Annales de l'institut Fourier

Jean Bourgain

Sidon sets and Riesz products

Annales de l'institut Fourier, tome 35, no 1 (1985), p. 137-148

http://www.numdam.org/item?id=AIF_1985_35_1_137_0
© Annales de l'institut Fourier, 1985, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SIDON SETS AND RIESZ PRODUCTS

by Jean BOURGAIN

1. Notations.

In what follows, G will be a compact abelian group and $\Gamma=\hat{G}$ the dual group. According to the context, we will use the additive or multiplicative notation for the group operation in Γ. For $1 \leqslant p \leqslant \infty, L^{p}(\mathrm{G})$ denotes the usual Lebesgue space. For $\mu \in M(G)$, let $\|\mu\|_{P M}=\sup _{\gamma \in \Gamma}|\hat{\mu}(\gamma)|$.

A subset Λ of Γ is called a Sidon set provided there is a constant C such that the inequality

$$
\begin{equation*}
\sum_{\gamma \in \Lambda}\left|\alpha_{\gamma}\right| \leqslant \mathrm{C}\left\|\sum_{\gamma \in \Lambda} \alpha_{\gamma} \gamma\right\|_{\infty} \tag{1}
\end{equation*}
$$

holds for all finite scalar sequences $\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda}$. The smallest constant $S(\Lambda)$ fulfilling (1) is called the Sidon constant of Λ. The reader is referred to [3] for elementary Sidon set theory.
$|A|$ stands for the cardinal of the set A.
Assume A a subset of Γ and $d \geqslant 0$. We will consider the set of characters

$$
\mathrm{P}_{d}[\mathrm{~A}]=\left\{\sum_{\gamma \in \mathrm{A}} z_{\gamma} \gamma \mid z_{\gamma} \in \mathbf{Z}(\gamma \in \mathrm{A}) \quad \text { and } \quad \sum_{\gamma \in \mathrm{A}}\left|z_{\gamma}\right| \leqslant d\right\}
$$

Then $\quad\left|\mathrm{P}_{d}[\mathrm{~A}]\right| \leqslant\left(\frac{\mathrm{C}|\mathrm{A}|}{d}\right)^{d} \quad$ if $\quad d \leqslant|\mathrm{~A}|$
and $\quad\left|\mathrm{P}_{d}[\mathrm{~A}]\right| \leqslant\left(\frac{\mathrm{C} d}{|\mathrm{~A}|}\right)^{|\mathrm{A}|} \quad$ if $\quad d>|\mathrm{A}|$
where C is a numerical constant (cf. [7], p. 46).

Mots-clefs : Ensemble de Sidon, Ensemble quasi-indépendant, Produits de Riesz.

We say that $A \subset \Gamma$ is quasi-independent, if the relation $\Sigma_{A} z_{\gamma} \gamma=0, z_{\gamma}=-1,0,1(\gamma \in A) \quad$ implies $\quad z_{\gamma}=0(\gamma \in A)$.

If A is quasi-independent, the measure

$$
\mu=\prod_{\gamma \in \mathrm{A}}\left(1+\operatorname{Re} a_{\gamma} \gamma\right)
$$

where $a_{\gamma} \in \mathrm{C},\left|a_{\gamma}\right| \leqslant 1$, is positive and $\|\mu\|_{\mathrm{M}(\mathrm{G})}=1$.
We call it a Riesz product.
Say that $A \subset \Gamma$ tends to infinity provided to each finite subset Γ_{0} of Γ corresponds a finite subset A_{0} of A such that

$$
\gamma, \delta \in A \backslash A_{0}, \gamma \neq \delta \Longrightarrow \gamma-\delta \notin \Gamma_{0}
$$

A Sidon set Λ is of first type provided there is a constant $C<\infty$ and, for each nonempty open subset I of G, there is a finite subset Λ_{0} of Λ so that

$$
\begin{equation*}
\sum_{\gamma \in \Lambda \backslash \Lambda_{0}}\left|\alpha_{\gamma}\right| \leqslant C\left\|\sum_{\gamma \in \Lambda \backslash \Lambda_{0}} \alpha_{\gamma} \gamma\right\|_{C(1)} \tag{2}
\end{equation*}
$$

for finite scalar sequences $\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda \backslash \Lambda_{0}}$, where

$$
\|f\|_{\mathrm{C}(\mathrm{I})}=\sup _{x \in \mathrm{I}}|f(x)|
$$

2. Interpolation by averaging Riesz products.

In this section, we will prove the following result:

Theorem. - For a subset Λ of Γ, the following conditions are equivalent:
(1) Λ is a Sidon set
(2) $\left\|\Sigma_{\Lambda} \alpha_{\gamma} \gamma\right\|_{p} \leqslant C p^{1 / 2}\left(\Sigma\left|\alpha_{\gamma}\right|^{2}\right)^{1 / 2}$ for all finite scalar sequen$\operatorname{ces}\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda}$ and $p \geqslant 1$.
(3) There is $\delta>0$ such that each finite subset A of Λ contains a quasi-independent subset B with $|\mathrm{B}| \geqslant \delta|\mathrm{A}|$.
(4) There is $\delta>0$ such that if $\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda}$ is a finite sequence of scalars, there exists a quasi-independent subset A of Λ such that

$$
\sum_{\gamma \in \Lambda}\left|\alpha_{\gamma}\right| \geqslant \delta \sum_{\gamma \in \Lambda}\left|\alpha_{\gamma}\right|
$$

Implication $(1) \Longrightarrow(2)$ is a consequence of Khintchine's inequalities and is due to W. Rudin [8]. The standard argument that quasiindependent sets are Sidon sets yields $(4) \Longrightarrow(1)$. We will not give it here since it will appear in the next section in the context of an application. Finally, the results $(2) \Longrightarrow(1)$ and $(1) \Longrightarrow$ (3) are due to G. Pisier (see [4], [5] and [6]. The characterization (4) is new. It has the following consequence (by a duality argument):

Corollary 1. - If Λ is a Sidon set, there is $\delta>0$ such that whenever $\left(a_{\gamma}\right)_{\gamma \in \Lambda}$ is a finite scalar sequence and $\left|a_{\gamma}\right| \leqslant \delta$, then we have

$$
\hat{\mu}(\gamma)=\int_{G} \bar{\gamma}(x) \mu(d x)=a_{\gamma} \quad \text { for } \quad \gamma \in \Lambda
$$

where μ is in the σ-convex hull of a sequence of Riesz products.
Recall that the σ-convex hull of a bounded subset P of a complex Banach space X is the set of all elements $\sum_{i=1}^{\infty} \lambda_{i} x_{i}$ where $x_{i} \in P, \sum_{i=1}^{\infty}\left|\lambda_{i}\right| \leqslant 1$.

The remainder of the paragraph is devoted to the proof of (2) \Longrightarrow (3) \Longrightarrow (4) .

Let us point out that in the case of bounded groups, i.e. which elements are of bounded order, they can be simplified using algebraic arguments.

Lemma 1. - Condition (2) implies (3) with $\delta \sim \mathrm{C}^{-2}$.

Proof. - We first exhibit a subset A_{1} of $\mathrm{A},\left|\mathrm{A}_{1}\right| \gtrsim \mathrm{C}^{-2}|\mathrm{~A}|$, such that if $\sum_{\gamma \in A_{1}} \epsilon_{\gamma} \gamma=0$ and $\epsilon_{\gamma}=-1,0,1$, then $\Sigma\left|\epsilon_{\gamma}\right|<\frac{1}{2}\left|A_{1}\right| . \quad$ If $\quad \sum_{\gamma \in A_{2}} \epsilon_{\gamma} \gamma=0, \quad \epsilon_{\gamma}= \pm 1 \quad$ and $\quad A_{2} \subset A_{1}$ is choosen with $\left|A_{2}\right|$ maximum, the set $B=A_{1} \backslash A_{2}$ will be quasi-independent and $|B|>\delta|A|$.

The set A_{2} is obtained using a probabilistic argument. Fix $\tau=\mathrm{C}_{1}^{-1} \mathrm{C}^{-2}$ and $\ell=\frac{1}{4} \tau|\mathrm{~A}| \quad\left(\mathrm{C}_{2}\right.$ is a fixed constant, choosen to fulfil a next estimation). Let $\left(\xi_{\gamma}\right)_{\gamma \in \mathrm{A}}$ be independent $(0,1)$ valued random variables in ω and define

$$
\mathrm{F}_{\omega}(x)=\sum_{m=\ell}^{|\mathrm{A}|} \sum_{\substack{\mathbf{S} \subset \mathrm{A} \\|\mathrm{~S}|=m}} \prod_{\gamma \in \mathrm{S}} \xi_{\gamma}(\omega)(\gamma(x)+\bar{\gamma}(x))
$$

Notice that the property $\int_{G} F_{\omega}(x) d x=0$ is equivalent to the fact $\int_{G} \prod_{\gamma \in S}(\gamma+\bar{\gamma})=0$ whenever S is a subset of the random set $\left\{\gamma \in \mathrm{A} \mid \xi_{\gamma}(\omega)=1\right\}$ with $|S| \geqslant \ell$.

Thus the random set does not present (± 1)-relations of length at least ℓ.

Using condition (2) and the choice of τ, ℓ, we may evaluate $\iint_{\mathrm{G}} \mathrm{F}_{\omega}(x) d x d \omega \leqslant \sum_{m=\ell}^{|\mathrm{A}|} \tau^{m} \frac{1}{m!} \int_{\mathrm{G}}\left|\Sigma_{\mathrm{A}}(\gamma+\bar{\gamma})\right|^{m}$ $\leqslant \sum_{m \geqslant \ell} r^{m}(6 \mathrm{C})^{m}\left(\frac{|\mathrm{~A}|}{m}\right)^{m / 2}<2^{-\ell / 2}$.
Hence

$$
\frac{\tau|\mathrm{A}|}{2}+2^{\ell / 2} \iint_{\mathrm{G}} \mathrm{~F}_{\omega}(x) d x d \omega<\int \sum_{\gamma \in \mathrm{A}} \xi_{\gamma}(\omega)
$$

implying the existence of ω s.t.

$$
\left|\mathrm{A}_{1}\right|>\frac{\tau|\mathrm{A}|}{2}
$$

where $A_{1}=\left\{\gamma \in A \mid \xi_{\gamma}(\omega)=1\right\}$
and

$$
\int_{\mathrm{G}} \mathrm{~F}_{\omega}(x)<2^{-\ell / 2}|\mathrm{~A}|<1, \text { so } \int_{G} \mathrm{~F}_{\omega}(x)=0
$$

By definition of F_{ω} and the choice of ℓ, it follows that A_{1} has the desired properties.

The key step is the following construction:
Lemma 2.-Assume $\quad \Lambda_{1}, \ldots, \Lambda_{\mathrm{J}}$ disjoint quasi-independent subsets of Γ and

$$
\frac{\left|\Lambda_{j+1}\right|}{\left|\Lambda_{j}\right|}>\mathrm{R} \quad \text { for } \quad j=1, \ldots, \mathrm{~J}-1
$$

where the ratio $\mathrm{R}>10$ is some fixed numerical constant (appearing through later computations).

Then there are subsets Λ_{j}^{\prime} of $\Lambda_{j}(1 \leqslant j \leqslant \mathbf{J})$ s.t.
(1) $\left|\Lambda_{j}^{\prime}\right|>\frac{1}{10}\left|\Lambda_{j}\right|$ and
(2) $\bigcup_{j=1}^{j} \Lambda_{j}^{\prime}$ is quasi-independent.

Proof. - Fixing $j=1, \ldots, \mathrm{~J}$, we will exhibit a subset Λ_{j}^{\prime} of Λ_{j} satisfying the following condition (*)

$$
\eta_{1} \ldots \eta_{j-1} \eta_{j+1} \ldots \eta_{\mathrm{J}} \neq 0
$$

if

$$
0 \neq \eta_{j}=\sum_{\gamma \in \Lambda^{\prime}} \epsilon_{\gamma} \gamma\left(\epsilon_{\gamma}=-1,0,1\right)
$$

and for each $k \neq j$

$$
\eta_{k} \in \mathrm{P}_{d_{k}}\left(\Lambda_{k}\right) \quad \text { where } \quad d_{k}=\frac{\left|\Lambda_{j}\right|}{\left|\Lambda_{k}\right|} \sum_{\gamma \in \Lambda_{j}^{\prime}}\left|\epsilon_{\gamma}\right|
$$

Those sets Λ_{i}^{\prime} satisfy (2). Indeed if

$$
\eta_{1} \ldots \eta_{\mathrm{J}}=0 \quad \text { and } \quad \eta_{j}=\sum_{\gamma \in \Lambda_{j}^{\prime}} \epsilon_{\gamma} \gamma\left(\epsilon_{\gamma}=-1,0,1\right)
$$

then, defining $d_{j}=\sum_{\Lambda_{j^{\prime}}}\left|\epsilon_{\gamma}\right|$, either $d_{j}=0$ or $d_{k}\left|\Lambda_{k}\right|>d_{j}\left|\Lambda_{j}\right|$ for some $k \neq j$. If the d_{j} are not all 0 , we may consider j^{\prime} s.t. $d_{j}\left|\Lambda_{j^{\prime}}\right|$ is maximum, leading to a contradiction.

The construction of Λ_{j}^{\prime} for fixed j is done in the spirit of Lemma 1. It suffices to construct first $\bar{\Lambda}_{i} \subset \Lambda_{i}, \quad\left|\bar{\Lambda}_{i}\right|>\frac{1}{5}\left|\Lambda_{i}\right|$, fulfilling (*) under the additional restriction

$$
\begin{equation*}
\sum_{\gamma \in \bar{\Lambda}_{j}^{-}}\left|\epsilon_{\gamma}\right|>\frac{1}{2}\left|\bar{\Lambda}_{j}\right| . \tag{**}
\end{equation*}
$$

This set $\bar{\Lambda}_{j}$ is again found randomly. Consider independent $(0,1)$ valued random variable $\left\{\xi_{\gamma} \mid \gamma \in \Lambda_{j}\right\}$ of mean $\frac{1}{4}$ and define the random function on G
$\mathrm{F}_{\omega}=\sum_{m=\left|\Lambda_{j}\right| / 10}^{\left|\Lambda_{j}\right|} \sum_{\substack{\mathrm{S} \subset \Lambda_{j} \\|\mathrm{~S}|=m}} \prod_{\gamma \in \mathrm{S}} \xi_{\gamma}(\omega)(\gamma+\bar{\gamma}) \prod_{k \neq j} \Sigma\left\{\eta \in \mathrm{P}_{d_{k}(m)}\left(\Lambda_{k}\right)\right\}$
where $d_{k}(m)=\frac{\left|\Lambda_{j}\right|}{\left|\Lambda_{k}\right|} m$. Write

$$
\begin{aligned}
\iint_{\mathrm{G}} \mathrm{~F}_{\omega}(x) d x d \omega \leqslant & \sum_{m=\left|\Lambda_{j}\right| 10}^{\left|\Lambda_{j}\right|} 2^{-m} \\
& \int_{\mathrm{G}} \prod_{\gamma \in \Lambda_{j}}(1+\operatorname{Re} \gamma) \prod_{k \neq j} \Sigma\left\{\eta \in \mathrm{P}_{d_{k}(m)}\left(\Lambda_{k}\right)\right\}
\end{aligned}
$$

and using the estimation on $\left|\mathrm{P}_{\boldsymbol{d}}(\mathrm{A})\right|$ mentioned in the introduction, it follows the majoration by

$$
\begin{array}{ll}
2^{-\frac{\left|\Lambda_{j}\right|}{10}} \prod_{k \neq j}\left|\mathbb{P}_{d_{k}}\left(\Lambda_{k}\right)\right| \quad\left(d_{k}=d_{k}\left(\left|\Lambda_{j}\right|\right)=\frac{\left|\Lambda_{j}\right|^{2}}{\left|\Lambda_{k}\right|}\right) \\
\leqslant 2^{-\frac{\left|\Lambda_{j}\right|}{10}} \exp \left\{2 \sum_{k<j}\left|\Lambda_{k}\right| \log C \frac{\left|\Lambda_{j}\right|}{\left|\Lambda_{k}\right|}+2 \sum_{k>j} \frac{\left|\Lambda_{j}\right|^{2}}{\left|\Lambda_{k}\right|} \log \mathrm{C} \frac{\left|\Lambda_{k}\right|}{\left|\Lambda_{j}\right|}\right\}
\end{array}
$$

Since $\log x<2 \sqrt{x}$ for $x \geqslant 1$, we may further estimate by

$$
2^{-\frac{\left|\Lambda_{j}\right|}{10}} \exp \left\{C_{1} \sum_{k<j}\left(\frac{\left|\Lambda_{k}\right|}{\left|\Lambda_{j}\right|}\right)^{1 / 2}+C_{1} \sum_{k>j}\left(\frac{\left|\Lambda_{j}\right|}{\left|\Lambda_{k}\right|}\right)^{1 / 2}\right\}\left|\Lambda_{j}\right|<2^{-\frac{\left|\Lambda_{j}\right|}{11}}
$$

for an appropriate choice of the ratio R.
So again, since we may assume $\left|\Lambda_{j}\right|>20$

$$
\frac{1}{5}\left|\Lambda_{j}\right|+2^{\frac{\left|\Lambda_{j}\right|}{11}} \iint_{\mathrm{G}} \mathrm{~F}_{\omega}(x) d x d \omega<\int \sum_{\Lambda_{j}} \xi_{\gamma}(\omega) d \omega
$$

and there exists therefore some ω s.t. if $\bar{\Lambda}_{j}=\left\{\gamma \in \Lambda_{j} \mid \xi_{\gamma}(\omega)=1\right\}$ we have

$$
\left|\bar{\Lambda}_{j}\right|>\frac{1}{5}\left|\Lambda_{j}\right| \quad \text { and } \quad \int_{\mathrm{G}} \mathrm{~F}_{\omega}(x) d x=0
$$

But the latter property means that (*) holds under the restriction (**).

This proves lemma 2.
We derive now the implication $(3) \Longrightarrow(4)$.

Lemma 3. - If (3) of the theorem holds, then (4) is valid with $\delta(4) \sim \delta(3)$.

Proof. - From Lemma 2, the argument is routine. Let R be the constant appearing in Lemma 2 and fix a sequence $\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda}$ s.t. $\Sigma\left|\alpha_{\gamma}\right|=1$.

Define for $k=0,1,2, \ldots$

$$
\Lambda_{k}=\left\{\gamma \in \Lambda\left|\mathrm{R}_{1}^{-k} \geqslant\left|\alpha_{\gamma}\right|>\mathrm{R}_{1}^{-k-1}\right\}\right.
$$

where R_{1} is a numerical constant with $R_{1}>4 R$.
By hypothesis, there exists for each k a quasi-independent subset Λ_{k}^{1} of Λ_{k} s.t.

$$
\begin{equation*}
\left|\Lambda_{k}^{1}\right|>\delta\left|\Lambda_{k}\right| . \tag{1}
\end{equation*}
$$

Defining

$$
\Omega_{e}=\underset{k \text { even }}{\cup} \Lambda_{k}^{1} \quad \text { and } \quad \Omega_{0}=\underset{k \text { odd }}{\cup} \Lambda_{k}^{1}
$$

we have

$$
\sum_{\gamma \in \Omega_{e}}\left|\alpha_{\gamma}\right|+\sum_{\gamma \in \Omega_{0}}\left|\alpha_{\gamma}\right| \geqslant \frac{\delta}{\mathrm{R}_{1}}
$$

and may for instance assume

$$
\begin{equation*}
\sum_{\gamma \in \Omega_{e}}\left|\alpha_{\gamma}\right| \geqslant \frac{\delta}{2 \mathrm{R}_{1}} \tag{2}
\end{equation*}
$$

Define inductively the sequence $\left(k_{j}\right)_{j=1,2, \ldots}$ by

$$
k_{1}=0 \quad \text { and } \quad k_{j+1}=\min \left\{k>k_{j}| | \Lambda_{2 k}^{1}|>\mathrm{R}| \Lambda_{2 k_{j}}^{1} \mid\right\} .
$$

If we take $\Lambda_{j}^{2}=\Lambda_{2 k_{j}}^{1}$, it follows by construction that $\frac{\left|\Lambda_{j+1}^{2}\right|}{\left|\Lambda_{j}^{2}\right|}>\mathrm{R}$.
Moreover

$$
\begin{aligned}
& \sum_{j} \sum_{k_{j}<k<k_{j+1}} \sum_{\gamma \in \Lambda_{2 k}^{1}}\left|\alpha_{\gamma}\right| \\
& \leqslant \sum_{j} \sum_{k>k_{j}} \mathrm{R}_{1}^{-2 k} \mathrm{R}\left|\Lambda_{2 k_{j}}^{1}\right| \\
& \leqslant \frac{2 \mathrm{R}}{\mathrm{R}_{1}} \sum_{j} \mathrm{R}_{1}^{-2 k j-1}\left|\Lambda_{2 k_{j}}^{1}\right| \\
& \leqslant \frac{2 \mathrm{R}}{\mathrm{R}_{1}} \sum_{\gamma \in \Omega_{e}}\left|\alpha_{\gamma}\right|
\end{aligned}
$$

and since $R_{1}>4 R$, it follows thus by (2)

$$
\begin{equation*}
\sum_{j} \sum_{\gamma \in \Lambda_{j}^{2}}\left|\alpha_{\gamma}\right|>\frac{1}{4 \mathrm{R}_{1}} \delta \tag{3}
\end{equation*}
$$

Application of Lemma 2 to the sequence $\left(\Lambda_{j}^{2}\right)_{j=1,2}, \ldots$ leads to further subsets $\Lambda_{j}^{3} \subset \Lambda_{j}^{2}$ satisfying

$$
\left|\Lambda_{j}^{3}\right| \geqslant \frac{1}{10}\left|\Lambda_{j}^{2}\right| \quad \text { and } \quad \mathrm{A}=\cup \Lambda_{j}^{3} \text { is quasi-independent. }
$$

It remains to write

$$
\begin{aligned}
& \begin{aligned}
& \sum_{\gamma \in \mathrm{A}}\left|\alpha_{\gamma}\right| \geqslant \sum_{j} \mathrm{R}_{1}^{-2 k_{j}-1}\left|\Lambda_{j}^{3}\right| \geqslant \frac{1}{10 \mathrm{R}_{1}} \sum_{j} \mathrm{R}_{1}^{-2 k_{j}}\left|\Lambda_{j}^{2}\right| \\
& \geqslant \frac{1}{10 \mathrm{R}_{1}} \sum_{j} \sum_{\gamma \in \Lambda_{j}^{2}}\left|\alpha_{\gamma}\right|
\end{aligned} \\
& \text { and use (3). }
\end{aligned}
$$

Remark. - Say that a subset A of the dual group Γ is d-independent ($d=1,2, \ldots$) provided the relation

$$
\sum_{\gamma \in \mathrm{A}}^{\prime} \epsilon_{\gamma} \gamma=0\left(\epsilon_{\gamma}=-d,-d+1, \ldots, d\right)
$$

implies $\epsilon_{\gamma}=0(\gamma \in A)$.
With this terminology, 1 -independent corresponds to quasiindependent.

Assume G a torsion-free compact, abelian group. Fixing an integer d, statements (3) and (4) of the theorem can be reformulated for d-independent sets. The proof is a straightforward modification.

3. Sidon sets of first type.

As an application of previous section, we show
Corollary 2. $-A$ sidon set tending to infinity is a Sidon set of first type.

Notice that conversely each set of first type tends to infinity (see [2]). Also, each Sidon set is the finite union of sets tending to infinity (see [3], p. 141 and [1] for the general case).

Proof of Cor. 2. - Fix a Sidon set Λ tending to infinity and a nonempty open subset I of G . Choose $\delta>0$ s.t. (4) of the previous theorem holds.
Let $p \in \mathrm{~L}^{1}(\mathrm{G})$ be a polynomial s.t. $p \geqslant 0, \hat{p} \geqslant 0$, $\int_{G} p=1$ and $|p|<\epsilon$ on $G \backslash I$ (where $\epsilon>0$ will be defined later). Denote Γ_{0} the spectrum of p. By hypothesis, we may assume

$$
\begin{equation*}
\gamma-\delta \notin \Gamma_{0} \quad \text { for } \quad \gamma \neq \delta \quad \text { in } \quad \Lambda . \tag{1}
\end{equation*}
$$

We claim the existence of a finite subset Λ_{0} of Λ s.t. if $\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda \backslash \Lambda_{0}}$ is a finite scalar sequence, there exists a quasiindependent subset A of $\Lambda \backslash A_{0}$ s.t.

$$
\begin{equation*}
\sum_{\gamma \in A}\left|\alpha_{\gamma}\right|>\frac{\delta}{2} \Sigma\left|\alpha_{\gamma}\right| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int p \prod_{\gamma \in \mathrm{A}}(1+\operatorname{Re} \gamma)<2 \tag{3}
\end{equation*}
$$

The existence of Λ_{0} is shown by contradiction. Indeed, one should otherwise obtain finite disjointly supported systems

$$
\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda_{1}}, \ldots,\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda_{r}}, \ldots\left(\Lambda_{r} \subset \Lambda\right)
$$

with

$$
\sum_{\gamma \in \Lambda_{r}}\left|\alpha_{\gamma}\right|=1
$$

and for which a quasi-independent set fulfilling (2), (3) does not exist.

Fix R large and apply (4) of the Theorem to the system

$$
\left\{\alpha_{\gamma} \mid \gamma \in \bigcup_{r=1}^{\mathrm{R}} \Lambda_{r}\right\} .
$$

This yields a quasi-independent set $B \subset \Lambda$ so that

$$
\begin{equation*}
\sum_{r=1}^{\mathrm{R}} \sum_{\gamma \in \Lambda_{r} \cap \mathrm{~B}}\left|\alpha_{\gamma}\right|>\delta \mathrm{R} . \tag{4}
\end{equation*}
$$

Also, since $\hat{p} \geqslant 0$

$$
\begin{align*}
\sum_{r=1}^{\mathrm{R}} \int p\left\{\prod_{\gamma \in \mathrm{B} \cap \Lambda_{r}}(1\right. & +\operatorname{Re} \gamma)-1\} \\
& \leqslant \int p \prod_{\gamma \in \mathrm{B}}(1+\operatorname{Re} \gamma) \leqslant\|p\|_{\infty} \leqslant\left|\Gamma_{0}\right| \tag{5}
\end{align*}
$$

As a consequence of (4), (5), there must be some $r=1, \ldots, R$ for which $\sum_{\gamma \in \Lambda_{r} \cap B}\left|\alpha_{\gamma}\right|>\frac{\delta}{2}$ as well as

$$
\int p \prod_{\gamma \in B \cap \Lambda_{r}}(1+\operatorname{Re} \gamma)<1+\int p=2
$$

provided R is chosen large enough. Since $A=B \cap \Lambda_{r}$ is quasiindependent, a contradiction follows. This ensures the existence of Λ_{0}. We assume $\Gamma_{0} \subset \Lambda_{0}$.

Let now $\left(\alpha_{\gamma}\right)_{\gamma \in \Lambda \backslash \Lambda_{0}}$ a finite scalar sequence and A a quasi-independent set fulfilling (2), (3). Clearly, whenever $\left|a_{\gamma}\right| \leqslant 1(\gamma \in \mathrm{~A})$, by construction of p,

$$
\left|\int \prod_{\gamma \in \mathrm{A}}\left(1+\operatorname{Re} a_{\gamma} \gamma\right)\left(\Sigma \cdot \alpha_{\gamma} \gamma\right) p\right| \leqslant 2\left\|\Sigma \alpha_{\gamma} \gamma\right\|_{\mathrm{C}(\mathrm{I})}+\epsilon \Sigma\left|\alpha_{\gamma}\right|
$$

We now analyze the left side, defining $a_{\gamma}=\kappa b_{\gamma}\left(\left|b_{\gamma}\right|=1\right), \kappa$ to be specified later. Write

$$
\prod_{\gamma \in \mathrm{A}}\left(1+\operatorname{Re} a_{\gamma} \gamma\right)=1+\kappa \sum_{\gamma \in \mathrm{A}} \operatorname{Re} b_{\gamma} \gamma+\sum_{\ell>2} \kappa^{\ell} \mathrm{Q}_{\ell}
$$

where

$$
\mathrm{Q}_{\ell}=\sum_{\substack{\mathbf{S} \subset \mathbf{A} \\|\mathbf{S}|=\ell}} \prod_{\gamma \in \mathbf{S}} \operatorname{Re} b_{\gamma} \gamma \quad \text { and, } \text { since } \int\left(\Sigma \alpha_{\gamma} \gamma\right) p=0
$$

minorate consequently the left member as
$\kappa\left|\int\left(\sum_{\gamma \in \mathrm{A}} \operatorname{Re} b_{\gamma} \gamma\right)\left(\Sigma \alpha_{\gamma} \gamma\right) p\right|-\sum_{\ell \geqslant 2} \kappa^{\ell}\left|\int \mathrm{Q}_{\ell} p\left(\Sigma \alpha_{\gamma} \gamma\right)\right|$.
Since $\hat{p} \geqslant 0$, we have for fixed ℓ (from (3))

$$
\left|\int \mathrm{Q}_{\ell} p\left(\Sigma \alpha_{\gamma} \gamma\right)\right| \leqslant\left\|\mathrm{Q}_{\ell} p\right\|_{\mathrm{PM}} \cdot \Sigma\left|\alpha_{\gamma}\right|
$$

and

$$
\begin{aligned}
\left\|\mathrm{Q}_{\ell .} p\right\|_{\mathrm{PM}} \leqslant\left\|\left(\sum_{\substack{\mathrm{S} \subset \mathrm{~A} \\
|\mathrm{~S}|=\ell}} \prod_{\gamma \in \mathrm{S}} \operatorname{Re} \gamma\right) p\right\|_{\mathrm{PM}} & \\
& \leqslant\left\|\prod_{\gamma \in \mathrm{A}}(1+\operatorname{Re} \gamma) \cdot p\right\|_{1}<2
\end{aligned}
$$

Thus (*) can be minorated as

$$
\kappa\left|\int\left(\sum_{\gamma \in \mathrm{A}} \operatorname{Re} b_{\gamma} \gamma\right)\left(\Sigma \alpha_{\gamma} \gamma\right) p\right|-3 \kappa^{2} \Sigma\left|\alpha_{\gamma}\right|
$$

Since $\operatorname{Re} b_{\gamma} \boldsymbol{\gamma}$ can be replaced by $\operatorname{Im} b_{\gamma} \boldsymbol{\gamma}$, we see that
$2\left\|\Sigma \alpha_{\gamma} \gamma\right\|_{\mathrm{C}(\mathrm{I})} \geqslant \frac{\kappa}{2}\left|\int\left(\Sigma_{\mathrm{A}} b_{\gamma} \bar{\gamma}\right)\left(\Sigma_{\Lambda} \alpha_{\gamma} \gamma\right) p\right|-\left(\epsilon+3 \kappa^{2}\right) \Sigma\left|\alpha_{\gamma}\right|$.
Now, for $\gamma \in \mathrm{A} \subset \Lambda$ and $\delta \in \Lambda$, either $\gamma=\delta$ or $\int \bar{\gamma} \delta p=0$.
This as a consequence of (1). Thus, taking $b_{\gamma}=\frac{\overline{\alpha_{\gamma}}}{\left|\alpha_{\gamma}\right|}$,

$$
\int\left(\Sigma_{\mathrm{A}} b_{\gamma} \bar{\gamma}\right)\left(\Sigma_{\Lambda} \alpha_{\gamma} \gamma\right) p=\Sigma_{\mathrm{A}}\left|\alpha_{\gamma}\right|>\frac{\delta}{2} \Sigma\left|\alpha_{\gamma}\right|
$$

Choosing ϵ, κ appropriately, the proof is completed.

Remark. - Let G be a compactly generated, locally compact abelian group and B the dual group. A subset Λ of Γ is called a topological Sidon set provided there exists a compact subset K of $\quad G \quad$ satisfying $\sum_{\gamma \in \Lambda}\left|\alpha_{\gamma}\right| \leqslant C \sup _{x \in K}\left|\sum_{\gamma \in \Lambda} \alpha_{\gamma} \gamma(x)\right|$ where C is a fixed constant.

Similarly to the case of compact groups, we define Sidon sets of first type. Then Cor. 2 remains valid. It is indeed easy using the stability property of topological Sidon sets for small perturbations (see [2] for details) to reduce the problem to the periodic case.

BIBLIOGRAPHY

[1] J. Bourgain, Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc. Math. France, 111 (1983), 421-428.
[2] M. Dechamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier, Grenoble, 22-3 (1972), 51-79.
[3] J.M. Lopez, K.A. Ross, Sidon Sets, LN Pure and Appl. Math., No 13, M. Dekker, New York, 1975.
[4] G. Pisier, Ensembles de Sidon et processus gaussiens, C.R.A.S, Paris, Ser. A, 286 (1978), 1003-1006.
[5] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, Math. Anal. and Appl., Part B, Advances in Math., Suppl. Sts. Vol. 7, 685-726.
[6] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, preprint.
[7] Polya-Szego, Inequalities.
[8] W. Rudin, Tigonometric series with gaps, J. Math. Mech., 9 (1960), 203-227.

Manuscrit reçu le 2 novembre 1983
révisé le 20 mars 1984.
Jean Bourgain,
Dept. of Mathematics
Vrije Universiteit Brussel
Pleinlaan 2-F7
1050 Brussels (Belgium).

