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AN 17-VERSION OF A THEOREM
OF D. A. RAIKOV

by Gero FENDLER(*)

1. Introduction.

Let G be a locally compact group, for p € ( l , o o ) , let
P/p (G) denote the closure of L1 (G) in the convolution operator
norm on L^G). Denote by Wp (G) the dual of P/p(G) which
is contained in the space of pointwise multipliers of the Figa-
Talamanca Herz space Ap (G). (See [5], [8], [9] for all this.)

It is shown in these notes that on the unit sphere of
Wp(G) the weak*(i.e. the a(Wp,P/^) topology and the
A--multiplier topology coincide (UQ —> u in the latter if
\\(u^-u)v\\ —> 0 for each t;GAp(G)).

If p = 2 and G is amenable then W^ (G) is just the Fourier-
Stieltjes algebra of G, denoted B(G), and A^(G) is the
Fourier algebra of G. From this point of view the above enunci-
ation is an If -version of a theorem of D.A. Raikov, which
asserts that on the positive face of the unit sphere of B(G) the
weak * topology coincides with the topology of uniform conver-
gence on compact sets (since Ap(G) always contains functions
which take the value one on a given compact set the latter
topology is clearly weaker than the Ap (G) multiplier topology;
and on norm bounded sets obviously stronger than the weak *
topology).

The proof is based on a technique of G.C. Rota [10], first used
in harmonic analysis by E.M. Stein ; our application is close to the
work of M. Cowling [3]. On the other hand this paper continues
the line of studies taken up by E.E.Granirer and M. Leinert in [7].

(*) This work was done while the author held a C.N.R. grant at the
University of Geneva (Italy)
Key-words : \? -convolution operators, Figa-Talamanca-Herz space A (G), Certain
topologies on the multipliers of A«(G), A noncommutative Littlewood-Paley
A o+i •mi 4" <»estimate.
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The author thanks Prof. M. Leinert for stating the problem
and Prof. M. Cowling for several fruitful discussions on the topic
of this paper.

2. An estimate for the If -operator norm of the sum of two
"spectrally disjoint" operators.

If R and S are two commuting normal (of course bounded)
operators on an Hilbert space H then, via the Gelfand transform,
R and S correspond to some continuous functions on a locally
compact space X ; further R, S are spectrally disjoint, if the
supports of those functions are disjoint. It then follows easily
that || R + S|| = max {| |R| | , ||S||} ; we remark that there
exists an orthogonal projection P with PR == R = RP and
(1 -P)S == S = S(l -P).
From this :
| | (R+S)SI I = | | ( R + S ) ( P + 1 -P)$||

== | |PRPS+(1 -P)S(1 -P)S||
= (HPRP^II2 + ||(1 ~P)S(1 -P)SI|2)1/2

<(1|R||2 I IPS I I 2 + I I S H 2 ||(1 -P^H2)172

<max{||R||, | |S||} (HPf l l 2 + ||(1 -P^ll2)172

<max{||RM|S||} ||S|| forall S G H .
Now let (X, ^) be a a-finite measure space ;

an operator T acting on all If -spaces will be called special if :
i) T/>0 i f / > 0

ii) IIT/Hp < 11/Hp /GL^X,^) , ! < p < o o
iii) Tlx = lx

iv) f T/(x)i"00^(x)= r f(x)Tg(x)dtJi(x) /,^eL2(X,^).
Jx ^x

Those operators will serve as a substitute for orthogonal
projections, since by a method due to G.C. Rota they may be
seen as conditional expectations on a certain measure space.
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We begin with the following observation :

PROPOSITION . - Let (Y , S< , v) be a a-finite measure space,
§1 ^ C ^ a sub-a-algebra of §1 such that (Y, ^ , v) is again a-finite,
(which ensures the existence of a conditional expectation operator
E^ with respect to §1^).

Then we have for ^ , 77 G I/̂ Y , Si , v) :

\\E, S+(l-E,)r^ <(||$||; 4-2||r7||;)1/'-

where r = p if 1 <p < 2 and r = p\ the index conjugate to
p, if 2 < p < oo.

Proo/ - Clearly
D I l E i { + ( 1 -E^)7^ <||^ +2||7?||,
2) ||E, S + (1 -E,)r?||j < HSIIJ + ||r?||j < HSHj + 2 ||r?||j

3)l|E^+(l-E^)r?|L <IISIL +2||T7|L
and the assertion follows from interpolation between 1) and 2)
(resp. 2) and 3)) on mixed P {\3 )-spaces (see [ 1 ]).

Let (X, [£) and T be as above. Define Y = X x X and
endow Y with the usual product a-algebra denoted ^ . We
define a measure v on Y by requiring that

v(S^xS,)= r XsoOOTXs/^MOc)
^x A

(whenever S^ , S^ are measurable subsets of X).

Denote by ^ and ®?o the a-algebras of sets X x S(SCX
measurable), respectively of sets S x X (S C X measurable), further
denote by E^ , E^ the corresponding conditional expectation
operators. For a measurable function $ " on X we define for
x = (XQ , ^ i ) G Y

^0^1)=^) ^ ' = 0 , 1 .

Then $ —> $° gives rise to an isometric isomorphism between
\f (X , [£) and the subspace of Si^ -measurable elements of L^Y , v) ;
whereas { —> ^ , from ]f (X , jn) to I / (Y,^) , does not increase
norms.
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Further :
(W if i = 1

p (W =
o(u ^ ° i f z = 0

Ei(S°)=(TS)1 .
For a proof of these facts we refer the reader to the book of

E.M.Stein[ll].

PROPOSITION . — Let (X, p.) be a a-finite measure space,
T a special operator and 1 < p < oo . Then for ^, ^2 E ̂ p (X, p.) :
HT2^ + ( 1 -T^IKdIMp +21|SJIp)1/ ' ' , mrt r=mm{p.p'}.

Proo/ — We apply the above procedure to T, then

IIT'Si + (1 -T'KJI^IEoaT^)1 +^ -(T^)1)!!

<ll(TSi)1 +S°2 -(T^)1!!
=1|E^(S?) + (1 ~Ei)(^)||

<(iis?ir +211^11 ' ' ) ^ .
COROLLARY . — Let R , S 6^ bounded operators on If (X, ^),

/̂!̂  W^ /ZflV^

HT2 R + (i -T^SH < (iiRir + 2 nsin^.

3. The weak* topology on the unit sphere of W (G).

Let G be a locally compact group, with a fixed left Haar
measure dg and modular function A. Let L^G), l < p < o o ,
denote the usual Lebesgue spaces with respect to dg and for functions
/, h on G let be defined f * h ( x ) = F f(g)h(g-1 x) dg,JG
f^(g)-f(g~l)^(g~l), r =7^ r(g) =/(^-1).

For this section let now pG( l ,00) be fixed and let A (G)
(as in [8]) be the algebra of functions u on G which can be

00

represented as u = ^ v^ * w^, where
n== i

SlMp-Wlp<~,^+p= i.
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The norm on A is defined as the inf 2||i;j|p l|wj| taken over
all such representations of u.

If / is an element of I/(G) then on one hand w '—> f * w
defines a convolution operator on L^CG) and on the other

u •—^ \ f ( g ) u ( g ) d g a continuous linear functional on
^G

Ap (G). From < /, v * w^) = < / * w , v > it follows that the
corresponding norms of / coincide.

Let P/p(G) denote the closure of L^G) in the algebra
of convolution operators on L^G) and W (G) the dual space
o f P / ^ ( G ) , which is contained in L°°(G), and in which A (G)
is norm non-increasingly embedded.

If t is a nonnegative (almost everywhere) function with
\\t\\^ = 1 then t * t " , as a convolution operator, is almost
a special operator, except that (G , dg) might not be a-finite.

Let U^ be an open relatively compact neighborhood base
at the identity e of G. If V^ = V^ 1 are open neighborhoods
of e such that V^ C U^ then T^XCVJ-1^ . where
X(V) denotes the Haar measure of V and Xy it8 characteristic
function, t^ = r^ * r^ and e^ = t^ * t^ are approximate identi-
ties for L^G), e^ being the square of a "special" operator.
This last fact we seem really to need in the proof of the following

LEMMA . — Let e^ = t^ * t^ be as above, if UQ is a net in
Wp(G) such that u^ —> UQ in the weak* topology of Wp(G) and if
II^HW —> ll^o llw ' then f01^ € > ° there €xist Po ' ^o such that

i) ll^ao * ̂  ~ ^llwp ^ ^ f^ ^ll P > PQ
and

i1) l l^ao*^ ~^olLp < ^ -
Proof — Clearly ii) is a consequence of i), so it is enough

to prove i) and we may assume that ||̂ j| = 1. We suppose
now that there is a net UQ which converges to UQ as described
in the lemma and an e > 0 such that for all c^ , Po there exists
P>Po with

IKo*^ ~^11 > e -
We shall derive a contradiction.
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Let 0 < 17 < e/2, to be specified later, and choose
/GL^G) with

11/Hp^ = 1,</,^» 1 -77,

then choose c^ with

Ko^-^'ip/p^
and PQ with

IS^o*^"^ ^ao* /> l<7?,

H^ll < 1 4-7? for all ft > ̂  .
We may now fix ft> PQ with

ll^o*^ ~^ILp >^
and find ^G L^G), ||^||p^ = 1, with

^ao*^ -^^»e-77
i.e. <^ ,(^ - 1)*^) = <^ ,(1 -^)* (-^)»e -r?.
Now, the supports of t^ ,f,g are contained in a a-finite
open subgroup G() of G. Since for an L^G) function h with
support in GQ : \\h llp/p(Go) = 11^ l lp/p(G) ' we t"^ ^P^ ^e estim-
ation of the corollary of the last section to e^ * /—X^+ \e^ * g ,
where X > 0 :

ii^ao ̂ + o -^ao) * (-^ii < (ii/ir+ 2 1 1 -x^in^ = (i + ix'-)1/'-.
So on one hand

S '^o * ̂  + (1 -^ao) * (-^)> ̂  11^11 (1 + 2v)l/r

<(1 +77) (1 + IX'-)1/1',
and on the other

1<^ ^ao * ̂ + (1 -^ao) * <-^)> I = 1^0 ./> + <^0 - ^ao * ̂ -/>

-K^-^O^ao *^> + x <^ao s l e ^~^^ > l > 1 "~3T7 ^^e^.

But 1 - 37? + Xe/2 < (1 +<r?)|(t + 2Xr) l/r cannot hold for
all 7 7 e ( e / 2 , 0 ) , X > 0 .

We thank the referee for pointing out to us the following implic-
ation of the lemma (due to M. Cowling, theorem 3 of [3] ; see [4]
for a different proof).
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COROLLARY . — Translations act continuously on W (G).

Proof. - For hCG let ^u(g) = u(h~1 g) and u^(g)=u(gh),
g^G.

We first consider left translations, if u is in Wp (G), e > 0
then we find, by the lemma, an element e of L1 (G) with

\\e*u—u\\^ < € .
Then
\\H u -u\\^ < \\^u ~ / , (^*^) IL + l l / , ( ^ * ^ ) — ^ * ^ l l w

+\\e *u —^llwp
< \\u-e*u\\^ +\\f,e-e\\t \\u\\^ + \\e*u-u\\^

< 3e if h is in a neighborhood V of the identity,
choosen such that | |^—e||^ <e||^||^1 for all A G V .

From 11/Hp^ = lirilp^, for /CL^G), we infer that
l l ^ l lw =:= ll^llw ' ^or ^ ^ W ( G ) , and hence the continuity of
right translations, on W , follows from that of left translations
on W^.

It has been proved by Herz [8], that for i;GAp(G) and
u e W (G) the pointwise product u • v is in A (G) and
1 1 ^ - ^ " A p <MwplHlAp-

We say that a net u^ E Wp (G) converges to u G Wp in
the A -multiplier topology, if, for all v G Ap , M.t; —^ ^ in
A norm.

THEOREM. - On the unit sphere S = {^€Wp/||^| |^ = 1}
of W (G) the weak* and the A -multiplier topology coincide.

Proof. — Let u^, u G S be such that u^ —>> M in the
weak * topology. Let e^ = ty * t^ be as in the lemma. Then for
t^Ap(G)

llu^-^H < 11(^-^ *^ 11-Hll^o *S -^)N1
+ IK^ao *^ """^ll

<e||t;||+||[^*(^-^)]t;||-h6||i;||,

when j3 > ^o , where a^ , jS^ are choosen according to the lemma.
Since ^ EL^G) H L^CG) has compact support we may
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apply lemma 6 of [7] and find ^ > ̂  such that for P>^
Ill^ao*^ - " ) ] ^ 1 1 < € .

For the converse it is sufficient to note that u. —> u
uniformly on compact sets, whenever u^ —> u in the A -multiplier
topology and 11^11^ is bounded. So, for a compact set K,
let i;EAp(G) be a function which takes the value one on K
(e.g. take v = X(U)~1 Xu * X^ -1 u ' where u is ^^
relatively compact) then

sup |(^ -u)(g)\ < \\(u^-u)v\\^< \\(u^-u)v\\^ ——> 0.

The following corollary is of interest with respect to the
problems considered in [6]. To state it, let, for a compact set
K C G, A^(G) = [v E A^(G)/supp v C K} . This space we
consider as a subspace of W (G).

COROLLARY .-~ On the unit sphere of (A^(G), || . ||̂  ) the
weak * and the norm topology coincide. p

Proof-Let ^ ,^EA^(G) be such that u^—>u in
the weak * topology and 11̂ ||̂  = 1 = l l^ l lw • Then, for
^EA^(G) which is constant one on K,

11̂  ""llwp = IK^ -^llwp ^ IK^ ~~u)v\\^ —> 0
by our theorem. The converse is evident.

4. Addendum.

When the paper was already finished we realized that, by our
method, we can improve a theorem of E.E. Granirer, theorem 3
of [6], which we think to be central in the cited paper.

Let MAp(G) be the algebra of (continuous, bounded)
functions on G which pointwise multiply A (G) into itself and
let for ^EMAp(G) \\u\\^ = sap{\\uv\\^/\\v\\^ = 1}.

THEOREM. -Let ^EMAp(G) be such that u(g)=\\u\\^
for an g E G. // u^ is a net in MAp (G) such that p

II^HMA^—— II^IMA^
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and Up —> u in the a(MAp(G), L1 (G))-topology then u^ —> u
in the ^'multiplier topology.

To prove this theorem we need an auxiliary result for whose
proof we use that we admit complex scalars for our linear spaces.

PROPOSITION. - The linear span of {v E Ap(G)/v(e) = |H|̂  ,
v has compact support} is norm dense in A (G).

Proof. — The dual space of A (G) is the ultra weak operator
topology closure of P/p(G) in the space of bounded operators
on If (G), the duality is given by

< T , ^ > = S ^ Tw^)t^)^
n — i

00

when u = Z ^ * < € A-(G), T € AJG)* (see [9]).
n= 1 • '

By theorem 4.1 and theorem 9.4 of [2] we have

e-1 l |T | |<sup{<T/ , /^>/ /eL P (G) , ||/||̂  = 1},

where f^ = I/T"'1 exp(—f arg (/(.))) is the unique element
of I/(G) with < / , / ^ > = 1 and norm one.

If we approximate /GL^G) by / . X K , where K C G
is a suitable compact set, in the I/-norm, then (/Xic)^ ==^XK
approximates f* in If -norm. This is why we can restrict
the supremum to be taken over the elements f^If(G) with
compact support and norm one.

If /GL/^G) has compact support then i^/^*/^ will
have compact support too, and if ||/|| = 1 then,

1 = 11/llp 11/^11^ > IMlAp > IHL =/^*r(^) = 1 1 / 1 1 ^ == 1 .

Hence for any TGAp(G)* :

e~1 ||T|| < sup{<T ,v >/ v(e) = \\v\\^ , v has compact support},

and the proposition follows by an application of the Hahn-Banach
theorem.

10
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Proof of the theorem. — We may assume I I ^ H M A = ^ anc^
since translations are isometries of MA (G), we may further
assume u(e) = I I ^ H M A ? = 1 -

Since there exists j3o such that supdI^JI^A / P ^ P o } ^ °°
it suffices, by the above proposition, to show Ug v —^ uv when
v has compact support, say K , and v(e) = \\v\\^ = 1. Now,
the u^ v and uv are elements of A^ (G), and on this space
the W -norm is equivalent to the A -norm (this follows from
proposition 1 of [6] and proposition 3 of [8]). Thus we must
only show \\UQ v -uv\\^ —^ 0.

Clearly, Ug v —> uv in the weak* topology of A^(G),
and, if we can show that lim||^t;||^ = l l^vl lw » then the
corollary of the last section finishes the proof.

But,
1 = u(e) v(.e) < ll^llyy ^ lim inf||^v||^

and
1 = u ( e ) v ( e ) = I I^I^Ap \\v\\Ap = I™ II^HMA^ II^ILp
> lim sup 11̂  v\\^ > lim sup \\u» v\\^

from which lim \\Ug v\\^ = 1 = 11^11^ follows.
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