

)
= Hk

ct

(
AN,Lp(AN)

)
= 0 for k > d.

(2) Suppose k ∈ {1, . . . , d− 1}. Then:
• Hk

ct

(
AN,Lp(AN)

)
is Hausdorff if and only if k 6= d−1

p
+ 1,

• Hk
ct

(
AN,Lp(AN)

)
= 0 if and only if either k 6 d−1

p
or k > d−1

p
+ 1.

Proof of Lemma 6.2. — By Corollary 3.7, the group Lp-cohomology of AN is
isomorphic to the group Lp-cohomology of any cocompact lattice in Isom(Hd); which
in turn is the same as the simplicial Lp-cohomology of Hd – see Proposition 3.2.
By the simplicial Lp-cohomology of a complete Riemannian manifold X, we mean
the simplicial Lp-cohomology of any bounded geometry quasi-isometric simplicial
decomposition of X. Now, the simplicial Lp-cohomology of Hd has been computed by
Pansu [Pan08, Pan99](1) . The result of this computation is precisely the statement
of our lemma. �

Parts of Theorem 6.1 rely on the following version of Poincaré duality established
in [Pan08, Corollaire 14](2) .

Lemma 6.3. — Let X be a complete Riemannian manifold of bounded geometry
and of dimension D. Denote by LpH∗(X) and LpH∗(X) its simplicial Lp-cohomology
and its reduced simplicial Lp-cohomology. Let q = p/(p− 1) and 0 6 k 6 D. Then

(1) LpHk(X) is Hausdorff if and only if LqHD−k+1(X) is Hausdorff.

(1) In [Pan08, Pan99], Pansu computes the de Rham Lp-cohomology of Hd, i.e. the cohomology of
the de Rham complex of Lp differential forms with differentials in Lp. In [Pan95], he proves an
Lp-cohomology version of the de Rham theorem, namely the homotopy equivalence between the de
Rham Lp-complex and the simplicial Lp-complex, for complete Riemannian manifolds of bounded
geometry. The fact that the simplicial Lp-cohomology is Hausdorff for k 6= d−1

p +1, and vanishes for
k < d−1

p and k > d−1
p + 1, can also be established without the de Rham theorem, as a consequence

of [Bou16, Corollary B].
(2)Again, Pansu establishes this result for the de Rham Lp-cohomology. One obtains the result
for the simplicial Lp-cohomology by using the Lp-cohomology version of the de Rham theorem.
The lemma can also be established more directly without the de Rham theorem, as a consequence
of [Bou16, Proposition 1.2 and Theorem 1.3].
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(2) LpHk(X) = 0 if and only if LqHD−k(X) = 0.

Proof of Theorem 6.1. —
(1) According to Corollary 3.7, the group Lp-cohomology of G is isomorphic to the

group Lp-cohomology of any of its cocompact lattices; which in turn is isomorphic
to the simplicial Lp-cohomology of X – see Proposition 3.2. The latter is trivially
null in degree 0 and degrees k > dimX. It is also null in degree D = dimX. Indeed,
the lemma above implies that LpHD(X) = 0. Moreover, since X satisfies a linear
isoperimetric inequality, LpH1(X) is Hausdorff – see [Pan07] or [Gro91]. Hence the
lemma implies that LpHD(X) is Hausdorff, and so it is null.
(2) Since G and P are quasi-isometric, one has

H∗ct

(
G,Lp(G)

)
' H∗ct

(
P,Lp(P )

)
by Corollary 3.7. The vanishing of Hk

ct(P,Lp(P )) for every k 6 d−1
p
, follows directly

from the analogous result for AN in Lemma 6.2, and from Corollary 5.5 applied with
P = M nAN , Q = M and R = AN . We note that the assumptions of Corollary 5.5
are satisfied; indeed C∗(AN,Lp(AN))AN is homotopy equivalent to the simplicial
Lp-complex of Hd which is a complex of Banach spaces.
To show that Hk

ct(G,Lp(G)) = 0 for k > d−1
p

+D− d+ 2, we use again the isomor-
phism between the group Lp-cohomology of G and the simplicial Lp-cohomology of
X. We know from above that the latter is null for k 6 d−1

p
. Then Lemma 6.3 implies

that
LpHk(X) is null for k > d− 1

p
+D − d+ 1

and that LpHk(X) is Hausdorff for k > d−1
p

+D − d+ 2. The proof of the first two
items is now complete.
Suppose that d−1

p
/∈ N. Then, according to Lemma 6.2, the only degree ` such

that H`
ct(AN,Lp(AN)) is non-zero, is ` = bd−1

p
c+ 1. Moreover H`

ct(AN,Lp(AN)) is
Hausdorff. By applying Corollary 5.4, one obtains the third item. �

Remark 6.4. — In view of the last item in Theorem 6.1, to analyse further the
case where

d− 1
p

< k <
d− 1
p

+D − d+ 2,

in particular to decide whether Hk
ct(G,Lp(G)) vanishes or not, one would like to take

advantage of a good description of H`
ct(AN,Lp(AN)) and of the M -action on it. In

particular one could try to exploit the description of H`
ct(AN,Lp(AN)) as a functional

space on N ' Rd−1 ' ∂Hd \ {∞}, that is established in [Pan99, Section 8.2]
(see also [Pan89] or [Rez08] or [BP03] for the case ` = 1). We will follow this idea in
Section 9 to prove the vanishing of the first group Lp-cohomology of admissible Lie
groups of real rank > 2, see Corollary 1.6.

Example 6.5. — We consider here the example of the simple Lie group G =
SLn(R). Then the Lie algebra of G is the space of square matrices of size n and of
trace 0, a maximal R-split torus is given by diagonal matrices and it acts on the
Lie algebra by conjugation. The corresponding root system is of type An−1 and any
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parabolic subgroup of G can be conjugated to a suitable subgroup of upper triangular-
by-blocks matrices of determinant 1 [Bor69, 11.14]. Therefore, every maximal (proper)
parabolic subgroup of SLn(R) is conjugated to a subgroup with 2 blocks, i.e. of the
form

P =
{(

p1 p3
0 p2

)
∈ SLn(R)

∣∣∣∣ p1 ∈Ms,s, p2 ∈Mn−s,n−s, p3 ∈Ms,n−s

}
,

with 0 < s < n. Moreover P = M n AN with

M0 =
{(

m1 0
0 m2

) ∣∣∣∣m1 ∈ SLs(R),m2 ∈ SLn−s(R)
}
,

A =
{(

λ1I 0
0 λ2I

) ∣∣∣∣ λ1, λ2 ∈ R∗+, λs1 · λn−s2 = 1
}
' R∗+,

and N =
{(

I x
0 I

) ∣∣∣∣ x ∈Ms,n−s

}
' (Rs(n−s),+). Since one has

(
λ1I 0
0 λ2I

)(
I x
0 I

)(
λ1I 0
0 λ2I

)−1

=
(
I λ1λ

−1
2 x

0 I

)
=
(
I λ

n
n−s

1 x
0 I

)
,

we get that AN ' RnϕRs(n−s), with ϕ(t)(x) = e
tn

n−sx. Therefore AN is isometric to
Hs(n−s)+1 and SLn(R) is admissible. Take s = bn2 c. Then one has d− 1 = dimN =
s(n − s) = n2

4 if n is even, and n2−1
4 otherwise. Since D = dimX = (n−1)(n+2)

2 ,
Theorem 6.1 gives the following possibly non-vanishing strip for the Lp-cohomology
of SLn(R) :

• n2

4p < k < n2

4p + n(n+2)
4 if n is even, and

• n2−1
4p < k < n2−1

4p + (n+1)2

4 if n is odd,

which can be summarized by: bn2

4 c ·
1
p
< k < bn2

4 c ·
1
p

+ b (n+1)2

4 c.

7. The admissible simple real Lie groups

We are looking for the simple Lie groups that we called admissible, i.e. that
contain a proper parabolic subgroup, say P , with Langlands decomposition MP n
APNP [Kna02, Proposition 7.83], where AP is a 1-dimensional group of simultane-
ously R-diagonalisable matrices, where NP is a nilpotent group normalized by AP ,
and for which the following metric condition holds: (∗) the underlying Riemannian
manifold of the radical APNP is quasi-isometric to a real hyperbolic space.
The list of admissible simple Lie groups is given by the following (see also the

tables provided at the end of Section 8).

Proposition 7.1. — The admissible simple real Lie groups are those whose
relative root system is of type Al, Bl, Cl, Dl, E6 and E7. In particular, for classical
types the only excluded groups are those with non-reduced root system BCl.
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Proof. — We use the facts and notations recalled in the conventions of the in-
troduction and showed in [BT65, § 14] or in [Bor91, § 24.C]. Let P∅ be a minimal
parabolic subgroup in G containing A, a maximal split torus. The subgroup A defines
a set Φ of roots with respect to A and the inclusion A ⊂ P∅ defines, inside Φ, a
subset Φ+ of positive roots and a subset ∆ of simple roots. We have: ∆ ⊂ Φ+ ⊂ Φ.
Any parabolic subgroup is conjugated to exactly one of the parabolic subgroups
containing P∅, and the latter subgroups are parametrized by subsets of ∆ [Bor91,
21.12]. More precisely, they are of the form P∆′ = M∆′ nA∆′N∆′ , where M∆′ is the
Levi subgroup generated by the roots of Φ in the linear span Z∆′ of ∆′ ⊂ ∆, the
subtorus A∆′ of A lies in the kernels of the roots in ∆′ and the Lie algebra of the
unipotent group N∆′ is linearly spanned by the weight spaces indexed by the roots in
Φ+\Φ(∆′) where Φ(∆′) = Φ∩Z∆′ [Bor91, 21.11]. This description is consistent with
the notation P∅ for a minimal parabolic subgroup; note that we also have G = P∆.
Let us go back to condition (∗). By homogeneity, it implies that APNP = AP nNP

is actually isometric (up to a positive multiplicative constant) to a real hyperbolic
space, and in terms of roots it implies that AP must act on NP via a single character.
The first consequence is that P must be maximal for inclusion among proper parabolic
subgroups. Therefore, since we work up to conjugacy, this implies that we may –
and shall – assume that there is a simple root γ ∈ ∆ such that P = P∆\{γ}. To
simplify notation, we set: Aγ = A∆\{γ} and Nγ = N∆\{γ}, so that P = P∆\{γ}
= M∆\{γ} n AγNγ.
The torus Aγ is 1-dimensional and it acts on Nγ (more precisely, on the root

subspaces of the Lie algebra of Nγ) via powers of γ since it lies in the kernel of any
other simple root of the basis ∆. Note that the simple root γ itself always appears
as a weight in the root space decomposition of Lie(Nγ). Therefore, for AγNγ to be
homothetic to a real hyperbolic space, it is necessary and sufficient that Aγ act on
Nγ via the single character γ (i.e. we must avoid powers γk with k > 2).
We have obtained this way a combinatorial interpretation of condition (∗). Indeed,

let δ be a root occurring as a weight in the root space decomposition of Lie(Nγ):
it is a root in Φ+ for which the coordinate along γ in the basis ∆ has a coefficient
m > 1 (since vanishing amounts to being in the root system Φ(∆ \ {γ}) of M∆\{γ}).
In this case, any a ∈ Aγ acts on the root space of weight δ via the scalar δ(a)m.
The remaining task now is to investigate the descriptions of root systems, and

to check for which ones there is a simple root γ ∈ ∆ with respect to which the
γ-coordinate in the basis ∆ of each positive root is equal to 0 or 1: the first case says
that the positive root belongs to Φ(∆ \ {γ}) and the second one says that it belongs
to Φ+ hence occurs as a weight for the Aγ-action on Nγ. We refer now to [Bou68,
Planches] and its notation. Let us investigate the root systems by a case-by-case
analysis of the formulas given for the linear decompositions of the positive roots
according to the given bases (formulas (II) in [loc. cit.]):

• for type Al, any simple root can be chosen for γ since no coefficient > 2 occurs
in formula (II) of [loc. cit., Planche I];
• for type Bl, the root γ can be chosen to be α1 in the notation of [loc. cit.,
Planche II];
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• for type Cl, the root γ can be chosen to be αl which occurs only for two kinds
of positive roots, each time with coefficient 1, in formula (II) of [loc. cit.,
Planche III];
• for type Dl, we use the formulas in [loc. cit., p. 208] instead of Planche IV
(where the formulas are not correct), to see that the root γ can be chosen to
be α1, αl−1 or αl;
• for type E6, the root γ can be chosen to be α1 or α6, as inspection of the
positive roots with some coefficient > 2 shows in [loc. cit., Planche V];
• for type E7, the root γ can be chosen to be α7, as inspection of the positive
roots whose support contains α7 and with some coefficient > 2 shows in
[loc. cit., Planche VI].

To exclude the remaining case, it is enough to note that:
• for type E8, the last positive root described on the first page of [loc. cit.,
Planche VII] has all its coefficients > 2;
• for type F4 (resp. G2), the last root in (II) of [loc. cit., Planche VIII (resp. IX)]
has the same property;
• for the only non-reduced irreducible root system of rank l, namely BCl, the
positive root ε1 has all its coefficients > 2 [loc. cit., p. 222].

This finishes the determinations of the admissible simple Lie groups by means of
their relative root systems. �

As a complement, we can say that the groups that are not admissible can be listed
thanks to É. Cartan’s classification as stated for instance in [Hel01, Table VI, pp. 532–
534]. The classical groups with non-reduced relative root system correspond to the
cases where the value of m2λ is > 1 in this table. To sum up, we can reformulate the
previous proposition in more concrete terms:

Proposition 7.2. — The admissible simple real Lie groups are the split simple
real Lie groups of classical types and of types E6 and E7, the complex simple groups
of classical types and of types E6 and E7 (all seen as real Lie groups), all non-
compact orthogonal groups SOp,q(R), all special linear groups SLn(H) = SU∗2n(R)
over the quaternions H, the special unitary groups SUn,n(R) with n > 2, the groups
Sp2n,2n(R) = SUn,n(H) with n > 2, the groups SO∗4n(R) = SO2n(H) with n > 2, the
exceptional groups of absolute type E6 and real rank 2 and of absolute type E7 and
real rank 3.

For all practical purposes, we also provide the list of non-admissible simple real
Lie groups. These are:

• all the compact simple groups,
• the groups SUp,q(R) and Spp,q(R) with 0 < p < q,
• the simple groups SO∗2r(R) with odd r,
• the split groups, or the complex ones seen as real groups, of type E8, F4, G2,
• for each of E6, E7, E8, the real form of rank 4,
• the outer real form of rank 2 of E6,
• the real form of rank 1 of F4.
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8. Numerical efficiency of the method

Let us turn now to the numerical efficiency of the method, namely the compu-
tation of the actual width of the (possibly) non-vanishing strips, i.e. the intervals
outside of which our method proves vanishing of continuous group Lp-cohomology
(Theorem 6.1).
Recall that for a given admissible group G with maximal compact subgroup K,

this width is equal to D − d+ 2 where D is the dimension of the symmetric space
X = G/K and d is the dimension of the solvable radical AγNγ . We keep the notation
(in particular the notation γ) of the previous section. The simple root γ defines a
maximal proper parabolic subgroup, whose solvable radical contains a 1-dimensional
R-diagonalizable part Aγ. Therefore we have d = 1 + dimNγ and in fact:

d− 1 = dimNγ =
∑

α∈Φ+\Φ(∆ \{γ})
mα,

where mα is the multiplicity dimN(α) of the root space N(α) attached to α. Now,
we have just seen that the root system of an admissible group is reduced, so we can
freely use [Hum72] (in which root systems are assumed to be reduced by definition).
By [loc. cit., Lemma C p. 53] there are at most two root lengths in Φ and the Weyl
group acts transitively on the roots of given length, therefore since this Weyl group
action lifts to the action of NG(A) on the root spaces N(α), we deduce that there are
at most two multiplicities, saym1 andm2, and with the notation Ψ = Φ+\Φ(∆\{γ})
the previous formula becomes:

d− 1 = m1 · |{α ∈ Ψ : mα = m1}|+m2 · |{α ∈ Ψ : mα = m2}|.

The case of split groups is easy since all multiplicities mα are equal to 1 (hence in
this case d = 1 + |Ψ|), and the case of Weil restrictions (i.e. complex groups seen as
real ones) is easy too: all multiplicities are equal to 2, hence in this case d = 1+2 · |Ψ|.
For the other cases, where two multiplicities may occur, we proceed as follows. For

each admissible group, thanks to the previous section we make the choice (often, but
not systematically, unique) of a good root, that is a simple root γ such that AγNγ is
quasi-isometric to a real hyperbolic space. Thanks to [Bou68, Planches], this gives
easily |Ψ| since the root system of Φ(∆ \ {γ}) is given by the Dynkin diagram of
Φ minus the vertex of type γ and the edges emanating from it. We must then sort
the roots of Ψ according to their length, which is done again thanks to the concrete
descriptions of [loc. cit.]. It remains then to apply the last formula for d− 1 and to
use the multiplicities given in [Hel01, Table VI, pp. 532–534].
The rest of this section is dedicated to computing the width d = D − d+ 2 of the

(possibly) non-vanishing strip, and to determine the minimal one when the choice of
a good root γ is not unique for the group G under consideration.

The case of split groups.— Investigating the class of admissible split simple real
Lie groups is the opportunity to provide a description of the roots sets Ψ of nilpotent
radicals, that will be useful in the more complicated cases; we use the notation
of [Bou68, Planches].
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• When G = SLn+1(R), the root system has type An, any simple root αi
(1 6 i 6 n) is a good root, and we have |Ψ| = i× (n− i); all roots have the
same length.
• When G = SOn+1, n(R), the root system has type Bn, the only good root is
α1 and we have: |Ψ| = |Φ+(Bn)| − |Φ+(Bn−1)| = n2− (n− 1)2 = 2n− 1, with
one root of length 1 and (n− 1) + (n− 1) = 2n− 2 roots of length

√
2.

• When G = Sp2n(R), the root system has type Cn, the only good root is αn
and we have: |Ψ| = |Φ+(Cn)|−|Φ+(An−1)| = n2− n(n−1)

2 = n(n+1)
2 , with n(n−1)

2
roots of length

√
2 and n roots of length 2.

• When G = SOn, n(R), the root system has type Dn, the good roots are α1,
αn−1 and αn; all roots have the same length. For the choice γ = α1, we have:
|Ψ| = |Φ+(Dn)| − |Φ+(Dn−1)| = n(n− 1)− (n− 1)(n− 2) = 2(n− 1) and for
γ = αn−1 or αn, we have: |Ψ| = |Φ+(Dn)| − |Φ+(An−1)| = n(n− 1)− n(n−1)

2
= n(n−1)

2 .
• When G = E6

6(R), the root system has type E6, the good roots are α1
and α6; all roots have the same length. Whatever the choice, we have:
|Ψ| = |Φ+(E6)| − |Φ+(D5)| = 36− 20 = 16.
• When G = E7

7(R), the root system has type E7, the only good root is
α7; all roots have the same length and we have |Ψ| = |Φ+(E7)| − |Φ+(E6)|
= 63− 36 = 27.

As already mentioned, in this case we can then compute d = 1 + |Ψ| and take
w = D − d+ 2 to be minimal when several good roots are available.
The case of complex groups seen as real ones. — Then the multiplicities are 2; in

this case we have d = 1 + 2|Ψ| and again we can take w = D − d+ 2 to be minimal
when several good roots are available.
The remaining admissible simple real Lie groups. — We use here the formula

d − 1 = m1 · |{α ∈ Ψ : mα = m1}| + m2 · |{α ∈ Ψ : mα = m2}| and the above
partition of Ψ into short and long roots when the root system Ψ is not simply laced,
combined with the multiplicities given in [Hel01, Table VI, pp. 532–534].

• When G = SLn+1(H), the root system has type An, any simple root αi
(1 6 i 6 n) is good, we have |Ψ| = i× (n− i) and all roots have multiplicity
4, so that d− 1 = 4i(n− i) for γ = αi.
• When G = SUn,n(R), the relative root system has type Cn, the good root
is αn, the n(n−1)

2 roots of length
√

2 have multiplicity 2 and the n roots of
length 2 have multiplicity 1, so that d− 1 = n(n− 1) + n = n2.
• When G = Sp2n, 2n(R), the relative root system has type Cn, the good root
is αn, the n(n−1)

2 roots of length
√

2 have multiplicity 4 and the n roots of
length 2 have multiplicity 3, so that d− 1 = 2n(n− 1) + 3n = 2n2 + n.
• When G = SO∗4n(R), the relative root system has type Cn, the good root is
αn, the n(n−1)

2 roots of length
√

2 have multiplicity 4 and the n roots of length
2 have multiplicity 1, so that d− 1 = 2n(n− 1) + n = 2n2 − n.
• When G = E2

6(R), the relative root system has type A2, any of two simple
roots is good and all roots have multiplicity 8, so that d− 1 = 16.
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• When G = E3
7(R), the relative root system has type C3, the good root is α3,

there are 3 roots of each length
√

2 and 2, and since the multiplicities are 8
and 1, this gives d− 1 = 27.

At last, in the case of non-split orthogonal groups SOp,q(R) (i.e., where q − 2
> p > 2), we always obtain a relative root system of type Bp, with 2p− 2 roots of
length

√
2 and multiplicity 1 and one root of length 1 and multiplicity q− p, so that

d− 1 = p+ q − 2.
The next two pages contain tables which summarize the vanishing results obtained

by our method. In conclusion, apart from the general family of non-split orthogonal
groups (which is special since it depends on two parameters), the infinite families
of classical admissible groups provide a vanishing proportion of 1

2 asymptotically in
the rank. For non-split orthogonal groups, fixing the rank (i.e. the smallest number
in the signature) and letting the bigger parameter go to infinity provide a vanishing
proportion equal to the inverse of the rank.
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9. Vanishing in degree one

As a further application of Theorem 6.1, we give in this section a proof of Corol-
lary 1.6, namely vanishing of H1

ct(G,Lp(G)) for every p > 1 and every admissible
simple Lie group G of real rank > 2.
Let G be an admissible simple Lie group, and let P = M n AN be a maximal

parabolic subgroup with AN quasi-isometric to Hd. One has H1
ct(G,Lp(G)) = {0}

for p 6 d − 1, thanks to Theorem 6.1. Suppose that p > d − 1. Then Theorem 6.1
again implies that H1

ct(G,Lp(G)) is linearly isomorphic to

H0
ct

(
M,Lp

(
M,H1

ct(AN,Lp(AN))
))
' Lp

(
M,H1

ct (AN,Lp(AN))
)M

.

By [Pan89] (see also [Rez08] or [BP03]) the topological vector space H1
ct(AN,Lp(AN))

is canonically isomorphic to the following Besov space on Rd−1 ' N ' ∂Hd \ {∞}:

B(d−1)/p
p,p (Rd−1) :=

{
u : Rd−1 → Rmeasurable ; ‖u‖B < +∞

}
R

where ‖u‖pB =
∫

Rd−1×Rd−1

|u(x)− u(x′)|p
‖x− x′‖2(d−1) dxdx

′

and “/R” means dividing by the constant functions. The M -action on

Lp
(
M,H1

ct(AN,Lp(AN))
)

described in Proposition 5.2, takes now the following form. Denote by (m,x)
7→ m(x) the linear action of M by conjugation on N . Then for m, y ∈ M , f :
M → B(d−1)/p

p, p (Rd−1) and x ∈ N ' Rd−1, one has

(m · f)(y)(x) = f(ym)
(
m−1(x)

)
.

Therefore H1
ct(G,Lp(G)) is linearly isomorphic to the fixed point space

Lp
(
M,B(d−1)/p

p, p (Rd−1)
)M

,

which in turn is isomorphic to{
u ∈ B(d−1)/p

p, p (Rd−1)
∣∣∣∣ ∫
M
‖u ◦m‖pBdH(m) <∞

}
.

Since M acts on Rd−1 linearly and preserves the volume, a change of variable and
Fubini–Tonelli yield

(9.1)
∫
M
‖u ◦m‖pBdH(m) =

∫
Rd−1×Rd−1

|u(x)− u(x′)|p
‖x− x′‖2(d−1) ϕ(x− x′)dxdx′,

where ϕ is the following positive function on Rd−1 \ {0}:

(9.2) ϕ(v) =
∫
M

dH(m)∥∥∥m−1
(

v
‖v‖

)∥∥∥2(d−1) .

We claim that
∫
M ‖u◦m‖

p
BdH(m) = +∞ unless u is constant a.e.; the corollary will

follow. The proof relies on three lemmata. The first one gives a sufficient condition
for u to be constant.
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Lemma 9.1. — Let u ∈ B(d−1)/p
p, p (Rd−1) that is invariant under a 1-parameter

group of translations. Then u is constant a.e.

Proof. — Express the Besov norm of u as ‖u‖pB =
∫

Rd−1×Rd−1 ψ dxdx′ with

ψ(x, x′) = |u(x)− u(x′)|p
‖x− x′‖2(d−1) .

Suppose that u is invariant under a 1-parameter group of translations along some
vector line Rv0. Then ψ is invariant under the 1-parameter group of translations
along R(v0, v0). If in addition one has

∫
Rd−1×Rd−1 ψ dxdx′ < +∞, then Fubini–

Tonelli implies that ψ is null a.e. This in turn implies that u is constant a.e. �
The second Lemma 9.2 collects some simple properties of the function ϕ defined

in (9.2).
Lemma 9.2. — The function ϕ admits the following properties:
(1) ϕ(λv) = ϕ(v) for every λ ∈ R∗ and every v ∈ Rd−1 \ {0}.
(2) There exists a positive constant c0 such that ϕ > c0.
(3) The function v 7→ ϕ(v)

‖v‖2(d−1) is M -invariant on Rd−1 \ {0}.
(4) If v ∈ Rd−1 \ {0}, g ∈ M and λ ∈ R, are such that g(v) = λv with |λ| 6= 1,

then ϕ(v) = +∞.

Proof. — To prove the second item, observe that for every relatively compact open
subset U ⊂ G, the map

v ∈ Rd−1 \ {0} 7−→
∫
U

dH(m)∥∥∥m−1
(

v
‖v‖

)∥∥∥2(d−1)

is positive, continuous, invariant by scalar multiplication, and smaller that ϕ. The
third item follows from the fact that H is a left-invariant measure. To obtain the
last item, one observes that the first and third items imply that

ϕ(v) = ϕ(λv) = ϕ(g(v)) = ‖g(v)‖2(d−1)

‖v‖2(d−1) ϕ(v) = |λ|2(d−1)ϕ(v).

Thus ϕ(v) = +∞ by (2). �
We now describe the behaviour of ϕ in a neighborhood of an eigenvector.
Lemma 9.3. — Let (gt)t∈R ⊂ M be a non-trivial 1-parameter subgroup which

acts diagonally with positive eigenvalues on Rd−1. Let λmax > 1 and λmin < 1 be the
maximum and minimum eigenvalues of g. Let v0 ∈ Rn−1 be an eigenvector of g for
the eigenvalue λmax. There exist a constant c2 > 0 and a neighborhood U of v0 such
that for every v ∈ U one has

ϕ(v) > c2

‖v − v0‖α

with α = 2(d− 1) log λmax
log λmax−log λmin

.

Proof. — If v is an eigenvector to the eigenvalue λmax, then ϕ(v) = +∞ thanks
to Lemma 9.2. Suppose now that v is not such an eigenvector. Let W ⊂ Rd−1 be a
subspace such that Rd−1 = Rv0⊕W is a {gt}t∈R-invariant decomposition. We write
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Group Lp-cohomology: quasi-isometric invariance and vanishings 1323

every vector v ∈ Rd−1 as v = v1 + v′ according to this decomposition. For simplicity
we will abusively denote by the same symbol ‖ · ‖ the standard norm on Rd−1 and
the norm max(‖v1‖, ‖v′‖).
Suppose that ‖v′‖ 6 ‖v1‖. Then there exists t > 0 such that ‖g−t(v′)‖ = ‖g−t(v1)‖.

Write w = g−t(v) = g−t(v1) + g−t(v′) = w1 + w′. It follows from the previous
Lemma 9.2 that

ϕ(v) = ϕ(gt(w)) = ‖g
t(w)‖2(d−1)

‖w‖2(d−1) ϕ(w) = ‖λ
t
maxw1 + gt(w′)‖2(d−1)

‖w1 + w′‖2(d−1) ϕ(w)

>
(λtmax‖w1‖)2(d−1)

(2‖w1‖)2(d−1) ϕ(w) > c1λ
2t(d−1)
max ,

where c1 = 2−2(d−1)c0 and c0 comes from the previous Lemma 9.2. On the other
hand, we have

‖v1‖
‖v′‖

= ‖λ
t
maxw1‖
‖gt(w′)‖ 6

λtmax
λtmin

‖w1‖
‖w′‖

= λtmax
λtmin

.

Since (λmax)2(d−1) = (λmax/λmin)α we obtain by combining the above inequalities

ϕ(v) > c1λ
2t(d−1)
max = c1

λtαmax
λtαmin

> c1
‖v1‖α

‖v′‖α
.

Now there is a neighborhood of v0 in which the ratio ‖v1‖α/‖v′‖α is comparable to
1/‖v′‖α, which in turn is larger that 1/‖v − v0‖α; the Lemma 9.3 follows. �

Finally we complete the
Proof of Corollary 1.6. — Let u ∈ B(d−1)/p

p,p (Rd−1) be a function such that∫
M
‖u ◦m‖pBdH(m) <∞ .

We want to prove that u is constant a.e. According to Lemma 9.1, it is enough
to show that there is a non-zero vector v0 ∈ Rd−1 such that u is constant almost
everywhere along almost every line directed by v0.
Recall that G is assumed to have rank > 2; since P is a maximal proper parabolic

subgroup, the Levi factor M has rank > 1, hence is a noncompact semisimple group.
Therefore M contains a 1-parameter subgroup (gt)t∈R which acts on Rd−1 as in
Lemma 9.3. Indeed M contains a Lie subgroup H which is virtually isomorphic to
SL(2,R); and from the representation theory of SL(2,R), one knows that H contains
such a 1-parameter subgroup (see [Hum72, Corollary 7.2]).
Let λmax, λmin, v0, c2, U and α be as in Lemma 9.3. By changing g to its inverse,

if necessary, we can assume that λmax > λ−1
min; so that we have α > d− 1. Since u is

measurable, it is approximately continuous a.e. (see [Fed69, 2.9.13]). In other words,
for a.a. x ∈ Rd−1 and every ε > 0, we have

lim
r→0

meas
{
x′ ∈ B(x, r) ; |u(x′)− u(x)| < ε

}/
meas

(
B(x, r)

)
= 1.

Let a, b be distinct points on a line directed by v0, such that u is approximately
continuous at a and b. We want to show that u(a) = u(b). By multiplying v0 by a
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real number if necessary, we can assume that v0 = b − a. For every ε > 0, there
exists rε > 0 such that for every 0 < r 6 rε the set

Er(a) :=
{
x ∈ B(a, r) ; |u(x)− u(a)| < ε

}
contains at least 99% of the measure of B(a, r). We define similarly Er(b).
Suppose by contradiction that u(a) 6= u(b). Let ε = |u(a)−u(b)|/4 and 0 < r 6 rε.

Then for every (x, x′) ∈ Er(a) × Er(b) one has |u(x) − u(x′)| > |u(a) − u(b)|/2.
Therefore by making the change of variable v = x′ − x, we obtain with equation 9.1:∫

M
‖u ◦m‖pBdH(m) >

∫
Er(a)×Er(b)

|u(x)− u(x′)|p
‖x− x′‖2(d−1) ϕ(x− x′)dxdx′

> c3|u(a)− u(b)|p
∫
Er(a)×Er(b)

ϕ(x− x′)dxdx′

= c3|u(a)− u(b)|p
∫
v ∈Rd−1

meas
{
Er(a) ∩

(
Er(b)− v

)}
ϕ(v)dv,

where c3 is a positive constant that depends only on ‖a− b‖. Since b− a = v0, for v
close enough to v0, one has

meas
{
Er(a) ∩

(
Er(b)− v

)}
> (3/10) meas

(
B(a, r)

)
.

With Lemma 9.3 and the inequality α > d− 1 one gets that for every small enough
neighbourhood U of v0:∫

M
‖u ◦m‖pBdH(m) > c4|u(a)− u(b)|p

∫
U

dv

‖v − v0‖d−1 ,

where c4 depends only on c2, c3, r. Since the last integral is equal to +∞, we obtain
a contradiction. �
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