GERO FENDLER An L^p-version of a theorem of D.A. Raikov

Annales de l'institut Fourier, tome 35, nº 1 (1985), p. 125-135 <http://www.numdam.org/item?id=AIF_1985__35_1_125_0>

© Annales de l'institut Fourier, 1985, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

AN L^p-VERSION OF A THEOREM OF D. A. RAIKOV

by Gero FENDLER(*)

1. Introduction.

Let G be a locally compact group, for $p \in (1, \infty)$, let $Pf_p(G)$ denote the closure of $L^1(G)$ in the convolution operator norm on $L^p(G)$. Denote by $W_p(G)$ the dual of $Pf_p(G)$ which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space $A_p(G)$. (See [5], [8], [9] for all this.)

It is shown in these notes that on the unit sphere of $W_p(G)$ the weak * (i.e. the $\sigma(W_p, Pf_p)$ topology and the A_p -multiplier topology coincide $(u_\beta \longrightarrow u)$ in the latter if $||(u_\beta - u)v|| \longrightarrow 0$ for each $v \in A_p(G)$).

If p = 2 and G is amenable then $W_2(G)$ is just the Fourier-Stieltjes algebra of G, denoted B(G), and $A_2(G)$ is the Fourier algebra of G. From this point of view the above enunciation is an L^p -version of a theorem of D.A. Raikov, which asserts that on the positive face of the unit sphere of B(G) the weak * topology coincides with the topology of uniform convergence on compact sets (since $A_p(G)$ always contains functions which take the value one on a given compact set the latter topology is clearly weaker than the $A_p(G)$ multiplier topology; and on norm bounded sets obviously stronger than the weak * topology).

The proof is based on a technique of G.C. Rota [10], first used in harmonic analysis by E.M. Stein; our application is close to the work of M. Cowling [3]. On the other hand this paper continues the line of studies taken up by E.E. Granirer and M. Leinert in [7].

^(*) This work was done while the author held a C.N.R. grant at the University of Genova (Italy)

Key-words : L^{p} -convolution operators, Figà-Talamanca-Herz space $A_{p}(G)$, Certain topologies on the multipliers of $A_{p}(G)$, A noncommutative Littlewood-Paley estimate.

G. FENDLER

The author thanks Prof. M. Leinert for stating the problem and Prof. M. Cowling for several fruitful discussions on the topic of this paper.

2. An estimate for the L^p -operator norm of the sum of two "spectrally disjoint" operators.

If R and S are two commuting normal (of course bounded) operators on an Hilbert space H then, via the Gelfand transform, R and S correspond to some continuous functions on a locally compact space X; further R, S are spectrally disjoint, if the supports of those functions are disjoint. It then follows easily that $||R + S|| = \max \{||R||, ||S||\}$; we remark that there exists an orthogonal projection P with PR = R = RP and (1 - P)S = S = S(1 - P).

From this :

$$\| (R+S)\xi \| = \| (R+S) (P+1-P)\xi \|$$

= $\| PRP\xi + (1-P)S(1-P)\xi \|$
= $(\| PRP\xi \|^2 + \| (1-P)S(1-P)\xi \|^2)^{1/2}$
 $\leq (\| R \|^2 \| P\xi \|^2 + \| S \|^2 \| (1-P)\xi \|^2)^{1/2}$
 $\leq \max \{ \| R \|, \| S \| \} (\| P\xi \|^2 + \| (1-P)\xi \|^2)^{1/2}$
 $\leq \max \{ \| R \|, \| S \| \} \| \xi \|$ for all $\xi \in H$.

Now let (X, μ) be a σ -finite measure space ; an operator T acting on all L^{p} -spaces will be called special if :

i) $Tf \ge 0$ if $f \ge 0$ ii) $||Tf||_p \le ||f||_p$ $f \in L^p(X, \mu), 1 \le p \le \infty$ iii) $T1_X = 1_X$ iv) $\int_X Tf(x) \overline{g(x)} d\mu(x) = \int_X f(x) \overline{Tg(x)} d\mu(x) f, g \in L^2(X, \mu).$

Those operators will serve as a substitute for orthogonal projections, since by a method due to G.C. Rota they may be seen as conditional expectations on a certain measure space.

We begin with the following observation :

PROPOSITION. – Let (Y, \mathcal{F}, ν) be a σ -finite measure space, $\mathcal{F}_1 \subset \mathcal{F}$ a sub- σ -algebra of \mathcal{F} such that (Y, \mathcal{F}_1, ν) is again σ -finite, (which ensures the existence of a conditional expectation operator E_1 with respect to \mathcal{F}_1).

Then we have for $\xi, \eta \in L^p(Y, \mathfrak{F}, \nu)$:

$$\|\mathbf{E}_{1} \boldsymbol{\xi} + (1 - \mathbf{E}_{1}) \boldsymbol{\eta}\|_{p} \leq (\|\boldsymbol{\xi}\|_{p}^{r} + 2 \|\boldsymbol{\eta}\|_{p}^{r})^{1/r}$$

where r = p if $1 \le p \le 2$ and r = p', the index conjugate to p, if $2 \le p \le \infty$.

Proof. - Clearly

1) $\|\mathbf{E}_{1} \boldsymbol{\xi} + (1 - \mathbf{E}_{1}) \boldsymbol{\eta}\|_{1} \leq \|\boldsymbol{\xi}\|_{1} + 2 \|\boldsymbol{\eta}\|_{1}$

2) $\|\mathbf{E}_1 \boldsymbol{\xi} + (1 - \mathbf{E}_1) \boldsymbol{\eta}\|_2^2 \le \|\boldsymbol{\xi}\|_2^2 + \|\boldsymbol{\eta}\|_2^2 \le \|\boldsymbol{\xi}\|_2^2 + 2 \|\boldsymbol{\eta}\|_2^2$

3) $\|\mathbf{E}_1 \boldsymbol{\xi} + (1 - \mathbf{E}_1) \boldsymbol{\eta}\|_{\infty} \le \|\boldsymbol{\xi}\|_{\infty} + 2 \|\boldsymbol{\eta}\|_{\infty}$

and the assertion follows from interpolation between 1) and 2) (resp. 2) and 3)) on mixed $l^{p}(L^{q})$ -spaces (see [1]).

Let (X, μ) and T be as above. Define $Y = X \times X$ and endow Y with the usual product σ -algebra denoted \mathcal{F} . We define a measure ν on Y by requiring that

$$\nu(S_0 \times S_1) = \int_X^* \chi_{S_0}(x) T \chi_{S_1}(x) d\mu(x)$$

(whenever S_0 , S_1 are measurable subsets of X).

Denote by \mathscr{F}_1 and \mathscr{F}_0 the σ -algebras of sets $X \times S(S \subseteq X)$ measurable), respectively of sets $S \times X$ ($S \subseteq X$ measurable), further denote by E_1 , E_0 the corresponding conditional expectation operators. For a measurable function ξ on X we define for $x = (x_0, x_1) \in Y$

$$\xi^{i}(x_{0}, x_{1}) = \xi(x_{i}) \quad i = 0, 1.$$

Then $\xi \longrightarrow \xi^0$ gives rise to an isometric isomorphism between $L^p(X, \mu)$ and the subspace of \mathcal{F}_0 -measurable elements of $L^p(Y, \nu)$; whereas $\xi \longrightarrow \xi^1$, from $L^p(X, \mu)$ to $L^p(Y, \nu)$, does not increase norms.

Further :

$$E_{0}(\xi^{i}) = \begin{cases} (T\xi)^{0} & \text{if } i = 1\\ \xi^{0} & \text{if } i = 0 \end{cases}$$
$$E_{1}(\xi^{0}) = (T\xi)^{1}.$$

For a proof of these facts we refer the reader to the book of E.M. Stein [11].

PROPOSITION. – Let (X, μ) be a o-finite measure space, T a special operator and $1 . Then for <math>\xi_1, \xi_2 \in L^p(X, \mu)$: $\|T^2 \xi_1 + (1 - T^2) \xi_2\| \le (\|\xi_1\|_p^r + 2 \|\xi_2\|_p^r)^{1/r}$, with $r = \min \{p, p'\}$.

Proof. - We apply the above procedure to T, then

$$\begin{split} \|\mathbf{T}^{2} \,\xi_{1} \,+ (1 - \mathbf{T}^{2}) \,\xi_{2} \,\| &= \| \,\mathbf{E}_{0}((\mathbf{T}\xi_{1})^{1} \,+ \xi_{2}^{0} - (\mathbf{T}\xi_{2})^{1}) \| \\ &\leq \| (\mathbf{T}\xi_{1})^{1} \,+ \xi_{2}^{0} - (\mathbf{T}\xi_{2})^{1} \,\| \\ &= \| \,\mathbf{E}_{1}(\xi_{1}^{0}) \,+ (1 - \mathbf{E}_{1}) \,(\xi_{2}^{0}) \| \\ &\leq (\| \,\xi_{1}^{0} \|^{r} \,+ 2 \,\| \,\xi_{2}^{0} \|^{r})^{1/r} \,. \end{split}$$

COROLLARY. – Let R, S be bounded operators on $L^{p}(X, \mu)$, then we have

 $||T^{2} R + (1 - T^{2})S|| \le (||R||^{r} + 2 ||S||^{r})^{1/r}.$

3. The weak* topology on the unit sphere of $W_p(G)$.

Let G be a locally compact group, with a fixed left Haar measure dg and modular function Δ . Let $L^p(G)$, $1 \le p \le \infty$, denote the usual Lebesgue spaces with respect to dg and for functions f, h on G let be defined $f * h(x) = \int_G^{\infty} f(g) h(g^{-1} x) dg$, $f^{\sim}(g) = f(g^{-1}) \Delta(g^{-1}), f^* = \overline{f}^{\sim}, f^p(g) = f(g^{-1}).$

For this section let now $p \in (1, \infty)$ be fixed and let $A_p(G)$ (as in [8]) be the algebra of functions u on G which can be represented as $u = \sum_{n=1}^{\infty} v_n * w_n^V$, where

$$\sum_{n} \|v_{n}\|_{p} \cdot \|w_{n}\|_{p < \infty} , \frac{1}{p} + \frac{1}{p'} = 1.$$

The norm on A_p is defined as the inf $\Sigma \|v_n\|_{p'} \|w_n\|_p$ taken over all such representations of u.

If f is an element of $L^{1}(G)$ then on one hand $w \mapsto f * w$ defines a convolution operator on $L^{p}(G)$ and on the other $u \mapsto \int_{G}^{\bullet} f(g) u(g) dg$ a continuous linear functional on $A_{p}(G)$. From $\langle f, v * w^{V} \rangle = \langle f * w, v \rangle$ it follows that the corresponding norms of f coincide.

Let $Pf_p(G)$ denote the closure of $L^1(G)$ in the algebra of convolution operators on $L^p(G)$ and $W_p(G)$ the dual space of $Pf_p(G)$, which is contained in $L^{\infty}(G)$, and in which $A_p(G)$ is norm non-increasingly embedded.

If t is a nonnegative (almost everywhere) function with $||t||_1 = 1$ then $t * t^{\sim}$, as a convolution operator, is almost a special operator, except that (G, dg) might not be σ -finite.

Let U_{α} be an open relatively compact neighborhood base at the identity e of G. If $V_{\alpha} = V_{\alpha}^{-1}$ are open neighborhoods of e such that $V_{\alpha}^2 \subset U_{\alpha}$ then $\tau_{\alpha} = \lambda (V_{\alpha})^{-1} \chi_{V_{\alpha}}$, where $\lambda(V)$ denotes the Haar measure of V and χ_{V} its characteristic function, $t_{\alpha} = \tau_{\alpha} * \tau_{\alpha}^{\sim}$ and $e_{\alpha} = t_{\alpha} * t_{\alpha}$ are approximate identities for $L^1(G)$, e_{α} being the square of a "special" operator. This last fact we seem really to need in the proof of the following

LEMMA. - Let $e_{\alpha} = t_{\alpha} * t_{\alpha}$ be as above, if u_{β} is a net in $W_{p}(G)$ such that $u_{\beta} \longrightarrow u_{0}$ in the weak* topology of $W_{p}(G)$ and if $||u_{\beta}||_{W_{p}} \longrightarrow ||u_{0}||_{W_{p}}$, then for $\epsilon > 0$ there exist β_{0} , α_{0} such that i) $||e_{\alpha_{0}} * u_{\beta} - u_{\beta}||_{W_{p}} \leq \epsilon$ for all $\beta \geq \beta_{0}$ and

ii) $\|e_{\alpha_0} * u_0 - u_0\|_{w_n} \leq \epsilon$.

Proof. – Clearly ii) is a consequence of i), so it is enough to prove i) and we may assume that $||u_0|| = 1$. We suppose now that there is a net u_β which converges to u_0 as described in the lemma and an $\epsilon > 0$ such that for all α_0 , β_0 there exists $\beta > \beta_0$ with

$$\|e_{\alpha_0} * u_{\beta} - u_{\beta}\| > \epsilon.$$

We shall derive a contradiction.

Let $0 < \eta < \epsilon/2$, to be specified later, and choose $f \in L^1(G)$ with

$$\|f\|_{\mathbf{P}f_{p}} = 1, \langle f, u_{0} \rangle \ge 1 - \eta,$$

then choose α_0 with

$$\|e_{q_0}*f-f\|_{\mathbf{P}f_p} \leq \eta$$

and β_0 with

$$|\langle u_{\beta}, e_{\alpha_{0}} * f \rangle - \langle u_{0}, e_{\alpha_{0}} * f \rangle| \leq \eta,$$

$$||u_{\beta}|| \leq 1 + \eta$$
 for all $\beta \geq \beta_0$.

We may now fix $\beta > \beta_0$ with

$$\left\|e_{\alpha_{0}} * u_{\beta} - u_{\beta}\right\|_{w_{p}} > \epsilon$$

and find $g \in L^{1}(G)$, $||g||_{Pf_{n}} = 1$, with

$$\langle e_{lpha_0} st u_eta - u_eta$$
 , g $angle > \epsilon - \eta$

i.e. $\langle u_{\beta}, (e_{\alpha_0} - 1) * g \rangle = \langle u_{\beta}, (1 - e_{\alpha_0}) * (-g) \rangle > \epsilon - \eta$.

Now, the supports of t_{α_0} , f, g are contained in a σ -finite open subgroup G_0 of G. Since for an $L^1(G)$ function h with support in G_0 : $||h||_{Pf_p(G_0)} = ||h||_{Pf_p(G)}$, we may apply the estimation of the corollary of the last section to $e_{\alpha_0} * f - \lambda g + \lambda e_{\alpha_0} * g$, where $\lambda > 0$:

 $\|e_{\alpha_0} * f + (1 - e_{\alpha_0}) * (-\lambda g)\| \le (\|f\|^r + 2\| - \lambda g\|^r)^{1/r} = (1 + 2\lambda^r)^{1/r}.$ So on one hand

$$\langle u_{\beta}, e_{\alpha_0} * f + (1 - e_{\alpha_0}) * (-\lambda g) \rangle \leq ||u_{\beta}|| (1 + 2\lambda^r)^{1/r}$$

$$\leq (1 + \eta) (1 + 2\lambda^r)^{1/r} ,$$

and on the other

$$\begin{split} |\langle u_{\beta}, e_{\alpha_{0}} * f + (1 - e_{\alpha_{0}}) * (-\lambda g)\rangle| &= |\langle u_{0}, f\rangle + \langle u_{0}, e_{\alpha_{0}} * f - f\rangle \\ &+ \langle u_{\beta} - u_{0}, e_{\alpha_{0}} * f\rangle + \lambda \langle e_{\alpha_{0}} * u_{\beta} - u_{\beta}, g\rangle| \ge 1 - 3\eta + \lambda \epsilon/2. \\ \text{But} \quad 1 - 3\eta + \lambda \epsilon/2 \le (1 + \eta) |(1 + 2\lambda^{r})^{1/r} \text{ cannot hold for} \\ \text{all } \eta \in (\epsilon/2, 0), \lambda > 0. \end{split}$$

We thank the referee for pointing out to us the following implication of the lemma (due to M. Cowling, theorem 3 of [3]; see [4] for a different proof).

COROLLARY. – Translations act continuously on $W_{p}(G)$.

Proof. - For $h \in G$ let $_h u(g) = u(h^{-1}g)$ and $u_h(g) = u(gh)$, $g \in G$.

We first consider left translations, if u is in $W_p(G)$, $\epsilon > 0$ then we find, by the lemma, an element e of $L^1(G)$ with

$$\|e * u - u\|_{W_n} \leq \epsilon$$

Then

$$\begin{split} \|_{h}u - u\|_{W_{p}} &\leq \|_{h}u - {}_{h}(e \ast u)\|_{W_{p}} + \|_{h}(e \ast u) - e \ast u\|_{W_{p}} \\ &+ \|e \ast u - u\|_{W_{p}} \\ &\leq \|u - e \ast u\|_{W_{p}} + \|_{h}e - e\|_{1} \|u\|_{W_{p}} + \|e \ast u - u\|_{W_{p}} \end{split}$$

 $\leq 3\epsilon$ if *h* is in a neighborhood V of the identity, choosen such that $\|_{h}e - e\|_{1} \leq \epsilon \|u\|_{W_{n}}^{-1}$ for all $h \in V$.

From $||f||_{Pf_p} = ||f^{\sim}||_{Pf_{p'}}$, for $f \in L^1(G)$, we infer that $||u||_{W_p} = ||u^{\vee}||_{W_{p'}}$ for $u \in W_p(G)$, and hence the continuity of right translations, on W_p , follows from that of left translations on $W_{p'}$.

It has been proved by Herz [8], that for $v \in A_p(G)$ and $u \in W_p(G)$ the pointwise product $u \cdot v$ is in $A_p(G)$ and $||u \cdot v||_{A_p} \leq ||u||_{W_p} ||v||_{A_p}$.

We say that a net $u_{\beta} \in W_p(G)$ converges to $u \in W_p$ in the A_p -multiplier topology, if, for all $v \in A_p$, $u_{\beta}v \longrightarrow uv$ in A_p norm.

THEOREM. - On the unit sphere $S = \{u \in W_p / ||u||_{W_p} = 1\}$ of $W_p(G)$ the weak * and the A_p -multiplier topology coincide.

Proof. - Let $u_{\beta}, u \in S$ be such that $u_{\beta} \longrightarrow u$ in the weak * topology. Let $e_{\alpha} = t_{\alpha} * t_{\alpha}$ be as in the lemma. Then for $v \in A_{p}(G)$

$$\begin{split} \|u_{\beta}v - uv\| &\leq \|(u_{\beta} - e_{\alpha_{0}} * u_{\beta})v\| + \|[e_{\alpha_{0}} * (u_{\beta} - u)]v\| \\ &+ \|(e_{\alpha_{0}} * u - u)v\| \\ &\leq \epsilon \|v\| + \|[e_{\alpha_{0}} * (u_{\beta} - u)]v\| + \epsilon \|v\|, \end{split}$$

when $\beta \ge \beta_0$, where α_0 , β_0 are choosen according to the lemma. Since $t_{\alpha_0} \in L^1(G) \cap L^{\infty}(G)$ has compact support we may apply lemma 6 of [7] and find $\beta_1 \ge \beta_0$ such that for $\beta \ge \beta_1$ $\|[e_{\alpha_0} * (u_\beta - u)]v\| \le \epsilon$.

For the converse it is sufficient to note that $u_{\beta} \longrightarrow u$ uniformly on compact sets, whenever $u_{\beta} \longrightarrow u$ in the A_p -multiplier topology and $||u||_{W_p}$ is bounded. So, for a compact set K, let $v \in A_p(G)$ be a function which takes the value one on K (e.g. take $v = \lambda(U)^{-1} \chi_U * \chi_{K^{-1} U}$, where U is open, relatively compact) then

$$\sup_{g \in K} |(u_{\beta} - u)(g)| \leq ||(u_{\beta} - u)v||_{\infty} \leq ||(u_{\beta} - u)v||_{A_{p}} \longrightarrow 0$$

The following corollary is of interest with respect to the problems considered in [6]. To state it, let, for a compact set $K \subset G$, $A_K^p(G) = \{v \in A_p(G) / \text{supp } v \subset K\}$. This space we consider as a subspace of $W_p(G)$.

COROLLARY. – On the unit sphere of $(A_K^p(G), \| \cdot \|_{W_p})$ the weak * and the norm topology coincide.

Proof. - Let $u_{\beta}, u \in A_{K}^{p}(G)$ be such that $u_{\beta} \longrightarrow u$ in the weak * topology and $||u_{\beta}||_{W_{p}} = 1 = ||u||_{W_{p}}$. Then, for $v \in A_{k}^{p}(G)$ which is constant one on K',

 $\|u_{\beta} - u\|_{W_{p}} = \|(u_{\beta} - u)v\|_{W_{p}} \leq \|(u_{\beta} - u)v\|_{A_{p}} \longrightarrow 0$

by our theorem. The converse is evident.

4. Addendum.

When the paper was already finished we realized that, by our method, we can improve a theorem of E.E. Granirer, theorem 3 of [6], which we think to be central in the cited paper.

Let $\operatorname{MA}_{p}(G)$ be the algebra of (continuous, bounded) functions on G which pointwise multiply $\operatorname{A}_{p}(G)$ into itself and let for $u \in \operatorname{MA}_{p}(G) ||u||_{\operatorname{MA}_{p}} = \sup \{ ||uv||_{\operatorname{A}_{p}} / ||v||_{\operatorname{A}_{p}} = 1 \}$.

THEOREM. - Let $u \in MA_p(G)$ be such that $u(g) = ||u||_{MA_p}$ for an $g \in G$. If u_g is a net in $MA_p(G)$ such that

 $\|u_{\beta}\|_{\mathrm{MA}_{p}} \longrightarrow \|u\|_{\mathrm{MA}_{p}}$

and $u_{\beta} \longrightarrow u$ in the $\sigma(MA_{p}(G), L^{1}(G))$ -topology then $u_{\beta} \longrightarrow u$ in the A_{p} -multiplier topology.

To prove this theorem we need an auxiliary result for whose proof we use that we admit complex scalars for our linear spaces.

PROPOSITION. – The linear span of $\{v \in A_p(G)/v(e) = \|v\|_{A_p}, v \text{ has compact support}\}$ is norm dense in $A_p(G)$.

Proof. – The dual space of $A_p(G)$ is the ultra weak operator topology closure of $Pf_p(G)$ in the space of bounded operators on $L^p(G)$, the duality is given by

$$\langle \mathbf{T}, u \rangle = \sum_{n=1}^{\infty} \int_{\mathbf{G}} \mathbf{T} w_n(g) v_n(g) dg$$

when $u = \sum_{n=1}^{\infty} v_n * w_n^{\nu} \in A_p(G), T \in A_p(G)^*$ (see [9]).

By theorem 4.1 and theorem 9.4 of [2] we have

$$e^{-1} ||T|| \leq \sup \{ \langle Tf, f^{\#} \rangle / f \in L^{p}(G), ||f||_{p} = 1 \},$$

where $f^{\#} = |f|^{p-1} \exp(-i \arg(f(.)))$ is the unique element of $L^{p'}(G)$ with $\langle f, f^{\#} \rangle = 1$ and norm one.

If we approximate $f \in L^{p}(G)$ by $f \cdot X_{K}$, where $K \subseteq G$ is a suitable compact set, in the L^{p} -norm, then $(f \chi_{K})^{\#} = f^{\#} \chi_{K}$ approximates $f^{\#}$ in $L^{p'}$ -norm. This is why we can restrict the supremum to be taken over the elements $f \in L^{p}(G)$ with compact support and norm one.

If $f \in L^{p}(G)$ has compact support then $v = f^{\#} * f^{v}$ will have compact support too, and if $||f||_{p} = 1$ then,

$$1 = \|f\|_{p} \|f^{\#}\|_{p'} \ge \|v\|_{A_{p}} \ge \|v\|_{\infty} = f^{\#} * f^{\nu}(e) = \|f\|_{p}^{p} = 1.$$

Hence for any $T \in A_p(G)^*$:

 $e^{-1} ||T|| \leq \sup \{\langle T, v \rangle / v(e) = ||v||_{A_p}, v \text{ has compact support} \}$, and the proposition follows by an application of the Hahn-Banach theorem.

Proof of the theorem. — We may assume $||u||_{MA_p} = 1$ and, since translations are isometries of $MA_p(G)$, we may further assume $u(e) = ||u||_{MA_p} = 1$.

Since there exists β_0 such that $\sup \{ \|u_{\beta}\|_{MA_p} / \beta \ge \beta_0 \} < \infty$ it suffices, by the above proposition, to show $u_{\beta} v \longrightarrow uv$ when v has compact support, say K, and $v(e) = \|v\|_{A_p} = 1$. Now, the $u_{\beta} v$ and uv are elements of $A_K^p(G)$, and on this space the W_p -norm is equivalent to the A_p -norm (this follows from proposition 1 of [6] and proposition 3 of [8]). Thus we must only show $\|u_{\beta} v - uv\|_{W_p} \longrightarrow 0$.

Clearly, $u_{\beta}v \longrightarrow uv$ in the weak* topology of $A_{K}^{p}(G)$, and, if we can show that $\lim ||u_{\beta}v||_{W_{p}} = ||uv||_{W_{p}}$, then the corollary of the last section finishes the proof.

But,

 $1 = u(e)v(e) \leq ||uv||_{W_n} \leq \lim \inf ||u_\beta v||_{W_n}$

and

 $1 = u(e) v(e) = \|u\|_{MA_{p}} \|v\|_{A_{p}} = \lim \|u_{\beta}\|_{MA_{p}} \|v\|_{A_{p}}$

 $\geq \lim \sup \|u_{\beta} v\|_{A_{p}} \geq \lim \sup \|u_{\beta} v\|_{W_{p}}$

from which $\lim \|u_{\beta}v\|_{W_{p}} = 1 = \|uv\|_{W_{p}}$ follows.

BIBLIOGRAPHY

- A. BENEDEK and R. PANZONE, The spaces L^p with mixed norm, Duke Math. J., 28 (1961), 301-324.
- [2] F.F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series 2, Cambridge 1971.
- [3] M. COWLING, An application of Littlewood-Paley theory in harmonic analysis, *Math. Ann.*, 241 (1979), 83-69.
- [4] M. COWLING and G. FENDLER, On representations in Banach spaces, *Math. Ann.*, 266 (1984), 307-315.
- [5] P. EYMARD, Algèbres A_p et convoluteurs de L^p. Séminaire Bourbaki 22^è année, 1969/70, no. 367.

- [6] E.E. GRANIRER, An application of the Radon Nikodym property in harmonic analysis, *Bolletino U.M.I.*, (5) 18-B (1981), 663-671.
- [7] E.E. GRANIRER and M. LEINERT, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Moutain J. of Math., 11 (1981), 459-472.
- [8] C. HERZ, Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157.
- [9] C. HERZ, Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble, 23-3 (1973), 91-123.
- [10] G.C. ROTA, An "alternierende Verfahen" for general positive operators, Bull. A.M.S., 68 (1962), 95-102.
- [11] E.M. STEIN, Topics in harmonic analysis related to the Littlewood-Paley theorem, Princeton University Press, 1970.

Manuscrit reçu le 20 septembre 1983.

Gero FENDLER, Finstertal 16 D-6947 Laudenbach (R.F.A).