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MULTISUMMABILITY
OF FORMAL POWER SERIES SOLUTIONS

OF NONLINEAR MEROMORPHIC
DIFFERENTIAL EQUATIONS

by Boele L. J. BRAAKSMA

0. Introduction.

In this paper we consider nonlinear ordinary differential equations

(0.1) XV+1^=FOC^)

where xeC, ^eC", ve^ l , v > 0 and F is an analytic function in a
neighborhood of (0,a)eC x C". If (0.1) has a formal power series
solution

00

(0.2) y(x) = ^ c»x" Co = a
w= 0

then we will show that y can be summed by a new injective summation
procedure, called multisummability, introduced by Ecalle (cf. [7], [8]).
We use the description of this procedure given by Martinet and Ramis
[13]. Equivalent forms of multisummability have been given by Balser
[I], [2], Jurkat [10], Malgrange and Ramis [12], [15].

This multisummability property of formal power series solutions has
been announced by Ecalle during the « Journees Resurgentes » in Paris
1989, with a rough idea of a proof. Later Ramis [14] announced several
conjectures of which the statement concerning (0.1) given above
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constitutes the main conjecture. He gave a sketch of the principal ideas
of a complete proof using essentially the techniques and ideas of his
paper with Sibuya [16] extended to analytic infinitesimal neighborhoods
of the origin. Here we give a proof in the spirit of Ecalle's work (cf.
[6]) using convolution equations similar to our treatment of the linear
case in [5] and to the nonlinear case with one level only in [4]. A
different treatment of the linear case occurs in [3] and [13].

The organization of this paper is as follows. In section 1 we give
a concise review of the definition of multisummability. In section 2 we
reduce equation (0.1) to a normal form D[y] = 0 (cf. (2.2)) from which
the different levels fci > feg > • • • kr > 0 of this equation can be read
off. These levels are closely associated with the Newton polygon of
(0.1). To each level correspond singular values and singular directions
(cf. definition in section 2). The formal power series solutions y of
D\y\ = 0 is (fci, . . . , fer)-summable in nonsingular directions to an analytic
solution. In theorem 1 in section 2 this result is formulated for a
somewhat more general case where F (cf. (0.1)) itself is the sum of a
( k i , . . . , fer)-summable power series F(x,y) in x with coefficients that are
analytic in y .

In section 3 we derive convolution equations Qj^ == 0 which arise
by application of some form of Borel transformation of order kj to
D\y\ = 0, j = 1, . . . , r . Here Qj and Qj-\ are connected by an
acceleration operator (cf. (7.2)). An analysis of these convolution
equations leads to a proof of the main result which is given in section
3. This proof consists of four steps which are formulated as lemmas
in that section : First it is shown that the convolution equation Qr^f == 0
corresponding to the lowest level has an analytic solution vj/^ in a
neighborhood of the origin (lemma 2) and we show that v|/^ can be
analytically continued on a sector (lemma 3) and has a certain exponential
growth order |̂  (lemma 4). Since ^ > kr if r > 1 the Laplace transform
of order kr of \|/^ does not exist in general (it would have led to a
Borel sum y of y\ but the growth order |ir is such that we may apply
the acceleration operator from level kr to level ^-i to \|/r (lemma 5).
Thus we obtain a solution \|/r-i of Qr-i^ = 0. Repeating this procedure
with lemmas 2-5 we obtain finally a solution v)/i of gi\|/ = 0, the
convolution equation of highest level fei which appears to have
exponential growth of order ^ fc i . Therefore its Laplace transform 3;
of order k^ exists and this function y is analytic solution of D\y\ = 0,
it is the (fei, . . . ,k^)-sum of y .
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Lemma 2 is proven in section 4 by means of the contraction
principle. Lemma 3 concerning the analytic continuation of solutions is
derived in section 5 from a linearization of the convolution equations.
In section 6 we prove the exponential estimates of the solutions \|/,
(Lemma 4) by means of a majorant equation. Section 7 contains the
proof of lemma 5 concerning the acceleration of Qj to Qj-^. In section 8
we compare multisum-solutions on different sides of singular directions
in view of the Stokes phenomenon.

1. Definition of multisummability.

In this section we give a concise review of the definitions of Laplace
and Borel transforms, accelerations and multisummability as given by
Martinet and Ramis [13] (cf. also Malgrange and Ramis [12], [15]).

If p > 0, n e f^ then A,(0,p): = {^ e C" |^| < p}. A direction d will

be a half line {^ e C ^0,arg^=9} where 9 is some real number and

arg^: = 9. If a > 0 then S(d,a) : = ^eC ^0, |arg^-arg d\ < 1^.

A neighborhood of 0 in S(d,d) will be a set

{ ^ e 5'(d,a) 0< |^| <p(arg^)} where p is some positive-valued continuous

function on ( arg d — . a, arg d + ^ a ) .

Let \t > 0. We say that a function / defined on a neighborhood of
oo in S(d,v) is of exponential growth of order ^ ^ if to every closed
subsector 5" of 5'(rf,a) corresponds a positive constant c such that
f(Q = 0(1) exp |c^ as ^ -> oo on 5".

Let k > 0 and /: 5'(d,a) -> C be analytic and of exponential growth
of order ^ k whereas f(S,) = O^'^ as ^ -> 0 on 5'(d,a) for some
c > 0. Then the Laplace transform of order k in the direction d of /
is defined by

(1.1) (^,J)(x) = f/(^)exp - C;/x)W),
Jd

where the path of integration d runs from 0 to oo. Then ^k,df is
analytic in a neighborhood of 0 in 5'(d,a+7i/fe).

Let
(1.2) f(Q= ^ c^-^^CR]
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be a formal power series. Then we define
00

(1.3) (^*/)(x): = ^ c^r(m/fe)x"'6xC[x].
m = l

If /(^) ^/(^) as ^ -> 0 in 5'(rf,a) and the assumptions above on / are
satisfied then (J^d/)(x) - (^^/)(x) as x -> 0 on 5'(rf,a+7t/fe).

Let (7 be a neighborhood of 0 in 5'(rf,a+7c/fe) and g : U - ^ C be
analytic and ̂ ) = Off) as ^ -^ 0 where a > 0, 5 e R, d± are directions
in S(d, a+ n / k ) , arg rf+ > arg d + 7i/(2fe), arg d- < arg d - 7i/(2fc). Then
the Borel transform of order k in the direction d of g is defined by

(1.4) (^k,dgm = ̂  f g(x) exp (^/x)^^-^,

where y is a loop from 0 to 0 in U with the first part in direction d+
and the last part in direction d - , ^e5'(d,a). Then ^k,dg is analytic
and of exponential growth of order ^ k in 5'(d,a). If

00

(1.5) g(x): = ^ a^'"eC[x]
m=l

then

(1.6) (^)(0: = Z ^^-Vr(m/fe).
771=1

If g(x) ^ g(x) as x ̂  0 on U and the assumptions above hold then
(^^)© - (^i)(y as ̂  0 on 5(d,oc). We have ^,,^,,d == id, and
^k,d^k,d = id on the spaces of functions / and g which satisfy the
assumptions above.

Let (PA/)© =/(^l/fc). I f /and (p are analytic in a neighborhood ^
of 0 in S(d^) and /(^), (p(^) = O^6"^ as ^ -^ 0 in £7 for some £ > 0,
then the k-convolution of / and (p in U is defined by

(1.7) (/*(?)© = P.^/HP^))^), ^ e U .
k

If / and (p are also analytic and of exponential growth of order ^ k
in 5'(d,a) then J^\(/*(p) = j^V-JSf^cp on a neighborhood of 0 in

fc
5'(rf,a+7i/fc). Similarly if g and \|/ satisfy the assumptions in the definition
of ^k,d on ^a+Ti/fe) then ^(^v|/) = (^^)*(^v|/) on 5'(^a). Here
J^,= J ,̂̂  and ^,= ^rf. '
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Let 0 < k < k\ Then the operator of ( k ' , ̂ -acceleration in the
direction d — A^ ^;d ~ ls defined by A^ ̂ ;d == ^ k ' , d ^ k , d ' This operator
makes sense in the space of analytic functions /: 5'(rf,a) -> C which are
of exponential growth in 5'(d,a) of order ^ k and which satisfy
/(£,) = O^'^ as ^ -> 0 in 5'(^a) for some £ > 0. However, Ecalle has
shown that this operator may be extended to functions with the same
conditions except that order ^ k is replaced by order ^ [i where
H- 1 : = fe-1 - (k')~~1 (cf. [6], [7], [13]). Then A^^f is analytic in a
neighborhood of 0 in S(d,ai-^-n/[i). Moreover if f(Q ^ f(Q as ^ -> 0
in 5'(d,a) (cf. (1.2)) then

(1.8) (A^,/)(Q - S^^^^"^ as ̂  0 in S(d^n^).

I f / a n d g : 5'(rf,a) -> C satisfy the assumptions of the definition of
Ak',k;df ^d Ak',k;d§ ^en we have

(1.9) A^;,(/^) = (A,^;,/)* (A,/,,;^).
A ^

DEFINITION 1. — k-summability of a formal po\ver series in a
multidirection d or multisector S.

Let n and r e N , /exC[x]", k = (^, . . . , fe , ) , 0 < k, < • • • < k,,
d = (^i, . . . , dr), S = (5'i, . . . , Sr) \vhere dj is a direction,
S, = S(d^e^n/kj), e, > 0, 7 == 1, . . . , r. Let

(1.10) f e o : = + o ) , ^:= (^l-^--\)-l, 7 = l , . . . , r .

TTi^n / is said to be 1s.-summable in the multidirection d or multisector S
if

a) 5,-i c: 5',, j = 2, . . . , r .
b) ^^/ fs convergent in Ai(0;p)\{0} for some p > 0. Let gr be the

sum of this series.
c) For j = r, r — 1, . . . , 1 respectively the function gj can be continued

analytically on S(dj,Gj) and is of exponential growth of order ^ ^ on
S(dj,Gj), and if j ^ 1 \ve define ^j-i: = A^. _^k-,d-Sj on a neighborhood
of 0 m S(dj, Sj + TT/P,^) .

Then the Yi-sum off in multidirection d or multisector S is defined by
W--=^,^i (^ [13])-

This sum is analytic in a neighborhood U of 0 in 5'i and satisfies
Sk,df(x) ^/(x) as x -> 0 in U. The operator Sk,d is injective.
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The definition above implies that / is k-summable on (7i, . . . ,/r) in
the sense of Malgrange and Ramis [12], [15] if Ij is a closed subsector
of Sj with length ^ n/kj and /i c= /g c= . . . c /^. This may be shown
using a decomposition of multisums as for example in Lemma 4 in [5].

If (p = a 4- / where a is a constant and / is as above we also say
that (p is k-summable in direction d with 5^d(p : = a + 5^/. If (p is
k-summable in all directions except finitely many then $ is said to be
k-summable. If (p is k-summable in direction d with rfi = • • • = dy = '. d
then (p is said to be k-summable in direction d .

If no confusion arises we omit the directions d and d in the
operators J^, ̂ , A^',^ and 5^.

2. Normal form and statement of the result.

First we reduce (0.1) to a normal form (cf. [16] and [17]). Let
M+^-l

y(x) = P(x) + x^(x) where P(x) = ^ c^ (cf. (0.2)) and N, ^e M
m=0

will be chosen later on. Substitution in (0. 1) gives

(2.1) x^f = F(x,y)

where

F(x,y) : = xMF^x) + 2(x)}? + x^(xj),

Fo(x): = - x-^Wx,^))--^1^)},

2(x): = - îxY + 7^F(x,P(x)),

^(xj): = x-^{F(x,P(x)+x^)-F(x,P(x))-Z),F(x,P(x))x^}.

Then F^ is analytic near (0,0) in C x C" and 0(\ y\2) as y-> 0. Since
00

(2.1) has the formal solution ^(x) = ^ c^+^x"", we see that Fy is
m=M

analytic at 0.

Next we apply to the linear part of (2.1) the usual reduction
procedure to a «normalized form» (cf. [9], [19], [II], [20]). Let
fei > feg > • • • > kr be the positive slopes of the Newton polygon
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associated with x ^ — - A ( x ) . If M is sufficiently large then

fei , . . . , k, are independent of M. We may assume that A;i, . . . , fe, are
integers since otherwise we first perform a ramification x* = x1^ for
some q e N . There exists an n x n-matrix polynomial S(x) with
det 5(x) ^ 0 such that

ts-l(x){x£-2(x)}>s(x) = ^£ ~ Q(x) ~ XA^X)-
where A*(x) is an analytic matrix in a neighborhood of 0 and

r+ 1

Q(x) = © x-^A,.
h=\

Here ^ is an n^ x n^-matrix, n^e ^J, n^ + . • . + n^i = n, fe^i = 0
and if 1 < /i ^ r then .4/, is invertible. Let det S(x) have a zero of
order ^ ^ 0 at x = 0. Then ^o, A , , . . . , A, and .4,+i + ̂  are
independent of M and [t for sufficiently large M. Here 4 denote the
n/, x n^-identity matrix.

Next we substitute y(x) = S(x)y*(x) in (2.1). After deleting stars
we obtain

dv
x^-Q(x)y = xA(x)y + xM-VS~\x)F,(x) + x[l-VS-\x)F,(x,S(x)y).

Because ^"^(x) = ^(x"^0) as x -> 0 we choose n > v + jLio and
M > v + [io sufficiently large. Thus we see that (2.1) is equivalent with
D[y] = 0 where (cf. [16])

(2.2) D[y](x) : = f©1^) x ̂  - CeA^y - G(x,y).
\h=l ) OX \h=l /

Here G(x,y) is analytic in Ai(0;p) x A^(0;p) for some p > 0,

(2.3) C7(x,0) = O(x^) as x -^ 0, G(x,y) = 0(x) as x -^ 0,

uniformly in ^ on A^(0;p) with some N e N . Since Z)|j] = 0 has a
00

formal solution S~\x) ^ c^+^x7" we see that we may choose
m=M

N = M - Ho arbitrary large and that D[y] = 0 has a formal solution
00

^ c^. Note that G depends on the choice of N .
m=N
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We will consider the case r > 0 only. If r = 0 then D has a regular
singularity in 0 and so the formal power series solution y converges
(theorem of Briot-Bouquet).

We now formulate the multisummability result for D\y\ = 0 in a
somewhat more general case. Instead of G(x,y) analytic at (0,0) in
C x C" we assume that G(x,y) is the k-sum in a multidirection d of
a formal power series G(x,y) in x :

00

(2.4) G(x,y): = ^ G^x"
m=l

with coefficients Gm(y) analytic on A^(0;p). Here we use the notation
of section 1 with k = (fei, . . . ,fe/.), (1.10) and Uj\ = S(dj^j+nlkj\
U'j: = S(dj,Sj). More precisely we assume:

a) Uj-,^ (7,, 7 =2 , . . . , r .

b) ^^G(',y)^) converges for 0 < |^| < p,, if ^eA^(0;p), where
pr > 0; its sum will be denoted by gr(^,y)-

c) If 7 = r, . . . , 1 respectively then gj(^,y) can be analytically continued
on U'j x A^(0;p) and gj^y) is of exponential growth of order [ij at
most as ^ -> oo in U'j uniformly for ^eA^(0;p).

The latter means that to every closed subsector U' of U'j correspond
positive constants K and Co such that

(2.5) \g^y)\^Kexp\c^\ on {^\Ai(0;l)} x A,(0;p).

If j + 1, then

(2.6) gj-^y): = ̂ .^gj^ym.
Moreover

(2.7) g,(̂ ) - S^ym as ̂  0
on L^ uniformly in y on A^(0;p).

d) G(x,y): = {^\,^i(-,}0}(x» on U x A,(0,p) where £/ is a
neighborhood of 0 in U^.

Then G(x,y) is k-sum of G(x,y) in d and on U = (C/i, . . . , £/,). The
assumptions above are satisfied if G(x,y) is analytic in (0,0): now d
and U may be chosen arbitrarily.
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To formulate the result we also use

DEFINITION 2. - Let j e {!,..., r}. Then ^ is a singular value of
level kj for D and the direction of ^ is a singular direction of level kj
for D if kff3 is an eigenvalue of A (cf. (2.2)). The set of singular values
and directions of level kj for D will be denoted by Vj and Wj respectively.
A direction a is a Stokes direction for D if there exists d e Wj for some
j such that arg o = arg d ± ^/(2kj).

Using the notation above we have

THEOREM 1. - Let D be given by (2.2) where
(i) r E N , k,+i = 0 < k, < ' • • < fe i , ̂  e f^j, /„ and A^ are (n^ x n^)-

matrices, n^ € ^J, yii + • . . + n^+i = n , 4 is identity matrix,
h = 1, . . . , r + 1, and if 1 ̂  h ^ r then A^ is invertible,

(ii) G(x,y} is k-sum in multidirection d or multisector U of G{x,y)
{cf. 2.4)) satisfying a) - d) with k = (fe,, . . . , fe,), d = (d,, .. ., d,\
U=(^ , . . . , £ / , ) , ^•=^,,£,4-7i/fe,), 8 , > 0 , 7 = 1, . . . , r .

Let y(x)exC[xY be a formal solution of D\y\ = 0. Let T, be a
direction and 8, > 0 such that S(^,^) c= 5f(d„s,)\H^ anrf 5, c= 5'̂ i i/
7 = 1, ..., r, where S j : = 5'(T^8^+7t/^).

Then y(x) is k-summable in multidirection T and on multisector S
where T = (Ti, . . . , T,), S = (5\, . . . , 5',).

Its multisum y(x) is analytic solution of D[y] = 0 in a neighborhood
V of 0 in 5'i and y(x) - y(x) as x -> 0 m V.

Remark 1. — If So is a subsector of U^ such that 5'o does not
contain a pair of Stokes directions CT ± Tr/k, with <j e ̂  then we may
choose 5'i, . . . , Sr in the theorem in such a way that the corresponding
k-sum y exists in a neighborhood Vo of 0 in So, D[y] = 0 on Vo and
^(x) ^ ^(x) as x -> 0 in VQ.

COROLLARY. - Combining theorem 1 with the reduction of (0.1) to
D\y\ = 0 described in the beginning of this section we see that the formal
power series solution y in (0.2) of (0.1) is (k^/q, ..., krlq)-summable. Its
multisums exist on all sectors which do not contain any pair of Stokes
directions ^± with arg d^ = ^(arg <j±n/(2kj)), aeWj. The exceptional
directions in which y is not k-summable are singular directions of (0.1).

The proof of Theorem 1 and Remark 1 will be given in sect. 3.
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3. The convolution equations.

From the transformations in section 2 it follows that it is sufficient
to consider the case that the first N terms in the formal solution
vanish :

(3.1) Hx) = ^ c^
m=N

and that (2.3) holds with N sufficiently large.

First we consider D[y] with y = ̂ ^ for some 7 ' e { l , . . . , r } where
v|/e CS°(rf,C") and d is a direction in U'j. Then we apply the Borel
transfon
relation
transformation ^. to a modification of Z)[J^.v|/]. Here we utilize the

(3.2) ^x^^J^vl/) (^ = H^).

Therefore we consider MjD where

r+ l

(3.3) Mj = C x^^ with m^ = max(fe,-fe^0).

,(h)In this connection we use the following notation : if w G C" then w
denotes the projection of w onto the space spanned by the unit vectors
of C" with indices n^ + • • • + n^-i + 1, • • • , HI + • • • + n^ where
no: = 0 and h e {1, . . . , r+ 1}. Hence

(3.4) {M.DW^ = x^^y^ - x'r^A^ - x^-W^^y)

if h ^ j whereas if h < j we replace kj by k^ in the right hand side.

Next we define an operator Qj on Co°(^,C") which formally is of
the form ^k.MjD^j,.. To give a meaning to the nonlinear part of this
expression we use the function gj^y) of condition c) in section 2,
which corresponds to ^.G(-,y). We have the expansion

(3.5) g^y)- E gmj^y^ if (^)e^; x A,(0;p).57V->'.^ ^ <5m/V->/J' ? " V^?^ /^^ . /
me N"
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Let \|/̂  = SS^k^T if me^"\{0} and v|/ as above. If
m = mi^i + • • • + m^Cn where e^ denotes the A^-unit vector we have

(3.6) \|/̂  = V|/^,<,* • • • * Vl̂ m.̂  ̂ m... = ̂ ) * • • • * V|/f7*m — Yj*mi(?i ./•*m^? Y./*w^
\fW

Kj Kj Kj Kj

where in the last term (m^—1) convolutions * are performed.
^

If vl/eCn^C71) we define

(3.7) ^*(^):= S ^(^*^^.
meN" ^

In lemma 1 we will show that ^*(^,v|/) makes sense if
v|/e CS°(d,C"),rf c: U'j and also if v|/ is analytic and bounded in a
neighborhood of 0 in U'j. In the latter case we define v)/,^ by (3.6).

Let

(3.8) Do: = © fx^/^-^V so A)M = ^M + G(x,y).
h=i\ dx )\^^^ -*^Q . \>L/ 1 •/v ^/l j
/ Z = l \ OX

We define the operator Qj on C^C") by:define the operator Qj on C^^C") by:

(3.9) S^ = ̂ ,M,D^^ - (̂ .̂M,) * ^,^(^v|/), v|/ e C^^C").

From (3.2) and (3.4) we now derive, if k: = fej;:

^~
A,,-2/c

^HW^-^^^ifft^,(e,vl/)^=-^^)+_r(-i+k,/k),
^O)}^^ -W-A^-g^^),

(^A)(/^) = W0 - -FTr-^^"'' * ̂ w + ̂ ) (^ ̂ ) ̂r(i-k,/k)" .
i f 7 < h ^ r + l .

Here the first terms in the righthand sides are the principal terms
with the factors of VI/70 invertible if ^ + 0 and £, not a singular value
of level kj.

In view of lemma 1 we may extend the definition of Qj^f to analytic
functions \|/ in a neighborhood of 0 in U'j with

(3.11) v|^)- E c^-\ ^0 in ^..
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We will solve Q^ = 0 with \|/(^) - ̂ (^) as ̂  0 in a subsector of
£/;. Here

(3.12) v^): = ̂ .̂ ) = f; ——— ̂ -^,
^^1 ^ l /K j )

where N ^ fei will be suitably chosen later on.

The analysis of the equations Q^ = 0 proceeds in 5 steps which
we state as lemmas to be proved in later sections.

Let 5'} be a closed subsector of U'j and U: = S'j n Ai(0;p) for some
p > 0. Consider the space W(U) of continuous functions \|/: U -> C"
such that

(3.13) ||v|/||: ^supl^-^)! < oo
U

and \)/ is analytic in the interior of U. Then we have

LEMMA 1. - a) If^eW(U) then

(3.14) {v(N/k,)m ^ir,,_^1^)1^ r(i.î ) 1^ 'y^^'"^"\w.
b) For ^^ defined by (3.5) w^ /ia^ ;

(3.15) \g^)\ ^^p- i - ' l^-^ lexplco^l , ^e^;., m e ^\{0}
(3.16) |^©| ^1^-lexplc^l, ^e^;.

w^^r^ A' anrf Co ar^ certain positive constants.

c) Tte series for gj^,^) in (3.7) i5 uniformly and absolutely convergent
on U if^eW(U), in particular if \|/e C^^C") and ;̂. = d.

This lemma implies that Qj is well defined on U'j. The solution of
^v|/ = 0 will be deduced from the following lemmas :

LEMMA 2. — The equation Q^f = 0 has a unique solution \|/r(^)
-which is the sum of the formal series vJ/r(^) that converges on A(0;ri) for
some y-i > 0.

LEMMA 3. - Let j e { 1 , . . . , r } . Ifj = r \ve denote by \|/^ the solution
v|/r in lemma 2. If j < r \ve assume that \|/, is an analytic solution of
Qj^f = 0 on a neighborhood U of 0 in S (T,+i,8y+1+71/^+1) and
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^(O ^ ^-(S) as S -)> 0 ln ^- ^̂  T,+i is some direction in U'j+i and
8^+1 > 0. Then \|/, c^n fc^ analytically continued on Sj and Q^j = 0 on
§, where § r : = U',\V, and §,: = ̂ (^1,8^1+71/^1) n U',\V, if j < r
mth Vj given by definition 2.

LEMMA 4. — Let j, ^fj and §j be as in lemma 3, and S(^j,6j) c= §j
for some direction T, and Sj > 0. Then \|/, is of exponential growth of
order ^ [ij in 5'(T,,8^).

LEMMA 5. — Let 7 ' e { 2 , . . . , r } and v|/j be as in lemma 4. Then
v|/,_i: = Ah._^,k^j 1s an analytic solution of Qj-^f = 0 in a neighborhood
ofO in S(Xj,Sj-^n/[ij) and \|/j-i(^) ~ ^j-i^) as ^-> 0 on this sector.

We postpone the proofs of these lemmas but now give the

Proof of theorem 1. — First apply lemmas 2 , 3 , 4 and 5 with j = r
consecutively. Then we obtain an analytic solution \|/r-i of Qr-i^f == 0
in a neighborhood of 0 in 5'(Tr,8r+7c/Hr) with \|/r-i ^ vJ^r- i - Then we
apply lemmas 3, 4 and 5 consecutively first for j = r — 1, then
j = r — 2, . . . , until 7 = 2 . Finally lemmas 3 and 4 with j = 1 give
an analytic solution v|/i of gi\|/ = 0 on 5'<Ti,8i) which is of exponential
growth of order ^ ^i = k^ (cf. (1.10)), and with \|/i ^ \J/i. Hence y{x)
is k-summable in multidirection T and on multisector S with sum
y(x): = C^i.ri^OOO on a neighborhood of 0 in 5i. Then it follows
from (3.9) that

Q^, = ̂ {M,2)oM} - (̂ MQ * g^(^) = 0.
A!

Hence using (3.7), (3.6), (3.15) and (3.5) we obtain

A)M=^^(-^i)= Z ^A^-)^^!^-^)
me M"

= 6'(-,^), i.e. D[y] = 0 on 5i. D

Proo/ o/ remark 1. — The construction of S^, . . . , Sr is similar to
that in [5], end of sect. 2. Let So = 5'(To,8o+7t/fei), 80 > 0. Then there
exists he ^ such that H / k ^ - i < 80 + 7i/fei ^ Ti/^/i. If To is a singular
direction and/or 80 + n / k ^ = Ti/fe/, we replace To by a nonsingular
direction Ti near To and/or 80 by 81 near 80 such that
Ti/fe/i-i < 81 + 7t/fei < K / k h and 5'i: == 5'(Ti, 81+71/^1) c= 5'o. Then we
choose 5j;: = 5'i if j = 2, . . . , h - 1 . Now Sj c= [/i c Uj and ^ does
not contain a pair a, ± n/(2kj), CT^ e ̂ . Therefore S ' j : = 5'(Ti,8i+
n / k ^ - n / k j ) does not contain a singular direction of level fe, if j ^ h - 1 .
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Since the opening of 5'i is less than n/kj and 5\ c: Uj c C/^i if
j ^ ^, we may choose 5', for j ^ h in such a way that for j ^ h we
have: *S'i c= 5', c: Sj+^, Sj c (7,, Sj does not contain a Stokes pair
CT, ± 7i;/(2fe,) with a,e W, and if 5', = 5'(T,,8,+7t/fe,) then 8, > 0. Hence
^(T,,8,)n^,=(|).

Thus j? is k-summable on S with multisum y on a neighborhood
of 0 in 5'i. If To + TI and/or 80 ^ 81 we may vary Ti and/or 81 such
that Ti -> To and 81 -> 80. Then we obtain an extension of the multisum
y on a neighborhood of 0 in 5'o with y(x) ^ y(x) as x -> 0 in So, D

Finally we rewrite the equation Qj^f = 0 (cf. (3.10)) in a form which
is more suitable for the proofs of lemmas 2, 3 and 4. Let U be a star-
region with vertex 0 in U ' j / V j . Let W(U) be the space of analytic
functions \|/: U -^ C" such that \|/(^) = O^-^) as ̂  0 on U. Then
we define the operator Tj on W(U) as follows : let k: = kj and
^eW{U)\ then

(T,^r: -^^^(-^^/fc):^^^-^^^^ if h<^
O.I?) < (W^ -(H^-^r1^^),

^^,vl/)w:={^(l-fe,/fe)^A}-l{^-^*(^^)+^)(^^
i f . /<^r+l.

Then g,v|/ = 0 is equivalent with Tj\\f = v|/.

4. Proof of lemmas 1 and 2.

Proo/ of lemma 1. - Let k : == kj, [i: = ^. We have for a > 0,
P > 0:

(4.1) ^-^^-^^P^^p-^
A: ^'C rCy

where B denotes the beta-function. Hence

(4.2) |(^-^vl/)(y| ^ ||v|/|| ^-^^-^1 = ||v|,|| B^} l^^-^l
k k \k k /

if ^ e (7. Now a) follows by induction.
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To prove b) we extend (2.5). From (2.3) and gj(^,y) ~
^kG(^y){Q as ^-> 0 U' uniformly in A^(0;p) it follows that we may
choose K in (2.5) so large that

\g^y)\ ^ K^-^exp^ on U' x A^(0;p),

and that (3.16) holds. From (3.5) and Cauchy's inequality we deduce
(3.15). Assertion c) follows from (3.7), (3.15) and (3.14) with (4.1).

Proof of lemma 2. — The proof is analogous to that in [4], sect. 4.3.
It is sufficient to prove theorem 1 for N sufficiently large in (3.1). We
will choose N so large that Tr is a contraction.

Let k : = kr, 0 < p ^ po < dist(^,0) (cf. definition 2 for V, in
section 2). We define W(p) as the space of continuous functions
\|/: Ai(0,p) -> C" which are analytic in Ai(0,^) and with

(4.3) 1 1 ^ 1 1 . :=^-1^-N?)1< oo.

First we estimate the linear part T^ of Tr in W(p). Recall fey+i = 0-
If \|/e W(p) and ^eAi(0;p) we deduce from (4.1) in the same way as
we obtained (4.2):

(4.4) l^-^^^^l^ll^ll^^-l+^/fe.l+^/k)!^^-' i f f t < r ,
k

^-'(1*^)1 ̂ A^ll^l^l.
k

Moreover, if m[ = 1 we deduce from (3.15) and (4.1)

(4.5) \gmr^m ^ P~ ̂ lll^llp I ̂ ~ A*^ ' I
k k

= p-'^llvl/ll^fe-1,^-1)!^1-*!
I^O*^*^)! < p-^N+ir'kKW^k-^Nk-1)^1-"

k k

where A\ = Kexp(cp^). Because B(a,b) -> oo as b -> oo if a > 0 we
may deduce from (3.17), (3.7), (4.4), (4.5) and the definition of 7^
that there exists No e ̂ , No > fei such that for all N ^ No and p e (0,po]

we have ||7«Jp < - on W(p). Therefore we choose N > No in (3.1).

Because of (3.17), (3.7) and (3.16) we have T,(0)e W(po) c W(p) if
0 < p ^ p o . Let RQ : = ||r,.(0)||^. Next we consider the higher order
part of T,: let T : = Tr - Tun - T,(0). We estimate f on
Bp: = {\|/e ^(p):||v|/||^2^o} where 0 < p ^ p o .
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The main ingredient in 7\|/ is

(4.6) ^,v|/):= ^ ^*v|^.
me N"
|m| $s 2

Utilizing (3.15), (3.14) and (4.1) we derive that

(4.7) \g(^)\ ̂  K'^^-^ if v|/e^, i;eA(0;p), 0 < p ^ po.

Here K is a positive constant independent of v|/, £, and p.
Hence g(i,,^f)eBp if p is sufficiently small. Next we consider
g(^+X) - g(^) with v|/ and \ | /+xe^ . From (3.14) and (4.1)
we deduce that on Ai(0;p) we have

l(^+X)r*m-^r*ml = S (7)^*^-0*^*^
feN" \ 1 / k

0^ l^m

^{^(\m\N/k)}-l{^(N/k)\^N\}^\^-k\ ^ fm)llvl /l^ - J '^l l^ l

JeM" \ - /JeM"
0 ̂  Z< m

^{2^o^(|m|^^ /fc)}- l{4^o^(7v/fc)|^|}lm l |^-A | | |xllp if ^eA,(0;p).

From this, (4.6), (3.15) and (4.1) we derive that

l^^+x)-^(^)l ^ ^llxllpl^2^1-'!,

if \|/, \|/ + ^ e Bp, ^ e Ai(0;p), where K" is a positive constant independent
of \|/, 5c, ^ and p if 0 < p ^ po •

From this, (4.7), (3.17), the definition of f and (4.4) it follows by
a similar reasoning as above for Tim that there exists a positive constant
K " ' independent of \|/, 50, ^ and p such that

|(7\|Q(i;)| ^ A- ̂ ^[, |{r(v|/+x)-7\|/}(^)| < ^Ixllpl^2^1-'!

with \|/, 5^, i; and p as above. Hence there exists p e (0,po] such that

11^11^ j-Ro, l|r(v|/+x)-^ll ^j l lxl lp if v | / ,^+xe^.

Combining this with the estimates in T^n and 7^(0) we see that Tr is
a contraction on B p . Therefore we get a unique solution \|/r in B p .
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For every M ^ Ny we obtain a unique solution \|/r,M depending on
M on a disc around 0. From the construction of Qr and Tr from Z)
and (0.2) it follows that

/M-l V

^r,N^) - WO = ̂  ^ c,^ (O if M > N ^ N,.
\m=N /

Hence if y(x) is given by (3.1) and \|/^ corresponds with v|/^ then the
Taylor coefficients of \|/^ and ^,;P(0 = ^rK) are the same. So \|/,
converges and v|/^) is the sum of \J/^(^) on Ai(0;p).

5. Analytic continuation of solutions.

Let S ' ( p ' ) : = { ^ e C | a ^ a r g ^ < p , 0 < |^| ^ p7} be a bounded
closed subsector of U'j\Vj on which a continuous solution v)/, of
Tj^f == \|/ exists such that vj/, is analytic in the interior of 5"(p') and
v|//^) - vjir/^) as ^ -)- 0 on S^p'). (V, is defined as set of singular values
of level kj in section 2.) We prove lemma 3 in this section and show
that vj/, can be continued analytically in U'j\Vj by linearizing Q^ = 0
in a subsector (cf. [6], [4], section 4.3). We fix j and denote k : = kj.

Choose ^ e S ' ( p ' ) with \^\ == : pi, 0 < pi < p7. Let pe(0,pi], 5"
a subsector of 5" with vertex 0, S " ( p ) = {^e S"\0 < \^\ ̂  p} such
that §: = {^eC^-^eS^) or ^=^} satisfies ^ c £/;\F, and
S n S t ( p , ) = { ^ } .

For the analytic continuation of \|/, on *? we utilize the space W of
continuous functions (p : § -> C" which are analytic in the interior of
§. Let 5'o: = ^'(pi) u *? and F7o be the space of functions (p : SQ -> C"
which are continuous on 5o\{^o} and analytic in its interior whereas
lim(p(^) exists as ^ -> ̂  on |^| < pi and |^| > pi respectively.

If (p e ̂  we define (po = (p on ^ and (po = 0 on 5"(pi)\{^o}. Then
(poeFFo. Moreover we define \|/ e F^o by \J/ = \|/̂ . on 5" (pi) and
^ == \|/,.(^o) on §.

If (p, / e H^o we define (p * ̂  as follows : q ) * x = 9 * X on 5"(pi)
k

whereas if ^ e *?\{^o} we define

(cp*x)ft)= f (p((^-^)l/A)x(Orf(^)
Jc^)
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where C(^) is a path from 0 to ^ in 5o (so ^oe ^(^)) ^Gh ^at
(eC(Q implies (^-t^ e So. In particular if t e €(£,) n ^ then
(^-^^(E^pi). Such paths C(^) exist because of the definition of
S and So. Now (p * ̂  e ^o •

If the m-fold convolution of ^ e P^o with respect to * is denoted by
7^(me ^J"), then we have ^^ = (^)j*m on 5"(pi) and if (p e W and
|m| ^ 2 then ((po)*m = 0 on 5'o.

From this we may deduce
n

(^+(Po)*m = ^*m + Z ^*(m-^) * ^O0 ,

where m = (mi, .. . ,mn) and ^ denotes the I — th unit vector. Let

g^D : = ^o/^ + 8u(Q * X(y + Z ^-(0 * X*.^) it X e ^o.
meM"
|m| ̂  2

Then it follows that for (p e W we have

^^+<Po) = g(W + ̂ ) * Cpo(^)

where ^(E,) is an (nx n)-matrix valued function with (h, Q-element ^(/^'0(^)
given by

B^^) = g^) + S ^ft)*^^-^^).v^
me ^ra

|m|> 2

To get a solution of \|/ = r,v|/ on 5 we substitute \|/ = \J/ + (po with
(p e ̂  in this equation, and replace the convolutions * in the definition

k

of Tj by *. Then the equation for cp becomes (p = Lcp + ^ where
^ = {(r,vi/)-\[/}|s and L is the linear operator given by

(L(p)</l>:=^-l[{^(-l+fe,/k)}-l^-2A*(^fccpo)-^)*cpo]w if h<j,

(L^ = (k^/,-^)-^) * (po)0^,

(L(pr : = ̂ (l-k./^H^^R^^^^o+^^^or] if h > 7,

where in the right hand sides we take the restrictions to §.
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Let 1 1 (p| | be the supremum norm of (p e W. Then for ^ £ § we have

l^)*cpo(yi = rW-rWcp^^)!
^0

PTI

^ ||(p|| | ̂ (1)^(^)1 where TI = (^-^e ̂ (p) <= ^V).
Jo

Similarly for B replaced by ^ ~ k h ^ B . Hence L only depends on the
values of B in S " ( p ) , so on \|/̂  in 5'"(p).

Therefore there exists po > 0 independent of p7 and pi such that
for 0 < p ^ po we have ||L|| < 1. Hence we get a unique solution
(p e W of cp = L(p + ^ if p ^ p o . Thus \|/ = (p + v|/^o) is unique
solution of Tj^i = v|/ on 5 .̂ If p < p ' - pi then we have already the
analytic solution v|/j on S c : S \ p ' ) . Hence (p + \|/,(^o) is analytic
continuation of \|̂  on § if p' - pi == p' - l ^ o l < P < Po. Repeated
application of this procedure gives the analytic continuation of v)/, on
the star region with vertex 0 in U'j\Vj. Moreover, we obtain analytic
continuation on the singular directions in U'j outside the singular points
of level kj. This implies lemma 3. We remark that the analytic
continuation may be obtained arbitrary on Riemann surfaces above
U'j\^j by means of more complicated symmetric paths of integration
for the convolution integrals as in Ecalle [6].

6. Exponential estimates.

In this section we prove lemma 4 using a majorant equation for
v|/ = Tj^ and the following lemma.

LEMMA 6. - Let a > 0, b ^ O , p , > l and a + b ^ \jia. Then
there exists a constant K > 0 such that for all c ^ 1 \ve have for all
positive p

(6.1) p0-1 * {p^ exp (cp")} ^ KC-^^I^ exp (c^)

and if a ^ [i

(6.2) {p0-1 exp (c^)} * exp (cp^) ^ Kc~^ exp (c^).

We postpone the proof of lemma 6 till the end of this section. Let
S ' be a closed subsector of Sj (cf. lemma 3) with vertex 0 and let
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k: = kj, u : = [ i j / k j , pi > 0 and \|/, be the analytic solution of Q .̂v)/ = 0
as in lemma 3. We define ^(p): = sup{|\|/,(y| : ^ e S ' ,1^1=?^} if p > 0.
We first derive an integral inequality for ^F. From (3.15) we deduce
that if |^| = p^ and ; < A ^ r + 1 then

1^*^)1 ̂  ̂ -'^^(P'^exp^))}

^^-'"'{exp^op^}^!-^/^,!/^1-'^^ if | m | ^ l .

A similar estimate holds for m = 0 (cf. (3.16)).

From this, (3.17), 7 .̂ = v|/, and (3.7) it follows that there exist
positive constants ; and q such that for p > 1 we have ^(p) < (M^¥)(p)
where

[ j- 1 r+ 1

(M^)(p) = ? exp(2cop^)+ ^p-2-'^^*^)^- ^ p-^*^
/i=i /i=j'+i

+Jfyi-*/.)/*exp(co^)l* f; ̂ T^1(p),
ih=j ) m=l J

with ^F^^ the ordinary m-fold convolution of l?. Since ^(p) is bounded
on (0,1) we may choose / so large that ^(p) < (A^F^p) also holds for
0 < p < 1.

We now consider separately the cases 1 < j ^ r and j = 1.

I. Case 1 < j ^ r. Then u, > 1. Let u(p): = Jexp (cp4) where c > 2co,
c > 1. We show that it is possible to choose c so large that
v(p) ^ (Mi;)(p). From lemma 6 it follows that i^(p) ^ (IKc-1^-^^).
Next we apply lemma 6 to the other terms in Mv. Here we use also
that if a > H and c ^ 2co then there exists a positive A^o independent
of c such that p^'exp (cop^) ^ TCop^exp^).

Thus we may derive

(Mu)(p) ^ ̂ (Icop^^-^OO]

if qlKc~^ < _ • Here ^2 is a constant independent of c. Thus we see

that we may choose c so large that Mv ^ u . Now ^ < M^F,
^P(O) < u(0). Mi; < u and At is a monotone operator. So if ^¥(t) < v(t)
on 0 ^ t < p then ^(p) < ^^(p) < Mv(p) ^ i;(p). Hence ^(p) < u(p),
Vp > 0 and so \|/, is of exponential growth of order ^ ^ if j < r .
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II. Case 7 = 1 . We now have a =1 and lemma 6 does not apply.
We proceed similarly as in [4], section 4.5 and solve v = Mv using
Laplace transforms. Let u: = L^v. Then v = Mv becomes

u(x) = ̂ (x-^co)-^ iro-^/k^-^Oc)
L h=2

r + 1 -.

^^^^-}-<<l-^)/k)(x-l-c,rl~(l~kh)lk^-qu(x))-lqu(x) .
h=i J

This equation has a unique solution u which is analytic in x1^ in a
neighborhood of 0, real valued for x > 0 and u(x) = lx(l-\-o(l)) as
x -> 0. Hence we obtain a solution v = ^u of u = My. Then v(p) is
real-valued for p > 0, t;(p) = 0(exp (cp)) as p ̂  oo we choose c > 2co,
^OO^O+^l)) as p - ^ 0 . Again monotonicity of M now implies
^(p) < v(p) and so \|/i is of exponential growth of order ^ k^.

Proof of lemma 6. — A proof of (6.1) has been given in [5], (I) in
section 3. To prove (6.2) we use

(6.3) {P0-1 exp (c^)} * exp (c^) == p" f1 g(t) dt
Jo

where
g(0: = ^^exptc^^+O-O^].

We now use that f(t): = ^ + (1—tY is convex on 0 ^ t ^ 1 since

u > 1. Hence if 0 ^ t ^ . then /(Q ^ (1-2Q/(0) + ltf[~\ =
2 ^2/

1 - ̂ t where Ui = 2(1-21^) > 0. Therefore

r1 r1
(6.4) ^ (QA^ p0-1 exp {c^(l-^)} A

•/o •/o
^r^^p^-exp^}.

Similarly

(6.5) \[g(t)dt ^ (l+21-a) pexp^O-^O}^
2 0

^(l+21-a)(c^^)- lexp(c^).
If cp^ ^ 1 then

^(c^)"0 == c-^^Y^^ ^ c"0^
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and
p^cp^)-1 = c'^q^)-14-^ ^ c-^.

If cp^ ^ 1 we now obtain (6.2) by combining these estimates with (6.3),

(6.4) and (6.5). If cp^ 1 then p^c-^ and (\(QA^
Jo

p r" l e d t = = e / a and now also (6.2) follows.
Jo

7. Proof of lemma 5.

The proof of lemma 5 is analogous to that of lemma 3 in [5]. Let
vl/eCS^C") where d is a direction in 5'(T,,8^) and

(7-1) ^=A^._^4.

From the definition of Qj in (3.9) we deduce

a-i^=^,_/M,-i2)o^4)- 0^,_,M,-0 * ^-i^v]/)
*/-i

=^._/M,_,M71) * x
where

X = ,̂_/M,Z)o .̂v|/) - (̂ ,_,M,) * ^-^(^^).
^'-i

From (3.7), (1.9) and lemma 1 we may derive

^•-i*(^) = A^._^,^,v|/).
Hence

X = ̂ ^^M,D^^)-^^M,^g^(^} = A^_^(6^),
^7

and so

(7.2) a--^=^,_,(M,_,M71) * A^,,/e,v|/).
^•-i

By a density argument we may extend (7.2) with (7.1) to the case that
^e C^^C"), \|/ continuous at 0 on d and of exponential growth of
order ^ ^ at oo on d . So (7.2) holds for \|/̂  as in lemma 4. Hence
(?,-iv|/,_i = 0 on the set where A^. _^.v|// exists, so on a neighborhood
of 0 in ^(T^+TC/^). Furthermore v|/^-i - vj/^_i at 0 in this sector
because of (1.8) and (3.11).
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8. Stokes phenomenon.

Suppose To is a singular direction for D[y] and k is the highest level
for which To is singular (cf. section 2). Assume moreover that G ( ' , y )
is multisum of G ( ' , y ) in all directions T in a neighborhood of To. Then
theorem 1 gives two solutions y+ and y- of D\y\ = 0 which are
multisums of y(x) in all directions T with argTo < argr < argTo + g
and argTo — e < argr < argTo respectively. Hence y±(x) ^ y(x) and
y+(x) - y-(x) ^ 0 as x -^ 0 on S(xo,n/ki). Therefore y+ and y- exhibit
a Stokes phenomenon.

From the construction of the multisums y+ and y- given in section
3 we may extract more precise information on y+ — y. in an analogous
way as in [5]. In particular we may show^ that

y+ (x) - y- (x) = 0(1) exp (- (c/x)^ as x -^ 0 on 5 ,̂ n/k)

where ce(0,Co) arbitrary close to Co, if Co is the singular value of level
k which is closest to the origin. It is possible to give more accurate
estimates for y+ — y- using the analysis of [5]. Compare also Sibuya
[17], [18] and Ramis and Sibuya [16].

BIBLIOGRAPHY

[1] W. BALSER, A different characterization of multisummable power series,
preprint Universitat Ulm, (1990).

[2] W. BALSER, Summation of formal power series through iterated Laplace
integrals, preprint Universitat Ulm, (1990).

[3] W. BALSER, B. L. J. BRAAKSMA, J.-P. RAMIS and Y. SIBUYA, Multisummability
of formal power series solutions of linear ordinary differential equations,
Asymptotic Analysis, 5 (1991), 27-45.

[4] B. L. J. BRAAKSMA, Laplace integrals in singular differential and difference
equations, in Proc. Conf. Ordinary and Partial Differential Equations
Dundee, 1978, Lecture Notes in Mathematics, Vol. 827, Springer Verlag,
(1980), 25-53.

[5] B. L. J. BRAAKSMA, Multisummability and Stokes multipliers of linear
meromorphic differential equations, J. Differential Equations, 92 (1991),
45-75.

[6] J. ECALLE, Les Fonctions Resurgentes, Tome I, II, Publ. Math. (TOrsay
(1981), Tome III, Idem (1985).

[7] J. ECALLE, L'acceleration des fonctions resurgentes, manuscrit, 1987.



540 BOELE L. J. BRAAKSMA

[8] J. ECALLE, Calcul acceleratoire et applications, book submitted to « Travaux
en Cours» Hermann, Paris, (1990). (See also The acceleration operators
and their applications, invited address ICM Kyoto (1990)).

19] M. HUKUHARA, Sur les points singuliers des equations differentielles lineaires
II, J. Fac. Sci. Hokkaido Univ., 5 (1937), 123-166.

[10] W. B. JURKAT, Summability of asymptotic series, preprint Universitat Ulm
(1990).

[11] B. MALGRANGE, Sur les points singuliers des equations differentielles lineaires,
Enseign. Math., 20 (1974), 147-176.

[12] B. MALGRANGE and J.-P. RAMIS, Fonctions multisommables, Ann. Inst.
Fourier, Grenoble, 42-1 & 2 (1992), 353-368.

[13] J. MARTINET and J.-P. RAMIS, Elementary acceleration and multisummability,
Ann. Inst. H. Poincare, Physique Theorique, 54-1 (1991), 1-71.

[14] J.-P. RAMIS, Conjectures, manuscrit, 1989.
[15] J.-P. RAMIS, Multisummability, preprint, 1990.
[16] J.-P. RAMIS and Y. SIBUYA, Hukuhara domains and fundamental existence

and uniqueness theorems for asymptotic solutions of Gevrey type, Asymp.
Analysis, 2 (1989), 39-94.

[17] Y. SIBUYA, Linear differential equations in the complex domain : Problems
of analytic continuation, Transl. Math. Monographs, 82, AMS, (1990).

[18] Y. SIBUYA, Gevrey asymptotics and Stokes multipliers, in Differential
Equations and Computer Algebra, Academic Press, 1991, 131-147.

[19] H. L. TURRITTIN, Convergent solutions of ordinary homogeneous differential
equations in the neighborhood of a singular point, Acta Math., 93 (1955),
27-66.

[20] W. WASOW, Asymptotic Expansions of Ordinary Differential Equations,
Dover, 1976.

Manuscrit recu Ie 12 septembre 1991.
Boele L. J. BRAAKSMA,
Mathematics Institute

University of Groningen
GPO Box 800

9700 AV Groningen (Pays-Bas).


