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THE ASYMPTOTICS OF THE RAY-SINGER
ANALYTIC TORSION OF THE SYMMETRIC POWERS
OF A POSITIVE VECTOR BUNDLE

by J.-M. BISMUT and E. VASSEROT

Let X be a compact complex manifold, equipped with a smooth
Hermitian metric. Let (E,|| llg), (&1l |lz) be holomorphic Hermitian
vector bundles on X. Assume that (E,| ||g) is positive, i.e. if LF is
the curvature of the holomorphic Hermitian connection on (E,|| ||z),
for any UeTX\{0}, eeE\{0}, then <(L%(U,0)e,e)>0. By
[K] Theorem III 6.19, E is an ample vector bundle on X.

For pe N, let S?(E) be the p™ symmetric tensor power of E. Then

by a result of Le Potier [LP], [K] Theorem II1.6.25, for p large enough,

~and g > 0, HY(S?(E)®E) = 0. Let 1, be the Ray-Singer analytic torsion

of the Dolbeault complex Q" (SP(E)®E)[RS]. The purpose of this

paper is to establish an asymptotic formula for Log(t,) as p > + .

This extends an earlier result by ourselves [BV] Theorem 8, in the case
where E is a positive line bundle.

The general strategy is the same as in [BV]. Namely if (JX¢ denotes
the Hodge Laplacian acting on Q@2 (S?(E)®E), we first establish in

. t
Theorem 1 an asymptotic formula for Tr [exp < - ; O f"’)] asp— + ©.

In Theorem 8 we prove that if A is the lowest eigenvalue of (X9, if
q>0,as p— + oo, A] grows at least like p. The combination of these
two results leads us in Theorem 11 to an asymptotic formula for
Log (t,) very much like in [BV].

To establish these intermediary results, we use a trick due to
Getzler [Ge] in a different context. In [Ge], Getzler extended a result of
Bismut [B2] on the asymptotics of certain heat equation operators, which

Key-woids : Sheaves and cohomology of sections of holomorphic vector bundles.
A.M.S. Classification : 32L10.



836 J.-M. BISMUT AND E. VASSEROT

is valid for line bundles, to vector bundles, associated with representations
of the structure group with weight pA as p » + oo. Here if p is the
dual of the universal line bundle on P(E*), we consider SP(E) as the
direct image of p®” by the map n: P(E*) - X. We then use Getzler’s
trick to lift our initial problem to a corresponding problem on the line
bundle u®” on P(E*), to which the techniques of [BV] can be applied.

Our paper is organized as follows. In § 1, we introduce our main
assumptions and notation." In §2, we calculate the asymptotics of

t - . . . .
Tr [exp(— ; Df,"")] as p — oo. Finally in § 3, we establish our main
result on the asymptotics of Log(t,) as p » + .

As was pointed out by the referee, the results contained in this
paper can be extended to other irreducible representations of E, which
are associated with the weights pa (where a is a given weight) when p
tends to + oo. The corresponding vector bundles can be expressed as
direct images of the p™ power of a certain line bundle over the
corresponding flag manifold. Arguments of Demailly [De] Lemma 3.7,
can then be used to prove the positivity of this Hermitian line bundle
when (E,|| ||g) is positive, and the trick of Getzler [Ge] together with
the techniques used in our paper still apply. This extension of our main
result is left to the reader.

1. Assumptions and notation.

Let X be a compact complex manifold of complex dimension ¢.
Let TX be the complex holomorphic tangent space.

Let E be a holomorphic vector bundle on X, of complex dimension k.
Let E* be the dual of E. For pe N, S?(E) denotes the p™ symmetric
tensor power of E.

Let P(E*) denote the projectivization of E*, and let m be the
projection P(E*) - X. Let p be the dual of the universal line bundle
on P(E¥*).

Let | |l be a smooth Hermitian metric on E. Let

Il llspy> I llgs, I I, be the Hermitian metrics on S?(E), E*, p
induced by the metric|| |z. ’
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Let VE, VE* be the holomorphic Hermitian connections on (E,|| ||g),

(E*,|| |lg+), and let L=, L®" be the corresponding curvatures. Let V*
be the holomorphic Hermitian connection on (|| |/,) and letr be its
curvature.

We first calculate r. Let TVP(E*) be the relative tangent bundle to
the fibres of m: P(E*) —» X. The connection V¥ induces a horizontal
subbundle T#P(E*) of TP(E*).

Let r” be the restriction of r to TYP(E*). r" is explicitly known
by a formula given in [GrH] p. 30, and defines the Fubini-Study metric
along the fibres of P(E*). r" extends into a (1,1) form on P(E*) such
that if Ue THP(E*), iyzr’ = 0.

Set

(1) rf = — g* Ly.5) ;

5 y € E*\{0}.
[yl

Then r¥ is a (1,1) form on P(E*). Also by [K] p. 90,
) r=r"+r¥
r# is then the restriction of r to THP(E*) x THP(E*).

For p > 1, the connection V* induces on S?(E) the holomorphic
Hermitian connection V5°® on (SP(E), | Isy@) -

Let (&Il |l¢) be a holomorphic Hermitian vector bundle on X. Let
V¢ be the corresponding holomorphic Hermitian connection.

Let | |lzx be a Hermitian metric on X.

We then equip A(T**VX) ® SP(E) ® £ with the tensor product of
the metrics induced by || |lzx on A(T*VX), of the metric | |/sp,
and of the metric || ;.

For 0 < g </, let QU?V(SP(E)RE) be the set of C™ sections of
AUT**VX)® SP(E)® & over X. Set QO(SP(E)®E) =
¢

® QOO(SP(E)®E).

Let dx be the volume form on X associated with the metric ||| x.
We equip Q" (S?(E)®&) with the L, Hermitian product

B3) o, o eQO(SHE)®E) - (o) = f <a,a'>(x)<27§:m-
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Let 0F be the Dolbeault operator acting on Q©(SP(E)®E), and
let 0" be the formal adjoint of 3% with respect to the Hermitian
product (3). Set

@ 0F = @5+

For 0 < g </, let 07 be the restriction of O} to Q®?(S?(E)®E).

2. The asymptotics of the trace
of certain heat kernels as p > + .

If UeTrX, let U¥ be its horizontal lift in TZP(E), so that
U#e TEP(E), n,U¥ = U.

Let w,, ..., w, be an orthonormal base of TX, let w', ..., w’ be
the corresponding dual base of T*X. If zeP(E*), r, acts as a
derivation rf, of ASP(T*®VX) by the formula

(&) ri. = — 2 rwi, wiw! A ig,.

We identify r? with the self-adjoint matrix #¥ € End,, (?‘X’) such that if
U,VeT,X,

ri(UA V) = CURFI V).
For 0 < q </?, let r#? be the restriction of rf to AYT*"VX). As
t - 0, we have the asymptotic expansion

Tr [e] A W
— — = 9t) + o(t™).
©) pehdet (1—e™ )CXP(Zin) j;{ 4 o(t™)

Also for peN, 0 < g <7, t > 0, let Trlexp (— ¢t O%9)] be the trace
of the operator exp (— t 0J¥9). For any meN, as t - 0

A . -t _ - A
(7) p @mX+dimE-1 Tr[exp (—p— Df,"")] = Y al;f/ + o(t™).

==t

THEOREM 1. — For any t > 0, 0 < q < /, the following identity holds
(8) 11m p-(dimX+dimE— 1) Tr[exp <_—?E E]é’q)]

p—+ T H‘q]
= rk(€) _ Trfera T exp (—_r)

pas det (1 — e~ 'H) 2in
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and the convergence in (8) is uniform as t varies in compact sets of
R%¥. Foranyjz —dmX, 0<qg<dimX, as p—> + 0

C) al;=rk@E)al + O (ﬁ)

In (7), for any me N, o(t™) is uniform with respect to pe N.

Proof. — By [GrH] p. 165 and [K] Theorem II1.4.10, for any x € X,
peN

(10) HY(P.(E*), pﬁ’;fc(m)) = SP(E), if q=0
H(P(E*), 3 ) = 0 if ¢ >0

To prove (8), we will use (10) together with a procedure used by
Getzler [Ge] in a similar situation, to transform the initial problem into
a corresponding problem on P(E*) associated with p®?, to which we
can apply results of Bismut [B2] and Bismut-Vasserot [BV].

Let U(E*) be the bundle of orthonormal frames in E*. We identify
U(E*) with the set of linear isometries from C* into E*. Clearly

P(E*) = U(E*) X ygy P(CY).

The connection VZ* on U(E*) induces a connection on the fibration
n:P(E*) » X. The associated horizontal subbundle of TP(E*) is
exactly the vector bundle T”P(E*) considered in §1.

We then have the identification of C* vector bundles

TP(E*) = T*P(E*) @ T'P(E¥)
1)

T'P(E*) ~ n*TX.
From (11), we deduce the identification of C*® vector bundles

(12) A(T*OVP(E*)) = n*(A(T* VX)) ) A(T"*OVP(E*)).

We equip TYP(E*) with the Fubini-Study metric | || ey Let
|l llzps+ be the metric on TP(E*) = T*P(E*) ® T'P(E*) which is
.the orthogonal sum of n*|| |;x and ||

lvps). For peN, set

(13) & = 1 @ n*¢.
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Let 0, be the 0 operator along the fibres of P(E*) acting on

smooth sections of T*(A(T*®VX))® A(T VxODP(E*) ® £,, and let
0, be its formal adjoint with respect to the considered metrics.

Let V7P V&% be the holomorphic Hermitian connections on
T'P(E*), &, respectively. These connections induce a natural connection
on A(TV"®PP(E*)) ® £,, which we note VAT “VPENSL,

DEFINITION 2. — If o is a smooth section of A(T""*YP(E*) ® &,
over P(E¥*), if Ue TRX, set

(14) Voo = VAT OOPENSLy
i U -

We extend V, to a differential operator acting on smooth sections

of n*(A(TkX))@A(TV'“"”P(E*)) ® &,, with the convention that if ®
is a smooth section of A(T%¥X), and if o is a smooth section of
A(TVOPP(E¥) ® £,, then

(15) V,(00) = n*[do) a + (— 1)**° 0 A V,a.

Let V;, V. be the holomorphic and antiholomorphic parts of V,,
so that

(16) V,=V,+ V5.

For 0<qg <k+¢-1, let Q%PE&,) be the set of
smooth sections of A(T*®VPP(E*))®E, over P(E*). Set

k+¢-1

QOME) = @ QO2E,). Let 95" be the classical Dolbeault operator
0
acting on Q®*(&,).

Using the identification (12), it is clear that V7, 3dY,3)" act on
Q(O'.)(E.'p)-

If A, B are operators acting on the Z-graded vector space
Q©®*(,), [4,B] denotes the supercommutator of A4 and B in the sense

of [Q].

ProrosiTiON 3. — The following identities of operators acting on

@ hold
Q®%(Ep) ho @ =0

(17 Vs, 351 =1[V;,31=0
e = ¥; + 3.
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Proof. — Assume first that § = C. Let F be the vector space of
smooth sections of A(TV"PP(E*)) ® u®? over P(E*). As in [Bl],
Section 1f), we view F as an infinite dimensional vector bundle over
X. If xe X, the fibre F, is simply the vector space of smooth sections
A(TVOPP(E*)) ® u®® on the fibre P(E*),.

Clearly F is a U(k)-equivariant vector bundle on X, in the sense it
comes from a representation space for U(k). V, is then a connection
on the vector bundle F, which is inherited from the original connection
VZ on U(E). Since (VE')? =0, then (VZ)? = 0. It is now trivial to
prove in full generality the equation (V;)? = 0.

Since U(k) acts on P(C*) by holomorphic isometries which lift
unitarily to the dual of the universal bundle on P(C*"), we get

(18) V,,0,1=0; \[v,,,a,y*] =0.
In particular, the second equation in (17) holds.

If Be End(E*) is skew-adjoint, let By be the holomorphic Killing
vector field on P(E*) induced by the corresponding vector field on E*.
The vector field By lies in TVP(E*). Then L'y is a (1,1) form on X
taking values in vector fields in TYP(E*). L¥y lifts to a (1,1) form
on P(E*).

Assume first that p = 0, and & = C. Let d be the de Rham
operator along the fibres of P(E£*), and let d be the de Rham operator
on P(E*). Similarly ¥V, can be made to act on the de Rham complex
of P(E*). Then by [B1] eq. (1.30) and [BGS1] eq. (1.26), we find that

(19) d=V,+d" +ip,.

Since L* is of type (1,1), we deduce from (19) that we have the
identity of operators acting on Q®7(E,)

(20) FpEn = Ty + 3.

Extending (20) to Q®7(&,) is easy and is left to the reader. a

Remark 4. — The fibration 7 : P(E;“) S X s locally Kahler in the
sense of Bismut-Gillet-Soulé [BGS1], [BGS2]. Part of the identities in
(17) follows from.[BGS1], Theorem 2.6.
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Let V3", 87", 35", be the formal adjoints of V2, 3, 3°=", with
respect to the obvious Hermitian product on Q7(&,) associated to the
various metrics.

Observe that J)" restricts on each fibre of n:P(E*) - E* to the
fibrewise adjoint of J;.

THEOREM 5. — The following identities of operators acting on Q> (E,)
hold

(1) @EI+ 5 E"y: = (Vy+ V302 + (@) +3))*
(Vo +V5), @y +3,7)71 = 0.

Proof. — (21)idollows from Proposition 3. O

For 0 < g <idimX, 0 < ¢’ <dimE — 1, let Q**9)(£,) be the set
of smooth section of T*(AYT*OVX)) @ AT (TVOPP(E*)) ® &,. By
(12), we know ‘that Q©®¢)(£)) is a vector subspace of Q©I"9)(E).
More precisely, for any g, 0 < g < dimX + dim E — 1

@) QUOE) = @ QOTE).
q'+q"=q
Set
23) OPED = (@0 ED 4 gbEM2,

By Theorem 5, we find that
(24) 0OPEY = Grrr+ Vo'V + 800 + 8V°5Y.

From (24), it is clear that the operator (J%" acts on each QC¢9(¢,).
Let CIP®"9¢ be the restriction of CI5E" to QO .).

We now have the following result directly inspired by Getzler [Ge].

THEOREM 6. — For any pe N, 0 < q < dim X, t > 0, the following
identity holds

dim E-1
(25 Trlexp(—tO¥9]1= Y (=17 Tr[exp (—tO5E )],
a'=0
Proof. — Let F, be the vector space of smooth sections of

A(TVOYP(E*) ® £, over P(E*). As in the proof of Proposition 3,
we regard F, as an infinite dimensional vector bundle over X. If x € X,
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the fibre F,, is the set of smooth sections of A(TV'*’P(E*) ® &,
over P(E*),. F, is a U(k)-equivariant Hermitian vector bundle on X,
and V, is the corresponding holomorphic Hermitian connection. Also
Q®(F,) is canonically isomorphic to Q®7(&,).

The operator (3y+0)")? is U(k)-equivariant. Therefore the spectrum
of (0y+0)")* acting on a fibre F,, does not depend:on.x.€ X. In the
sequel A > 0 varies in the spectrum of (3Y+37%)%.

The vector bundle F, over X then splits into a direct* orthonormal
sum of finite dimensional vector spaces F% which are eigenspaces of

(@Y +0Y™*)? associated with the eigenvalues ), i.e.

(26) F,= @ F.

A=0

For 0<q' <dimE — 1, let F? be the set of smooth sections of
dim E—1

AY(TVOVP(E*) ® &, over P(E*). Clearly F, = @& F¥. Also the
q'=0

operator (JY+0Y")? preserves each F?. To the splitting (26) of F,

corresponds the splitting

@7 Fj = @ F§*

Az0

of each Fg'. Using (10) and Hodge theory, we know that

28) F§o = SNE)®E if q'=0
=0 q > 0.

Moreover since U(k) acts irreducibly on SP(E), the metric on S?(E)
induced from the L, metric on the fibers of P(E*) coincides (up to an

irrelevant constant) with the metric || || @ -

Let (129* be the restriction of the operator (VZ+V“*)2 to the set
b p p

of smooth sections of AY(T*®X)® F¢™* over X. From Theorem 5,
we get

dim E—1
29 ¥ (=1)7 Trlexp (—tO8E )]
q'=0
dim E~1
= Yep(—t\) Y (DY Trlexp(—t027Y)
A0 ’

a'=0
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From (28) and from the considerations which follow, we find that

(30) lmZ_ (= D7 Tr[exp (—tB827%] = Tr [exp (-t OF9].

q'=0

On the other hand, for A > 0, we have a U(k)-equivariant exact
sequence of vector bundles on X

3D 00— Fg,% ?) Fll),k S ngmE—l,A - 0.
4 P

From (31), we easily deduce that for A > 0

dim E-1
(32) S (=17 Trexp (—t 027 Y] = 0.
q'=0
Using (30), (32), we get (295). O

- Remark 7. — As t — 0, the left-hand side of (25) has a singularity
t~4mX A priori, the right-hand side has a singularity ¢~ @m X+ dim £-D
Therefore a cancellation process occurs in the right-hand side of (25)
as t—0.

Proof of Theorem 1. — Let r, be the analogue of r¥ on P(E*).

Namely if wj,...,W,,,-, is an orthonormal base of TP(E*), if

wl, ..., w?"¥ 1 is the corresponding base of T*P(E*), set

(33) ra = — Yrwi, wpw’ A i .
Then r, acts as a derivation of
A(T*OPP(E%)) = n*(A(T**PX)) ® ATV “VP(E¥)).

We identify r with the self-adjoint matrix #e End (TP(E)) such that
U, Ve TP(E)

(34) r(U, V) = (UFV).

By (1), (2), it is clear that ra preserves
T (AYT**VX)) ® AY(TV ©“PP(E*)). Let r%” be the corresponding
restriction of r,.

Let dz be the volume form on P(E*) with respect to the metric

b llrp -
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Clearly as t - 0, we have the asymptotic expansion

Tried’] .
det (1—e~")
= Y brUY+ o(t™).

j=—t—k+1

l(35) (2,";)— (dim X+ dim E—1) J‘ det ("-’)

P(E")

ForanypeN,0<g<dmX,0<qg" <dmE — 1,ast— 0, we
have the asymptotic expansion ‘

: ; b ot 0 - ‘s
36) p““"““d‘"‘E“’Tr[exp(—;D';(E »a.qa )jl = Y bIit+o(t™.

—-{—k+1

By a straightforward adaptation of [B2]. Theorem 1.5, and [BV]
Theorem 2, we know that for any ¢t > 0

. . t_ ,
(37) lim p-@mxtam ey [exp (‘ l= i )J

p—+ o

9.9
e - det (F) Tr[ed ]
i 2TC (dim X+ dim E—-1) rk
(2m) © L(E*) det (1—e~")

and the convergence is uniform as t varies in compact subsets of
R*. Also as p—> + o

r I’ 1.
38 b2t = rk(E)b3? + O —= |-
(38) rk(€) (\/;>

Moreover in (36), o(t™) is uniform with respect to pe N.
By (2) # map T'P(E*) into itself. Let 7V be the restriction of F to
TYP(E*) . We then find that

dim E—1

39) z (=17 Tr [etrZ""] - Tr [etr;"q] det (1— e_,fv)

det(1—e ") = det (1—e ) det (1—e™*").
By (25), (37), (39), we get

(40) lim p~@mX+dmE-1 g [exp(— ; (jf’q"")]

p—+ 0

_ Tr [e"<"] i
= rk(&) . m det <21t> dz.

PE )
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Clearly

(41) det <é) dz = [cxp (;an)] .

Using (40), (41), we get (8). From the previous considerations, we also
obtain the full proof of Theorem 1. O

3. The asymptotics of the Ray-Singer analytic torsion as p - 0.

From now on, we assume that the holomorphic Hermitian vector
bundle (E,| ||g) is positive, i.e. that if Ue TX\{0}, e € F\{0}

(42) (LE(U,U)e,ey > 0.

From (2), we find that if ye E*\{0} represent z € P(E*), then

L*y
43) S 2 Iyy|;y>-

“Classically [GrH] p. 30, the restriction of the line (p,|| ||,) to the
fibres P(E*) is positive, i.e. if Ue T'P(E*)\{0}, r'(U,U) > 0. From (43),
we deduce that the Hermitian line bundle (w,|| ||,) is positive on
P(E*). This is of course a well-known result [K] Theorem III 6.19.

THEOREM 8. — There exists C > 0, ¢ > 0, ¢’ > 0 such that for any
peN, 1 <qg</¢,t>1, then
o]

< con(- (= £))

Proof. — By [BV] Theorems 1 and 2, there exist C > 0, ¢ > 0,
¢ > 0 such that for peN, 0<q<?¢,0<q¢ <k—-1,9q+4g 21,
t>1

45) Tr l:exp(— I£7 E;'(E‘).q,qr)] < Cexp(— <c— %)t)

Using (25) and (45), (44) follows. 0

(44) p— (dim X+dim E— 1) TI' [exp < —

N~
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Remark 9. — Let AY be the lowest eigenvalue of [JX?. From (44),
we deduce that if g > 1

(46) A >cp— .

(46) is also an easy consequence of Theorem 5, of the considerations
in the proof of Theorem 6 and of [BV], Theorem 1. [BV] Theorem 1 is
itself a consequence of the Bochner-Kodaira-Nakano formula of
Demailly [De] for the operator (J5*" . Strangely enough, (46) does not
seem to be a straightforward consequence of a similar formula for
arx.

By Theorem 8 or by (46), there exists p,e N such that if p > p,,
1 < g < ¢, the operator OJ5®™ js invertible.

DeFiniTiON 10. — For p > p,, seC, Re(s) = 7, set
-1 = ‘ _

(47) Cp(s) = —J t“‘(Z(—l)"q Tr [exp (—t fo’")]) de.
L'Gs) Jo n

By a well-known result of Seeley [Se], {,(s) extends into a meromorphic
function of seC which is holomorphic at s =0. By definition
exp (—(,(0)) is the Ray-Singer analytic torsion [RS] of the Hermitian
vector bundle S?(E) ® &.

We now state the main result of this paper.

THEOREM 11. — As p > + ©

@8) 1,(0) = rk(t) % Log [ det (%:?)] exp (-;—55)
P(E*)

+ o(p(dimx+dimE—l))
In particular as p - + ©

(49) Q;,(O) — 0(pdimx+dimE—1 Log p) .

Proof. — In view of Theorems 1 and 8, which are the obvious
extensions of [BV] Theorem 2, the proof of Theorem 11 proceeds
formally as the proof of [BV] Theorems4 and 8. Details are left to
the reader. O
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