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ON RIEMANNIAN FOLIATIONS
WITH MINIMAL LEAVES

by Jesus A. ALVAREZ LOPEZ

Introduction.

Let M be a smooth manifold which carries a smooth foliation F
of dimension p and codimension q. Then we have the associated spectral
sequence (Ei,di) (defined for example in [22]). It carries the vector space
topology induced by the C°° -topology on the de Rham complex. We further
have the cohomologies H(0i) and ^2 = ff(^i) of the differential spaces Oi
(the closure of the trivial subspace in Ei) and £\ = -BI/OI, respectively.

T is said to be taut if there is some Riemannian metric on M for
which all the leaves are minimal submanifolds. This property depends
only on the transverse structure of T [II], and there are several papers
studying its relation with cohomological properties of T [II], [12], [14],
[15], [19], [21], [24], involving cohomology spaces which always can be
considered as parts of E^, £^ or ff(Oi). All the results of this type
are based on Rummler's mean curvature formula [21], which implies the
following criterion of Rummler-Sullivan (the definition of positiveness along
the leaves is given in Section 2).

THEOREM [21], [24]. — An oriented smooth foliation is taut if and
only if some element in E^ can be defined by a p-form which is positive
along the leaves.

Key-words : Riemannian foliation - Minimal submanifold - Spectral sequence.
A.M.S. Classification : 57R30.
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E'f is isomorphic to the ^-relative cohomology used in [21], [24]
(see for example [16], [23]).

When T is Riemannian [20], the associated spectral sequence verifies
some properties offiniteness and duality [I], [2], [3], [7], [8], [13], [14], [15],
[22], [23]. Thus, in this case, the cohomological study of the minimality of
the leaves has special interest. We have the following conjecture (see e.g.
[5]).

TAUTNESS CONJECTURE. — An oriented Riemannian foliation on
a compact connected oriented manifold is taut if and only if E^° ^ 0.

This conjecture makes sense by the criterion of Rummler-Sullivan,
and because some duality relation may be expected between E^10 and
E^. By now it has only been given partial solutions : by A. Haefliger
if the structural Lie algebra is compact or nilpotent [II], [12], by Kamber-
Tondeur if the mean curvature is a basic form [14], [15], by Molino-Sergiescu
for Riemannian flows [19], and by Y. Carriere if the leaves have polynomial
growth [6].

The aim of this paper is to establish some more steps towards resolv-
ing the Tautness Conjecture using results proved in [I], [2]. Firstly, under
the condition E^° ^ 0, it is proved (Section 2) that the Rummler-Sullivan
criterion is verified in a weaker sense, namely replacing E^ by ̂ 'p. Sec-
ondly, some arguments are made on the canonical long exact sequence
relating ff(Oi), £?2» and £'2, obtaining that the Tautness Conjecture is true
if and only if the connecting homomorphism from ̂ 'p to ff^^Oi) is zero
(Section 3). This is a generalization of the results in [17] for Lie foliations
with dense leaves. Then, when q < 2 it is proved that £3 ̂  ^2 canonically
(Section 4), obtaining a proof of the Tautness Conjecture in this case.

Finally, I want to express my deep gratitude to F. Kamber, X. Masa,
and Ph. Tondeur for helpful comments.

1. Spectral sequence of Rieamannian foliations.

1.1. Let F be a smooth foliation of dimension p and codimension q
on a smooth manifold M. In this paper all the manifolds will be assumed
to be connected. Let TF C TM be the subbundle of vectors tangent to J*,
and let X{F} = TTT.



ON RIEMANNIAN FOLIATIONS WITH MINIMAL LEAVES 165

The de Rham differential algebra (A(M),d) of M is filtered by
differential ideals. A differential form of degree r is of filtration degree
> A if it vanishes whenever evaluated on r - k + 1 vector fields in X(F).
This filtration defines the spectral sequence (£,(.F),d,) (or simply (E,,d,))
which converges to the de Rham cohomology of M.

For each vector subbundle Q c TM, complementary of TF, we have
the bigradation of A(M) given by

A^(M) = T^T^ ̂  AUQ^

for integers u,v [I], [2]. The de Rham differential operator can be decom-
posed as a sum of bihomogeneous operators do,i, di,o? and ^2,-!, where
the double subindices denote the corresponding bidegrees, obtaining the
following canonical identities of bigraded differential algebras [I], [2].

(1.1) (Eo.do) = (A(M),do,i) , ?1̂ 1) = (ff(A(M),do,i),di,o*).

(A(M),d) is a topological differential algebra with the C°° -topology,
and each (Ei,di) is a topological differential algebra with the induced
topology and the identities (1.1) are also topological. Ei in general is not
Hausdorff [llj| obtaining two new bigraded topological differential algebras :
the closure^Oi of the trivial subspace of Ei, and fi = Ei/Oi, (or more
explicitly Oi(^) and fi(^)). Let ̂  = H{8^. Clearly we have Ef = £f
and E^ = £'^ , and we also obtain the associated long exact sequence in
cohomology

(1.2) ... -^ ff^(Oi) -^ E^' —^ £^' -^ H^-CO,) -^ . • . .

If a e A(M)_defines an element in E, or ̂  (i = 1,2) it will be represented
by [a]i or [a]^ respectively.

If T is Riemannian and M compact, then £2,^2, and ff(Oi) are of
finite dimension [I], [2], [22], [23] (see also [7], [8], [13]). In particular, Ej'°
is of dimension zero or one [7], [8]. Further if M is also oriented, we have
the isomorphisms [2] (see also [13])

(1.3) £^ ^ S^P- , JT^(Oi) ^ H^-^-^CO,) ,

induced by the de Rham duality map, implying

(1.4) f f^ (0 i )=0 , E^^E^ .

1.2. P. Molino in [18] describes the structure of Riemannian folia-
tions, using transversally parallelizable (TP) foliations and Lie foliations.
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Firstly, for a transversally oriented Riemannian foliation on a compact man-
ifold M he considers the principal SO (q)— bundle of oriented orthonormal
transverse frames, TT : M —> M, with the transverse Levi-Civita connection,
and he proves that the canonical horizontal lifting f or T is TP. In this
situation we have the isomorphisms
(1.5) ^•(;F) - E^\T} , ^-(JF) - ̂ °W ,
which are induced by averaging along the fibers of TT. The first isomorphism
of (1.5) is proved in [1] using continuous operators, the second one can be
proved with similar arguments. Then, by (1.3), (1.4), and (1.5) we obtain
(1.6) £^{7} ̂  E^(F} ̂  E^(^) ̂  ̂ (;F)
for any integer v, where q = codim(J*) = q -+- q(q — 1)/2.

1.3. P. Molino further proves in [18] that, for a TP foliation F on a
compact manifold M, the closures of the leaves are the fibers of a fiber-
bundle TTfr : M —> W, such that the restriction of T to each fiber is a
Lie foliation with dense leaves. The foliation F defined by the fibers of 71-5
is called the basic foliation. Moreover, the local trivializations of ̂  can
be taken compatible with F. This means that there exists a Lie foliation
FQ with dense leaves on the standard fiber Mo of ̂  with the following
property. The diffeormorphisms h : ̂ ^(U) —^ U x Mo of triviality of 71-5,
over small enough open subsets U C W, can be choosen so that F^-i^
corresponds to the foliation U x FQ with leaves {y} x L (for points y € U
and leaves L of Jo)- Let QQ = dim(^o) and q\ = dim(iy). The codimension
of .F i sg==go +9i-

In this case we have the bigraded presheaves 0^, Pi, and Qi on W
(i = 1,2) given by

O^U) = Oi(^) , 0^(U) = ff(0i(^)) ,
Pi(U) = EiW , Qi(U) = £iW ,

where T\j = T\^-\nj\ , with the canonical restrictions.

Let d be any one of the presheaves d, Pi, or Qi, and let di denote
the corresponding differential on each Ci((7). Then, for a fixed suitable
open covering U = {Um} of W we have the graded differential Cech spaces
(C(U,d),6), and the operator D given by D = 6 + (-1)^1 on C^.Ci),
turning (C(U,Ci),D) into a bigraded differential space.

With a slight sharpening of the arguments of Proposition 8.5 of [4] it
can be proved that
(1.7) 0—Ci(lY) ^C°(U,d) -^C^U.Ci) -^.--



ON RIEMANNIAN FOLIATIONS WITH MINIMAL LEAVES 167

is an exact sequence, where ri is given by the restrictions. Thus we have
(Proposition 8.8 of [4])

(1.8) r^-.C^W) ^H(C(U,C^D).

We also have a spectral sequence (jE^, di) converging to H(C^, (Ji), D)
(Theorem 14.14 of [4]) such that

(1.9) E^ = C(U^) , E^ = H\C\U^6)

where t denotes the total degree of C^. Then, since the bidegree of di is
(1,0), from (1.8) and (1.9) we have

(1.10) C^(W) ̂  H^C^U^)^),

for each integer v. Therefore the homomorphism

(1.11) r^:C^(W)-.C\U^'\
defined by the restrictions, is injective.

1.4. For a Lie 0 -foliation T with dense leaves on a compact manifold,
Ef can be identified with A-fl*, so J%° = ff-(fl) [17]. Moreover, if g is
unimodular and T oriented, then E^ also can be identified with A'fl*,
obtaining ̂ p = H ' ( e ) [17] (this is a consequence of sections 2.1 and 3.1
of [11]). Hence, in this last case, any p—form on M defines an element in
c0,p
^2 •

1.5. Now let T be any Riemannian foliation on a compact manifold
M. In [18] the structural Lie algebra Q of T is defined as the Lie algebra
given by the Lie foliation with dense leaves corresponding to T by the
above structure theorems of P. Molino. It is an intrinsic invariant of .F, and
we have the following result.

PROPOSITION 1. — IfE^10 -^ 0, then Q is unimodular.

Proof. — Using standard arguments, by passing to the 2—fold
covering of transverse orientations we can assume that f is transversally
oriented. Then, by (1.6) we can also suppose that T is TP. In this case, by
(1.3) and the injectivity of (1.11) we have ^(Fum) / 0 for some ^m. On
the other hand we have S^^Um) = ̂ (-^b) because Um is contractible.
Hence the result follows by (1.3) and the properties mentioned in 1.4. D
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2. Condition of Rummler-Sullivan for ^2-

A differential form on a manifold At is said to be positive along the
leaves of an oriented foliation F on M, if its restriction to the leaves is
a volume form defining the orientation of F. The condition of Rummler-
Sullivan for ^2 can be stated as follows.

PROPOSITION 2. — Let T be an oriented Riemannian foliation on
a compact manifold M, and assume E^° ^ 0. Then there exists a p—form
positive along the leaves denning an element in ̂ p.

Using standard arguments, by passing to the 2—fold covering of
orientations of M we can suppose that M is oriented in the following proof.
Therefore T is also transversally oriented.

Integration along the fibers of TT : M —> M, after exterior multipli-
cation with the invariant volume form along the fibers, assigns p— forms
on M positive along the leaves of F to p—forms on M positive along the
leaves of 7. Then (1.5) and (1.6) imply that we can suppose that F is TP.
Let then T be an oriented TP foliation on a compact manifold M. For
a fixed bundle-like metric g on M [20] let v € E^10 be the corresponding
transverse volume element and \ = w the characteristic form [21]. With
the notation of 1.3, let i/m and \rn be their corresponding restrictions to
^^(Um) for each Um» and let Tm = ^Urn • ̂ e "^tric g induces canonically
a Riemannian metric on W. By fixing an orientation of each Um we obtain
therefore a volume form ujm on Um'

On A(M) we consider the trigradation defined by the orthogonal
decomposition TM = TT 4- Qo 4- Qi, where Qo = (T.F)1 H T~F and
Qi = (TF)1- ; i.e.

A^(M) = HA^T*^ 0 A^S ̂  A î*).

Then the bigradation of A(M) obtained as in Section 1 with Q = QQ 4- Qi
is given by

(2.1) A^(M)= ̂  A^(M).
a+t=u

Both gradations can be restricted to forms on any open subset of M.

LEMMA 1 [7]. — For each Um there exists a unique \m €
^0,go,0(^-l(^)) ^h that Vm = TT^m A A^.
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Proof. — This follows because Um and \m are nowhere zero, and the
wedge product defines an isomorphism

A^\^\Um}) ̂  A^^^Um)) ̂  A^(^\Um))

where the three spaces are formed by smooth sections of line bundles. D

LEMMA 2. — \m is a basic form; i.e. , \m e E?°'°(^).

Proof. — Clearly the interior product ix^m = 0 for all X € ^(^m)-
Since Vm and ^ujm are basic forms we also have

TT^rn A Ox>m = 0

for all X € X{Fm)^ where 0x is the corresponding Lie derivative.

Let YI , . . . , Yq^ be an orthonormal frame of Um, and let Yi , . . . , Yq^ G
FQi be the corresponding liftings. Clearly each Yj is an infinitesimal
transformation of Fm' Then, for Y = Vi A ... A Yq^ we have

()=^y(7^?a;mA0xAyn)

= (^TT^Ci;^) A 0xAyn ± 7T^rn A ly^X^m

= Ox^m ̂  ̂ l^m A (^X^yAm - ̂ y^m)

= ^X^m-

(The third equality is given by (7.5) of Vol. Ill of [10]. And the fourth
equality is true because \m € A0'^0'^-1^)), Yj € rQ,, and

9l

Ox Y = ̂  Vi A ... A [X, V,, ] A ... A Yq,
j=i

where [X,y,]e^(^).)

Thus zxA^ = 0x>m = 0 for all X € ^(^m), which means that \m
is basic. D

For each Um we can assume that there exists a diffeomorphism of
triviality ofTi-b,

hm : {^(Um^Fm} -^ (Um X MQ, Um X FQ\

as in 1.3. Let pr^i and pr^a denote the canonical projections of Um x MQ
on Um and MQ respectively. TQ can be oriented so that each hm preserves
the orientations of the foliations. Thus we also obtain an orientation of Mo
since J^o is transversally oriented.
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Choose a normalized bundle-like metric for FQ on Mo. Let VQ €
E^^^o) be the corresponding transverse volume element, \o be the
corresponding characteristic form, and z^rn = ^mP^^o € Ef°'°(J^).

fa^ induces an isomorphism of differential spaces

(2.2) ^( ,̂) -^ fi (^x Jo) ^A(E^) 0fi(^o),

where the last isomorphism is defined by pr^ ^ : A(Um) —> A(Um x ^o)
and the wedge product. In particular,

(2.3) e^^m) -^ 0°°^) 0 ̂ W)) ̂  ̂ 00(^)

because 2?i'°(.F) ^ 0 implies that the structural Lie algebra is unimodular
(Proposition 1), so £^{^0) ̂  R by the results indicated in 1.4.

LEMMA 3. — TAe isomorphism (2.3) is given by C 1-^ ^m,c» where

Fm^(y) = [ ^m A a , if C = R for a € A0^-^)).
^-'(y)

Proof. — Let $o be the generator of £^(^0) defined by XQ. Then
the isomorphisms

^(^m)0^W)) ̂  ̂ (^m X^b) , ^(^m)^)^^^) ̂  C00^)

are given respectively by

/^^o^[(pr^i/)-(pr^2^o)], , / ^ $ o ^ / .
Therefore, since

/ (Pr^o) A ((pr^,J). (pr^^^o)) = /(y) • / ^o A ̂  = /(y),
^{rfxMo JMo

the result follows. D

Consider also the map which assigns to each ^ € ^^(.F) the function
Gm,c € C^^Um) defined by setting

Gm,c(y) = [ \m A a , if C = R for a € A°^(M).
^-'(y)

If ^ = [aJi == p]i for a,/? € A°'P(M) then

A^ A (a - /?) € do^A0^-1^-1^))

by (1.1) and because \rn is a basic form (Lemma 2). Hence, since deg(Ayyi A
(a - 0)) = dm^Tr^Q/)) we have

(\m A (a - /?))|^-i(,) € d(A(7^,-l(2/)) = d(A(^\y)\
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from which it follows that Gm^ is well defined.

\rn and ^m are basic forms which can be thought as nowhere zero
sections of the line-bundle A^Qg over ̂ (Um)' Thus there exists a unique
nowhere zero function fm € C°°(Um) such that ^m == (^fm) ' >m' The
following property can be easily checked.

LEMMA 4. — For all C € £^{F) we have F^ = fm ' Gm,c.

On Um^Um' we have ujm = =^m', so \m = ±Am' on ̂ (ET^nl/^),
obtaining

(2.4) G^c = ±Gw,c
on [Tyyi H Um1 - Hence we can define the continuous function G^ on W by
setting

G^y) = \Gm^\ ^{y^Um.

Now let $ € ^^(.F) be the element defined by the characteristic form
X. Since E|'°(^) ^ 0 we have £^{3=') + 0 (by (1.3)). Choose some nonzero
element rf € S^(F) C S^^) defined by some a e A°^(M).

LEMMA 5. — G(^ and Grj are nowhere zero (so they are C°°).

Proof. — X^-i^ defines a generator of S^^Tr-1^))^ and if y e
Um, ^m defines a generator of E^^^F^-i^). Therefore, since the isomor-
phisms of (1.3) are induced by the de Rham duality map, we obtain

^(^l/ A^A^ I ^O .
•^-l(3/)

By Lemma 4, to prove that G^ is nowhere zero it is enough to prove
that every Fm,n is nowhere zero. And since rf is closed in ^^(.F), all the
functions Fm,r] are constant. On the other hand, for some index mo we
have Fmo^ / 0 (by the injectivity of the map ri of (1.7)). Therefore,
since W is connected it is enough to prove that if Um H Um1 ^ 0, then
Fm,'n / 0 implies Fm'^ ^ 0. But this follows because on Um H Um' we have
Fm,n = ^(fm/fm1) • Fm',r) by Lemma 4 and (2.4). D

Let X' = (Tr^G^/Ti^G^) • X^ which is the characteristic form defined
by a new bundle-like metric inducing the same transverse Riemannian
structure. Let ^/ = \X^\^ € S^^). Then for each index m it is easy
to check that
(2.5) Fm^' = ±Fm^
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which are constant functions. It follows that $' 6 ̂ {F) by the injectivity
of 7*1 in (1.7), and because the map (2.2) is an isomorphism of differential
spaces. This finishes the proof of Proposition 2 because X' is obviously
positive along the leaves.

3. Characterization of tautness.

PROPOSITION 3. — Let F be an oriented Riemannian foliation on
a compact oriented manifold M. Then T is taut if and only ifE^° ^ 0 and
the homomorphism ̂ p -> fl^Oi) of (1.2) is zero.

Proof. — If y is taut there exists a p—form X on M, positive along
the leaves and defining an element in E^. Then the transverse volume
element v corresponding to any transverse Riemannian structure defines a
nonzero element in E^° because [i/A<Y]2 ^ 0 in E^F (since vl\X is a volume
form on M). Moreover, \X\^ is a generator of ^'p, hence, by the exactness
of (1.2) it follows that the connecting homomorphism £^ —> ff^Oi) is
zero.

Reciprocally, if E^° -^ 0 then there exists an element $ € E^
defined by some form ^ € A^^M) which is positive along the leaves (by
Proposition 2). If the connecting homomorphism ̂ p -^ ^^(Oi) is zero,
then there exists an element r] € E^F which is mapped canonically to $ (by
the exactness of (1.2)). Choose a € A^^M) such that rf = [0)2. Then we
have by (1.1)

^ea+do^A^-KM)).

Since X is positive along the leaves, we can take some form /? € a +
rfo,!^0^"1^)) close enough to X so that f3 is also positive along the
leaves. Then /3 also defines yy, and T is taut by the criterion of Rummler-
Sullivan. D

COROLLARY 1. — Under the same hypotheses, the Tautness Con-
jecture is true for F if and only if the homomorphism E^ —> ^^(Oi) of
(1.2) is zero.

From the proofs of Proposition 2 and Proposition 3, and using
arguments of [21], [24], we obtain the following consequence (cf. Corollary
4 of Theorem 4.1 in [11]).
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COROLLARY 2. — Let the hypotheses be as above and assume that
T is taut. Then for any Riemannian metric g on the vector-bundle TT there
exists a nowhere zero basic function f such that f • g is in the C°°-closure,
T, of the set T of restrictions to TT of bundle-like metrics on M tor which
all the leaves are minimal. IfF has dense leaves, then g itself is in T.

4. Foliations of codimension less or equal than two.

The arguments of this section show how the topology of the spectral
sequence (£^,d^) can imply geometrical properties of the foliation.

PROPOSITION 4. — For Riemannian foliations of codimension q < 2
on compact manifolds we have £2 ^ ^2 canonically; i.e. , H(0i) = 0.

Proof. — By standard arguments we can assume that M and T are
oriented. We will compare £i,£2, or £3 with £'00, which is Hausdorff.

For q = 0 we have £1 = £'00, so Oi = 0.

For q = 1 we have £3 = £00, thus the result follows by (1.4) and the
exactness of (1.2).

For q = 2 we have £3 = £00, E^' = £^ (by (1.4)), E\- = £„,
and da can be considered as d^ : E^ -^ £^~1 for each integer v. Thus
the closure 0^ of the trivial subspace of £2 is contained in E^' . Then,
since da is continuous and £^' is Hausdorff, we have d^{0^} = 0, which
implies 0^ C E^' . So O^ = 0 because £3 is Hausdorff, and thus £2 is also
Hausdorff. Therefore, by the exactness of (1.2) we have ^•(Oi) = 0, and
the result follows by (1.3) and (1.4). D

COROLLARY 1. — If F is an oriented Riemannian foliation of codi-
mension q < 2 on a compact oriented manifold, then T is taut if and only
ifE^^O.

Combining this result with the solution of the Tautness Conjecture
for Riemannian flows [19] we obtain (cf. [5]) :

COROLLARY 2. — Let M be a compact oriented manifold of dimen-
sion < 4. Then for any oriented Riemannian foliation F on At, F is taut if
and only if £|'° ̂  0.
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5. Examples.

In this section we will give some examples of foliations verifying the
hypotheses of Proposition 4.

Many properties can be extended from Lie foliations with dense leaves
to Riemannian foliations by using the structure theorems of P. Molino. For
instance, the canonical map E^ —> £2 is an isomorphism for a Riemannian
foliation if and only if it is an isomorphism for the corresponding Lie
foliation with dense leaves [2], [3]. Thus, from Proposition 4 we obtain
£3 ̂  £2 tor a Riemannian foliation on a compact manifold if the structural
Lie algebra fl is of dimension < 2.

The case where g is trivial corresponds to Riemannian foliations with
compact leaves [2], [18]. The only 1-dimensional Lie algebra is abelian, and
there are two non-isomorphic Lie algebras of dimension two : the abelian
one, and the solvable Lie algebra with two generators, Xi and Xa, verifying
[Xi.Xa] = X2.

One can construct examples of homogeneous Lie Q— foliations with
dense leaves when Q is nilpotent by using Malcev's theory [9]. So, when Q
is an abelian Lie algebra of dimension one or two, those foliations verify
£2 ^ £2 and are taut.

When fl is the non-abelian Lie algebra of dimension two, we have the
following example of a Lie Q— foliation given by A. Haefliger. In this case Q
is isomorphic to the Lie algebra of the Lie group GA of affine orientation
preserving bijections of R. Let k be a totally real number field of degree n
over Q, and let i : k -+ R be an imbedding such that i(u') > 0 for all the
conjugates u' of any unit u of the ring of integers of k with i(u) > 0. Then,
using k and the above imbedding, one can construct a Lie group H of
dimension 2n — 1, a discrete uniform subgroup r C H, and a surjective
homomorphism D : H —» GA whose restriction to r is injective [9].
We have £3 ^ £2 for the corresponding homogeneous foliation on H / T .
Moreover the leaves of this Lie Q— foliation are dense for n > 3, so it is not
taut in this case because fl is not unimodular.

Finally, the following example is due to E. Ghys [9]. The 6-dimensio-
nal semisimple Lie groupe H = PS'L(2, R) x P5L(2, R) admits a uniform
discrete subgroup F by a theorem of A. Borel. We may assume that F has
a dense projection into each of the factors of ff, obtaining a homogeneous
foliation with dense leaves of codimension three. We may also assume that
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r is torsion free, which implies that the action of r on

(50(2)\P5L(2,R)) x (50(2)\P5L(2,R))

is proper and without fixed points. So, on the 4—dimensional quotient
manifold we obtain examples of transversally hyperbolic foliations with
dense leaves of codimension two. For these foliations we also have E^ ^ £^.
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