JEAN BOURGAIN Sidon sets and Riesz products

Annales de l'institut Fourier, tome 35, nº 1 (1985), p. 137-148 <http://www.numdam.org/item?id=AIF_1985__35_1_137_0>

© Annales de l'institut Fourier, 1985, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SIDON SETS AND RIESZ PRODUCTS

by Jean BOURGAIN

1. Notations.

In what follows, G will be a compact abelian group and $\Gamma = \hat{G}$ the dual group. According to the context, we will use the additive or multiplicative notation for the group operation in Γ . For $1 \le p \le \infty$, $L^p(G)$ denotes the usual Lebesgue space. For $\mu \in M(G)$, let $\|\mu\|_{PM} = \sup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)|$.

A subset Λ of Γ is called a Sidon set provided there is a constant C such that the inequality

$$\sum_{\gamma \in \Lambda} |\alpha_{\gamma}| \leq C \| \sum_{\gamma \in \Lambda} \alpha_{\gamma} \gamma \|_{\infty}$$
(1)

holds for all finite scalar sequences $(\alpha_{\gamma})_{\gamma \in \Lambda}$. The smallest constant $S(\Lambda)$ fulfilling (1) is called the Sidon constant of Λ . The reader is referred to [3] for elementary Sidon set theory.

|A| stands for the cardinal of the set A.

Assume A a subset of Γ and $d \ge 0$. We will consider the set of characters

$$\mathbf{P}_{d}[\mathbf{A}] = \left\{ \sum_{\gamma \in \mathbf{A}} z_{\gamma} \; \gamma \, | \, z_{\gamma} \in \mathbf{Z}(\gamma \in \mathbf{A}) \quad \text{and} \quad \sum_{\gamma \in \mathbf{A}} | \, z_{\gamma} \, | \, \leq d \right\}.$$

Then $|\mathbf{P}_{d}[\mathbf{A}]| \leq \left(\frac{C|\mathbf{A}|}{d}\right)^{d}$ if $d \leq |\mathbf{A}|$

and $|\mathbf{P}_d[\mathbf{A}]| \leq \left(\frac{C d}{|\mathbf{A}|}\right)^{|\mathbf{A}|}$ if $d > |\mathbf{A}|$

where C is a numerical constant (cf. [7], p. 46).

Mots-clefs : Ensemble de Sidon, Ensemble quasi-indépendant, Produits de Riesz.

We say that $A \subseteq \Gamma$ is quasi-independent, if the relation $\Sigma_A z_{\gamma} \gamma = 0$, $z_{\gamma} = -1, 0, 1 \ (\gamma \in A)$ implies $z_{\gamma} = 0 \ (\gamma \in A)$. If A is quasi-independent, the measure

$$\mu = \prod_{\gamma \in \mathbf{A}} (1 + \operatorname{Re} a_{\gamma} \gamma)$$

where $a_{\gamma} \in \mathbf{C}$, $|a_{\gamma}| \leq 1$, is positive and $||\mu||_{M(G)} = 1$.

We call it a Riesz product.

Say that $A \subset \Gamma$ tends to infinity provided to each finite subset Γ_0 of Γ corresponds a finite subset A_0 of A such that

$$\gamma, \delta \in A \setminus A_0, \ \gamma \neq \delta \implies \gamma - \delta \notin \Gamma_0.$$

A Sidon set Λ is of first type provided there is a constant $C < \infty$ and, for each nonempty open subset I of G, there is a finite subset Λ_0 of Λ so that

$$\sum_{\gamma \in \Lambda \setminus \Lambda_{0}} |\alpha_{\gamma}| \leq C \| \sum_{\gamma \in \Lambda \setminus \Lambda_{0}} \alpha_{\gamma} \gamma \|_{C(I)}$$
(2)

for finite scalar sequences $(\alpha_{\gamma})_{\gamma \in \Lambda \setminus \Lambda_0}$, where

$$||f||_{C(I)} = \sup_{x \in I} |f(x)|.$$

2. Interpolation by averaging Riesz products.

In this section, we will prove the following result:

THEOREM. – For a subset Λ of Γ , the following conditions are equivalent:

- (1) Λ is a Sidon set
- (2) $\|\sum_{\Lambda} \alpha_{\gamma} \gamma\|_{p} \leq C p^{1/2} (\sum |\alpha_{\gamma}|^{2})^{1/2}$ for all finite scalar sequences $(\alpha_{\gamma})_{\gamma \in \Lambda}$ and $p \geq 1$.
- (3) There is $\delta > 0$ such that each finite subset A of Λ contains a quasi-independent subset B with $|B| \ge \delta |A|$.
- (4) There is $\delta > 0$ such that if $(\alpha_{\gamma})_{\gamma \in \Lambda}$ is a finite sequence of scalars, there exists a quasi-independent subset A of Λ such that

$$\sum_{\gamma \in \Lambda} |\alpha_{\gamma}| \ge \delta \sum_{\gamma \in \Lambda} |\alpha_{\gamma}|.$$

Implication $(1) \implies (2)$ is a consequence of Khintchine's inequalities and is due to W. Rudin [8]. The standard argument that quasiindependent sets are Sidon sets yields $(4) \implies (1)$. We will not give it here since it will appear in the next section in the context of an application. Finally, the results $(2) \implies (1)$ and $(1) \implies (3)$ are due to G. Pisier (see [4], [5] and [6]. The characterization (4) is new. It has the following consequence (by a duality argument):

COROLLARY 1. $-If \Lambda$ is a Sidon set, there is $\delta > 0$ such that whenever $(a_{\gamma})_{\gamma \in \Lambda}$ is a finite scalar sequence and $|a_{\gamma}| \leq \delta$, then we have

$$\hat{\mu}(\gamma) = \int_{\mathsf{G}} \overline{\gamma}(x) \, \mu \, (dx) = a_{\gamma} \quad \text{for} \quad \gamma \in \Lambda$$

where μ is in the σ -convex hull of a sequence of Riesz products.

Recall that the σ -convex hull of a bounded subset P of a complex Banach space X is the set of all elements $\sum_{i=1}^{\infty} \lambda_i x_i$ where $x_i \in \mathbf{P}$, $\sum_{i=1}^{\infty} |\lambda_i| \leq 1$.

The remainder of the paragraph is devoted to the proof of $(2) \implies (3) \implies (4)$.

Let us point out that in the case of bounded groups, i.e. which elements are of bounded order, they can be simplified using algebraic arguments.

Lemma 1. – Condition (2) implies (3) with $\delta \sim C^{-2}$.

Proof. – We first exhibit a subset A_1 of A, $|A_1| \gtrsim C^{-2} |A|$, such that if $\sum_{\gamma \in A_1} \epsilon_{\gamma} \gamma = 0$ and $\epsilon_{\gamma} = -1, 0, 1$, then $\sum |\epsilon_{\gamma}| < \frac{1}{2} |A_1|$. If $\sum_{\gamma \in A_2} \epsilon_{\gamma} \gamma = 0$, $\epsilon_{\gamma} = \pm 1$ and $A_2 \subset A_1$ is choosen with $|A_2|$ maximum, the set $B = A_1 \setminus A_2$ will be quasi-independent and $|B| > \delta |A|$.

J. BOURGAIN

The set A_2 is obtained using a probabilistic argument. Fix $\tau = C_1^{-1} C^{-2}$ and $\ell = \frac{1}{4} \tau |A|$ (C_2 is a fixed constant, choosen to fulfil a next estimation). Let $(\xi_{\gamma})_{\gamma \in A}$ be independent (0,1)-valued random variables in ω and define

$$F_{\omega}(x) = \sum_{m=\ell}^{N-1} \sum_{\substack{S \subset A \\ |S|=m}} \prod_{\gamma \in S} \xi_{\gamma}(\omega) \left(\gamma(x) + \overline{\gamma}(x)\right).$$

Notice that the property $\int_G F_{\omega}(x) dx = 0$ is equivalent to the fact $\int_G \prod_{\gamma \in S} (\gamma + \overline{\gamma}) = 0$ whenever S is a subset of the random set $\{\gamma \in A \mid \xi_{\gamma}(\omega) = 1\}$ with $|S| \ge \ell$.

Thus the random set does not present (± 1) -relations of length at least ℓ .

Using condition (2) and the choice of
$$\tau$$
, ℓ , we may evaluate

$$\iint_{G} F_{\omega}(x) \, dx \, d\omega \leq \sum_{m=\ell}^{|A|} \tau^{m} \frac{1}{m!} \int_{G} |\Sigma_{A}(\gamma + \overline{\gamma})|^{m}$$

$$\leq \sum_{m>\ell} \tau^{m} (6 C)^{m} \left(\frac{|A|}{m}\right)^{m/2} \leq 2^{-\ell/2}.$$
Hence

Hence

$$\frac{\tau |\mathbf{A}|}{2} + 2^{\varrho_2} \iint_{\mathbf{G}} \mathbf{F}_{\omega}(x) \, dx \, d\omega < \int \sum_{\gamma \in \mathbf{A}} \xi_{\gamma}(\omega)$$

implying the existence of ω s.t.

$$|\mathbf{A}_1| > \frac{\tau |\mathbf{A}|}{2}$$

where $A_1 = \{\gamma \in A \mid \xi_{\gamma}(\omega) = 1\}$ and

$$\int_{G} F_{\omega}(x) < 2^{-\varrho/2} |A| < 1, \text{ so } \int_{G} F_{\omega}(x) = 0.$$

By definition of F_{ω} and the choice of ℓ , it follows that A_1 has the desired properties.

The key step is the following construction:

LEMMA 2. – Assume $\Lambda_1, \ldots, \Lambda_J$ disjoint quasi-independent subsets of Γ and

$$\frac{|\Lambda_{j+1}|}{|\Lambda_j|} > R \quad \text{for} \quad j = 1, \dots, J-1$$

where the ratio R > 10 is some fixed numerical constant (appearing through later computations).

Then there are subsets Λ'_j of $\Lambda_j (1 \le j \le J)$ s.t.

(1)
$$|\Lambda'_j| > \frac{1}{10} |\Lambda_j|$$
 and (2) $\bigcup_{j=1}^{j} \Lambda'_j$ is quasi-independent.

Proof. – Fixing j = 1, ..., J, we will exhibit a subset Λ'_j of Λ_j satisfying the following condition (*)

$$\eta_1 \ldots \eta_{j-1} \eta_{j+1} \ldots \eta_{\mathbf{J}} \neq 0$$

if

$$0 \neq \eta_j = \sum_{\gamma \in \Lambda'} \epsilon_{\gamma} \gamma (\epsilon_{\gamma} = -1, 0, 1)$$

and for each $k \neq j$

$$\eta_k \in \mathbb{P}_{d_k}(\Lambda_k)$$
 where $d_k = \frac{|\Lambda_j|}{|\Lambda_k|} \sum_{\gamma \in \Lambda_j} |\epsilon_{\gamma}|.$

Those sets Λ'_i satisfy (2). Indeed if

$$\eta_1 \dots \eta_J = 0$$
 and $\eta_j = \sum_{\gamma \in \Lambda'_j} \epsilon_{\gamma} \gamma (\epsilon_{\gamma} = -1, 0, 1)$

then, defining $d_j = \sum_{\Lambda_{j'}} |\epsilon_{\gamma}|$, either $d_j = 0$ or $d_k |\Lambda_k| > d_j |\Lambda_j|$ for some $k \neq j$. If the d_j are not all 0, we may consider j' s.t. $d_{j'} |\Lambda_{j'}|$ is maximum, leading to a contradiction.

The construction of Λ'_j for fixed j is done in the spirit of Lemma 1. It suffices to construct first $\overline{\Lambda}_j \subset \Lambda_j$, $|\overline{\Lambda}_j| > \frac{1}{5} |\Lambda_j|$, fulfilling (*) under the additional restriction

$$\sum_{\gamma \in \overline{\Lambda_j}} |\epsilon_{\gamma}| > \frac{1}{2} |\overline{\Lambda}_j|. \tag{**}$$

This set $\overline{\Lambda}_j$ is again found randomly. Consider independent (0, 1)-valued random variable $\{\xi_{\gamma} \mid \gamma \in \Lambda_j\}$ of mean $\frac{1}{4}$ and define the random function on G

$$F_{\omega} = \sum_{m=|\Lambda_j|/10}^{|\Lambda_j|} \sum_{\substack{S \subset \Lambda_j \\ |S|=m}} \prod_{\gamma \in S} \xi_{\gamma}(\omega) (\gamma + \overline{\gamma}) \prod_{k \neq j} \Sigma \{\eta \in P_{d_k(m)}(\Lambda_k)\}$$

where
$$d_k(m) = \frac{|\Lambda_j|}{|\Lambda_k|}m$$
. Write

$$\begin{split} \int\!\!\!\int_{\mathbf{G}} \mathbf{F}_{\omega}(x) \, dx \, d\omega &\leq \sum_{m = |\Lambda_j|/10}^{|\Lambda_j|} 2^{-m} \\ \int_{\mathbf{G}} \prod_{\gamma \in \Lambda_j} (1 + \operatorname{Re} \gamma) \prod_{k \neq j} \Sigma \left\{ \eta \in \mathbf{P}_{d_k(m)}(\Lambda_k) \right\}, \end{split}$$

and using the estimation on $|P_d(A)|$ mentioned in the introduction, it follows the majoration by

$$2^{-\frac{|\Lambda_j|}{10}} \prod_{k \neq j} |\mathbf{P}_{d_k}(\Lambda_k)| \qquad \left(d_k = d_k(|\Lambda_j|) = \frac{|\Lambda_j|^2}{|\Lambda_k|} \right)$$
$$\leq 2^{-\frac{|\Lambda_j|}{10}} \exp\left\{ 2\sum_{k < j} |\Lambda_k| \log C \frac{|\Lambda_j|}{|\Lambda_k|} + 2\sum_{k > j} \frac{|\Lambda_j|^2}{|\Lambda_k|} \log C \frac{|\Lambda_k|}{|\Lambda_j|} \right\}.$$
Since log $x \leq 2\sqrt{x}$ for $x \ge 1$, we may further estimate by

Since log $x < 2\sqrt{x}$ for $x \ge 1$, we may further estimate by

$$2^{-\frac{|\Lambda_{j}|}{10}} \exp\left\{C_{1} \sum_{k < j} \left(\frac{|\Lambda_{k}|}{|\Lambda_{j}|}\right)^{1/2} + C_{1} \sum_{k > j} \left(\frac{|\Lambda_{j}|}{|\Lambda_{k}|}\right)^{1/2}\right\} |\Lambda_{j}| < 2^{-\frac{|\Lambda_{j}|}{11}}$$

for an appropriate choice of the ratio R.

So again, since we may assume $|\Lambda_i| > 20$

$$\frac{1}{5} |\Lambda_j| + 2^{\frac{|\Lambda_j|}{11}} \iint_G F_{\omega}(x) \, dx \, d\omega < \int \sum_{\Lambda_j} \xi_{\gamma}(\omega) \, d\omega$$

and there exists therefore some ω s.t. if $\overline{\Lambda}_i = \{\gamma \in \Lambda_i | \xi_{\gamma}(\omega) = 1\}$ we have

$$|\overline{\Lambda}_{j}| > \frac{1}{5} |\Lambda_{j}|$$
 and $\int_{G} F_{\omega}(x) dx = 0$.

But the latter property means that (*) holds under the restriction (**).

142

This proves lemma 2.

We derive now the implication $(3) \implies (4)$.

LEMMA 3. – If (3) of the theorem holds, then (4) is valid with $\delta(4) \sim \delta(3)$.

Proof. – From Lemma 2, the argument is routine. Let R be the constant appearing in Lemma 2 and fix a sequence $(\alpha_{\gamma})_{\gamma \in \Lambda}$ s.t. $\Sigma |\alpha_{\gamma}| = 1$.

Define for k = 0, 1, 2, ...

$$\Lambda_{k} = \{\gamma \in \Lambda \mid \mathbb{R}_{1}^{-k} \ge |\alpha_{\gamma}| > \mathbb{R}_{1}^{-k-1}\}$$

where R_1 is a numerical constant with $R_1 > 4R$.

By hypothesis, there exists for each k a quasi-independent subset Λ_k^1 of Λ_k s.t.

$$|\Lambda_{k}^{1}| > \delta |\Lambda_{k}|. \tag{1}$$

Defining

$$\Omega_e = \bigcup_{\substack{k \text{ even}}} \Lambda_k^1 \quad \text{and} \quad \Omega_0 = \bigcup_{\substack{k \text{ odd}}} \Lambda_k^1$$

we have

$$\sum_{\gamma \in \Omega_e} |\alpha_{\gamma}| + \sum_{\gamma \in \Omega_0} |\alpha_{\gamma}| \ge \frac{\delta}{R_1}$$

and may for instance assume

$$\sum_{\gamma \in \Omega_e} |\alpha_{\gamma}| \ge \frac{\delta}{2R_1}.$$
 (2)

Define inductively the sequence $(k_i)_{i=1,2,...}$ by

$$k_1 = 0$$
 and $k_{j+1} = \min \{k > k_j \mid |\Lambda_{2k}^1| > \mathbb{R} \mid |\Lambda_{2k_j}^1| \}$

If we take $\Lambda_j^2 = \Lambda_{2k_j}^1$, it follows by construction that $\frac{|\Lambda_{j+1}^2|}{|\Lambda_j^2|} > \mathbb{R}$.

Moreover

$$\begin{split} \sum_{j} \sum_{k_{j} < k < k_{j+1}} \sum_{\gamma \in \Lambda_{2k}^{1}} |\alpha_{\gamma}| \\ &\leq \sum_{j} \sum_{k > k_{j}} R_{1}^{-2k} R |\Lambda_{2k_{j}}^{1}| \\ &\leq \frac{2R}{R_{1}} \sum_{j} R_{1}^{-2kj-1} |\Lambda_{2k_{j}}^{1}| \\ &\leq \frac{2R}{R_{1}} \sum_{\gamma \in \Omega_{e}} |\alpha_{\gamma}| \end{split}$$

and since $R_1 > 4R$, it follows thus by (2)

$$\sum_{j} \sum_{\gamma \in \Lambda_{j}^{2}} |\alpha_{\gamma}| > \frac{1}{4R_{1}} \delta.$$
(3)

Application of Lemma 2 to the sequence $(\Lambda_j^2)_{j=1,2,...}$ leads to further subsets $\Lambda_j^3 \subset \Lambda_j^2$ satisfying

$$|\Lambda_j^3| \ge \frac{1}{10} |\Lambda_j^2|$$
 and $A = \bigcup \Lambda_j^3$ is quasi-independent.

It remains to write

$$\sum_{\gamma \in \mathbf{A}} |\alpha_{\gamma}| \ge \sum_{j} \mathbf{R}_{1}^{-2k_{j}-1} |\Lambda_{j}^{3}| \ge \frac{1}{10\mathbf{R}_{1}} \sum_{j} \mathbf{R}_{1}^{-2k_{j}} |\Lambda_{j}^{2}|$$
$$\ge \frac{1}{10\mathbf{R}_{1}} \sum_{j} \sum_{\gamma \in \Lambda_{j}^{2}} |\alpha_{\gamma}|$$

and use (3).

Remark. – Say that a subset A of the dual group Γ is d-independent (d = 1, 2, ...) provided the relation

$$\sum_{\gamma \in \mathbf{A}}' \epsilon_{\gamma} \gamma = 0 \ (\epsilon_{\gamma} = -d, -d+1, \ldots, d)$$

implies $\epsilon_{\gamma} = 0 \ (\gamma \in A)$.

With this terminology, 1-independent corresponds to quasiindependent.

Assume G a torsion-free compact, abelian group. Fixing an integer d, statements (3) and (4) of the theorem can be reformulated for d-independent sets. The proof is a straightforward modification.

3. Sidon sets of first type.

As an application of previous section, we show

COROLLARY 2. – A sidon set tending to infinity is a Sidon set of first type.

Notice that conversely each set of first type tends to infinity (see [2]). Also, each Sidon set is the finite union of sets tending to infinity (see [3], p. 141 and [1] for the general case).

Proof of Cor. 2. – Fix a Sidon set Λ tending to infinity and a nonempty open subset I of G. Choose $\delta > 0$ s.t. (4) of the previous theorem holds.

Let $p \in L^{1}(G)$ be a polynomial s.t. $p \ge 0$, $\hat{p} \ge 0$, $\int_{G} p = 1$ and $|p| < \epsilon$ on G/I (where $\epsilon > 0$ will be defined later). Denote Γ_{0} the spectrum of p. By hypothesis, we may assume

$$\gamma - \delta \notin \Gamma_0 \quad \text{for} \quad \gamma \neq \delta \quad \text{in} \quad \Lambda.$$
 (1)

We claim the existence of a finite subset Λ_0 of Λ s.t. if $(\alpha_{\gamma})_{\gamma \in \Lambda \setminus \Lambda_0}$ is a finite scalar sequence, there exists a quasiindependent subset A of $\Lambda \setminus A_0$ s.t.

$$\sum_{\gamma \in \mathbf{A}} |\alpha_{\gamma}| > \frac{\delta}{2} \Sigma |\alpha_{\gamma}|$$
(2)

and

$$\int p \prod_{\gamma \in \mathbf{A}} (1 + \operatorname{Re} \gamma) < 2.$$
(3)

The existence of Λ_0 is shown by contradiction. Indeed, one should otherwise obtain finite disjointly supported systems

$$(\alpha_{\gamma})_{\gamma \in \Lambda_1}, \ldots, (\alpha_{\gamma})_{\gamma \in \Lambda_r}, \ldots (\Lambda_r \subset \Lambda)$$

with

$$\sum_{\gamma \in \Lambda_r} |\alpha_{\gamma}| = 1$$

and for which a quasi-independent set fulfilling (2), (3) does not exist.

Fix R large and apply (4) of the Theorem to the system

J. BOURGAIN

$$\left\{ \alpha_{\gamma} \mid \gamma \in \bigcup_{r=1}^{\mathbb{R}} \Lambda_{r} \right\}.$$

This yields a quasi-independent set $B \subset \Lambda$ so that

$$\sum_{r=1}^{R} \sum_{\gamma \in \Lambda_r \cap B} |\alpha_{\gamma}| > \delta R.$$
 (4)

Also, since $\hat{p} \ge 0$

$$\sum_{r=1}^{\mathbb{R}} \int p \left\{ \prod_{\gamma \in B \cap \Lambda_{\tau}} (1 + \operatorname{Re} \gamma) - 1 \right\}$$

$$\leq \int p \prod_{\gamma \in B} (1 + \operatorname{Re} \gamma) \leq ||p||_{\infty} \leq |\Gamma_{0}|. \quad (5)$$

As a consequence of (4), (5), there must be some r = 1, ..., Rfor which $\sum_{\gamma \in \Lambda_r \cap B} |\alpha_{\gamma}| > \frac{\delta}{2}$ as well as

$$\int p \prod_{\gamma \in \mathbf{B} \cap \Lambda_{\mathbf{r}}} (1 + \operatorname{Re} \gamma) < 1 + \int p = 2,$$

provided R is chosen large enough. Since $A = B \cap \Lambda_r$ is quasiindependent, a contradiction follows. This ensures the existence of Λ_0 . We assume $\Gamma_0 \subset \Lambda_0$.

Let now $(\alpha_{\gamma})_{\gamma \in \Lambda \setminus \Lambda_0}$ a finite scalar sequence and A a quasi-independent set fulfilling (2), (3). Clearly, whenever $|a_{\gamma}| \leq 1 \ (\gamma \in A)$, by construction of p, $|\int \prod_{\gamma \in A} (1 + \operatorname{Re} a_{\gamma} \gamma) (\Sigma \alpha_{\gamma} \gamma) p | \leq 2 ||\Sigma \alpha_{\gamma} \gamma ||_{C(I)} + \epsilon \Sigma |\alpha_{\gamma}|.$

We now analyze the left side, defining $a_{\gamma} = \kappa b_{\gamma} (|b_{\gamma}| = 1)$, κ to be specified later. Write

$$\prod_{\gamma \in \mathbf{A}} (1 + \operatorname{Re} a_{\gamma} \gamma) = 1 + \kappa \sum_{\gamma \in \mathbf{A}} \operatorname{Re} b_{\gamma} \gamma + \sum_{\varrho > 2} \kappa^{\varrho} Q_{\varrho}$$

where $Q_{g} = \sum_{\substack{S \subset A \\ |S| = g}} \prod_{\gamma \in S} \operatorname{Re} b_{\gamma} \gamma$ and, since $\int (\Sigma \alpha_{\gamma} \gamma) p = 0$,

minorate consequently the left member as

146

$$\kappa \mid \int \left(\sum_{\gamma \in \mathbf{A}} \operatorname{Re} b_{\gamma} \gamma \right) (\Sigma \alpha_{\gamma} \gamma) p \mid - \sum_{\mathfrak{Q} \geq 2} \kappa^{\mathfrak{Q}} \mid \int \operatorname{Q}_{\mathfrak{Q}} p (\Sigma \alpha_{\gamma} \gamma) \mid. \quad (*)$$

Since $\hat{p} \ge 0$, we have for fixed ℓ (from (3))

$$|\int Q_{\varrho} p(\Sigma \alpha_{\gamma} \gamma)| \leq ||Q_{\varrho} p||_{\mathbf{PM}} \cdot \Sigma ||\alpha_{\gamma}|$$

and

$$\|Q_{\varrho}p\|_{\mathsf{PM}} \leq \| \left(\sum_{\substack{\mathsf{S} \subset \mathsf{A} \\ |\mathsf{S}| = \varrho}} \Pi \operatorname{Re} \gamma\right) p \|_{\mathsf{PM}}$$
$$\leq \| \prod_{\gamma \in \mathsf{A}} (1 + \operatorname{Re} \gamma) \cdot p \|_{1} < 2.$$

Thus (*) can be minorated as

$$\kappa \mid \int \left(\sum_{\gamma \in \mathbf{A}} \operatorname{Re} b_{\gamma} \gamma \right) (\Sigma \ \alpha_{\gamma} \ \gamma) p \mid -3 \kappa^{2} \Sigma \mid \alpha_{\gamma} \mid.$$

Since Re $b_{\gamma} \gamma$ can be replaced by Im $b_{\gamma} \gamma$, we see that

$$2 \| \Sigma \alpha_{\gamma} \gamma \|_{C(I)} \ge \frac{\kappa}{2} \left| \int (\Sigma_{A} b_{\gamma} \overline{\gamma}) (\Sigma_{\Lambda} \alpha_{\gamma} \gamma) p | - (\epsilon + 3\kappa^{2}) \Sigma | \alpha_{\gamma} |.$$

Now, for $\gamma \in A \subset \Lambda$ and $\delta \in \Lambda$, either $\gamma = \delta$ or $\int \overline{\gamma} \delta p = 0$.

This as a consequence of (1). Thus, taking $b_{\gamma} = \frac{\alpha_{\gamma}}{|\alpha_{\gamma}|}$,

$$\int (\Sigma_{\mathbf{A}} \ b_{\gamma} \ \overline{\gamma}) \left(\Sigma_{\mathbf{A}} \ \alpha_{\gamma} \ \gamma \right) p = \Sigma_{\mathbf{A}} |\alpha_{\gamma}| > \frac{\delta}{2} \Sigma |\alpha_{\gamma}|.$$

Choosing ϵ, κ appropriately, the proof is completed.

Remark. – Let G be a compactly generated, locally compact abelian group and B the dual group. A subset Λ of Γ is called a topological Sidon set provided there exists a compact subset K of G satisfying $\sum_{\gamma \in \Lambda} |\alpha_{\gamma}| \leq C \sup_{x \in K} |\sum_{\gamma \in \Lambda} \alpha_{\gamma} \gamma(x)|$ where C is a fixed constant.

Similarly to the case of compact groups, we define Sidon sets of first type. Then Cor. 2 remains valid. It is indeed easy using the stability property of topological Sidon sets for small perturbations (see [2] for details) to reduce the problem to the periodic case.

J. BOURGAIN

BIBLIOGRAPHY

- [1] J. BOURGAIN, Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc. Math. France, 111 (1983), 421-428.
- [2] M. DECHAMPS-GONDIM, Ensembles de Sidon topologiques, Ann. Inst. Fourier, Grenoble, 22-3 (1972), 51-79.
- [3] J.M. LOPEZ, K.A. Ross, Sidon Sets, LN Pure and Appl. Math., No 13, M. Dekker, New York, 1975.
- [4] G. PISIER, Ensembles de Sidon et processus gaussiens, C.R.A.S, Paris, Ser. A,286 (1978), 1003-1006.
- [5] G. PISIER, De nouvelles caractérisations des ensembles de Sidon, Math. Anal. and Appl., Part B, Advances in Math., Suppl. Sts. Vol. 7, 685-726.
- [6] G. PISIER, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, preprint.
- [7] POLYA-SZEGO, Inequalities.
- [8] W. RUDIN, Tigonometric series with gaps, J. Math. Mech., 9 (1960), 203-227.

Manuscrit reçu le 2 novembre 1983 révisé le 20 mars 1984.

> Jean BOURGAIN, Dept. of Mathematics Vrije Universiteit Brussel Pleinlaan 2-F7 1050 Brussels (Belgium).