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CONSTRUCTION TECHNIQUES
FOR SOME THIN SETS

IN DUALS OF COMPACT
ABELIAN GROUPS

by D.J. HAJELA

1. Introduction.

In this note we give construction techniques for A(p) sets in
various groups. As a consequence we are able to recapture previous
results on these sets (see e.g. [2], [4], [6], [23]) as well as prove some
new results. In particular we show that in the dual of any compact
abelian group there exists a A(4) set which is not A (4 + e) for
any e > 0.

We now describe the contents of this note more fully. Let us
recall the definition of a A(p) set for G a compact abelian group :
If F = {7,^=1 C G* (G* is the dual group of G) then F is
a A(p) set if there exists a constant Ap ^ > 0 such that,

n

J. '''" ^(^ ̂  A?^ S ;̂
/==1

V0) (1.1)

for some 0 < q < p , for all n e N and all (a,)^ EC". By an
application of Holder's inequality it is easily seen that if the above
holds for some 0 < q <p then it holds for all 0 < r < p (see
[23]).

In section 2 we show that in the dual of the Cantor group D*
(where D == {— l , !}*^) there exist A(p) sets which are not
A(p -+- e) for any e > 0, where p = 2k and 2 < k E N . Some of
the results in this section follow from more general results in the
following sections, but we have given proofs specifically adapted
to D. This is because the construction in D is particularly

Keyword: A(p) sets.
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revealing and shows some of the basic ideas used in other constructions.
Essential to the construction for D are some ideas from coding theory
and in particular it was some remarks of Johnson, Schectman, and
Wilson (unpublished) in the p = 4 case that led us to general case
for D and subsequently to other groups.

In section 3 some preliminary results used for the rest of the
paper are proved. In particular the study of A(p) sets for general
compact abelian groups is reduced to the study of A(p) sets in a few
special groups, namely in the dual groups Z , Z ( p ^ ) ̂  Z(^) ^ . . .
(for an increasing sequence of primes (?„)), Z(p00) = U Z(p")

n>Q
(p a prime) and Z (p) 0 Z(p) ^ Z(p) 0 . . . . This is effected by
using the results of [6], where this type of idea was used in showing
that there are sets which are A(p) for all 1 < p < °° but which
are not Sidon sets.

In section 4 we give construction for Z and Z ( p ^ ) ^ Z(p^) 0 . . .
While constructions for these two groups areknown(see [23], [6])
we give a construction based on a theorem of Bose and Chowla [5]
(which was used to assert the existence of finite projective planes).
In this section we also generalize a method of Erdos (see [7])
which shows that with respect to a certain biased coin tossing
measure on the space of integer sequences almost all sequences have
a prescribed rate of growth and that an arbitrary integer can be
written in a bounded number of ways as a sum of elements of a given
random integer sequence. This result easily yields that for p = 2k,
2 < k E N almost all integer sequences are A(p) but not
A(p + e). We also give in this section a more precise version of the
growth of the A (4) constant of the squares than in [23]. It is
somewhat surprising that the sequence constructed in the p = 4
case above are like squares, since the squares are not A(4).

In section 5 we turn to the dual group Z(p) ^ Z(p) 9 . . .
for p > 2. It is shown that for p > k > 2 there are A(2k) sets
which are not A(2k -+- e) for any e > 0 by using certain classical
facts about symmetric polynomials. For k > p we don't have a
construction but it is shown that one possible approach is to reduce
the problem to one about counting rational points in a certain
variety. This problem in algebraic geometry however appears to be
rather delicate. The results of section 2 along with those in section 5
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constitute a strong form of a solution to a problem in Lopez and
Ross's book "Sidon Sets", page 171 (see [19]).

In section 6 we turn to construction in Z(p°°) = U Z i p " ) .
w > o

It is shown that there are A (4) sets which are not A (4 + e) for all
6 > 0 . One also obtains construction for A(2k) sets (k>2).
The main idea here is that one may reduce to a well known theorem
ofTuran's in extremal graph theory.

In connection with the above results, one should mention a
result of Pisier (unpublished). His result is: Given A C G^, I A | = n
and given 6 > 0 3 B C A, |B | > n^2-8 with \(B) < C^ (where
Cg doesn't depend on n and ^(B) is the A(4) constant of B).
The interest in such a statement is that the A (4 + e) constant of
B should be large by suitably choosing 5(e). One should therefore
be able to glue such B's together to find bad A (4) sets. The problem
of course is that one doesn't obtain A(4) sets which are A(4 + e )
for all e > 0. Also the proof is limited to A(4) sets. Let us finally
point out that the gluing process could be non-trivial as will be seen
in section 6.

We will use standard notations and any notation not mentioned
in the paper may be found in [22], [27] and [18]. Let us just mention
that |S| denotes the cardinality of a set S and [x] denotes the
greatest integer function for x E R .

We wish to thank P. Deligne, J. Foumier, W. Johnson, G.
Pisier, D. Ray-Chaudhuri, K. Ross and G. Schectman for useful
comments and communications.

2. Construction in the dual of the Cantor group.

In this section we construct a A (2k) set in D* which is not
A(2k -he) , for all e > 0, 2 < k G N , where D = {- 1 , l}^ is
the Cantor group. Recall that the set of characters for D is the
Fourier —Walsh system : For x = (;c^) E D we let e^ : D —> { — 1,1}
be defined by e^(x) = x^ where fcE N , k > 1 . Then an element
of the dual group D* of D consists of finite products of the e^.
Given a finite subset A of N let us write, W^ = n e .

/eA
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2.7 Preliminaries.
To construct A(p) sets which are not A(p + e) we shall use

the proposition below which states that among certain tuples of O's
and I ' s one can find a large set of tuples whose elements when added
together have distinct sums.

PROPOSITION 2.1.1. -Let 2 < w € N and let n G N such that
n >[log2 m + 1] + 1 . Then among the 2^ tuples of O's and
I ' s ie. {0,1}^ one can find a subset A C {0,1}^ vw'rA the
following properties:

1) | A | == 2"
2) z^r fc e N , l < k < w W /6?r { c ^ , . . . , c^} c A r̂i

{^+1. • • • ^2k} c A w^ {c i , . . . , c^} n {c^,,.., c^} = 0 .
Then c^ + . . . 4- c^ ^ c^ + . . . + c^ (the addition of two tuples
is performed coordinatewise modulo 2).

Proof - Let GF(2") denote the Galois field of 2" elements
where n is chosen so that n > [log^ m + 1] 4- 1 and m is fixed.
Regarding GF(2") as a vector space over GF(2) we have that dim
GF(2") = n. So let [ x ^ , . . . , x^} C GF(2") be a basis for GF(2")
over GF(2). To xeGF(2n) we associate the n-tuple of O's and

n

\'s(a\,. . . , a\) where ^ = L a\ x ^ . In what follows we will always
1=1

maintain the order of the x / s in any expansion of a given element
of GF(2"). In a similar fashion associate to each odd power

n

x^-1 of x its ^-tuple ( a ^ , . . . , ^ ) i.e. x^'1 = S flf ;c, for
i= i

1 < k < m. Finally associate to x the mn tuple of 0'5 and 1 ' s
a(x)= ( a ; , . . . , ^ , . . . , ^ , . . . , ^ , . . , , 0 7 , . . . , ^ ) . We claim
that A = {a(x) |x eGF(2M)} has the desired properties. Clearly
I A | = 2" because the first n coordinates of a(x) are the basis
expansion for x . To see the second property let { y ^ , . . . , y ^ } C A
and [Yk+i, • • • , y^c} c A where the two sets are disjoint (note
that the condition n > [log^ m -»- 1] -t- 1 assures us that such sets
do exist for all \<k<m). Pick z/GGF(2") so that a(z ,)=j / , ,
1 < i < 2k. Now suppose that:
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k 2k

S Yi= S y , .
1=1 i=fc+l

(2.1.1)

Then by virtue of a(z,) = 3^ we have that:

227"1 + + 727"1 = 72/-l 4- -4- 72f~lZ^ -r . . . -r Z^ - Z .̂n -1- . . . -h Z^ (2.1.2)

for 1 < / < f c . Now since GF(2") has characteristic 2 the above
condition forces:

y/ -(- -L y/ = -/ -L J. -7Z. -̂ . . . -T £, . ^I.-L, ^ . . . • Z^ for 1 <f <2k- 1. (2.1.3)

This follows by taking 1 < / < 2k — 1, writing it as / = 27 / ' where
/' is odd and raising equation (2.1.2) corresponding to / ' to the
^th power. Letting M, = (1 ,z,,. . . , zf~1) for 1 < i < 2k the
last equation in turn forces {u^^ to be linearly dependent. So,

^-1

det Z2 72fc~l
z; • • • zf = 0.

^Tk ^ " '
-2^-1
z^

But the above is the Van der Monde determinant and is so also
n (z, — z.) ̂  0 since the z, are distinct. This contradiction means

i>J
that A has the second property, n

Remarks. —2.1 .1) Notice that the above type of result is the
best possible of its kind in the sense that if one is given a set S with
a binary operation + , which has the closure property with respect
to S, then for the maximal subset A C S with the second property
in the above proposition one has Bin |A|/ | S j^ < 1 (as
| s | —> oo). in the proposition the set A has

( A | = T = | {0,1}^ j^ .
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2.1.2) In view of the remark above it follows that the result
in the proposition doesn't generalize to the characteristic p case
(p > 2) with the above proof. To see this fix 1 < m E N and choose
a prime p > 2m — 1. In order for the above proof to work and
to choose a maximal subset (as in the above remark) one must choose
exponents k, , . . . , k^_, E N , 2 < k, <. . . < k^_, s.t. the

\ 2fc

conditions i x^' == ^ x^i f == i , . . . , ̂  - i , k fixed,
i=l i=k+l ?

k < m and the condition ^ + . . . 4- ̂  = x^i + . . . 4- x^ for
x,EGF(7/1) force the conditions

k 2k

I x/ = S x/ 7 = = 1 , . . . , 2fc- 1.
1=1 j = f c + i

If k = m for example this is clearly not automatic (since
p > 2m — 1). In some sense what is special about the p = 2 case
is that any 7 < 2w — 1 can be written as 7 = 2^\ with
7\ = 1 (mod 2) and all the odd exponents have already been chosen
so that the conditions are forced.

2.1.3) For fields whose characteristic is not 2 an alternative
approach is discussed in section 5. As an example of one case in the
non characteristic 2 situation, pick a prime p > 2 . Set

A = {GC.^IJCGGFO^)}
(here we expand x and x2 in tuple fashion regarding GF(p") as
a vector space over GF(p)). Then | A | = p" while

| { 0 , l , . . . , p - l}2"!^3"
and if a , b , c , d are A (all distinct) then a + b ̂  c 4- d . To see
this simply observe that x + y = w -t- z and ;c2 + >/2 = w2 -h z2

have no solution with {x , y ,w ,z} CGF(pn) and with x , y , w , z
being distinct.

2.1.4) With m = 2 in proposition 2.1.1 the proof shows that
A = {(x ,x3) | x G GF(2")} works. This case corresponds to a standard
construction in coding theory (see remark 2.1.5).

2.1.5) We finally point out that the construction in the proof
of the proposition is the same type of construction as that of certain
well known cyclic codes (particularly BCH codes) (see [26]). This
resemblance was pointed out to us by D.K. Ray - Chaudhuri.
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2.2 The Construction..

To begin with we set up a correspondance between certain subsets
of the Walsh functions and the sets constructed in the proposition.
Fix 2 < m € N and choose any n > [log^w + 1] + 1 . Let
W^ be the Walsh functions generated by e ^ , . . . , e^. For W^ ^ W^
construct the following tuple of O's and I ' s (of length mn) :

, - ( 1 if ie A
sw*(')= J O i f , < ; A ,

Note that given W^WpGW^, and their associated tuples S^
and S^B the tuple for W^ W^ ,S^WB = SWA + ^B (Mod 2)-
By the construction in proposition 2.1.1 it follows that we can find
a set A^ of Walsh functions satisfying the following properties :

1) A^CW^

2) IA^I=2"
3) If WA^ A^ , ? = 1, . . . , 2k are distinct Walsh functions

k 2k
then n WA.^= n WA. provided that A: < m .

,=1 ! i=k+l l

Now pick ^ so that n^ = min {27 | 27 > [log^ m + 1] + 1}.
Now define ^4.1 = 2^. for / > 1 ,7 G N . Finally put E = U A^..

/ > i /

Note that A^^ .CA^^ .^^ , by the construction and because
GF(2"/+1) DGF(2n/) as a subfield because ^l^.+i . We will show
that :

1) E is a A(2m) set
2) E is not a A(2m 4- e) set for all e > 0.
We show (2) first. This easily follows from some material in

section 3. We choose to give however a different proof than is usual
by using some well-known techniques from the local theory of
Banach spaces. Fix e > 0 and put p = 2m + e. Then [W^l
(closed linear span of W^. in p-norm) is isometric to /2W/W , for
a fixed / > 1. This is because of the obvious fact that if D^. is
the set of dyadic intervals of length 2-w/w on [0,1] and I^D^.
then Xi E V^mn^p (of course here we are looking upon the e^ ' s
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as Rademacher functions on [0,1]) . Let Xp(A^.) be the
constant of equivalence between the Lp and L^ norms on
^mn^p' If E is a h(pY set then Xp(A^.)<A where A is the
A(p) constant of E. Now dim [A .̂]p = 2"7. It is a well known
fact that the maximal dimension of Hilbertian subspaces which are
uniformly enbeddable in ^nfm is less than 2"7. It follows
\ ̂ wn? —> + °° as / —> + oo . This is a contradiction. We give
a more precise computation of Xp(A^.) below. The proof here is
easily adapted from [10].

PROPOSITION 2.2.1. -For any m > 1, / > 1 and e > 0 we
have that Xp(A^.) > c(p) \ A .̂ ̂ -^P ^here p = 2m + e and
c(p) = l/p17^ .

Proo/ - Let v^, . . . , H^ be the Walsh functions in
^mn^ = 2 7). For any choice of scalars (0?^ ^ we have,

(2i'.,'i)«,' ir» fc

/=1

S ^.w, <X,(A^)(^ |a,|2)1/2 . (2.2.1)

Let 0,)^=i be the Rademacher functions and let (x^^C /2W7W

be vectors which correspond to Wj under the isometry between
[W^]p and ^m . Let x, = (x,^,)^, where n = 2"^ . By the

left hand side of (2.2.1) and Khinchin's inequality we have,
r 1 k llp

k^ <J, ^ .,(r)x, rfr

fc
n /l! V P

= S J, L ^^',i dt
i= i ° /= i

n k
<B,£(2l.,,|').»

1=1 /=1
(2.2.2)

where Bp is the upper Khinchin constant. By dualizing the right
hand side of (2.2.1) we get that,



CONSTRUCTION OF Ap SETS 145

k

(Sl^J^/^X^A^.). (2.2.3)

By plugging (2.2.3) into (2.2.2) and using that Bp < p172 (for p > 2)
it follows that,

^ < B^ X^(A^) = B,^ X^(A^.) < p V 2 ̂  ^(A^.).

It follows that: \ (A .̂) > c(p) | A .̂ l^-m/p ^

We show next that X^ (A^,^.) < c where c = c(.m). It follows
immediately that X^ (E) < c , since A^. C A^^.^ .

PROPOSITION 2.2.2. - For any w > 2 and ]> 1 w^ Aav^
^-2^ (^n? ̂  c w^^^ c = c(m).

Proof. - Fix 7 > 1. Let w ^ , . . . , WN be the elements of

A^.(N = 2^'). Set / = ^ fl,w, where (a,)^ E CN and

N
set A = ,̂ | a, |2 and B = ^ a,a.w,w.. We first observe that,

1=1 i^/

\fBk\<c,Ak (2.2.4)

where c^ depends only on k and w (here 1 < k < m). This is
because:

/B- =f(^a.-a^^)k

= f S a.., 5,,' . . . a^ a^ w, . . .w , w^. ...w,.
'1^1'...., ̂ 'jl

By the second property in proposition 2.1.1
./\...v^ w ^ . . . w ,^=0

unless there is a pairing so that (y = i,. or ;'„ for some / and n
for each 1 < / < k and similarly for ?}' (1 < / < k). So

\f^\< S l^ll^l...|a;j|^|. (2.2.5)
all pairings
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For a fixed pairing P we certainly have

Ak ^Sl^il |^v|- • • |%| |^'(
p

since A^ has all products of length k of squares i.e. |a, |2 . Note
that only a finite number of pairings exist and this number only
depends on m (and k). So (2.2.4) follows.

N

^
1=1 ' ^=1

||2m _ A W -_,a

Now |/|2 = ( ^ fl ,w, ) ( ^ ̂ . ) = A + B .v 1 = 1 / \=i /

It follows that I/II^^A^ and

11/1̂  = /(A + B r = / f (^A-^
w

k^O ̂

=A"' +fmAm-lB+f S (m )Am - f cB tm

fc^'2 v k

A" + I (m)^m-kf^.
k>1

So
— 7

| | ^ | | 2 w - | [ ( f | | 2 w | < A W 4 . y ^ I A'"-^ FR^11^ ||2w "- I II/ bw |^A -h ^ I ; A JB
î  •'». ^ ' w 'A:>2 W

w

<A" 1 . £ (m)
<W\

<^
f c > 2

with the last inequality following by the use of (2.2.4). Setting

= c^m)^ = 1 + 1 , ( m) Of, we have^im ^ ^
k > 2 k

Ifi^^c^ 11/11^ and so ||/||^<c 1 1 2 •

Remarks. - (2.2.1) The result in proposition 2.2.2 easily follows
from material in section 5, but the proof above is somewhat different
from that in section 5 and is especially simple.

(2.2.2) The reader will observe that we could also have built our
example on "disjoint" blocks A^n. instead of "inductive" ones
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(i.e. A^. C A^.^). We choose to use the latter type of blocks
just because this feature was implicit in the construction of propo-
sition 2.1.1.

3. Preliminary facts.

In this section we state some simple results which are used in the
rest of the paper. We start with a result which states that A(p) sets
are thin from the point of view of the groups they contain. A generaliz-
ation of this result is in [6] and the proof in [6] was based on ideas in
[23]. From now on if E is A(p) set for p>2 then the A(p)
constant of E, \p (E) is the constant of equivalence between the
Lp and L^ norms on L^ = { /E Lp \f(\) = 0 if x^ E}.

PROPOSITION 3.1. - Let G C F (dual of some compact abelian
group) be a group wth | G | < + o o . Let A be A(q) for some
q>2. Then \ (A)> |G H A I ^ / I G | l / q .

Remark 3.1. — It is obvious from [6] that the above result is valid
not only for finite groups but also translates of finite groups.

The next result improves the estimate of the A(p) constant
involved over that in [6]. It is an obvious modification of the proof
in [6]. A similar estimate appears in [4] but the proof is somewhat
different. We require the following definition.

DEFINITION 3.1. - Let r be an abelian group and let 2 < ^ E N .
For all A C F denote by R(A,n) all functions

f: A — — > Ns.t . S f(x)-n.
X^A

For 7 G r, R (A, n, 7) denotes all fs.t. ^ X^^ = 7 and
X€EA

/GR(A, n).

PROPOSITION 3.2. — Let G be a compact abelian group "with dual
group r and assume that \ R (A, n, 7) | < M for all 7 € r and some
ACr. Then \^ (A) ̂ (M^!))172" (here n>2).
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Proof. — Let /= ^ flOc).^ for some finite set A C A. By the
xeA

multinominal expansion we have

r= I ^ ! ,, n (a(x)x)^^e :R(A,M) n ^(^)! ^€A
jc^A

= ^ ^7 where ^= S - "! „ n aW^.
rer ' <reR(A,^ , - r ) n g(x)\ x<=A

xSA

Now by Holder's inequality

l^l2^ S ( n "! ..^ n l^^)!2^^^ V^eRCA'n .^V n ^(x)! / X £ A
jc€ A

/ M ! \
sup ———-. , ) I R ( A , » , 7 ) 1

\ ^ e R ( A , M , 7 ) n ^(.y)!/x xeA /

( , \
< M ^ ! ^ —————) n \a(x)\2^x\

^ G R ( A , M , 7 ) n g ( x ) \ l x ^ AxeA /

so ||/||^=Z|^|2 (by ParsevaFs identity)

<M(^!) I: 1: (-^n-^ " I^MI2'^7er ^RCA^^)^^^^)1/ X€EA

( f \
<M(^z!) S ——————-^ n \a(x)\1^

^ e R ( A . M ) n ^ ( X ) ! ^ € A
xGA /

= M ( ^ ! ) (S|a(^) |2)" (by the multinomial expansion)

=M(n\)\\f\\^.

So X^^AXd^Ai!)172". D

The last result of this section reduces the study of A(p) sets
for general compact abelian groups to a few special cases. A result
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of this type was stated in [6] for the purpose of studying Sidon sets.
We start with the following obvious proposition (for a proof see [6]).

PROPOSITION 3.3. — Let G be a compact abelian group and H
a closed subgroup. Then A is a A(p) set in (G/H)* (1 <p <oo) if
and only if A is a A ( p ) set in G*.

Proposition 3.3 shows that we may reduce our study to A(p)
sets in the list of groups in proposition 3.4. For a slightly different
proof of this simple fact, see [6].

PROPOSITION 3.4. — Let G be an infinite abelian group. Then
G contains a subgroup of one of the following types :

I ) Z 2) Z(pi) ^ Z(py) e • • • f01" some increasing sequence
of primes (pn)^=i 3) Z(p°°) and 4) Z ( p ) ^ Z ( p ) ^ . . . for some
p (prime).

Proof. - Let r(G) be the torsion subgroup of G. If r (G) ̂  G
then G D Z. So assuming r(G) = G write G == e) G where
Gp are the p-primary components. If there are infinitely many
components then G D Z(p^) ^ Z(p^) ®. . . . I f there are finitely
many components then j Gp j = 4- oo for some p . Then G (for
this value of p) contains a basic subgroup B (see [21]). Denote
by a(B) = sup 0(fe) where 0(&) is the order of b. If

& € B

a(B) = + oo then B will contain infinitely many cyclic groups in
it's decomposition, so B D Z(p) Q Z(p) 0 . . . . If a(B) < oo
then Gp = B C Gp/B (see [21]). If Gp/B = {0} then Gp = B
and so B will contain infinitely many cyclic groups in its
decomposition and so B D Z(p) ̂  Z(p) ̂  . . . . If G^/B ^ {0}
then Gp/B = 2 0 Q 0 Z(p°°), because Gp/B is divisible. Since
Q is not torsion and Gp is, G /B = 2 ^ Z(p°°). So at least one
Z(p°°) appears since Gp/B ̂  {0}. It follows that G D Z(p°°). n

4. Constructions in Z and Z(p^) ^ Z(p^) ̂  . . .

Constructions in Z and Z(p^) ^ Z(p^) 0 . . . are well known
([23], [6]). We will give a slightly different type of construction here.
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Our starting point is the following theorem of Bose and Chowla
(see [5]).

PROPOSITION 4.1. —Let m = p" (where p is a prime, n G N^
and q = (m^1 — \)/m — 1 for some r G N . 77î  we can find
m + 1 integers (less than q) d^ = 0, ^i = 1, d ^ , . . . , d^ s.t. the
sums df -+- . . . 4- df , 0 < ^ < ^ < . . . < ; , . < w ar^ all different
mod ^.

Proposition 4.1 is for m being powers of primes (and this was
what was needed to construct finite projective planes). Proposition 4.2
is an extension. A similar argument appears in [6] with a different
conclusion.

PROPOSITION 4.2. -If n> 3m6m (for some m G N) then we
^Im

can find A C Z^ such that \ A | > ^—„„- and the sums
(3 m)

a, 4- . . . + a, flr^ distinct mod ^ w/^r^ {a. , . . . , fl, } C A and
i < ^ < . . . 2 ^ .

^1/m
Proo/ — Choose n as above. Set x = (iiyn\+i—r/,,," • Then

x > 2 and so there exists a prime p (by Bertrands's theorem, [15])
s.t. [x] + 1 < p < 2 [;c] + 2. So ;c < p < 2x + 2 < 3x (since

^l/w ^l/w

x > 2) i.e. there exists a prime p s.t. ̂ ^^ < P <~^rn~^ •
ym+l-l

Set ^ = ————. By proposition 4.1 there exists a ^ , . . . ,'flp (less
P ~" !

than q^) s.t. m-sums of the a's are distinct (mod q). Set
A = { f l i , . . . , Op} . Then we have that

a. + . . . + a^ < mq < 3pm m <n.

So the m-sums are also distinct mod n. Also
^l/m ^\lm

1^1 = P > gl /w+l^l /m "~ /^w+l^^l /w •

Since it is not particularly important as to how large n should
be in proposition 4.2 to make it true we could have used the prime
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number theorem instead of Bertrand's theorem in the proof above.
This is because for all e > 0, TT((I + e)n) — ir(n) —> + °° as
n —^ + °° (and so there is a prime p , n < p < ( l - ^ - e ) n if n
is large) by the prime number theorem. This would have yielded a
somewhat larger set A in proposition 4.2. Since this is of no
importance in what follows we choose to use Bertrand's theorem.

One may now easily construct A(2k) sets in Z which are not
A(2k -he) , for all e > 0 .

PROPOSITION 4.3. — There is a set F C Z which is A(2k) but
not A(2k 4- e) for e > 0, where k > 2 .

Proof. - Let (?„) be an increasing sequence of primes. By
proposition 4.1 there exist sets E C Z s.t. \E \>p

1 _fc+ i ,'•
e,co,^'£„ C 0,—"———— s.t. fe-sums out of £„ are distinct (we are

now adding in Z and looking upon these sums). Set F^ = E^ and
set a^ = k max F^ (for ( > 2) and F{ = a^. Set F = U F^.

i>\
It is clear that F is A(2k) by proposition 3.2. To see F is not

^+1 - 1
A(2k + 6), let A^ == ^ m \ m E N , 0 < m <—1———— and note

Pn ~ 1

that | F^ n A^ | > ̂  > ^ ^ 1 A^ [1/* . By a theorem of Rudin

the cardinality of the intersection of a A(2A: + e) set with an
arithmetic progression can't be so large (see [23], one can't quite use
proposition 3.1, but certainly one can use appropriate generalizations
of it. Since this is the only time we need anything other than
proposition 3.1 we don't state the general results), a

It should be clear that by using proposition 4.2 on "disjoint
blocks" of Z ( p ^ ) ^ Z ( p ^ ) ^ . . . , one may build analogous
examples.

PROPOSITION 4.4. - There is a set E C Z ( p ^ ) ^ Z(p^) ̂  .. .
which is A(2k) but not A(2k 4- e).

Proof — Assume without loss of generality that p^ > 3k6k

for all n > 1. By proposition 4.2. there exists E^ C Z(p^) s.t.
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i/k

I ̂ n I s> ^ n —i^ and fe-sums out of E^ are distinct mod ?„.
(3 k )

Set E == U £„ with each E^ embedded in Z(^) e Z(p^) . . .
n= 1

in the cannonical fashion. By proposition 3.2 E is A(2fe) and
since
X^(E)>|EnZ(p,)|^/^/u+e

> ————.7. P^~l/2fc+e -— + oo as n -^ + oo
O^fc)^ "

(by proposition 3.1), E is not A ( 2 f c + e ) . a

Remark 4.1.-Notice that the growth "locally" of X^+e (E)
for the sets E constructed in propositions 4.3 and 4.4 are "power
type" and compare this with proposition 2.2.1.

We now look at some infinite random A(p) sets in Z by
considering a method of Erdos. We first introduce a biased coin
tossing space on the set of integer sequences Sl (increasing
subsequences of N) . Let X^ be 2-valued random variables
(independent) for n > 1, with P(X^ = 0) = 1 — p^ and
P(X^ = ! ) = ? „ for 0 <pn < 1 and (pn)^=i a S^611 sequence.
It is natural to call Sl a biased coin tossing space: The probability
space on which the X^'s are defined can naturally be taken to be
the Cantor set D = {0 , l}^ . On each factor introduce the probability
P»({0}) = 1 -pn and ?„({!})=?„. Then the P above is just
P = ® P^ and the X^ ' s are the projection onto the nth

n= 1
coordinate. Using the natural identification between S2 and D we
have a coin tossing measure on S2.

For different choices of (?„) we get different probability
spaces (though by a theorem of Kakutani [16] if ?„ is sufficiently
close to p^ for all n, the spaces are the same). We denote a generic
sequence of S2 by (a^^ . We always choose (?„) so that

2d p^ = + oo. This insures that the sequence (fl^)^= ^ is infinite
n>\

with probability 1 (by Borel-Cantelli). Recall the following simple
variant of the strong law of large numbers (see [13]).


