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GLOBAL STABILITY FOR DIAGRAMS
OF DIFFERENTIABLE APPLICATIONS

by L.A. FAVARO and C.M. MENDES(*)

Introduction.

The theory for diagrams of differentiable applications put
together by J.P. Dufour in [5] presents two essentially distinct
cases.

The convergent case is the study of sequences of type
f f f

M^———> M^———> . . . M^_ i n-l > M^ and is similar than

that of just one application M ———> N studied by J. Mather.
One of the reasons for this analogy is the existence of the
Preparation Theorem for convergent diagrams. The global theory
is obtained by gluing local solutions. This problem was studied and
solved by Buchner [1] and J.P. Dufour [5].

The divergent case is the study of sequence which contains
g f

subdiagrams of type Q <—— M ——> N. In this case, the non-
existence of a Preparation Theorem makes the study much more
complicated. Some progress was achieved for the local problem
in certain dimensions, see [5]. This doesn't happen for the global

f f
situation, since in the first type to be considered R <-J— M -J—> R
the characterization theorem :

"The application /: V —> R2 (dim V > 2) is bi-stable if
and only if its only singular points are transversal or tangent folds

(*) Partially supported by the Brazilian agencies CNPq, FAPESP and FINEP
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(^-stability.



134 L.A. FAVARO and C.M. MENDES

or transversal cusps and / restrict to the critical set 2(/) is
injective", stated by J.P. Dufour [6] is incorrect as shown by the
following examples.

Exemple 1. — Consider
M = S2

TT : R3 —> R2 , TT(X ,y ,z) = (x , y )
f=7T/M

/=(/ ! ,A)

satisfies the conditions of the theorem and f^ ,f^ are stable.
Otherwise / is not bi-stable since near / we have g with g(T,(g))
like figure. Observe that / has two tangent folds in the same
horizontal line, but g no. Then / is not bi-equivalent to g , since
allowed conjugations preserves tangent folds and diffeomorphism
on the target preserve horizontal and vertical lines.

Examples 2 (Due to Leslie Wilson). - Let / :M —> R2 be
such that /(2(/)) admits a inscribed rectangle with sides parallel
to the axes, see figure (*). Then / is not bi-stable.

v /(£(/))

x
(*)
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Wilson's proof is long and we omit it. He also proves that
the bi-stable mappings are not dense. However he observes that
there exist closed curves C in R2 with inscribed rectangles and
such that all nearby curve have inscribed rectangles. Also Wilson's
argument can be extend for inscribed circuit with sides parallel
to the axes, instead of rectangles.

Example 3. — Let / : M —> R2 be such that there is a
triangule rectangle ABC as in figure (**), where A and C are
images of tangent folds and BE/(£(/)). Then / is not bi-stable.

/(£(/))

(**)

The above examples and the theorem of Dufour give us a
set of necessary conditions for the C°°-bi-stability. Are they
sufficient ? Does exist C°°-bi-stable mappings if M is compact ?

The stability for divergent diagrams is very often applied
to study family of manifolds and their envelopes, see [3] and [12],
stability of maps between foliated manifolds and restrictions
of maps to submanifolds. We wish to introduce a notion of
stability which admits a version of the Preparation Theorem, the
global theory works and is natural with respect to the above
applications.

The material is presented in three parts. In the first we
introduce the notion of (//-stability, in the second a survey
on the theory of globalization and in the third the characterization
theorems of ^-stability for low dimensions.

All manifolds and applications considered are C°° and the
notation is the usual in Theory of Singularities.
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1. Some Notions of Stability.

^ /1. DEFINITION . — Let Q <—— M ——> N. / is ^-infinites-
imally stable if for a given w G 6 (/), there are u E 0 (M), t; G 0 (Q)
and 17 G 0(7r) (TT : N x Q —^ N ^ the projection) such that :

W = = W ) ^ + 7 ? o ( / , ^ )

0=(d\^)u -^-v o \p .

Observation. — If ^ is infinitesimally stable, then / is
^/-infinitesimally stable if and only if for given W i E 0 ( / ) and
w^eOW there are ^ G 0 ( M ) , i;E0(Q) and 7?E0(7r)
(TT : N x Q —^ N is the projection) such that :

H/l =W)^+7?o( / , ^ )

^2 = (d^)li + ̂  ° ^/ •

^ /2. DEFINITION. -Z^r Q ^—— M ——> N. / is ^-stable if
there exists a nbhd Vy of / (C°° Whitney Topology), such that,
for each g in Vy there are diffeomorphisms h, k and £ such
that the diagram below commutes (^-usual projection)

M A^ N x Q -^ Q
IA i^ .lc
M - ^ - ^ N x Q - ^ — — Q

// there exists such that diagram we say that f is ^-equivalent
to g.

^ f3. DEFINITION. -Let Q^——M ——> N . (/, ^) is ^-stable

if the diagram M —'—> N x Q ——> Q is stable, see [4], this is,
there are nbhds V^ , V^ and V^ , such that if g E Vy, <^ G V^
^J p G V^, ^^re 6^ diffeomorphisms h, A: <^rf C ^cA ^^^
r/2^ diagram below commutes

M ^ l ^ N x Q - ^ — — Q
1/z k fc
„ (/,^) XT ^ * /->M ———>• N x Q ———> Q
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\h f
4. PROPOSITION . - Let Q ^—— M ———> N with ^ stable,

proper and (/, V/) proper. Then f is ^-stable iff (/, V/) f5
D-stable.

We wish to thank the referee for having pointed out how to
suppress the hypothesis N compact, in the above proposition.

Finally we show that the ^-stability is not equivalent to the
D-stability in general.

Example. - Let M = (-1 , 0) U (0 , 1), N = (-1 , 1), Q = R ,
/ : M —^ N, /Oc)=x,
V / : M —^ Q, ^ ( x ) = x 3 .

Observations. — (i) V/ is not proper ;
(ii) ^ is infinitesimally stable ;

(hi) V/ is stable. There exists nbhd W^ of ^ such that if
< ^ € W ^ , <^)>0, V x G M ;

(iv) / is C1 V/-stable. Let e(jc) be C00, flat at 0 with
e(0) = 0, e 0) > 0 for ;c ̂  0, describing a nbhd V .̂ in M
such that Vg E V^., g'(x) > 0.

g ( x ) , x ^ = 0
Let ^~ such that ~g(x) =

0, x^O

| ^0c)=x|<e( ;c) , V j c € ( - l , 1 ) . (g i s C1).

In the diagram take h = Id^ and fc(M , v) = (g(u) , v).

(v) The diagram M —:——> N x Q ——^ Q, where ir(u,v)=v ,
is infinitesimally stable.

(/, ̂ ) TTFinally we show that the diagram M————> N x Q ———^ Q
is not stable.

Take e : R —> R arbitrarily near the null application
whose graph has the aspect shown in figure.

The equation ^ — e C x ) ^ has two solutions ( x ^ , x ^ ) in
M.
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- 1

Take now p : R x R — > R,p(u , v) = v — e ( ^ ) .
p is sufficiently near TT .

Since

[7r°(/,VO]-1 {p} = {^}, VpER-{0}

[7ro(/, ^)]--1 {0} = 0
and

[ P ° ( A ^ ) ] ~ 1 { 0 } = { ^ ^ , x ^ }

the diagram is not stable.

Therefore

Remark. - In fact it can be shown that / is C'' (//-stable.

Envelopes. - Let X be a ^-dimensional manifold and take
Rq "——x ——> Rm . where TT is a fibration and / restrict
to the fibers Tr-^y) is one to one immersion. Following R.
Thorn [12] we have a family of manifolds in R"" of codimension
q , and the envelope of this family is E=/(2;(/)), with
2 (/) = {x E X/df^ is not surjective} .
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The equivalence between families follows from that of divergent
diagrams. Such an equivalence assigns the correspondent manifolds and
the correspondent envelopes of the families.

The ^/-equivalence defined is weaker than the concept of
divergent diagram, but it is still good enough to define an equivalence
between envelopes, as we sketch below for families of plane curves.

Let ip(x , y , t) = 0 be one-parameter family in the Oxy plane.
Classically the envelope is given by elimination of the parameter t
from the equations ^p(x , y , t) = 0 and ^(x , y , t) = 0. Take

R <-^— R3 -7r—^ R2 , with TT(JC , y , t) = (x , y ) and define
X^-^O), /=7r/X and p : R 3 — > R by p ( x , y , t ) = t .

p f
Then the given family is R ^——X ——^ R , with the envelope
E((^) = 7T(2(/)), where 2(/) = 2(7r, < )̂ H \p- l (0).

If {p(x , y , t) = 0 and ^(x , y , t) = 0 are one parameters
families in the plane, we say that they are equivalent if there exist
diffeomorphisms h : R3 —> R3 and k : R2 x R —> R2 x R,
such that the diagram

R3 or^ > R2 x Ri i
R3 ( 7 r > v / ) R^R

commutes. Here ^(M , v , w) = (A:i (u ,v ,w), k^(u ,v ,w), k^ (w))
and ^3(0)=0. Observe that such an equivalence preserves the
envelopes.

The (^-stability of TT in the restricted sense used here is
equivalent to the stability of TT^ = 7r/<^~ ^O), and following
Martinet [10], this is equivalent to u-versality of ^ p . Then the
(^-stability corresponds to the versality as is studied by Bruce
[2].

For illustration consider r '. R , 0 —^ R2 , 0 an arc lenght
immersion, see [2]. The family of normal lines defined by
\ { / ( x ^ , x ^ , s)= (x — r(s)). r(s)= 0, with x = (x^ , x ^ ) . The envelope

a2 V/
is x = r(s) + k l ( s ) ^ ( s ) . If —— ^ 0 we have a regular point

9s2
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of the envelope as a transverse fold of (x^ ,x^ , \^(x^ ,x^ ,.?)). The
a2 \b

singularities of the envelope occur when —r- = 0. When
.3 , 9s-9 V/
—3- =5^ 0, such a singularity is a transverse cusp. These singularities

are the only with stability, see [7].
32 ^ k(s)

If k(s)^=0 is the curvature, /•(O) = 0 we get —^-==——
. 9s2 k(s)

and V/ (0 , k- l (0), s) = —53 4- o (4).
6k

Then if k(s) ̂  0 and fc(^) ̂  0 we obtain a transverse fold.
If k^^O, k(s) = 0 and ^C^^O we have a transverse cusp.

2. ^-Infinitesimal Stability and i^-Homotopy Stability.

In this paragraph, we will suppose M is a compact manifold.
\b f

\. DEFINITION . -Let Q ^—— M ——> N . A deformation
F : M x J —^ M x J of f is ^-trivial if there exist diffeo-
morphisms h , k and 9. such that h(x , 0) = (x , 0), fi(z , 0) = (z , 0) ,
k(y , 0 ; z , 0) = (y , 0 ; z , 0), A , k and C keeping level and
such that the diagram belo\v commutes (^ = ^ x Id)

M x I ( F > ^ > (N x I) x (Q x I) > Q x I

[h k |c4, 4, 4,

M x I^^ (N x I) x (Q x I) ——^ Q x I

(where I = (- 6 , 6) C J).
/ is ^-homotopically stable if every deformation of f is

^-trivial.

Observation. — Let ^ be proper and stable, in the C°° Whitney
Topology. Then / is y/-homotopically stable if and only if for
given deformations F of / and $ of ^ there exist diffeomorphisms
h , k and £ such that h(x , 0) = (x , 0), fi(z , 0) = (z , 0) and
k(y , 0 ; z , 0) = (y , 0 ; z , 0), A , k and £ keeping level and
such that the diagram below commutes.
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M x I -(F-<1>)—> (N x I) x (Q x I) —r—> Q x I

I4 I' i1
M . I ' "" ' • • ' " •" ' . ' (NxDxCQxD——^Qxl

Let ^ : M ——> P and G be a deformation of g . Define
the vector field along G

^<)-G.(^)

a
where — is the usual vector field on M x R or P x R asar
required.

2. PROPOSITION (Thom-Levine). - Let F be a deformation
of f. Then F is ^-trivial if and only if there exist
I =( -§ ,5) , ^ ^ ( M x l ) , 7 ? e 0 ( Q x I ) and j^OW
(TT : (N x I) x (Q x I) —> N x I usual projection) satisfying

(i) S ? T? and 7 vvzY/z ^-component zero ;
(ii)TF = ( r f F ) ( f ) + 7 o ( F , ^ ) ;

(hi) 0 = (d^) 0) + T? o 7
o/i M x I , where ^ = ^ x Id .

This proposition enables us to obtain the equivalence between
the ^-homotopy stability and the ^-infinitesimal stability as
we show below.

v/ /
3. PROPOSITION. -Let Q ^——M ——> N . // / is ^-homoto-

pically stable then f is ^-infinitesimally stable.

4. PROPOSITION . - // / is ^-infinitesimally stable at p G M
and V/ is infinitesimally stable then there exist germs of vector
fields { , 17 and 7 with ^.-component zero such that

<TF =(rfFK4-7o(F,$)

j T^ = ( r f$ )$+7?o<&
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on the germ level at (p , 0), "where F is a deformation of f
and $ is a deformation of ^ ' . In this case, we say that (F , $)
is a deformation of (/, ^/).

Proof. - Let

Z = germs of vector fields w : M x R —> T((N x R) x (Q x R))

along (F , <&) at (p , 0) with R-component zero { .
K = \ r f ( F , < & ) IS l (p ,o ) /S ^ a vector field on M x R with

R-component zero {
A = Z/K is a finitely generated module over C ,̂ Q) (M x R).
A is a module over C ^ ( p ) o ) ( Q x R ) , via <&*. We claim

that A is also a finitely generated C ^ ( ) o ) ( Q x R ) - m o d u l e
with generators given by :

/ o \
e. = projection of (—— , 0 ) in A^y, F /

Of == projection of ( 0 , in A
3jy <i>

0'= 1 , . . . ,n ; /= 1 , . . . , q ) .

The claim follows from the Malgrange Preparation Theorem.
Now we show that the claim is sufficient to prove the proposition.
In A,

(TF,r<,)=(i (T^)-^ ; I (r?,^)^- ).
\=1 9Vi F ,=i / QZf <D /

Thus in Z ,

TF =(rfF)?+ S (7/°^). ,
1 = 1 9^ IF

<7 ^<7^
/^"lT^ = (< /<&)£+( S T7 ,——)o$ .
;=i dz,7

q *\

Now T? = V r?; — has R-component equal to zero and
;"i ; az/

T<^ = (d$) { + r? o $ on the germ level at (p , 0).
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Also
/ n ^ \

TF = ( r f F ) S + ( S 7^ .— ) ° ( F , $ ),== i dy, -7T

where ^(x , JO=7,(3 7 ) -

M ^

Now 7 = H 7^ — is such that Tp = (rfF) ^ + 70 (F , $)
1=1 9^i ^

on the germ level at (p , 0), completing the proof.
This proposition is true for germs at S = {pi , . . . ,p^ ) c ̂ ~ 1 W •
Now we introduce two singular sets in M , and we show how

to solve the equations near then.
^ /5. DEFINITION. -For the diagram Q ^—— M ———> N we

consider : £ the set of all p € M such that we can not solve the
system of equations w^ =(df)u, w^ =(d^)u as germ at p .

S^ the set of all p € M such that we can not solve the
system of equations w^ == (df)u 4- v o (/, V/) , w^ = (d\^)u as germ
at p .

6. LEMMA.-// S = 0 and (F , $) : M x R—^ ( N x R ) x ( Q x R )
is a deformation of ( / ,^ ) , then for given w ^ e 6 ( F ) and
w^ € 6 ($), with R-component zero, there exists { € 0 (M x I),
with R-component zero such that

w, =(rfFK

W2 = (^) S .

^ f7. PROPOSITION. -Let Q ^ — — M — — ^ N , wA^r^ 0 isinfini-
tesimally stable and f is ^-infinitesimally stable. Then S^ is closed
and 2i ny / - 1 ^) is a finite set, \/qGQ.

Proof - Let P^ be the set of all ( y , q ) ^ N x {q} such that
we can not solve the system of equations w^ = d(/, V/)$ + 7 o(/, ^),
w^ = (rf7r)7 as germs at (/, V/)~ ! (^ ,<7) and at (>/ , q ) .

This is a finite set, see [4].
We have 2 ,ny/ - l (^ )C U S n (/, ̂ )- x (>/ , q) as a

(>^)GP^
finite union of finite sets.
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Now we show that 2^ is closed. Take XQ E M — S i and let
(^o ^o)=( /^ ) (^o)« Qven (w , w) E 0(/, ̂  we have :

(w,n0=rf(/, V/)^ +(i;(/, V / ) ,0 ) .

From the Malgrange Preparation Theorem and following
[8], this is equivalent to

^(^ ^).o = rf^ ̂ o ]ke^ + (A VO* J'(0(N) x 0)^ ̂ .
Then, consider the application

(/^):J^(M)^ ej^ec^xo^^—.j^c/,^,
given by [ d ( f , V/) + (/, V/)*^ . It is surjective.

In local coordinates (/, ^) is a linear map of
^.n^^n+k^n——^K^^A- where B^ is the vector
space of polynomials maps from R'' to R5 of degree at most k.
Since (/, ^) is continuous in x , it follows that (77^) is onto
at every point in the neighbourhood of XQ . Then M — 2 ^ is open
and the proof is complete.

8. PROPOSITION. -Let \p be infinitesimally stable, f
^infinitesimally stable and (F, <&) a deformation of (/,i//).
Then there exist $ G 6 (M x R), 77 E 0 (Q x R) ^rf 7 G Q (TT)
(TT : (N x R) x (Q x R) —> N x R , i^fl/ projection with ^-compo-
nent zero such that

( T F = ( r f F ) S + 7 o ( F , $ )

( r<^ = ( r f $ ) ^ + r ? o $

on a nbhd W C M x R of S^ x {0}.

The proof is achieved using a usual partition of unity
argument and the fact that 2^ 0 ^" l (q) is a finite set.

^ f
9. PROPOSITION .-Z^r Q - ( — — M — — > N, w/z^ /̂ ^

infinitesimally stable, f is ^-infinitesimally stable and U is a
nbhd of 2i x {0}. Let still (F , $) be a deformation of (/, V/).
Given rE0(F) a^rf /xe0($) m^ R-component zero, there
exist ^C 6 (M x R) ^rf 7 G 0 (TT) , wzrt ^-component zero
such that
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r= (rfFK+7o(F,$)

^ = (rf^) s

on a nbhd V o/ (2 x {0}) - U.

Note that if (p , 0) E (2 x {0}) — U then the equations

Wi = ( r f / )S+7° ( / ^ )

H^ = (d V/) S

have solutions on the germ level at p , V w ^ , w^ .

Using the Malgrange Preparation Theorem and a usual
partition of unity argument we get the result.

^ /10. THEOREM. -Let Q ^——M ——> N , where ^ is
infinitesimally stable, f is ^-infinitesimally stable and
( / , i / / ) (2 -£ i )n ( / , ^ ) ( ^ )=0 . Let (F,$) be a deformation
of ( / , V / ) . Then, there exist ^ ^ ( M x l ) , 7 ? E 0 ( Q x I ) a^d
7 E 0(7r) (TT : (N x I) x (Q x I) —^ N x I , usual projection) with
R-component zero, such that

^F = ( r f F K + 7 o ( F , < & )
on M x I.

\ r^ = (d<S>) $ 4- r? o $

Proo/ — From proposition 8, there are ^', 77' and 7' satisfying
(i) { ' , 17' and 7' with R-component zero

TF = W ̂  + V ° (F , ̂ )

T^ = (rf$) $ ' 4 -7? 'o$
(ii)
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on a nbhd W of 2, x {0}.
Then

i Tp - (dF) ̂  - V ° (F , $) = (rfF) ̂  + 70 (F , $)

(^ -(c?$K'-7/°<i>=(rf<I>Ko

on the nbhd W of 2, x {0}.
Take a countable collection of open sets U; such that :

V t - G N , U , C W , U, nbhd of 2, x {0},

U,+i CU; and n U , = 2 i x {0}.

We have

i Tp - (dF)^' -j o (F , <&) = (rfF) ̂  + 7, o (F , $)

fr.!, -(rf$)^-r?'o$=(rf$)$,

on the nbhd V, of (2 x {0}) - U, (apply successively the
proposition 9).

Let

W = (N x R) x (Q x R) - (F , <S>) ((2 x {0} ) -W)

V; = (N x R) x (Q x R) - (F , $) ((2 x {0}) - V,)

{W, V,' , V^ , .. .} is an open covering of (N x R) x (Q x R).
Let po ,p, , p ^ , . . . be a C°° partition of unity on

(N x R) x (Q x R) which is subordinate to covering
W' V' V' 1 ' - 2 ' • • •

Then

TF - (c?F) $' - y o (F , $) = (rfF) | + ̂ o (F , $)

To - (rf$) ^' -1] ' ° $ = (rf$) i

on W = Wo n [ n V,] where
»eN

W o = W U ( F , $ ) - 1 [ ( N x R ) x ( Q x R ) - s u p p p j

V ,=V,U(F ,$ ) - 1 [ ( N x R ) x ( Q x R ) - s u p p p;] ; ; = 1 , 2 , . . .
?= 2 p, o (F , $) ,̂

^ Y = ^ P i 7 , .
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Thus
TF =(^F)Si +7°(F^)

^ = (^) Si + T? o $
^/

on W , where ^ , 17 and 7 have R-component zero.
We have that 2 x {0} C W and that W is open, since it

is intersection of open sets of a locally finite family.
If dim M < dim (N x Q), then 2 = M and the theorem

is proved. So assume dim M > dim (N x Q), applying Lemma 6
for ( / ,V / ) /M-£ ,wehave

TF~(^F)^ -7o(F,$)=(rfFK

T^ -(^$)£i - r?o$=(r f$)^

on ( M - S ) x I .
Let p : M x I —> R be differentiable such that p = 0

on £ x {0} and p'=\ outside of W. Thus p^ is globally
defined and we have :

TF =(^F)(Si +^)+7°(F,^)

T^ =(d$)0l + P S ) + T ? o $

on M x I, completing the proof.
Now we get a partial converse of the proposition 3.

^ /11. THEOREM .-Let Q ^——— M ———> N. // V/ 75
inflnitesimally stable, f is ^-inftnitesimally stable and
( / , i / / ) (2-£i)n( / ,V/)(£i) = 0 then f is ^-homo topically
stable.

Proof. - Note that if $ = V/ x Id = ̂  then r^ = 0. Thus
applying Theorem 10 we have that

TF = (rfF) S + 7 o (F , ̂ )
on M x I

0 = (rf^) { 4- T? o ̂

where ^ , T? and 7 have R-component zero.
From proposition 2 we have that / is i^-homotopically

stable.
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Note. - We don't know if the condition

( / , ^ ) ( 2 - 2 i ) n ( / , ^ ) ( ^ ) = 0
can be eliminated.

3. Characterizations Theorems.

In this paragraph we characterize the applications /: M —> R
which are ^/-stable, where M is a compact manifold and
V/ : M —> R is stable.

\b f
Case R <—— M ——> R, dim M > 2 .

1 . DEFINITION. -Let p a fold point of (/, V/) : M —> R2

(respectively a cusp point), p is a transversal fold (respectively a
transversal cusp) if ^ is regular at p. p is a tangent fold if
^ admits p as nondegenerate critical point.

Following Dufour [6], it is possible to obtain :

2. LEMMA. - Let (/, V/) : M ——> R2 with p a transversal
fold. Then (/, V/) is locally ^-equivalent to

(x^ ,y ,^3 , . . .,^) —^ ( ̂  ±x] , y ) at 0.
i^2 '

If p is a tangent fold, then (/, i//) is locally ^-equivalent
to

( x , x ^ , . . . , x ^ ) — > ( x , x 2 + ̂  ±xf) at 0.
i = 2 /

If p is a transversal cusp, then (/, ^) is locally
^-equivalent to

( x3 n

( x , y , x ^ ,. . .,^) —> — 4 - X V + S ̂  . y } at 0.
J 1=3 '

3. LEMMA. -Let (/, i//) :M —> R2 ^rf pEM.

— If p is a transversal cusp then p G 2 ̂  .
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— If p is a transversal fold then p E £ — 2 ^ .
— If p is a tangent fold then p E 2 ^ .

Proo/ — Let us prove for transversal cusps. The normal form
in this case is :

/x3 n

( x , y , x ^ ,. . . , x J — ^ ( — + ^ + S ±A:? , ^ ) .
v'5 1 = 3 /

Suppose that p G M — 2 ^ , then for any 0 , it is possible
to solve the system :

9(x ,y ,x^ , . . . ,^)=(x2 + y ) X ( x , y ,x^ ,...,xJ
n

+^YOc ,^ , . . . ,xJ+ S ±2x,X,(x ,>. , . ..,xJ
< = 3

+U(^- +^+1: ± x? , ^)
•:) 1 = 3

0=Y(x , y ,^3 , . . . ,x^).

This system is equivalent to

( ^ , ^ ) = = ( ^ 2 + ^ ) X ( x , ^ ) + u ( — +jc^ ,^)0 ( x , y ) = ( x 2 -}-y)X

and this is equivalent to

^x)=p(-^x3 ,-x2).

But this is impossible.
Following Dufour [6] we can prove :

4. PROPOSITION. —The set R o/ all maps (/, ^/) : M —^ R2

which have as singular point only tangent or transversal folds or
transversal cusps is open and dense in C°° (M, R2) with the
Whitney Topology.

5. THEOREM. - Let ^ : M —> R be stable. Then f\ M —> R
is ^-stable i'fand only if:

(0 (/» VO have only tangent or transversal folds or transversal
cusps as singular pom ts.
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(ii) (/, V/)" 1 (XQ ,^o) 0 £(/, ^) 75 (?wpry or o^e pomr
or two transversal folds.

(iii) Images of fold curves intersect transver sally.

Proof. -
Necessity
Since ft is invariant and dense in C°° (M , R 2 ) , it follows

that (/, \1^) Ef t and we get the first condition. The last two come
from the normal crossing conditions see [8], p. 158.

Sufficiency
The set of all maps satisfying the three conditions is open. Then,

to prove that such a map (/, ^/) is ^/-stable is sufficient to prove
that it is V/-homotopically stable.

From proposition 2, § 2, it is enough to solve for each
deformation (F , $) of (/, i//) the equations

TF = ( r f F ) f + 7 o ( F , $ )

T^ = (d^) ^ + 17 o $.

Let us prove the case of transversal cusp. In this case the
^-infinitesimal stability is given by

0(x ,y ,x^ , . . . ,^)=(x2 +^)X(x ,^ , . . . ,xJ-xV(^)
n

+ ^ ± 2x^ X, (x , y ,^3 , . . . ,^)
1 = 3

+ U ( ^ + ^ + f ± x? , y ) .
3 1 = 3

This equation is equivalent to

x3

0 ( x , y ) = ( x 2 + ^ ) X ( j c , ^ ) - x V ( ^ ) + u ( — + ^ , ^ ) (*)

which is equivalent to

^Ji(x)=xa(-x2)+p(--.x3 ,-x2), (**)

as we show below.
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To get (**) from (*) it is enough to take y = —x2 .
Reciprocally, given 9(x , y ) we get

6(x , -x2) = -xV(-x2) + U(-^3 , -x2 ).

Then
3

7(x , jO=0(x ,>0+;cV(^) -u(^- +^ ,^) (A)

is zero for y = —x 2 . From the Division Theorem we have :

7(x , y ) = (x2 +y) ZQc ,^) + F ( x )

where 7(x , — x2) = F(x) = 0.

Then j(x , y ) = (x2 ^ y ) Z ( x , y ) .

Combined with (A) we have

/x3 \
0 ( x , y ) = ( x 2 + y ) Z ( x , y ) - x V ( y ) ^ - V [ — ^xy , y ]

•j

which is the equation (*).

Now the ^-infinitesimal stability is equivalent to solve the
equation (**), which we know to be possible.

Now from proposition 4, § 2, we have the local ^/-homotopy
stability.

From Lemma 3 a map satisfying the hypothesis of the
theorem is such that (/, ^) (£ - 2^ ) H (/, ^) (£^) = 0 .

Now, using the same globalization techniques as in Theorem
10, §2, we have that (/, \j/) is y/'homotopically stable, and
this completes the proof.

Case R ^- M —f—^ R, dim M = 1 .

6. DEFINITION. - Let (/, \p) : M —> R2 .
p G M is of the type ^-singular if it is a singular point

of ^ .
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7. THEOREM . - Let ^ : M —> R be stable.
f: M—> R is ^-stable iff (f, V/) is an immersion with

normal crossing which avoid ^-singular values.
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