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WEAK-STAR CONTINUOUS HOMOMORPHISMS
AND A DECOMPOSITION

OF ORTHOGONAL MEASURES

by B.J. COLE and T.W. GAMELIN

Dedicated to the memory of I. Glicksberg

1. Introduction.

Let A be a uniform algebra on a compact space X, let ju
be a (finite regular Borel) measure on X, and let H°° (jn) be the
weak-star closure of A in L°°(^). Let S(jn) be the set of (nonzero,
complex-valued) homomorphisms of H°°(^) which are weak-star
continuous. The unifying theme of this paper is to study the set
S(^n), both from an abstract point of view, and also for certain
concrete algebras.

Since any weak-star continuous homomorphism of H°°(^)
is determined uniquely by its action on A, we may regard S(jLi)
as the set of those homomorphisms in the spectrum M^ of A
which are continuous in the weak-star topology of A determined
by L°°(jLi). These are precisely the homomorphisms of A which
have representing measures absolutely continuous with respect
to p. (cf. [8, Theorem IL2.2.]). In Section 7, we will consider the
question of whether SOx) is a Borel set, regarded as a subset of
M»,o/ . and as a subset of M^ . We observe that it is always an
F^g - subset of M^^), and under certain special hypotheses
(such as A separable) we show that it is a Borel subset of M^ .

In sections 8 through 13 we treat the family of algebras
encountered in rational approximation theory, the so-called
"T-invarianf5 subalgebras of C(K), where K is a compact subset
of the complex plane C, and ^ is an arbitrary measure on K.
Here we unify and extend the work of D. Sarason [17], who
studied the algebra generated by the analytic polynomials, and of
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algebra. „
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J. Chaumat [4], who studied the algebras R(K) and A(K).
Following Sarason, we describe H°°(jLi) in terms of the operation
of taking pointwise bounded limits, in Sections 8 through 10. We
also show that in this case SQu) is the union of the set of nonpeak
points of the T-invariant algebra C(K)riH°°(^) and the (at most
countable) set at which ^ has point masses. In particular, for
these algebras SQl) is always an F^y-set.

In Section 14 we determine the set S(a) in the case that A is
the algebra generated by analytic polynomials on the infinite
polydisc and a is the Haar measure on the infinite torus forming
the distinguished boundary. We show that S(a) consists of
precisely the set of null sequences in the open polydisc. In this
case, S(a) is an F^-subset of the polydisc, however it fails to be
an F^-subset.

In Sections 2 through 6 we consider an abstract uniform
algebra and explore the circle of ideas which connect the following
theorems:

(i) an abstract version of a theorem of Glicksberg [13], to be
discussed below;

(ii) the Cole-Konig-Seever theorem;
(iii) the abstract F. and M. Riesz theorem ; and
(iv) the Hoffman-Rossi theorem.

The theorem of Glicksberg referred to above pertains to the
algebra R(K) of uniform limits on K of rational functions with
poles off K , where K is a compact subset of C. Glicksberg
proved that if the interior K° of K is connected and dense in
K , then every nonzero measure on the topological boundary
3K orthogonal to R(K) is mutually absolutely continuous with
respect to a representing measure for some point of K° . The idea
of Glicksberg's proof is to apply the Cole-Konig-Seever theorem
to L^jn), where p. is the given orthogonal measure. Let us
describe the development in Sections 2 through 6 in more detail.

In Section 2 we present a proof (Cole's original proof) of the
L1-version of the Cole-Konig-Seever theorem. The proof is based
on the Hoffman-Rossi theorem (L°°-methods), as opposed to the
L2-methods utilized by Konig and Seever [5].
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In Section 3, we define the ^-parts of S(jn), and use these
together with the Cole-Konig-Seever theorem to obtain a decompo-
sition theorem (Theorem 3.6), which has the following abstract
version of Glicksberg's theorem as an immediate consequence.

1.1. THEOREM. —Let A be a uniform algebra on a compact
space X. Then any measure ^ G A1 can be decomposed in the form

P- = ̂  + 1. t^j
7 > 1

where
(i) the measures p., and ^, / > 1, are pairwise mutually

singular, so that in particular the series converges in the total variation
norm;

(ii) jLi,EA1 and M/^A1 , / > 1;
(iii) for each f > 1, ^ is mutually absolutely continuous

wth respect to a representing measure for some point of M. .
(iv) there are no representing measures for points of M.

which are absolutely continuous with respect to ^ .

Theorem 1.1 should be compared with the version of the abstract
F. and M. Riesz theorem which decomposes 17 G A1 as a sum
of pairwise mutually singular measures 17 = T^ 4- ^ 17., where each

/?i
?7y is absolutely continuous with respect to a representing measure
for some point of M^ , and 77^ is singular to all representing measures
for points of M^ . We will show in Section 4 that the decomposition
of Theorem 1.1 coincides with the decomposition obtained by
applying the abstract F. and M. Riesz theorem to the algebra
HTOLi), the weak-star closure of A in L°°(jLi), regarded as an
algebra of continuous functions on the spectrum of L°° (p.).

In the case of the algebra R(K), Wilken's theorem shows that
the singular summand ^ is always zero, and we obtain simply
^ i=2^ . , where each ^ is mutually absolutely continuous with
respect to a representing measure for some point z. E K. Under
the hypotheses of Glicksberg's theorem, only one summand is
required. However, infinitely many summands may be required in
the decomposition, even in the case of the disc algebra. Such an
example is given at the end of Section 3.
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Section 4 contains a second proof of the L1-version of the
Cole-Konig-Seever theorem, also based on the Hoffman-Rossi theorem,
which clarifies its relationship with the abstract F. and M. Riesz
theorem. In Section 5 we show how the band-version of the Cole-
Konig-Seever theorem is a direct consequence of the L1-version.
In Section 6, the Hoffman-Rossi theorem is extended to bands of
measures. This leads immediately to another proof of the band-version
of the Cole-Konig-Seever theorem.

We will use the standard terminology of uniform algebras, as
in [3] or [8]. All measures are finite complex-valued regular Borel
measures. The characteristic function of a set E will be denoted
by XE • If ^ is a measure, then the measure %g v will be denoted
by v^ . Our homomorphisms are always nonzero complex-valued
homomorphisms.

2. The L1-version of the Cole-Konig-Seever theorem.

The statement (iv) of the next theorem is the L1-version of
the Cole-Konig-Seever theorem. In Section 5 we will see that the
band-version of the theorem follows virtually immediately from
the L1-version.

2.1. THEOREM. —Let <^ € S(/x), that is, ^ has a representing
measure "which is absolutely continuous with respect to p.. Then
there is a Borel set E with the following properties:

(i) </? has a representing measure which is mutually absolutely
continuous with respect to ^ ;

(ii) every representing measure for ^ absolutely continuous
with respect to jn is absolutely continuous with respect to ^ ;

(iii) XE^^C-O;
(iv) if \ G A1 and \ « jn, then Xg e Al • Moreover, E

is determined uniquely up to sets of zero \p. {-measure by properties
(i) and (ii).

Proof. — It is easy to see that there exists a Borel set E, unique
up to sets of zero 1 /x 1-measure, with properties (i) and (ii). Indeed,
for v a representing measure for ^ absolutely continuous with
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dv
respect to ;x, let E(^) be the set on which — = ^ 0 . Take a

dy.
sequence {^.} of such v ' s such that I//|(EO.)) tends to a maximum,
and set v = ̂  i^^E = U E(^.). Then v is a representing

;>i
measure for </? which is mutually absolutely continuous with respect
to p.^ , and evidently (ii) is also valid.

The proof of (iii) will be based on the Hoffman-Rossi theorem,
applied to the function u = XE ~ 1 • First observe that j u dr > 0
for all representing measures r for ^ such that r « ^1. Indeed,
any such r is carried by E, and u = 0 on E. By the Hoffman-
Rossi theorem ([14], [8, Section IV.2]), these exists AEH°°( jLi )
such that \h\<:eu and <^(A) = 1. Then \h \ < 1 , and fh dv = 1 ,
so that h = 1 a.e. (dv), i.e., A = 1 a.e. (dp.) on E. Since
| / ! |< l /e on the complement of E, the powers h1^1 converge
uniformly to XE as m —^ °°' an(^ XE G H°° Qn).

To prove (iv), note that if \ G A1 satisfies X « p, then
A <= A1 for all / € H00 (/x). In particular, X^ = XE ^ G A1. n

Note that the statement (iv) of the preceding theorem is
essentially a dual version of the statement (iii). We have seen that (iii)
implies (iv), and one deduces (iii) readily from (iv) as follows. By
duality, one must show that if h € I/O/) satisfies f hfdfJi = 0
for all / € A, then j h XE ̂  = 0 • The former condition is
equivalent to h\t € A1. By (iv) this implies hfi^ € A1. In particular
0 = f h djLig = f h\^ dfJi, which establishes (iii).

3. The decomposition theorem.

It is easy to deduce an infinite decomposition theorem from
Theorem 2.1. We show how this can be done utilizing the notion
of a minimal idempotent.

Again let ^ be a fixed measure, and let S(jn) be the set of
weak-star continuous homomorphisms of H°°(^). A function
X^H°°(^) is an idempotent if X2 = X - The idempotents in
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H°° (p.) are of the form XE »^ere E is a Borel set with property (iv)
of Theorem 2.1, that if X E A1 and X « JLI , then Xg E Al • An

idempotent x G H°° (^i) is minimal if x is not identically zero,
while the only idempotents h satisfying 0 < /z < x are h = 0
and h = x .

3.1. LEMMA. —// Xo a^ Xi ^^ ^o minimal idempotents
in H°°(jLi), then either Xo = Xi ^ XoXi == 0.

-Proo/ — XoXi is an idempotent that satisfies 0 < XoXi ^ Xo »
so either XoXi = 0 or XoXi = Xo • ^n ^le l^ter case, by symmetry,
also XoXi = Xi , so Xo = Xi • D

3.2. LEMMA. —// x ^ ^^ idempotent in H°°(jLi), a7id f/
v « JLI represents some ^ € S(^i), rt^^z ^TW x == 0 a^. (rf^)
OA- x == 1 ̂ e. (rf^).

Proo/ - Since <^(x)2 = <^(x2) = <^(x)» either (/?(x) == 0 or
<^(x) == 1 , that is, J x dv == 0 or j \dv = I . These two cases
correspond to the alternatives of the lemma. Q

3.3. LEMMA. — Z / ^ r (^eS(^) , and let E denote the set
corresponding to JLA a^ in Theorem 2.1. TA^! XE ls a minimal
idempotent in H00^).

Proof. — Let A G H00 (jn) be a nonzero idempotent such
that 0 < h < XE • Choose a representing measure v for <^ such
that v ^ jUg . Since A does not vanish a.e. (dv), we deduce from
the preceding lemma that h = 1 a.e. (dv). Hence h = XE » ^d
XE is minimal, a

3.4. LEMMA. -Z^r ^ , I / / E S ( J L I ) and let E(<^) amsf E(V/) 6^
rte corresponding sets from Theorem 2.1. 7?!̂  ^7/z^ E((^) and
E(^) a^ essentially disjoint (i.e. |ju | (E((^) 0 E(V/)) = 0) or
E((^?) and E(V/) essentially coincide.

Proof. — This follows immediately from Lemmas 3.1 and 3.3. n

We say that </? and ^ in S(jn) belong to the same fJi'part
of S(jLi) if E((^) and E(i//) essentially coincide, that is,
XE(<^) = XE(V/) a•e• (^)- Thus if ^ a^d ^ belong to the same
^Li-part, then there are mutually absolutely continuous representing



WEAK-STAR CONTINUOUS HOMOMORPHISMS 155

measures ^ and v^ for ^ and ^ respectively, each of which
is comparable to ^w ^n particular, \p and V/ belong to the
same Gleason part of M^. On the other hand, if ^ and ^
belong to different ^-parts, then every representing measure for
(/? absolutely continuous with respect to ^ is singular to every
such representing measure for ^ . This does not guarantee,
however, that ^ and V/ belong to different Gleason parts of
M^ ; see the example at the end of this section.

The preceding lemma yields the following corollary, which was
pointed out to us by H. Konig.

3.5. COROLLARY. —// VL is a representing measure for
< ^ E M ^ , and if ^ G M^ has a representing measure absolutely
continuous with respect to ^ , then ^ has a representing measure
mutually absolutely continuous wth respect to jn.

Proof. — In this case, there is only one jn-part, the jn-part
of ^ , and all points in this jn-part have representing measures
mutually absolutely continuous with respect to /x . n

The following theorem can be regarded as an extended
version of Theorem 1.1:

3.6. THEOREM. -Let A be a uniform algebra on X , and
let p. be a measure on X. Then there is a partition of X into
disjoint Borel sets Ey and E ^ , E ^ , . . . , and there exist
< .̂ E M^ , / > 1 , such that

(i) ^ has a representing measure v^ mutually absolutely
continuous wth respect to jiig., / > 1 ;

(ii) if \ is a representing measure for <^. such that \ « JLI ,
then \ « v.;

(iii) if {p G M^, and \ is a representing measure for ^
satisfying \ « JLI , then X(E^) = 0;

Ov) XE- is a minimal idempotent in H00^), / > 1 ;
(v) if X G A1 satisfies \« ^i, and we denote \^= \^.,

\ = \s,» then \ and the V5 belong to A1, and

X = \ + ^ X,,
/ > 1

where the series converges in norm.
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Proof. — Choose <^,<^, .. . in S(^i) such that the sets
E(^.) = E are pairwise disjoint, and such that | jLi |(UE.) is a
maximum. Then set Ey = X\(U.^ ^ E.). a

Theorem 1.1 is now an immediate consequence of Theorem 3.6,
obtained by applying Theorem 3.6 in the case where X = ^ e A1.

To see that infinitely many summands may be required,
consider the following simple example:

Let K = A be the closed unit disc in the complex plane,
and let {A.}°^ be a sequence of open subdiscs of the open unit
disc A = { | z | < l } , with pairwise disjoint closures, such that
the radii of the A. s are summable, and such that the A'5
accumulate towards some fixed point of A. Let JLL. be the
measure dz on 3 A., and let jn == S/x.. Then ^i lR(A), and
each VL. is mutually absolutely continuous with respect to
harmonic measure (a representing measure) on 3 A. for the center of
Ay. Since also ^IR(A), the decomposition ^ = 2 ̂  has the
properties of Theorem 1.1. On the one hand, the closed support
of a representing measure for any point of A has a connected
polynomial hull. On the other hand, the closed support of a
measure absolutely continuous with respect to ju does not have a
connected polynomial hull unless that measure is carried by one
of the 3 Ay'5. It follows easily that the decomposition jn = S^LI.
above is the unique decomposition of fi with the properties of
Theorem 1.1. In particular, infinitely many summands are
required.

4. Relation to the F. and M. Riesz Theorem.

In this section we will provide another proof of the L1-version
of the Cole-Konig-Seever theorem. This proof will show that the
decomposition given by Theorem 2.1 corresponds to the usual
F. and M . Riesz decomposition for the algebra H°° (p).

Let SOn) denote the spectrum of L°°(/i), so that
L°°(^) s C(SOx)). We will regard H°°OLI) as an algebra of continuous
functions on the compact space 2 On). While H°°(^) does not
necessarily separate the points of 2 (^i), neither the Hoffman-Rossi
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theorem nor the abstract F. and M. Riesz theorem requires
point separation, so that we may appeal to these theorems when
appropriate.

Let {i denote the canonical lift of the measure ju to 2 On).
Every measure absolutely continuous with respect to VL lifts
canonically to a measure absolutely continuous with respect to
A , and L^-L1^).

The characteristic function %g of a Borel subset E of X
is an idempotent in L00^). It corresponds to an idempotent
in C(2(/x)) which is the characteristic function of a closed and
open subset of S (/x), denoted by E. The lift of ^ to 2 (jn)
is the restriction of {i to E : jig = jLig-.

4.1. THEOREM. — Let <^ES(JLI ) , and let E be a Borel set
satisfying (i) and (ii) of Theorem 2.1. Let \ be a measure on X
such that \ « M , and set \ = X — Xg. TA^! 0/2 S (ju),

X =\E + \.
where Xg f5 absolutely continuous with respect to a representing
measure for ^ on 2(^i), and \ is singular to all representing
measures for ^ on 2 (p ) .

Proof. — Note that Xg ls carried by E, while \ is carried
by £OLI)\E.

Let v be any representing measure for <^ that satisfies
v ~ ̂  • Then the canonical lift v of v to S Ox) is a representing
measure for ^ that satisfies v ^ (i^. In particular, Xg <^ ^ •

Any representing measure for </? on SO-0 which is absolutely
continuous with respect to fi. is the lift of a representing measure
which is absolutely continuous with respect to ^' an^ hence is
supported on E. A corollary to the Hoffman-Rossi Theorem
[8, Theorem IV.2.3] asserts that the set of representing measures
for <^ on 2 On) is the weak-star closure of the set of representing
measures for ^ that are absolutely continuous with respect to
(i. (See Theorem 6.2.) Hence any representing measure for ^ on
2(jLi) is supported on E. Since \ is carried by the closed and
open set £(^i)\E, \ is singular to all representing measures on
S (/i) for (^. a

Now it is easy to prove statement (iv) of Theorem 2.1. If
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X G A1, then X 1 H00 (p.). By the abstract F . and M . Riesz
Theorem [8, Theorem 11.7.6], Xg and X, are separately orthogonal
to H°°(jLi). Hence X^ and \ are in A1. As we saw earlier, the
statement (iii) of Theorem 2.1, that XE G Hao O^)» follows directly
from statement (iv).

Thus we see also that the ^ -parts of S(^x) are precisely the
intersections of S(/x) with the Gleason parts of H°°(jLi). The
decomposition of Theorem 3.6 is precisely the abstract F. and
M. Riesz decomposition corresponding to the (at most countably
many) Gleason parts of homomorphisms in S(jLi). In particular,
the lift /2^ to 2(jLi) of the measure ^ appearing in Theorem 3.6
is singular to all representing measures on S Qn) for all ^ E S (jn).

5. Extension to bands of measures.

Recall that a band of measures on X is a closed subspace
(B of measures on X such that if 17 G (B then any measure
absolutely continuous with respect to 17 belongs to tfS. Each
measure X on X can be expressed in the form X = \ 4- X,,
where \ CE (0 and X^ is singular to each measure in (B . The
component \ is the projection of X into (J3. The band-version
of the Cole-Konig-Seever theorem is as follows (cf. [2], [10], [12]).

5.1. THEOREM. —Let (B be a band of measures on X , and
suppose ^ e: M^ has a representing measure in J? . Let OS be
the subband of measures 77 such that there is a representing measure
v for ^ such that v E (S and 17 «v. Then if X E A-^ tf3 , and
\ is the projection of X into (B^,, then X^^A 1 .

Proof. — Let v be a representing measure for ^ such that
v G tf3 and X^, « ̂ . Set jn = | X | + v . Then X — \ is singular
to all representing measures for <^ that are absolutely continuous
with respect to /x . It follows that the component Xg of X
given by Theorem 2.1 coincides with \. By that theorem,
X,1A. D

The preceding theorem, though formally an extension of
the abstract F. and M. Riesz Theorem, turns out to be simply
the F. and M. Riesz Theorem applied to an appropriate algebra
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on an appropriate compact space. In this case, it is the F. and M.
Riesz theorem for the weak-star closure H°°(^) if A in L°°((?3).
In the next section, we define L°°(<B) and H°°((B), we extend the
Hoffman-Rossi theorem to H°°((B), and we use this to show how the
Cole-Konig-Seever theorem becomes the F. and M. Riesz theorem
for H°°((B).

6. The Hoffman-Rossi theorem for a band of measures.

Fix a band (J? of measures on X. With (B there is associated
the algebra L°°(tf3), which plays a role similar to that played
by L°°(jLi) in the case that Oi is the band of measures absolutely
continuous with respect to /x (tf3 ̂  L1 (jn)). For more detailed
background information on L°°((B), see the appendix (section 20)
of [5].

The elements of L°°((B) are collections F = {F^ : v C (%} of
functions Fy in L°°(^), which satisfy the compatibility property
that if v « X then Fy = F^ a.e. {dv). It will be convenient at
times to drop the subscripts and regard F as an element of
U°(v) for all ^ G t f S , though FeL°°((B) cannot generally be
realized as a point function on X.

If FeL°°((B), then the supremum of the norms IIFjLoc^
over v € <B is finite and defines a norm on L°° (<B). Under tde
pairing < ^ , F ) = J F y d v , the normed space L°° (d?) is isometrically
isomorphic to the dual space <B* of (S . By the weak-star
topology of L°°(tf?), we will mean the tfB-topology determined
by this pairing.

Under the obvious multiplication, L°°((B) becomes a
commutative Banach algebra. Let S((B) denote the maximal
ideal space of L°°(<B). It can be shown that the Gelfand transform
implements an isometric isomorphism

L^^C (S (<%)).

Each of the measures v G (B lifts canonically to a measure on
S(tf3), and we may regard tf3 as a band of measures on the compact
space S((B).
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The band-version of the Hoffman-Rossi theorem is as follows.

6.1. THEOREM. -Let H be a weak-star closed subalgebra of
L°°((B) containing the constants, let ( ^ G M be weak-star
continuous, and let H^ denote the kernel of ^ p . Then the
following are equivalent, for a fixed u e L^(QS):

(i) / u dv > 0 for all probability measures v in (K that
represent <^.

(ii) j u d\ > 0 for all probability measures \ on the
spectrum £ (<B) of L°°(<B) that represent ^ p .

(iii) u lies in the norm-closure of the cone P 4- ReH
where P is the cone of nonnegative function in L^ (<%).

(iv) For each t>0, there is h, € H such that ^(h.) == 1
and |/^| < ̂ .

Moreover, the set of functions u that satisfy these equivalent
conditions is a weak-star closed convex cone in L" (tf?).

Proof. - That (ii), (iii) and (iv) are equivalent can be seen
rather directly. In fact, that (ii) and (iii) are equivalent follows
immediately by duality. We will show that (iii) is also equivalent
to (iv).

Suppose that u lies in the norm-closure of P + ReH
Choose a sequence {g^} in H and functions v^ > 0 such th^t
<^)=0, and i ^+Re^ tends uniformly to u. For r > 0 ,
let^ h, be a weak-star adherent point of the (bounded) sequence
{e^}. Then ^>(h,)= 1 , while

|AJ < lim sup \etgm \ = lim sup ^R<^" < e^.
Thus (iv) is valid.

Conversely, suppose (iv) is valid, and for each t > 0, choose
h, as in (iv). Since ReA,< |^ |<^ , we have e^-Reh E P
Since ^p(h,~ 1 ) = 0 , Reh,- 1 (= ReH^. Hence r

etu-\=(etu- Reh,) + (ReA,- 1) e Re H^ + P.

Dividing by t and sending t to 0, we obtain u as a uniform
limit of functions in P + Re H^,. Note that this argument is more
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efficient than the original argument in [14].) Thus (iii) and (iv)
are equivalent.

Since every representing measure v in <B lifts naturally to
a representing measure on S(<B), it is clear that (ii) implies (i).
The crux of the theorem, then, is to prove that (i) implies one of
the equivalent assertions (ii), (iii) or (iv). Here we rely on the
original argument from [14]. Rather than modifying the argument,
we will simply show how the proof that (i) implies (iv) can by
reduced to the corresponding statement in the L1-version of the
theorem in [14].

Fix t > 0, choose M > 0 so that e^ < M, and fix a
representing measure v € Si for ^ . Suppose p. G (R satisfies
^«^LI . By the L1-version of the Hoffman-Rossi theorem, there
exists h^ € H°°(^) such that h^ < e^ a.e. (d/z) and (^oi)) = 1 .
In particular, I A ^ K M . Thus the set J00 of AeL°°(tfS) which
satisfy the conditions || h \\ < M, ^ E H°° 00, \h^\<etu a.e. ?0,
and f h^ dv = 1, is nonempty. Furthermore, J^ is a weak-star
closed subset of L°° ((B). One checks that the various sets J^ , /z as
above, have the finite intersection property. Then by compactness,
there exists h € L00 ((%) such that h belongs to all of the sets
J^ above. In particular, | | A | | < M , and ^EH°°(^) for all
p. e (B satisfying v « ̂ , so h G H°° (tf3) = H. Also,

< ^ ( / 0 = / A A / = 1,

and | A | < ̂ . Thus (iv) is valid, and the conditions (i) through (iv)
are equivalent.

The final assertion of the theorem follows immediately from
the description of the set given in (i). a

As we have seen, the crux of the Hoffman-Rossi theorem is
the equivalence of the assertions (i) and (ii) of the theorem. There
is a simple dual reformulation of the equivalence of these assertions,
which is often more convenient for applications. The L1-version
of the reformulation is given in [8, Theorem IV.2.3]. The band
version, which can be regarded as an equivalent statement of the
Hoffman-Rossi theorem, is as follows.

6.2. THEOREM. -Let (Q ,H and </? be as above. Then the
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representing measures in (B for ^ are weak-star dense (in L00^)*)
in the set of all representing measures on S(J3) for <^.

Proof. — If the representing measures in (B are not weak-star
dense, then there are u ^ L°° (<B) and a real number c such that
j u d\> c for all X E (B that represent ^, while fi^ d\ < c
for some representing measure \ on 2((B). Replacing u by
^-c, we may assume that c = 0, and we then have a contradiction
to the equivalence of (i) and (ii) of Theorem 6.1. o

Now let (0 , H and ^ be as above, let <B denote the subband
of (B generated by the representing measures for ^ that lie in (Q ,
and let d}^ denote its complementary band consisting of all
measures in tf3 singular to each representing measure for ^ in (B ,
so that tf3 =^etf3^, . Let x^L°°((B) be the idempotent of
tfS^,, defined so that \ = 1 a.e. (AQ for all ^ E (B^ , and
X = 0 a.e. (dX) for all X G (B^ . The projection of a measure
17 € tf3 into (B^ is then \r^. Regarded as a continuous function
on 2(<B), the idempotent \ is the characteristic function of a
closed and open subset of 2(d3), and it is easy to see that this
subset is homeomorphic to 2((B^) while its complement is
homeomorphic to 2(<Bp. Thus the band decomposition above
leads to a decomposition

2(tf3)=S(^)U S(^)

of 2((B) as a disjoint union of closed subsets. From Theorem 6.2,
we obtain immediately the following:

6.3. COROLLARY. -Let (B,H and ^ be as above. Then
each representing measure on S((B) for ^ is supported on
2(<B,).

Now we can prove the following version of the Cole-Konig-
Seever theorem by applying the abstract F. and M. Riesz
theorem as in Section 4.

6.4. THEOREM. -Let H be a weak-star closed subalgebra of
L°°(tf3), let ^ be a weak-star continuous homomorphism of H,
and let ^ be the band of measures absolutely continuous with
respect to some representing measure in (B for <p. Then:
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(i) the idempotent \ of the band <B belongs to H,
(ii) x is a minimal idempotent in H,

(iii) if \ e: (B z'5 orthogonal to H, a^zd z/ X^ z5 rt^ projection
of \ into ^, rA^z \, 1 H.

Proof. — Let \^ = X — \, and let X , \ and Xy to the
canonical lifts of X , X ^ and \ respectively to measures on
2((B). Using the corollary to Theorem 6.2, as in the proof of
Theorem 4.1, we see that the decomposition X = \ + X^ is the
Lebesgue decomposition of X with respect to the set of representing
measures on £ ((%) for <^. By the abstract F. and M. Riesz
theorem, \ G H1, so that also \ 1 H. This proves (iii), and (i)
follows from (iii) and duality. The proof of (ii) is the same as that
of the corresponding facts in Section 3. n

7. The topology of S(ju).

In this section we will be required to distinguish carrefully
between the set of weak-star continuous homomorphisms S(^i),
regarded as a subset of M^oo, ., and the set of their restrictions to A,
regarded as a subset of M^ . The latter set will be denoted (in
this section only) by 7r(S(jLi)), where

^^H-OO——' ̂
is the natural projection obtained by simply restricting a
homomorphism of H°°(^) to A. Thus 7r(S(/x)) is the set of
homomorphisms in M^ which extend weak-star continuously
to H°°00.

The purpose of this section is to give conditions which ensure
that Tr(SOLi)) is a Borel subset of M^ . We do not know whether
it is a Borel set in general. We begin with the following :

7.1. LEMMA. - SQLi) is an F^-subset of the maximal ideal
space of H°° (/i), with respect to its Gelfand (weak-star) topology.

Proof. — For integers k, m > 1. let F^ be the set of all ^

in the spectrum of H°°(^) which satisfy |^(/)|<—for all/€ H°°(jLi)
m
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/ }
with |/|< 1 and l / l 2 ^ ^ — . Evidently E^ is a closed
subset of H°°(^). Hence k

00 00

e= n u E^
m = 1 fc= 1

is an F^-set, consisting of precisely those ^ with the following
properties: If {/„} is a sequence in H°°(^) such that 1/J < 1
and / „ — — > 0 in L2^), then <^(/^)—> 0. Any weak-star
continuous ^ has this property, so that S(jLi) C E. On the other
hand suppose ^ G E. Let {g^} be a bounded sequence in
H°° On) H ^-1 (0) such that g^—^ g a.e. Then g e H°° OLI) and
^ ~ ^ m — — > 0 in L2^). By the characterizing property for
E, we obtain ^p(g - g^)—> 0, so that ^p(g) = 0, and ^
also belongs to H°° On) 0 <p-x (0). By the version of the Krein-
Schmulian theorem for convex subsets of L°°(jLi) [8, Lemma IV2.1],
^p~l(0) is a weak-star closed subspace of H°°(^). Hence <p is
weak-star continuous, and < p E S ( / x ) . We conclude that S(jn)
coincides with the F^ -set E. a

7.2. LEMMA . - S(p) is a norm-closed subset of H°° On)* .

Proof-The predual L'^/H00^)1 of H°°(jLi) can be
regarded as a closed subspace of H00^)*, as can the maximal
ideal space of H°°OLI). The intersection of these closed subsets is
precisely the set of multiplicative linear functionals which have
representing measures in L1 On), that is, which belong to S Qi). a

7.3. THEOREM. — Suppose that A is a separable uniform
algebra. Then 7r(S(^)) is a Borel subset of M^ (wth the Gelfand
topology).

Proof—We use the fact that L^) is separable, so that
the set W of multiplicative probability measures absolutely
continuous with respect to ^ is a separable set of measures. Since
SOLI) is isometric to the subset W/H00^)1 of L00^)*^00^)1,
S(p) is also separable. By Lemma 7.2 S(^i) is closed in H°°OLI)* ,
hence complete. Thus the norm topology on SOn) makes SQl)
into a separable complete metric space (Polish space). Now TT
maps SOn) in a one-to-one continuous manner into the separable
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complete metric space M^ . By Souslin's theorem [1, Theorem 3.2.3],
7r(S(jLt)) is a Borel subset of M^ . n

When ball A is weak-star dense in ball H°°(jLi), the idea of
the proof of the first lemma above can be applied to give information
about 7r(S(jLi)). We begin with a useful criterion for weak-star
continuity.

7.4. LEMMA. — Suppose that ball A is weak-star dense in
ball H°°(jLi). Then <^ G M^ extends to be weak-star continuous
on H°°(jLi) if and only if whenever {/^} is a sequence in A
such that || /„ || < 1 and /„ —> 0 a.e. (rfjLi), then f^) —> 0.

Proof. — The forward implication is trivial. For the reverse
implication, suppose the condition is valid. First we claim we can
extend ^ to H°° (jn) so that whenever / G H°° (jn), and [f^
is a bounded sequence in A such that f^ ——^ / in jn-measure,
then /^(<^)—^ <^(/)- Indeed, otherwise there are /GH0 0^)
and a bounded sequence {/^} in A such that /^ ——^ / in
measure, while {/^(<^)} does not converge. Taking differences
of the form g^ = f^ — f^ , we obtain a bounded sequence in
A which converges to 0 in measure, while ^(<p) does not
converge to 0. Passing to a subsequence which converges to
0 a.e. (rfjii), we obtain contradiction to the condition.

The extended ^p is evidently multiplicative on H°°(jLi).
To show that it is weak-star continuous, it suffices to show that
its kernel is weak-star closed. By the Krein-Schmulian theorem
for L°° (jLi), it suffices to show that if {h^} is a bounded sequence
in H°°(jLi) such that ^p(h^) = 0 and h^ ——> h in measure, then
^p(h) = 0. For such h^, choose g^ in A such that \\g^\\ ̂  I I ^ / J I ,
g^) == 0, and g^ is close to h^ in measure. Then g^ converges
to h in measure, and hence <^(A) = lim^(</?) = 0 . n

One useful consequence of the preceding lemma is as follows :

7.5. COROLLARY. — Suppose that ball A is weak-star dense
in ball H^Oi). Let E be a closed subset of M^ consisting of
weak-star continuous homomorphisms. Then each homomorphism
in the A-convex hull E of E is weak-star continuous.

Proof. — Each ^ G E is represented by a probability measure



166 B.J. COLE AND T.W. GAMELIN

v on E. . Suppose that {/^} is a bounded sequence in A such
that /„ ——> 0 a.e. (dp.). Then f^) —> 0 for all ^ e E . By
the Lebesgue bounded convergence theorem,

W- f fn^)—^ 0-«/ E

Hence by Lemma 7.4, ^ is weak-star continuous, n
From Lemma 7.4, we obtain our second result on the

measurability of 7r(S(jLi)).

7.6. THEOREM.-// ball A is weak-star dense in ball
H°°(^), then 7r(S(jLi)) is an F^-subset of M^ (in the Gelfand
topology).

Proof. — For integers k, m > 1 , let F^ be the set of
all (^ G M^ such that |<^( / ) |< l /m for all / E A satisfying
| / |<1 and f \ f \ 2 d ^ < l / k . Evidently F^ is a closed
subset of M^ . The condition above shows that

7T(S(^)) = ^ 0 F^ ,
w = 1 fc= 1

as in the proof of the first lemma, n
For the T-invariant algebras treated in Sections 8 through 13,

it turns out that 7r(S(jLi)) is an F^-set (cf. Corollary 10?2).
However, we will give an example in Section 14 for which
7r(S(jLi)) is not an F^-set, even though the hypothesis of Theorem 7.6
is met. Thus the F^g condition of Theorem 7.6 cannot be
improved.

In Section 14 we will require the following analogue for
M^ of Lemma 7.2.

7.7. THEOREM. -Suppose that ball A is weak-star dense
in ball H00^). Then 7r(S(jLi)) is a closed subset of M^, with
the Gl^ason topology (norm topology of A*).

Proof. — The hypothesis ensures that the projection TT is an
isometry from S(^i), with the Gleason metric of M oo, ^ , to
7r(S(jLi)), with the Gleason metric of M^. By Lemma 7.2,
SQl) is Gleason-closed in H°°(^)*, so it is Gleason-complete.
It follows that 7r(S(jLi)) is Gleason-complete, and hence Gleason-
closed. D
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8. T-invariant algebras.

Let K be a compact subset of the complex plane. As usual,
R(K) will denote the algebra of uniform limits on K of rational
functions with poles off K. The Cauchy transform of a measure
v on K is given by

,. /» dv(z)
W=fz — w

defined whenever the integral converges absolutely. Since the
Cauchy transform is the convolution of a finite measure and the
locally integrable (dx dy) function 1/z, the integral converges
absolutely a.e. (dx dy), and v is defined a.e. (dx dy).

The importance of the Cauchy transform in rational
approximation theory stems from the fact that a measure v on K
is orthogonal to R(K) if and only if v = 0 on the complement
of K (cf. [8,11.8.1]). Dually, R(K) is generated by functions of
the form

/(w)= ff-^dxdy (8.1)J J z — w

where A is a bounded Borel function on the complex plane with
compact support such that h = 0 on K . This characterization
provides the basis for generalizing the definition of R(K), as
follows/:

Let E be a Borel subset of K, and denote by R(E) the
closed linear span in C(K) of functions of the form (8.1), where
A is a bounded Borel function on the complex plane with compact
support such that h = 0 a.e. (dx dy) on E. It is easy to check
that R(E)1 consists of precisely the measures v on K such that
v = 0 a.e. (dx dy) on the complement of E. In particular, if we
take E = K , we find that R(E) coincides with the algebra
R(K) defined earlier. It turns out (cf. [9], [10]) that R(E) is
always a subalgebra of C(K), so that it is a uniform algebra on
K. The algebra R(E) was used by J. Chaumat [4], to describe
the weak-star closure of R(K) in L°°(jLi).

A closed subalgebra A of C(K) is ^-invariant if
A D R ( K ) , and if A is invariant under the T-operators used
in rational approximation theory, defined by
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1 r. r. f(z) Qg
(V) (w)=^(w) / (w)+- I I — — — — d x d y ,

8 7T ^ ^ Z — W OZ

where g is a smooth function with compact support. Here the
area integral is taken over K . (It also may be taken over any
compact set containing K to which / is extended to be bounded
and measurable, since the added integral over the complement of
K belongs to R(K).) For a description of the fundamental
properties of T-invariant algebras, see [10],or [5, Section 17].

The algebra R(K) is itself a T-invariant algebra, as are the
algebras R(E) defined above. If D is any open subset of K°,
then the algebra of continuous functions on K which are analytic
on D is T-invariant. As another example, T. Lyons [16] has
proved that the algebra of continuous functions on K which
are finely holomorphic on the fine interior of K is a T- invariant
algebra.

8.1. LEMMA. — Let A be a ^-invariant algebra on K . //
/E A and v G A1, then

r /(w)-/00 ̂ ^ ^ Q ̂  ̂  ̂
J w — z

Equivalently,
fi>(z) =/(z)^(z) ^.(dxdy).

i A
Proof. - First note that fv G A , so that fv(z) = 0 and

v(z) = 0 whenever z ^ C\K. Thus we need consider the identity
only for z G K ; it is automatically valid for z ^ K , independent
of how / might be extended off K .

Let g be a smooth function with compact support. Extend
/ to be zero in the complement of K . Using Green's formula,
we may write

, - T^ f \ ^ r rf^ ~Aw) 9g ^ , -^(X/) (w) = — / / ——————— —dxdy^^K.
7T ^ ̂  Z — W QZ

Since T / E A , we have j T / r f ^ = 0 . From the preceding
expression and Fubinfs theorem, we obtain
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r r f r f(z) -/(^) , / , ^ , , „
/ / / ——————— ^(w) — rfx cfy = 0 .j ./ [ j z — w 3z

If h is any smooth function defined in a neighborhood of
9^K, then the Cauchy transform g of h satisfies —r = — TT/Z
3z

in a neighborhood of K. Modifying g so that it has compact
support, and using the fact that the inner integral above is zero
off K , we obtain

f /•[ r f(z) -/(w) , , J . ,, , , ./ y \ ——————— rf^(w) /z (z) dx dy = 0
J J [j z — w -I

for all smooth functions h on K . It follows that the inner
integral vanishes a. e. (dy dy) on K . n

8.2. THEOREM. — Let A be a ^-invariant algebra on K , and let
E be a Borel subset of K. Then the uniform closure [A + R(E)]~
of the linear span of A and R(E) is a ^-invariant algebra on
K. The measures orthogonal to [A + R(E)]~ are precisely
the measures v G A1 such that v = 0 a.e. (dx dy) off E.

Proof. — The description of the measures orthogonal to
[A + R(E)]1 follows immediately from the description of
R(E)1. It suffices then to show that [A + R(E)]~ is an algebra.
For this, it suffices to show that if / E A and g E R ( E ) , then
/ g E [ A + R ( E ) ] - .

Let ^ G [ A 4-R(E)]1. Since v I A and / € A , we obtain
fv = ft by Lemma 8.1. Since v 1 R(E), v = 0 a.e. (dx dy) off
E, and also fv = 0 a.e. off E. Hence /hiR(E) and f fgdv = 0.
By the Hahn-Banach theorem, fg e [A 4- R(E)]~ . a

There is one case in which the algebra in the preceding
theorem is easy to identify.

8.3. LEMMA. —// E and F are Borel subsets of K , then
[R(E) + R(F)]~ = R ( E H F ) .

Proof. - The measures orthogonal to [R(E) -h R(F)]~ are
precisely those in R(E)1^R(F)1. These are precisely the measures
v on K such that v = 0 a.e. (dx dy) of E and v = 0 a.e. (dx dy)
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off F, i.e. v = 0 a.e. (dx dy) off E n F. Thus

R(E)1 n RCF)^ R(E H F)1,

and by the Hahn-Banach theorem, [R(E) + R(F)]~ = R(E O F ) , a
Let Q be the set of nonpeak points for the T-invariant

algebra A. The proof of the Browder-Wilken Theorem for
R(K) extends to T-invariant algebras, to show that Q is an ¥y -set with
positive area, in fact, with positive area density at each of its
points. Furthermore, a standard argument shows that if v G A1,
then v = 0 a.e. (dx dy) off Q. In particular, i / lR(Q) , so that
R ( Q ) C A .

Note that Q is the smallest set (modulo sets of zero area) for
which R ( Q ) C A . I n fact, suppose Qo C Q has area strictly less
than Q. Let q G Q\Qo. Let JLI be any representing measure
for q with no mass at q, and set v = (z — q) JJL . Then

i r d\v\(z)i / C A , J <oo, and v(q) ̂  0. The proof of the

Browder density theorem [3, Theorem 3.3.9] shows that the set
{v^Q} is a subset of Q with full area density at q. In
particular v ^= 0 on a set of positive area disjoint from Q^, and
Q indeed has the minimality property.

8.4. LEMMA. — Let A be a ^-invariant algebra on K,
let E be a Borel subset of K , and let Qo denote the set of
nonpeak points of the ^-invariant algebra [A 4- R(E)]~. Then

[A+ R(E)]-=[A+R(Qo)]- .

Proof. — Since each v € R(E)1 satisfies v = 0 a.e. (dx dy)
outside E, almost all nonpeak points for R(E) are included in
E. Since the points in Qo are nonpeak points for R(E),
QO\E has zero area. Hence R ( E ) C R ( Q y ) , and

[ A + R ( E ) r C [ A 4 - R ( Q ^ ) ] - .

On the other hand, since [A + R(E)]~ is T-invariant, our
earlier remark shows that R(Qo) C [A + R(E)]"'. Hence
equality must hold above. D

Davie's theorem is valid for any T-invariant algebra A.
One version of Davie's theorem is as follows. Let ^ denote the
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band of measures generated by the measures in A1, and let S be
the band of measures singular to A1, so that

A** ̂ pr^e L°°(S).
Let XQ denote the area measure on the set Q of nonpeak points
of A. Then Xp E d3^, and Davie's theorem states that the
projection H00^^) —> H°°(XQ) is an isometric isomorphism and
a weak-star homeomorphism : H°° (tf3^) 9= H°° (XQ). Moreover, if
/EH°°(XQ), there is a sequence {/„} in A such that ||/j|<||/||
and /„ —> /a.e. (rfXp). This latter statement is equivalent to ball
A being weak-star dense in ball H°° (\o).

A theorem of Gamelin and Garnett [11] also extends to
T-invariant algebras, to show that H°°(XQ) n C(K)= A. In
fact, these theorems are all valid when XQ is replaced by a
more general class of measures. Since we will require the result,
we state it precisely.

8.5. THEOREM. -Let A be a ^-invariant algebra on K ,
and let d3^ ^e ^e band generated by the measures in A1. Let
\ be any measure in (Bj^ such that each nonpeak point of A
has a representing measure absolutely continuous with respect
to X, that is, such that S(X) = Q. Then the projection
H°°((B^)—> H°°(X) is an isometric isomorphism and a weak-star
homeomorphism :

fr^-H^X).

Moreover, ball A is weak-star dense in ball H°° (X). Finally,

A = H°°(X) n C(K).

Davie's theorem implies that every nonpeak point q G Q
for A has a representing measure absolutely continuous with
respect to XQ . Thus XQ satisfies the hypotheses of Theorem 8.5.

9. Pointwise bounded limits.

Let A be a T-invariant algebra on K , and let jn be a
measure on K. Following Sarason [17], we will approach the
weak-star closure H°°(jLi) of A in L^Ox) by first studying the
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algebra B(^) of pointwise bounded limits in L°°(jLi) of functions
in A. By definition, B(jLi) consists of the functions / €: L°° (jn)
for which there is a bounded sequence {/^} in A satisfying
f^——> /a.e. (rfjn). Equivalently, /G B(jn) if and only if for
some e > 0 , ef is weak-star adherent to ball A in L°°(jLi).
Evidently B(jn) is a subalgebra of H°°(jLi). However, B(jLi)
need not be norm closed, and we will denote by B(jn)~ the
norm-closure of B(jLi) in H°°(jLi).

9.1. LEMMA. — Let fJi = ̂  4- ^, where Ma e <B i and
JLI, is singular to d3^. TTz^z B(^) ^ B(j^) C L00^).

Proo/: - Let h e L°° (^) satisfy || A IL < 1 . Since ball
A is weak-star dense in ball A**, the function in L°° (jn) which
is h a.e. (djLi^) and 0 a.e. O^,), is weak-star adherent to ball
A. A standard argument shows that there is a sequence {h^} in
ball A such that h^ ——> h a.e. (<^y), and h^ ——> 0 a.e. (rfj^).
Thus B(jLi) includes {0}eL°°(^), and it follows that
BOO-B(^)C L00^). n

9.2. LEMMA . — B(^) coincides wth the image of

H ' d j L i J + X Q ) in L^).

Proo/- Suppose /£B(^). Let {/^} be a bounded
sequence in A such that f^——> /a.e. (dfi^). If F G H°°(|^| 4- XQ)
is any weak-star adherent point of {/^}, then F==/a.e.(^).
Conversely, if F G H°°(|jLi^| + XQ), then by Davie's theorem
there is a bounded sequence {/„} in A such that

fn——^/a.e.(d|jLiJ + r f X Q ) .

If / is the projection of F into L°°(^), then evidently /G B(^). a
Now fix /x = jn^ + /Ay as before, and let Q denote the set

of nonpeak points of A. Define the envelope of jn^, denoted by
E(ju^), to be the set of q ^ Q such that

\f(q)\<\\f\\^^, all /eH°°(|^| + X Q ) .

Since f{q) depends continuously on q ^ Q , in the Gleason
topology of Q, it is clear that E(jn^) is closed in the Gleason
topology. However, it is not immediately clear that E(^) is a
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Borel subset of the complex plane. Indeed it is; this is a consequence
of the following general lemma and the fact that the set Q is a
Gleason-separable subset of M^ .

9.3. LEMMA. —// A is an arbitrary uniform algebra, then
any separable Borel subset of M^ with respect to the Gleason
topology is a Borel subset with respect to the Gelfand topology.

Proof. — One checks that any closed ball in A* meets M^
in a Gelfand-closed set. Thus any closed Gleason-ball in M^ is
Gelfand-closed, and any open Gleason-ball in M^ is a Gelfand
F^set.

Suppose that E is a separable Gleason-closed subset of
M^, and let {^JJ°=i be a Gleason-dense sequence in E. Then

the union of the Gleason (= norm) — — balls centered at the
n

q.s is a Gelfand F^-set, and their intersection E is consequently
a Borel set with respect to the Gelfand topology. Because E is
separable, any subset of E which is relatively open in the Gleason
topology is the intersection of E and a countable union of open
Gleason-balls, and hence is also a Borel set with respect to the
Gelfand topology. It follows that any Borel subset of E with
respect to the Gleason topology is a Borel subset with respect
to the Gelfand topology. Appealing to this statement, with E
the Gleason-closure of a given separable Borel subset of M^
with respect to the Gleason topology, we obtain the lemma, n

Since now E(jn^) is a Borel subset of C, we can speak
about its area.

9.4. LEMMA. -Either E(^) = Q, or else E(^) has area
strictly smaller than Q.

Proof. — From the definition of E(^), it is clear that
Q\E(jn^) is an open subset of Q, in the Gleason part metric of
Q. Hence by Browder's theorem, Q\E(jLi^) has full area density
at each of its points. Thus either Q\E(^) is empty, or else
Q\E(jn^) has positive area. a

9.5. THEOREM. - if E(^) = Q, then



174 B.J. COLE AND T.W. GAMELIN

B(^Ji)=HOO(fJi)=H<^o(^)e L°°(^).
Furthermore, each q E Q Aa5 a representing measure absolutely
continuous with respect to ^, 5-0 that the conclusions of
Theorem 8.5 are valid for ^.

Proof -The natural projection fT(\^\ + \? —^ l^O^)
is norm-decreasing. The hypothesis that E(j^) = Q shows that
it is an isometry. Since the map is weak-star continuous, the
image of the unit ball of H°°(|^| + \^) is weak-star compact,
hence weak-star closed in L°°(^). The Krein-Schmulian theorem
then shows that the image of H°°(|^| + Xp) is weak-star closed,
hence it coincides with H°°(JLI^). Thus the natural projection
maps H^djLiJ + XQ) isometrically onto H^O^). The map
is thus a weak-star homeomorphism. Since the evaluations at
points of Q are weak-star continuous on H°°(Xo), they are
also weak-star continuous on H°°(^), and they have representing
measures « ̂ . D

In order to determine what happens when E(^)=^Q, we
require two technical lemmas, whose proofs may be found elsewhere.

9.5. LEMMA.-// /eH°°(|jLiJ 4- Xp) extends to be analytic
in a neighborhood of some fixed point w, then the function
[f-fWKz -w) belongs to H°°(|^| + \^).

Proof —The proof is the same as that of [5, Lemma 17.10].
One shows that H°°(|^J -h Xp) is also invariant under the
operators T^, and one uses this invariance for an appropriate
function g . D

9.7. LEMMA. - Suppose f G H00 (| ̂ \ + \?, q E Q, and
f(q)=0. Then there is a sequence {/„} in KTdjLiJ 4-Xp)
such that /„ is analytic at q, f^(q) = 0, {/„} is bounded, and
{/„} converges uniformly to f on any subset of K at a positive
distance from q.

Proof. -This proof is the same as that in [11, Corollary 2.2]
for the algebra R(K). D

The key lemma for our purposes is the following.
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9.8. LEMMA. —With notation as above, we have

R(E(M,))CB^)-,

regarded as subset of L°° (jix).

Proof. — Let Y be the quotient space obtained from the
spectrum of L°°(|^J 4- Xp) by identifying points which are
identified by H°° (| ̂ xj 4- XQ ). We may regard H°° (| juj 4- Xp)
as a uniform algebra on Y. Let Z : Y —> Q be the natural
projection which coincides with the Gelfand extension of the
coordinate function z , regarded as an element of H°°(|^J 4- X^).

By Lemma 9.2, it suffices to show that the uniform closure
of H°° ( | ^ |+XQ) in L°°(^) includes R(E(^)). Note that
the measure ^ has a natural lift to a mesure ^ on Y. Denoting
by supp ^ its closed support, we see that the uniform closure
of H °°(|/AJ 4-Xp) in L°°(^) coincides with the uniform
closure of FTdjLiJ 4-Xp) in C(supp^). Let 17 be a measure
on supp^ which is orthogonal to H °°(1^| 4- X^). By the
Hahn-Banach theorem, it suffices to prove that 17 1 R(E(jL^)).

Let ^ = Z * 7 ? , a measure in A1. It suffices to show that
i/1 R(E(ji^)), and for this it suffices to show that v = 0 a.e.
off E(^).

Suppose q G K satisfies

f ——'——^(iTyDKzXJ \z — q |\z -q\
or equivalently,

r d\r]\(^)/ ——————<°° . (9.1)J \W-q\
Since | v\ <; Z*( | i71), we then have

€ d\v\(z) ,
J ~,————7 <°°\z - q\

Suppose furthermore that q satisfies v(q) ̂  0. Set
/- dv(z) r dr^p)

= v{q) = / ———= / ————1 J 7. — n J 7.(^\ —
a =

z - q J ZW-q
Suppose /€ H'dju^l 4-Xp) is analytic at q. By Lemma 9.5,
[/ - f(q)]Kz - q) e H00 (| ̂  | 4- Xp). Hence
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. r fW -fW , , . r fWdr](^p)
0 = J ~j7^——— A?(^ = J 77^—^ ~ af(q) • (9•2)J Z(<^) — q J Z(<p) — q

Now if /£H°°(|JL^| + XQ) is arbitrary, we can by Lemma 9.6
find a bounded sequence {/^} in H°°(|jLiJ 4- Xp) such that
each /^ is analytic at q , and [f^} converges uniformly to /
on each subset of K at a positive distance from q. Regarded as
functions on Y, {/^} then converges uniformly to / on each
compact subset of Y disjoint from Z~l({q}). On account of
(9.1), Z~l({q}) is a null-set for 17. Hence we may apply the
dominated convergence theorem to conclude that since each
f^ satisfies (9.2), so does /. Thus

. , 1 rfWdr]^)
/w==^ 7(̂ =7

for all /G H°°(|jLiJ 4- Xp). Thus the homomorphism "evaluation
at q" has a representing measure absolutely continuous with
respect to T? . In particular | f(q) | < || / ll^pp ^ < I I / H^^) •
This shows that v = 0 a.e. (dx dy) off E(JLI^) , as required, a

From the preceding lemma, together with Lemmas 9.1 and
9.2, we obtain immediately the following theorem.

9.9. THEOREM. - Let A be a ^-invariant algebra on K ,
and let p. be a measure on K . Let JLX = jn^ 4- ̂  be the Lebesgue
decomposition of JLI with respect to the band ^ generated by
A1, and let E(/x^) be the envelope of p.^, as defined above.
Then H°° 00 ^ H°° (jn,) 0 L°° QLI,) , ^d furthermore H°° (^)
coincides with the weak-star closure of the T-invariant algebra
[A+R(E(^))]~ in L^).

10. Weak-star closure of A in L°°(jLi).

We are now in a position to describe the weak-star closure
H°° (jn) of a T-invariant algebra A in L°° (jn) for an arbitrary
measure jn . (While many algebras will float through this section,
we will reserve the notation H°° for the weak-star closure of
A.) Following Sarason [17], we will proceed by induction on
the countable ordinals, using the work in the preceding section
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to pass from an ordinal to its successor. Specifically, we will
construct by induction a family of T-invariant algebras A^ on
K , ; a countable ordinal, with the following properties :

A^.CAy if i< j , (10.1)

A,C H°°(jLi) for all ? , (10.2)

A,= [A -(- R(Q^]~", where Q{ is the set of nonpeak points
ofA,. (10.3)

We begin by defining A^ = A. Suppose 7 > 1 is a countable
ordinal, and the A\ s have been defined and have the properties (10.1)
through (10.3) for all i<j. There are two cases to consider.

Suppose first that / has an immediate predecessor say
/ = ;' + 1. Let JL .̂ be the projection of jn into the band generated
by A^, let E(jL^.) be the envelope of JLI? and let Q, be the set
of nonpeak points for Ap Define A = [A + R(E(^.))]~. Since
E (jn,) C Q,, we have A, = [A + R(Q,)]~ C [A + R(E(^))]- = A,,
and (10.1) is valid. That (10.3) holds for / follows from Lemma 8.4.
By Theorem 9.9, A. is included in H°°(jL^). Since p. — .̂ is
singular to A^, H00 Qz) ^ H°° ( .̂) C L°° (^ - ̂ ). Hence also
Ay C H°°(jLi), so that (10.2) is valid, and the properties are verified
for such an ordinal /.

Next suppose that / is a limit ordinal. Define A. to be the
closed linear span of the algebras Ap for i < / . Evidently A.
is T-invariant. Since A^ consists of the measures v 6 A1 such
that v = 0 a.e. (dx dy) off Qp evidently A1 consists of the
measures v G A1 such that v = 0 a.e. (dx dy) off

T = U { Q , : z < / } .

Hence Ay = [A + R(T)r. By Lemma 8.4, (10.3) is valid.
Evidently (10.1) and (10.2) hold, so the properties are verified for
any ordinal /.

Now let 7 be the first ordinal such that A^ = A^^.^ . This
occurs just as soon as Q .̂ i has the same area as Q^, which
occurs after at most a countable number of steps. By Lemma 9.4,
E ( ^ ) = Q / y ' By Theorems 9.5 and 8.5, the weak-star closure
H°°(A ,^LI ) of A^ in L°°(jLi^) is isometrically isomorphic and
weak-star homeomorphic to its weak-star closure H°°(A^,XQ ) in
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L°°(XQ ). Since by property (10.2), A is weak-star adherent
to A in L°° (p.), we see that A and A have the same weak-star
closures H00^) and H°°(XQ ) in L°°(^) and L°°(XQ )
respectively. Moreover, H°°0x) ^ H°°OX ) 9 L°°OX — ^ ).

Now we relate Q to the set S(p.) of points in K which
extend weak-star continuously to H°° Ox). We will write jn^
for ^ and ^ for JLI — /x , so that

irox^irox^e L°°(^). (io.4)
Every ^ € Q^ is weak-star continuous on H°° (XQ ),

hence on H^Ox), so that CLCSQx) . On the other hand, if
^ E S Q x ) , then q has a representing measure v absolutely
continuous with respect to ^. In view of the decomposition
(10.4), we see that either v«^, or else v is a singleton at
a point at which ^ has mass. If v «^, then 4 is weak-star
continuous on H°°(XQ ), so that q E Q ^ . Hence S({ji) is the
union of Q^ and an at most countable set, at each point of which
VL has mass.

In particular, S(^i)\Q^ has zero area, so that
R(SOx))=R(Q^) ,

and A = [A 4- R(S(^))]'~. Our results are summarized in the
following theorem, which was obtained for R(K) by Chaumat [4].

10.1. THEOREM. -Let A be a ^-invariant algebra on the
compact subset K of the complex plane, and let M be a measure
on K . Let S(fJi) denote the set of points in K which determine
weak-star continuous homomorphisms of H°°(^i). Let A denote
the ^-invariant algebra [A + R(S(JLl))]-, and let Q denote the
set of nonpeak point of A. Let ^ denote the projection of
IJi into the band generated by (A)1, and ^ = ^ — ̂  . Then

(i) A C H°° Qx), so that H°° Ox) coincides with the weak-
star closure of A in L°° (p.).

(ii) SOx) is the union of Q and the points of K\Q at
which /x has mass. In particular, S(p)\Q is at most countable.

(in) H^-irOx,)®!^).
(iv) The identity map of A extends to an isometric
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isomorphism and a weak-star homeomorphism of H°°(jL^) and
H°°(XQ). (Here H06'(Xp) is the weak-star closure of A in L°°(XQ).)

/^->
(v) // /eH°°(^), there is a sequence {/„} in A such

that || /„ || < || /1| and /„ —^ / a.e. (rfjn).

(vi) ^iroLOncCK).
Proof. — The statements (i) through (iv) follow from the

preceding discussion. In particular, the measure ^ satisfies the
hypotheses of Theorem 8.5 with respect to the T-invariant
algebra A. By Theorem 8.5, ball A is weak-star dense in ball
H°°(jL^). Since the measure ^ is singular to the measures in
A1, a standard application of the separation theorem for convex
sets shows that ball A is weak-star dense in ball H°° (jn). Hence (v)
is valid. If we apply Theorem 8.5 to A and p.^, and take into
account (iii) above, we obtain (vi). o

10.2. COROLLARY. - The set S(p.) of points q ^ K which
are weak-star continuous on H^OLI) is an Fy-set.

Proof. — The set of nonpeak points of any separable uniform
algebra is an F^-set, so that Q is an F^y-set. Since S(^n) is
the union of Q and an at most countable set, S(/x) is also an
F^y-set. a

From the description of H°°(jLi), it is possible to describe
easily the ^i-parts of S(jn)-

10.3. THEOREM. - Let A be a T-invariant algebra on K ,
and let JLI be a measure on K . Let A == [A + R(S(jLi))]~\ as
in Theorem 10.1. Then the p.-parts of S(/x) are the various
nontrivial Gleason parts of A, together with the singletons in
S(/i)\Q. The decomposition of a measure X G A^X«ju ,
given by Theorem 3.6 is precisely the decomposition obtained
by applying the abstract F . and M. Riesz theorem to the
algebra A, decomposing \ into the constituents corresponding
to the various nontrivial Gleason parts of A.

Proof. — Let Qy be a nontrivial Gleason part of A, so that
Q. C Q. Then the characteristic function of Qy is a minimal
idempotent in H°° (dXg^)), which corresponds to a minimal
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idempotent ^•EH00^) via Theorem 10.1. Since <^(x/) = 1 if
(R E Q., and <^(x,) = = 0 if (^ G S(/x)\Qy, the jn-part corresponding
to \. is precisely Q.. This establishes the first assertion of the
theorem, and the second assertion follows easily. Q

11. The local Dirichlet condition.

Again let A be a T-invariant algebra on K , with set Q
of nonpeak points, and let JLI be a measure on K. Following
Sarason [17], Chaumat [4], and Dudziak [7], it is possible to
obtain more precise information about the structure of S( jLi )nQ°,
where Q° is the interior of Q with respect to the complex
plane. Rather than give formal proofs, we state the results and
refer to Dudziak [7] for proofs along the lines we have in mind.

The key result is contained in the following theorem.

11.1. THEOREM. — Let A be a ^-invariant algebra on K ,
and let p. be a measure on K. Let Q be the set of nonpeak
points of A, and let Q° denote the interior of Q with respect
to the complex plane C. Let A = H°°(jLi) H C(K) be as before,
and let W denote the set of nonpeak points of A. Then Q° 0 W
is an open subset of Q°, and each connected component of the
complement of Q°\W reaches out to the boundary of Q°.
Furthermore, if D is any open disc whose closure D is contained
in Q°, then the uniform closure of A in C(D) is a Dirichlet
algebra on (D\W) U 3 D, which coincides with the functions
in R(D H W), extended in all possible continuous ways to D .

As a simple example, if A = R(A) is the standard disc algebra
on the closed unit disc A , and if p. is the area measure on an
open disc AQ C A , then W = A^ , and X consists of the continuous
functions on A which are analytic on A^ . If D is^ any open
disc, D C A, then the uniform closure of A in C(D) consists
of the continuous functions on D which are analytic on D 0 AQ .

Theorem 11.1. can be proved by induction, by showing that
each of the algebras A^. has the properties ascribed to A in the
theorem. The details depend on some technical results on Dirichlet
algebras in the plane. This line of development yields further
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information on the component ^ of the measure jn with
respect to the band generated by A1. It shows that the restriction
of ^ to Q° is carried by W, and the restriction of p.^ to
Q° H 3W is absolutely continuous with respect to harmonic
measure for Q° H W (that is, a convex sum of harmonic measures
for the components of Q° H W).

Following Dudziak [7], we may obtain also various
corollaries. We retain the notation above.

11.2. COROLLARY. -// Q\Q° has zero area, then S(^)\S(^)°
has zero area, and H°° (^) is isometric and weak-star homeomorphic
to a weak-star closed subalgebra H°°(XS(^)O) °f fhe algebra
H^SQLi)0) of bounded analytic functions on S(jLi)°.

11.3. COROLLARY. — Suppose that for all but at most countably
many points z € 3 Q , the analytic capacity 7 satisfies the

condition lim inf . Q) > 0. Then S(pi)\S(Fi)° is at
6 ——> 0 °

most countable, and H°°(JLI^) is isometric and weak-star homeomorphic
to ITOOO0).

12. The algebras R(K)and A(K).

As mentioned before, the results of the preceding sections
were obtained by Chaumat [4] for the algebra R(K). In the case
of R(K), Theorem 10.1 (vi) and Lemma 8.3 show that the
algebra X = H°°(jLi) H C(K) coincides with the algebra R(SOx)).

In the case of the algebra R(K), one can provide a direct
proof of Theorem 10.1, which does not proceed by induction
on the ordinals, but which still requires the machinery of
T-invariant algebras (specifically. Theorem 8.5). The proof,
which is essentially the same as that of Chaumat, runs as follows.

We wish to show directly that

R(SOi))CH°°OLi). (12.1)
For this, let v be a measure such that v « p. and i / iR(K) .
A standard argument shows that if v(q) exists and is nonzero,
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then ^eS(^i) . It follows that v = 0 off S(^i), and this implies
that I / IR(S(M)) , so that (12.1) is valid. Now with (12.1) in
hand, Theorem 8.5 on T-invariant algebras yields directly the
version of Theorem 10.1 for R(K).

Chaumat also obtained Theorem 10.1 for the algebra A(K).
This algebra already requires more effort than the algebra R(K).
In connection with A(K), there remains an interesting problem.
Let us briefly describe the situation, for a slightly more general
class of algebras.

Let U be an open subset of the complex plane, U C K,
and let A = A ( K , U ) be the algebra of continuous functions
on K which are analytic on U. In this case, the set Q of
nonpeak points for A is the union of U and a set of zero area,
so that Corollary 11.2 applies. If p. is a measure on K , then
the set W of nonpeak points for A meets U in an open set,
and W 0 U has full area in W. Thus H°° (p.) is isomorphic to
a weak-star closed subalgebra of H°° (W n U), though it need
not coincide with H°° (W H U).

The problem is to describe more explicitly the algebra
A = H °°(/x) n C(K). In particular, it is not known whether
A = A(K,V) for V = W n U.

13. The algebra R(K), for K° connected and dense in K .

We consider now the case originally treated by Glicksberg
in [13], in which K° is connected and dense in K . In this case,
we do not know the answer to the following questions :

If p. is a nonzero measure on 3K orthogonal to R(K), does
S(^) coincide with the set Q of nonpeak points for R(K) ? (13.1)

Is the restriction map H00 (Xp) —> H°° (K°) an isometry ? (13.2)

Is K° dense in Q, in the Gleason topology ? (13.3)
An affirmative answer to (13.3) yields immediately an affirmative
answer to (13.2). The next theorem shows that if (13.2) is true,
then so is (13.1).
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13.1. THEOREM. —Suppose that K° is connected and dense
in K. Let XQ denote the area measure on the set Q ofnonpeak
points for R(K), and let \ denote the area measure on K° .
Suppose the restriction map H°°(XQ)—> H00 (X) is an
isometry, i.e.,

I I / H Q = I I / H K O , all /EH°°(XQ). (13.4)
Then :

(i) The restriction map H°°(XQ) —> H°°(X) is an isometric
isomorphism and a weak-star homeomorphism of H^XQ). and
H°°(X).

(ii) // /eH°°(X), there exists a sequence [f^i in R(K)
that converges normally to f on K° , such that \\ /„ II < II /1|.

(iii) // v is any representing measure on 3K for a point of
K°, then the natural projection H°°(Xo) —> H°°(^) is an
isometric isomorphism and a weak-star homeomorphism of H°° (Xp)
and VT (y).

(iv) // yi is any nonzero measure of 3K orthogonal to
R(K), then S(^) = Q.

Proof. — First we claim that the projection of the unit ball
of H°°(XQ) is weak-star closed in H°°(X). In fact, let /eH°°(X)
be a weak-star limit of a net {/„} in ball H°°(XQ). If F G H°°(XQ)
is any weak-star adherent point of {/^}, then ||/||<1, and
F = / on K°. Thus / also belongs to the projection of ball
H°°(XQ). Now the Krein-Schmulian theorem shows that the
projection of H°°(XQ) into H°°(X) is weak-star closed, hence
it coincides with H°°(X). Thus H°°(XQ) and H°°(X) are
isometricallyisomorphic. Since the projection is weak-star continuous,
it has a preadjoinf, which must also be an isometric isomorphism.
It follows that the projection is a weak-star homeomorphism, and
(i) is established.

Now (ii) follows immediately from the corresponding
property for H°°(XQ), which is Davie's theorem. Davie's theorem
provides a natural projection H°°(XQ) —^ H°°(i0. Since each
z E K° has a representing measure absolutely continuous with
respect to v , there is also a natural projection H°° (y) —> H°° (X).
Since the composition of these projections is an isometric
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isomorphism and a weak-star homeomorphism, each of the
projections is, and (iii) is established.

To prove (iv), we invoke Glicksberg's original theorem
from [13]. By Glicksberg's theorem, if p. is a nonzero measure
on 3K orthogonal to R(K), then fi is mutually absolutely
continuous with respect to a representing measure for a point
of K°. Since H°°(XQ) ^ H°°(^), each point of Q has a
representing measure dominated by v . Hence Q C S ( j n ) , and
since ^ cannot have any point masses at peak points, Q = S(p.). a

If Q\K° has zero area, then the hypothesis (13.4) is met
trivially. The hypothesis (13.4) can be met even when Q\K°
has positive area. We devote the remainder of this section to
showing that the beady hair set [8, VIII.9] satisfies the hypotheses
of Theorem 13.1, even though Q\K° has positive area.

Let F be a compact Jordan arc in the closed unit disc A
such that r has positive area, and such that at most one point
of r lies on 3A. Let {Ay}j^ be a sequence of open discs with
pairwise disjoint closures, such that the sum of the radii of the
A[s is finite, each A. is disjoint from 3A, each A. meets F
in precisely one point, and these points are dense in r. Let
K = A \ ( U A ? . Then 3K consists of 3A, F and the 3A^,
while K° is connected and dense in K. Let fJi be the measure
on 9K defined so that ^ = dz on 3A-, j> 1 , while JLI = — dz
on 3A. Then one computes that {i = 0 on C\K, while
jji = liri a.e. (dx dy) on K. Thus ^ 1 R(K). Every point at
which the integral defining {i converges absolutely and satisfies
{ji(z) ̂  0 has a representing measure absolutely continuous with
respect to jn , and hence belongs to Q. Thus K\Q has zero
area. Since r has positive area, and Q includes almost all points
of r, Q\K° has positive area.

Next we establish that (13.4) is valid. Let /•eH00^), and
let {/„} be a bounded sequence in R(K) converging weak-star to
/ in H°° (XQ). Then {/„} converges normally on K° to /, and
{/„} also converges weak-star in L°° On), say to F. As observed
before, almost all (dx dy) points of Q have representing measures
absolutely continuous with respect to jn . Hence

'^"L-^^II^IL^)'
so that in fact the correspondence /<—^ F is an isometry of
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H°°(XQ) and H°°OLI). Now by considering the approximants
{/„}, one may see that F is the nontangential boundary value
function of / on each 3A. and also on 3 A , so that

I | F | I ^ ) < I I / I I K O .

We conclude that II/HH-^) = I I F ll^) = 11^11^ 9 so that the

restriction map H°°(XQ)—> PPCK0) is an isometry, and (13.4)
is valid. In particular, from Theorem 13.1 we obtain S(jji) = Q.

14. The infinite polydisc algebra.

Let A = { | z | < 1} be the open unit disc in the complex
plane, and let T = = { | z | = l } be its boundary circle. Let
A°° = A x A x . . . be the countable product of A with itself.
Define T°° = T x T x . . . similarly to be the infinite torus, and
let do be the Haar measure on T°° . In this section, we will
consider the uniform algebra A on T°° generated by the monomials

g(eit>l,eie2,...)^elml6l...eimk6k, ( 14 .1 )

where 1 < k < °° and m. > 0 for 1 < / <; k. The maximal
ideal space of A is the countable product of the closed unit disc
with itself,

M^ = A x A x . . . .

The Gelfand extension of the monomial g of (14.1) is given by
. W\ ^k /• \ /_ trg ( z ^ z ^ , . . .) = z^ . . .z^ , z = (Zi,^, . . .) E M ^ .

The Haar measure a represents the homomorphism "evaluation
at 0" of A:

fW=ffdo, / G A .

We wish to determine the set S(or) of weak-star continuous
evaluations of H°°(a). First we make some preliminary observations
concerning the Gleason topology for M^ .

For any ? € A°° we have the estimate

1/(?)1<( sup l? , | ) | | / | | , /eA,/(0)=0. (14.2)
1< /<°0
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Indeed, if ft = sup |^.|, then w —> f(^w ,^w , . . . ) depends
analytically on the complex parameter w for |w |< 1/|3, and it
is bounded by || /1|. Applying the Schwarz inequality to this
function, we obtain (14.2).

From (14.2) it follows directly that the Gleason part of
0 € M^ consists of all ? G A°° such that sup|?.|< 1. It also
follows from (14.2) that a sequence {^^^i in A°° converges
to 0 in the Gleason metric if and only if

lim sup \y\ = 0. (14.3)
n -»-oo l</<oo

More generally, a sequence {^^i in A°° converges to ? E A°°
in the Gleason metric if and only if

{•(i) - ̂
lim sup J/' ^ J^ = 0 . (14.4)

n -̂  oo 1< /<oo 1 — ?, ?,

Indeed, for fixed ?, the map ^ : M^ ——> M^ defined by

^=^71 S/2'/

is a homeomorphism which leaves A invariant: / € A if and
only if /o ̂  E A. It follows that ^ is an isometry with respect
to the Gleason metric. The condition (14.4) follows from (14.3)
upon applying ^.

14.1. THEOREM. — The homomorphisms of A \^hich are
weak-star continuous with respect to Hoar measure a are precisely
those ? € A°° such that ?. —^ 0 as j —> <x>.

Proof — Since S(cr) is contained in the Gleason part of 0,
in particular S(or) C A°° .

Suppose that ? G A°° , and .̂ —^ 0. Choose 6 > 0 and
a subsequence ? / ,»?^» • • • such that l?y I > 5 , all i. Consider
the analytic polynomial

^-^i^----^^)^-
Since the z\ s are orthogonal in L2 (or) , we obtain
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fw^-^W'^.
Hence /„ ——> 0 in L2 (a), and since | /J < 1 we obtain f^ ——> 0
weak-star in H°°(a). However, /„(?) > 8 for all n, so that the
evaluation at ^ is not weak-star continuous.

Suppose next that ? ^ A°° is such that ?• = 0 for all large
7 , say for / > N. Then ^ is represented by the measure

A^=P^ (^ ) . . .P^ (^ )Ar ,

where P^ is the Poisson kernel for w E A. In particular ^ is
weak-star continuous.

Finally, suppose ? € A°° satisfies {. —^ 0. Let

^Oi^---?^ 0, 0 , . . . ) e A ° ° .

As just observed, ^ESCa) . By the condition (14.4), ^n)}
converges to ? in the Gleason metric of M^ . Now a standard
argument involving convolution with an approximate identity
shows that ball A is weak-star dense in ball H°°(or). Hence
Theorem 7.7 shows that S(a) is closed in the Gleason metric.
It follows that ? G S ( o r ) . n

Thus we may identify S(a) with the space of null sequences
in A°° . Theorem 7.6 shows that S(a) is an F^-subset of
M^ . However, the following result shows that we cannot expect
any more.

14.2. THEOREM. - The set S(a) of ^oak-star continuous
homomorphisms is not an ¥y-subset of M^ .

Proof — Suppose E^, k > 1 , are compact subsets of M^
contained in S(a). It suffices to construct a point ? G S(a)
such that ? ^ U E^.

Choose N^ so large that there is no point in E^ whose
first N^ entries are all equal to 1/2. (If this were not possible,

we could pass to a limit and obtain ^—, —, . . . j G E^, contradicting

EI C S(or).) Then choose N^ > N^ so large that there is no ? in
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E^ which satisfies ?/= — for N ^ < / < N ^ . Proceeding in this

manner, we obtain a sequence 0 = N^ < N^ < N^ <. . . such that
no ? in E^ satisfies ?y = 1/2^ for N ^ < ; < N ^ . Then

the point ? defined so that ?, = —^ if N^_i < / < N^ , 1 < A: < oo,

belongs to S(a), but to no E^ . a
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