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ON THE IRRATIONALITY MEASURE OF ^(2)

by G. RHIN and C. VIOLA

1. Introduction.

In 1979 Beukers [4] introduced the integral

/>1 / l 1 / , dxdy\ \ ^(x.y) ——y-
Jo 7o / 1-^

where

^^^i-t''".
00

to give a new proof of the irrationality of ^(2) = ̂ n~2 = 7^2/6. He also
i

used a triple integral for C(^)- His method yielded the same sequences of
rational approximations to ^(2) and <^(3) previously obtained by Apery,
and therefore the same irrationality measures of these numbers given in
[3].

We recall that p, is said to be an irrationality measure of the irrational
number a if for any e > 0 there exists a constant go (^) > 0 such that

| a - p | > q-^-6

q

Key words : Irrationality measures - Birational transformations - Semi-infinite linear
programming.
A.M.S. Classification : 11J82.



86 G. RHIN & C. VIOLA

for all integers p and q with q > qo(e). The minimum of such ^ is denoted
by ^(a). We also say that p, is an effective irrationality measure of a if the
above constant qo{e) is effectively computable.

In Section 5 we define a birational transformation r of (C 2 related in
a natural way to the above function ^(a;,^/), and in Section 6 we employ
suitable rational functions automorphic under the transformation group
generated by r. This appears to be a powerful tool to investigate the
geometry underlying the behaviour of double integrals of Beukers5 type. In
fact the transformation r will play a basic role to obtain good asymptotic
estimates for such integrals both on the unit square and on suitable tori
in (C2, as is shown in Sections 6 and 9. Moreover, the semi-infinite linear
programming method described in Section 7 shows that the best numerical
results are obtained when the irreducible algebraic curves of low degree
defined by the polynomials occurring in our integrals and equivalent under
the action of the transformation group generated by r all have the same
weight (see the remark at the end of Section 7).

We shall prove the following

THEOREM. — 7. 398 537 is an effective irrationality measure ofC(2).

Thus the above value is an effective irrationality measure of 7r2,
whence 14. 797 074 is an effective irrationality measure of TT.

In 1953, using Pade approximants, Mahler [10] proved /^(7r) < 42.
In 1973 Mignotte [11] improved Mahler's result to ^(7r) < 20, and also
proved ^(7r2) < 17.8. In 1978, besides proving the irrationality of C(3)
and giving ^(C(3)) ^ 13.41782..., Apery [3] found ^(C(2)) <, 11.85078...,
whence /^(7r) < 23.70156... . In 1987 Dvornicich and Viola [8], using
linear combinations with integer coefficients of Beukers' integrals, proved
/^(C(2)) < 10.0298 and ^(C(3)) < 12.7436. In 1990 Hata [9] proved
/^(C(2)) < 7.5252 and ^(C(3)) < 8.83028... by showing that the rational
approximations to C(2) and ^(3) given by suitable integrals close to Beukers'
have common prime factors. A similar principle had been already used by
Rukhadze [15] in 1987 to give ^(log 2) < 3.893, thus improving earlier
results by Alladi and Robinson [1] : /^(log 2) <, 4.6221..., by D. and G.
Chudnovsky [5] : /^(log 2) < 4.1344... and by Rhin [14] : /^(log2) < 4.0765.
Finally, D. and G. Chudnovsky repeatedly announced without proofs
irrationality measures of 7r2 less than 8; in a recent paper they announce
^(7r2) < 7.51... ([6], p. 208).
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2. Plan of the proof.

We consider integrals

i^r r ^ ^ ^ y
Jo Jo (l-^)^ '

with suitable polynomials H(x,y) C 7L[x,y\. Choosing H ( x , y ) = (xy(l —
x)(l—y))n one obtains the integral introduced by Beukers. In Section 3 we
find conditions on H ( x ^ y ) ensuring that d^In converges and has the form
^n — ^nC(2), where a^ bn are integers and dn = Lc.m.(l,2, ...,n).

To get an irrationality measure of <^(2) we need estimates of \In\ and
\bn\. We show in Section 4 how to relate such estimates to the computation
of the stationary points of the rational function H { x ^ y ) / ( l — xy^.

We use polynomials H of the following type :

H(x,y)=f[P,(x,y)k^^ ,
l==l

where ki(n) = [o^n] and Pi,..., Pr are polynomials with integer coefficients.
To obtain a good irrationality measure of ^(2) we choose suitable polynomi-
als P^ associated with the transformation r, as is shown in Section 6. Then
the a.i giving the desired result are found by a method of semi-infinite linear
programming. Once we have obtained the o^, in order to compute all the
stationary points of the above rational function we make use of the com-
puter algebra system IBM Scratchpad II, and the system Part by Batut,
Bernard!, Cohen and Olivier.

We are indebted to P. Gianni of the Pisa University for kindly
assisting us with the use of Scratchpad, and to the referee for pointing
out an oversight in an earlier version of this paper.

3. Some arithmetical lemmas.

LEMMA 1 (Beukers [4]). — Let k and I be non-negative integers, and
n > max(A:, /), n > 0. If

j = r r^-^-^^y,
Jo Jo 1 - xy

tAej3^JGZS+ZC(2).
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Remark. — If

..»/" r '̂ ^ ̂ ,,Jo Jo 1 - xy

where Pn(.r) is the Legendre polynomial

1 d^
nl^^1-)")'

one gets by repeated partial integration

i - ( n" /'1 f1 (^(i-^)(i-y))" , ,
In ~ (-1) Vo /o (l-^1 da;dy '

and in order to prove the irrationality of <^(2) it suffices to show that
d^In —> 0 as n —^ oo. We generalize Lemma 1, so that we can replace
(xy(l - x){l - y)Y with a more general polynomial H(x, y).

LEMMA 2. — Let k and v be positive integers and n ^ max(A;, v). If
v <, k let

^n'd^-^
ifk<v let

f1 f1 ( l - x ) k ( l - y ) l ' - k

^=11 (1-^ d x d y -
Then d^Ji and d^J^ are integers.

Proof. — Integrating with respect to y we get

•'•'^-^((r^-1)^
-S^^-)"--^-^)^-

Since v < n and the degree of the polynomial

^(( i_^-_( i_^)
is k-1 < n - 1, we have c^Ji e Z. For the second integral, let

^)^/'_l^^J'ft^^.
Jo (l-^)^1 Jo {l-xy)^1
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Using y — xy = (1 — xy) — (1 — y) and expanding, we obtain

-(y\ = Y^ ( k \ (_i)fc-'»(i _ y)k-h I dx

^h) •A) (l-^)-^1 •

Since ^ < v we have ^ — h>_v — A ; > 0 , whence

/•1 rf-r ^ 1 / 1 \
"yo (1 - xyY-h+^ v-h\(\-yY-h )

and

.(^^(^^((i-^-d-^)
^(l-y)^^),

where ff is a polynomial satisfying 5(0) = 0. Hence

g(y) = I 9'Wdt
Jo

and

s'w^^C.Y-^-^i-tr-11-1
h=0 v /

=(l-tr-k-lY^(k} (-1)^(1-^
h=0 v /

=(l-ty~k~l ^.
Therefore

^y)=(l-y)k- ['(l-tr-^t^t.
Jo

We remark that the polynomial

g{y)= f'^-tY-^t^t
Jo

is divisible by y^^ and satisfies dng{y)/ykJrl € Z[?/] since v <^n. Also
(1 - yY~k^{y) = g(y). It follows that
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- y1 r1 (i - ̂ (i - y)^-*^u d-^ ^
=Ai-.)-^/1-1^..

^o Yo (1 - xy)^1

= ( (l-yr-'y-'-^dy
Jo-s:^-

whence (f^J^ € ZZ.

LEMMA 3. — Let k, I , v be non-negative integers such that k +1 >_ v,
and n >_ max(A;, I , v\ n > 0. Let^Y(I_^(_^

Jo Jo (1 - xy)^

TAei2d^eZ+ZC(2).

Proof. — Let m •= min (k, I , v, k + I - v). If m = 0, the result
follows from Lemmas 1 and 2 (possibly interchanging x and y in Ji). If
m > 0, we show that K is a linear combination with integer coefficients of
integrals J, Ji and J^. Let -a = 1 - x, v = 1 - y and g = 1 - xy, whence
u + v — q = uv. Then

„. r 1 r 1 ̂ -1^-1 . , r 1 r 1 n^-1 , r 1 r 1 u^v1K = -k L 7^ taiv •Vo i -^dxl" +k i ̂ - ̂
= -K^ + ̂ 2 + ̂ 3 .

If we denote

r 1 /^'u^z/1^U^^ (^^o)'
it is plain that for each i at least two of the integers in (^ l^ ^, ^+^ -;/,)
are smaller than the corresponding integers in (fc, I , v, k-\-l-v), and none
is larger. Applying this argument repeatedly, after finitely many steps we
obtain the desired result.
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PROPOSITION 1. — Let H C Z[5,p] satisfy the following conditions :
(i) deg, H < n

(ii) deg H < 2n

(iii) there exists an integer m ̂  n/2 such that (p - s + I)771 divides H.
Then

^^n'^p'^-"-^2'.
with a^ and bn integers.

Remark. — In the above integral we have s = x + y and p = xy,
whence p - s +1 = (1 - x)(l - y). Also, here and in the sequel we use the
notation deg H to mean the total degree of H with respect to s and p.

Proof. — We have
n—m 2n—m—k

H(x+y^ xy) = (uvF ^ ^ a^ (u + ̂ fc ̂  ,
k=0 j=0

where the a^ are integers, 'u=l-a: , v =l-y and q=l-xy. Then

n—m 2n—m—k k / i \

H(x + y ^ x y ) = ̂  ^ ^ a,, ( ' ) u^v^-1^ .
k=0 j=0 1=0 v /

Hence it suffices to prove that the integral

r 1 r 1
1= \ n^^-V^-1^

Jo Jo

satisfies d^I € ZZ + ZZC(2). If j > n + 1 then z^+^+^-^j-^-i ^ a
polynomial in x and ^, with degree in x equal t o m + Z + j - n - l < n - l ,
and degree in y equal tom+k-l+j-n-l^n-l. Hence ^J e ZZ.
If j <^ n then I satisfies the assumptions in Lemma 3.

4. Computing an irrationality measure of ^(2) .

LEMMA 4. — Let a eJB^ and let (pn), (qn) be sequences of integers
satisfying

lim sup — log | qn \ < p
n—>oo ^
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and

lim - log | pn - q^a \ = - o-
n—^oo U

for some positive numbers p and a. Then

^(a) < p + 1 .
(7

This lemma is a special case of [7], Lemma 3.5.

By Proposition 1, we have to estimate |JJ and \bn\. The following
lemma gives bn explicitly.

LEMMA 5. — Under the assumptions of Proposition 1, we have

z. ^ f [ H ( x + y , xy)
'——Wkk (l-^ d x d y -

where y € (C describes a circumference C\ with center 0 and radius p\ > 0,
and x € (C describes a circumference C^ with center 1/y and radius p^ > 0.

Proof. — As in the proof of Proposition 1

--^'^r^^p'-^
can be expressed as the sum of an integer and a linear combination
with integer coefficients of quantities of the type (C^K^\ where K^ is
an integral as in Lemma 3. By the proof of Lemma 3, K^ is a linear
combination with integer coefficients of integrals J, J\ and J ' z . Hence, by
Lemmas 1 and 2,

R
an-bnC{2) = (integer) + ^Ajd^J^ ,

j'=i

with Aj € 2Z and

^(1-^(1-^^Ja=! /Jo Joo Jo l-a-2/

-EE^^QCQ/1/1^^.^=o rn^o ^h)\m) Jo Vo 1-a-y
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By [4],
/*! /•I yhym

dl \ \ ——— dxdy
Jo Jo 1 ~ x'!/

is an integer if h ̂  m, while

dl I I -^-y— dxdy = (integer) + ̂  C(2) .
Jo Jo 1 ~ x1/

Therefore

a,-U(2) = (integer) + ̂  C(2) E^Eft)^') '
j=i ^o^ 7 1 7^ ' 1 7

where A j = min(^,^). Hence

R •? /7 \ /? \

), _ ^2 V^ 4 V^/^W'^

" - "^ ^A/J-
Let now

-^^(^^^(r1^^
be the complex integral corresponding to the integral J\ in Lemma 2, and
similarly for J-z. By Cauchy's integral formula we have

j =_L [ ^ _L [ (i - ̂ k

' 27TZ Jc, (-yY+1 2m Jc, (x - 1/y)^

=± I (-^[^(l ^1 ^
27rz^ v\ [dx^ ' \^y y^1

/fc\ i r (u-i)*-"
'-U^X.-T^-^'0.

since ^ > 0. Similarly

1 r f_i^+i r fiv "i /'i ^,\v-k^--^S^—^-A.^^-^--9-
since k < v here. Therefore, the same linear decomposition used for

^ f f g(^^^ ,,̂
Jo Jo (l-a-2/)"+1 "
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yields now

dl [ [ H(x+y, xy) ^ /. ,2 JU)
(2^ L k (l-^)^ da;dy = Î "̂  '

with the same Aj e ZS as above, and with

i-m 1 f f (l-aQ^l-y)^J = 7^~^2 \ \ ——————— ^V(2m)2 Jc, Jc^ 1 - xy

- v v f n^^v^ 1 y /" ^VL,, ,,~ h h( ) ^ ̂  ̂ ^ (^)2 ̂  U ̂ -ydxdy •
Since

1 [ [ x^ 1 /' ^/m ,7 1 /' xh .
To""^ / / 1———— cb(^ = ̂ ~ —— ^ ~r~- ———77- cb
(27T%)2 7^ 7^ 1 - ̂  27TZ 7^ -^ ' 27TZ j^ X - 1/y

=-^/^•"h'ld'
{_ —1 if h = m

~ 0 if h -^ m,

we obtain

JO) - _ \^ (^ f1^~ h^)^^
whence

di [ [ H(x + y, xy) _ _ /fc \ // \

(2^U. (l-^)-1 d^ = -dra S^S^A^ = 6 r a -

For every pi > 0, p2 > 0 we get from Lemma 5

I bn | < ^ max max | gn(x,y) \ ,
|?/|=Pl |;C-l/^/|=p2

where

^(^+^ ^)9n\x^y) — ——————— .
(1 - xyY

If 1 - xy does not divide H(x + ^/, .r^/) and if degp H > n, which we
shall henceforth assume, then it is easily seen that the function
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/(Pi,p2) = max max \ 9n{x,y)
\y\=pi \x-i/y\=p<2

max max | H(x + ^/, xy)
(piP^ \y\=pi \x-i/y\=p^

is large outside a compact subset of {pi > 0, p2 > 0}, and has therefore a
minimum /(p^p^). For any pi > 0, p^ > 0 let (X(pi,p2),^(pi,p2))
be a maximal point for \g^\ on the torus

T(p^p2) = { ( x ^ y ) e ( E 2 : M=pi, \x - l/y\ = p^} ,

i.e. such that \gn(X,Y)\ = f(p^p^ and let XQ = X^.p^), YQ ==
Y(P^\PW). whence |̂ | < ^ |^(Xo,Vo) |. I fX(pi ,p2) , ^(/?i,p2) were
continuous functions in a neighbourhood of (p^,?^), which is not true
in general, the partial derivatives 9gn /9x and 9gn/9y would vanish at
(Xo,Vo), as is clear by a simple local argument.

Let En C (C 2 be the set of points (x, y) satisfying

99n 9gn
~ 9 x ' = ^ y = o - 9^y)^0^

and let (a-o, yo) C En be such that

9n{xo,yo) | = max | gn(x,y) .
{x,y)CEr,

For each choice of H(x + y , xy] we shall find a torus r(n, r^) such that
/(n,r2) is very close to |^n(^o^o)|. Moreover, if H ( x - { - y , xy) > 0 in
the unit square

^ = {0<x<l, 0<y < 1} ,

then to estimate

rl /" ̂ '^r' I") <î ,/n = / /^0 ^0^ Yo (i-^)^1

from above and from below we seek the maximum of gn(x, y) in U, and
hence the points of En belonging to U.

To compute the above quantities explicitly we choose H as follows.
Let Pi,...., P^ (r > 2) be polynomials in s = x+y and p = xy with integer
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coefficients and not divisible by 1 -p. Let two of the Pi be p and p - s + 1.
We define

^H=I[P.

where the exponents Q;i,...,ay. are positive, the ai corresponding to
p - s + 1 is > 1/2, and

^ ai deg.Pi = 1
i=l
r

^ ai degpPi > 1
i=i
r

Y^ a, deg P, = 2

so that the assumptions of Proposition 1, as well as the later assumptions
on H , are fulfilled. In particular we have H ^ 0 for real s and p, and
^ n > 0 .

Defining

n^r
9(x,y)

and
1 -^

a "^^y ^Sl^?/)(^2/)e^

(note that |^(a^)| = 0 on the border of U since p and p-5+1 occur
among the P, , and \g{x,y)\ -^ 0 as (a^) ^ (1,1) in ^ since the
exponent of p - s + 1 is > 1/2), we have for any £ > 0 and n > no(^)

exp((a+2-£)7i) < d^In < exp((a + 2 + £-)n),

since d^ = exp (n + o(?2)) by the prime number theorem. Similarly, for
any e > 0 and n > n\ (e} we have

bn | < e x p ( ( 6 + 2 + ^ ) n ) ,

where

b = ( ^ ^ ^\9(x,y)(a;,7/)GT(n,r2)
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All the above computations can be made effective. By Lemma 4, we have
an effective irrationality measure

.«P)) . ̂ ,
provided a < —2 .

Let now E C (C2 be the set of points ( x ^ y ) satisfying

9g 9g
O x - 9 y - ° - ^^°-

and let

f3 = max log | g ( x , y )
{x,y)(EE

Since, by Lemma 5, bn can be expressed by an integral over a surface ho-
motopic to T(ri,r2), we conjecture that T(r^,r^) can be slightly deformed
to a surface S of this type and such that max log | g(x, y) |= f3. However,

(a;,y)e<s
this would improve by less than 10~3 the irrationality measure of <^(2) given
in our theorem.

5. A cyclic group of birational transformations of (C2 .

Let T be the set of points (x,y) e (C2 satisfying xy(l - x)(l - y )
(1—xy) = 0. We consider the transformation r : ( x ^ y ) i—> {^r])^ mapping
(C 2 \ T onto itself, defined by the equations

f e = lz^T : { l - x y
I T] = 1 — xy.

It is easy to see that T satisfies the following properties :

(i) T is a birational diffeomorphism of (E 2 \ T, with inverse

( x = 1-^

^ y = -,——.^ 1-^
Further, r induces a diffeomorphism of U.
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(ii) The cyclic group of transformations of (C 2 \ T generated by r has
order 5.

(iii) The fixed points of r^ (1 ̂  k ^ 4) are

<-^/5_1 -v^-r., ^-V5-l -V5-l\
^"T"5 ——^J

/y/5-1 y/5-1^
Fl = l̂ - - ~T~) '

and

(iv) The function

^^ xy(l_^l^
1 - x y

and the measure
dxdy

1 - x y

are invariant under the action of r, i.e. ^{^rj) = ̂ (x,y) for all ( x ^ y ) e
^c2\r, and

d^dr] __ dxdy
1 - ̂  1 - .r?/ '

Remark. — The integral

r^
where

l+.r 5

^(1 — .r)
l ^ x '

can be used to compute an irrationality measure of log 2 (see [1]). In this
case, one can introduce the transformation uj of (C \ {0,1, —1} defined by
^ = (1 - x ) / ( l + x), which has order 2 and fixed points XQ = -\/2 - 1 and
x\ = V2 - 1. Moreover, the function ^{x) and the measure | d x / ( l + rr) |
are invariant under uj.
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6. A class of rational functions invariant under r.

6.1. We consider rational functions <j) of the following type :

^(x^y)= ̂ ^^ ( s = x + y , p = x y ) ^

where Q C 7L\s,p\ is not divisible by p, p - s + 1 or 1 - p, where
k = ̂ s Q^ 2k = deg Q, and 0 is invariant under T, i.e.

Q(^+^ ^) ^ Q(a- + y , xy)
(1 - ̂ )fc (i - ̂ y)k

for all (x, y) e (C 2 \ T, which is equivalent to

(1) ^ 0(^+^ ^) = ^ Q(x+y, xy) .

We remark that if Qi,..., Q^ are polynomials satisfying the above conditions
for integers A;i,.. . , k^ respectively, so that the functions

(f>j(xfy)=-!M^ (1<^)
are invariant under r, then the polynomial

H(s,p) == (p (p - s + l))"°Qi(5,p)"1... Q,(s,p)"- ,

]^

where the integers no, ^i, • • • , n^ are even and such that no > S A^ ,
j=i^/

satisfies all the assumptions required for H with n == no + ^ A-.n.
ivyr J=l
Moreover

H ( s , p ) / p ( p — S + 1)^0 TT-/ O^f^ .p) \nJ TTo-pF = (—1-^-) n(^-^-) ^M-n^)"-
is invariant under r, since '0(.r,2/) and (f)j(x,y) are invariant.

Each polynomial Qj will be the product of several irreducible poly-
nomials Pi . In accordance with the definitions given in Section 4, we take



100 G. RHIN & C. VIOLA

nj = 2 [^n1 for 0 < j < v, with ao > 1/2 , ao + ̂  A-^- = 1, andL ^ -i „•_ij=i

^(p-.+i^no^p)^j=i^o^) i -p
i/^^n^^ •j=i

We recall that E C (C2 denotes the set of the stationary points
(x,y) of p at which g -^ 0. Let j^i be the set of the points of E
belonging to the unit square U. Since g ( x , y ) is invariant under T, by
property (i) in Section 5 both E and E^ are stable under the action of
r. Furthermore, by (ii) and (iii), E (resp. Ei) is the union of m(E) (resp.
m(E-^)) disjoint orbits of r, each consisting of either just one point Fi
(z = 0 or 1), or five distinct points at which \g{x,y)\ takes on the same
value. Thus it suffices to compute log \g{x, y)\ at one point of each orbit to
obtain the values a and /3 defined in Section 4. We describe in Section 7
how to find the points of E and the best exponents aj.

Remark. — Dvornicich and Viola [8] used the polynomials H(s,p)
defined by

^^ = ̂ yr° (Wx^-l^^^y)-!)712 ,

where rij = 2 f^-J and ao = 0. 885856..., ai = 0. 066342..., 02 =
0. 047802..., to obtain /^(C(2)) < 10. 02979... .

6.2. We now give some examples of rational functions (f)j leading to good
irrationality measures of <^(2) .

First case (y =1, Qi = Q, A:i = 2, ao = 1 - 2ai, ai < 1/4). We take the
only polynomial Q(s,p) = (2p - l)(4p - 2s + 1)(1 - 2s + 6p - 2sp + p2).
Substituting x-\-y for s and xy for p we have the following factorization :

Q(x + y , xy) = (2x - \)(2y - l)(2xy - 1)(1 - 2x + xy)(l - 2y + ̂ ) ,
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whence Q satisfies (1) for k = 2. Since ^(x^y) attains its maximum in U
at the point

M-i v/5-i\
Fl = l̂ "̂ " ' ~T~) '

and .r = 1/2 is a convergent in the continued fraction expansion of
(\/5 — 1)/2, we are led to the choice of 2x — 1 among the factors of
Q. Also, the line 2x — 1 = 0 is transformed by the powers of r into the
curves defined by the other factors of Q. In this case, FQ and F^ belong
to E^ m(E) = 5 and m(£'i) = 3. Moreover, each orbit has just one
point on the line x = y .

The best irrationality measure of ^(2) is now 8. 0370 3087, and is
obtained when ai is approximately 187/1754. With this choice of ai, the
values of h = log \g(x^y)\ at the points of E belonging to the five orbits
are :
x = y = 0. 3728 5671... h = -2. 6625 7736... = a
x = y = 0. 6180 3398... = (\/5 - 1)/2 h = -2. 6625 7740...
x = y = 0. 7641 6886... h = -2. 7618 2755...
x = y = -0. 6903 3230... h= 0. 9727 5242...
x = y = -1. 6180 3398... = (-\/5 - 1)/2 h = 2. 6625 7740... = f3.

With the notation of Section 4, we choose here ri = (\/5 + 1)/2,
7-2 = 1. The maximum of h on the torus T^v^+l)^, 1) is attained
at x = y = (—\/5 — 1)/2, whence b = f3 in this case.

Remark. — If we write
Q_ _ N,(x,y)+aMx,y)

9x log9^y) p(p-s+l)(l-p)Q(s,p)

and
9- log a(x y) - ^3(^^+01^4^^)9y [ o g 9 ^ y ) - p(p-,+i)(l-p)Q(^) '

when ai varies the points of E plainly belong to the curve N^(x^y)
N^(x^y) — N^{x,y)N^(x^y) = 0. One finds that the polynomial N^N4 —
N^Ns is divisible by x - y , 1 -2x + x ' 2 y , l-2y-^-xy2, 1 - x - xy and
1 - y - xy.

Second case (u = 1, Qi = R^ k^ = 6, OQ = 1 — 6ai, a\ < 1/12). We now
take the polynomial

R(x^y, xy) = {(x-y)(l-2x+x2y)(l-2y+xy2)(l-x-xy)(l-y-xy)}2
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which satisfies (1) for k == 6. The choice of R is justified by the remark
above. The irreducible components of the curve R(x + 2/, xy) = 0 are
transformed into one another by the powers of r ; in particular, they all
contain the points FQ and Fi. In this case we have m(E) = 4, m(Ei) = 2,
and the two orbits in E\ (as well as the two further orbits in E) are
interchanged by the symmetry a : {^ = y , rj = x}. Since \g(x^y)\ is
symmetric in x and ?/, it takes on the same value at the two orbits in
E\ (and respectively at the two other orbits in E).

The best irrationality measure of (^(2) is now 7. 690 704, and is ob-
tained when a\ is approximately 37/986. The values of h = log \g(x^ y)\ at
the points of E (expressed in s and p) are :

s = 1. 4507 1637... p = 0. 5179 1294... h = -2. 5530 6095... = a
s= -1. 9420 3620... p= 2. 5143 5635... h= 1. 6995 4141... =/?.

We now choose r\ = 23/15 = 1.5333... , r^ = 1. The maximum
of h on T(23/15, 1) is b = 1. 7003 6709... , and is attained e.g. at the
point

x = -1. 2599 0176... + 0. 7969 5689... z
y = -1. 5333 1903... - 0. 0066 2115... i.

Third case {v == 2, Qi = Q, Q^ = R, k^ = 2, ^ 2 = 6 , ao = 1 - 2ai -
602, ai +3^2 < 1/4). We put together the polynomials Q and R occurring
in the first two cases. We now have m(E) = 10 and m(-E'i) = 6. As in the
previous case, the orbits in E\ (and in E) are interchanged in pairs by
the symmetry cr. Hence it suffices to compute log \g(x^y)\ at five points
of E belonging to distinct orbits, no two of which are interchanged by
a.

In this case, the best irrationality measure of C(2) is 7. 417 844, and
is obtained approximately for a\ =• 179/4549 and a^ = 1/50. The values
of h = log \g(x, y)\ at the points of E are :

s = 1. 5032 7422... p = 0. 5580 9535... h = -2. 6324 0610... = a
s= 1. 3772 5364... p= 0. 4665 3011... h = -2. 6624 1391...
s = 1. 1488 1695... p = 0. 3276 5516... h = -2. 7417 1321...
s= -1. 3439 0564... p= 0. 4910 8889... h = 0. 9675 3319...
s = -2. 5276 9856... p = 2. 5637 5842... h= 2. 0584 6700... =/3.
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We choose n = 118/75 = 1.57333... , r^ = 1. The maximum of
h on r(118/75, 1) is b = 2. 0586 8315... , and is attained e.g. at

x = -1. 4236 7032... + 0. 6165 7309... i
V = -1. 5733 3139... - 0. 0024 6932... z.

Fourth case (u = 3, Qi = Q, Q^ = R, Q^ = S, k^ = 2, ^ = 6, A;3 =
2, ao = 1 - 2ai - 602 - 2as, ai + 3a2 + ^3 < 1/4). We take again the
polynomials Q and R considered above, together with

S(x+y, xy) = ^x-2)(3y-2)(3xy-l)(l-3x-}-2xy)(l-3y+2xy)

which satisfies (1) for k = 2. Note that 1/2 and 2/3 are two successive
convergents in the continued fraction expansion of (v^ - 1)/2, and the
factors of S are obtained from 3x - 2 as is done in the first case with the
factors of Q. We now have m(E) = 18 and m(E^) = 12. By symmetry,
it suffices to compute log \g(x, y)\ at nine points of E.

The best irrationality measure of <(2) is now 7. 398 537, and is
obtained approximately for ai = 622/17501, a^ = 701/35002 and a^ =
68/17501. The values of h = log \g(x, y)\ at the points of E are :

s = 0. 8077 1588... p = 0. 1622 4753... h = -2. 6357 2567... = a
s= 1. 4874 1700... p = 0. 5455 2906... h = -2. 6357 2631...
s = 1. 3790 6475... p = 0. 4675 7791... h = -2. 6545 2797...
s = 1. 1413 1784... p = 0. 3231 8641... h = -2. 7473 9234...
s = 1. 2229 8453... p = 0. 3711 7259... h = -2. 7592 2185...
s= 1. 3160 9155... p= 0. 4329 6833... h= -2. 8296 1228...
s = -1. 1041 7984... p = 0. 3325 2513... h = 0. 3364 5279...
s = -1. 3450 7841... p = 0. 4919 9469... h = 0. 9872 5357...
s = -2. 5270 2055... p = 2. 5637 0342... h = 2. 0674 9747... = (3.

We choose n = 483/307 = 1.573289... , r^ = 1. The maximum
of h on T(483/307, 1) is b = 2. 0677 1416... , and is attained e.g. at

x = -1. 4234 8195... + 0. 6168 3816... %
y = -1. 5732 8795... - 0. 0024 7301... %.

In the following three sections we describe the general method yielding
the above results. We explicitly discuss only the fourth case, i.e. the one
leading to the theorem stated in the Introduction.
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7. Choice of the exponents aj.

Given the polynomials Qj (1 < j < v}, the exponents aj yielding
the optimal values for a and /3, i.e. those for which /^o = (a-/?)/(a+2) is
minimum, are found through a method of semi-infinite linear programming,
which we now describe (if v = 1, one easily gets the optimal a and f3
by applying to several values of ai the method in step (ii) below). See [2]
for a general theory.

Owing to the symmetry in x and y , we may use the variables s = x-\-y
and p = xy. In the fourth case of Section 6.2, which we now discuss, the
part of the unit square U below the diagonal x = y where g(x, y) -^ 0, i.e.
Qj• ^ 0 (1 <, j < 3), splits up into 30 connected components Di,.... Dgo.
The following algorithm determines the optimal exponents aj.

(i) Initial values of the exponents. As an initial choice, we take ai =
^2 ^ 03 = 0.01, whence ao = 0.9.

(ii) Computation of ^o • Let

Qo(s,p) = p (p-5+1) ,

^•(5,p) == log \Qj(s,p)\ - kj log \Qo(s,p)\ ( l ^ j < 3 ) ,

^(s,p) = log \Qo(s,p)\ - log |l-p| ,

04 = 1 .

We compute in each region Di (1 < i < 30) the maximum of the function

4

^ ^-(^ilog ^(rr,^/) | = h(s,p) = ̂  a^ ^-(5,p) ,
.7=1

using the "Downhill Simplex Method" due to Nelder and Mead [12] (each
region Di contains just one stationary point of h). We make use of a
modified version of the program AMOEBA given in [13]. Thus we find
the value a == -2. 575201... .

In accordance with the properties of the transformation r, we see that
h takes on only six distinct values at the maximal points of Di,..., ̂ 30, each
value being repeated five times. We keep in the sequel only six regions, say
DI, ..., DQ^ corresponding to those distinct values of h.
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We assume that each orbit of r in E contains at least one point
(x, y) such that s = x + y and p = xy are real (this will be proved
in Section 8 by symbolic computation). In each connected region of the
real plane (s,p) defined by Qj(s,p) ^ 0 (0 ^ j < 3), 1 - p -^ 0,
we seek the stationary points of h (if there are any) by computing with
the program AMOEBA the minimum of \Qh/9s\ + \9h/9p\. This yields
the value /? = /i(so,Po) = 2. 221224... at the stationary point SQ =
-2. 879852... , po = 2. 591412... . Associating this with the above value a,
we find /2o = (a - /3)/(a + 2) = 8. 3387. Besides D^..., DQ, we keep in the
sequel only the region Do containing (so^po).

(iii) Initial control points. In each region D,, (1 ^ i ̂  6) we choose a few
points (sk.pk) (1 < k < no)- In our case, three well-spaced points for each
region suffice.

(iv) The upper bound for h in the unit square, and the precision. We
choose a suitable real number A < —2, e.g. A = a, the value found in step
(ii), and the desired precision 6, e.g. 6 = lO"8.

(v) Linear programming. We solve the following problem of linear
programming in aj (1 :< j< 4) :

Minimize

4

^ dj (Jj(so,po) ,
J=l

where (so^po) is the stationary point in Do found in step (ii), under the
following conditions :

ai + 3a2 + 03 < 1/4 ,

04 = 1 ,

4

^ a^ ujj(sk.pk) ^ A (1 < A; < no) •
j=i

We get a solution which we still denote dj (1 < j <, 4), yielding a value

4

B! = ̂  ̂ j ^j(5(hPo) •

J=l
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We repeat the computation in (ii) with the new function

4

h{s,p) = ̂  aj u j j { s ,p )
.7=1

containing the aj just found, which gives a value /^o = mi (A). If we
compare this with Mi(A) = (A - Bi)/(A + 2), we obviously expect
Mi (A) < mi (A). If mi (A)-Mi (A) > 6, we denote by (sk.pk) (no+1 < k <
ni = no +6) the points, found by AMOEBA in each region Di (1 < i < 6),
where the new function h(s,p) has its local maxima. Then we go back to
the beginning of (v), replacing no with ni and Oo,po) with the stationary
point of the new h(s,p) contained in Do. Thus we obtain a new solution dj
giving values m2(A), M2(A) such that m2(A) -M2(A) < mi (A) -Mi (A),
and so on. This process converges in a few (say r) steps to values satisfying
m^(A) - Mr (A) < 6, yielding a value ̂  = m^(A) = m(A).

(vi) Variation of A. We let A vary, to get p,o = mm m(A) =
7. 398 1959... . A

Remark. — The above method is clearly applicable to the polynomials
Pi{s,p) (1 < i < 11) factors of the polynomials Qj{s,p) (0 <, j <, 3), and
to their exponents a, satisfying suitable inequalities. It turns out that the
best P.Q is obtained when the exponents a, of the polynomials P, factors of
a given Qj are all equal to a^ and we find again the same function g(x, y)
considered in Section 6.1.

8. Verification of the preceding results
by symbolic computation.

The exponents aj are now chosen to be good simultaneous rational
approximations to the values obtained with the method of the previous
section, namely ai = 622/17501,02 = 701/35002, 03 = 68/17501. To find
the stationary points of g we compute the common zeros of the numerators
of the partial derivatives of log g with respect to s and p. We are led by some
elementary simplifications to seek the common zeros of two polynomials
^i(^P^ U^{s,p} e Z[5,p], both having degree 6 in s and 14 in p.

With the aid of computer algebra systems, we compute the resultant
of U^ (s, p) and U^ (s, p) with respect to s. This is a polynomial in p of degree
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138,mdlsdly[siUebyplo(p-l)33(2p-l)16(3p-l)13^p-l)3(5p-2)2{p2-
3p +1)6 {p2 + 2p -1) (2p2 + 2p -1). These factors correspond to the multiple
intersections of the curves Pi = 0, and hence are independent of the choice
of the Cij. The resultant divided by the above factors is a polynomial V(p)
of degree 45. The 45 distinct roots of V(p) (of which 33 are real) are the
coordinates p = xy of the 90 points ( x ^ y ) € E^ contained in 18 orbits.
For each root of V(p) we compute the common root s of U\{s^p) and
U^(s,p) (one can also compute the Grobner basis of the ideal generated by

44
?7i(s,p), U^s.p) and V{p), which yields a polynomial G{s, p) = s-\- ̂  bip1,

1=0
with bi e Q , satisfying G(s,p) = 0 at each solution of the system
U-i(s^p) = U'z(s,p) = 0). Thus we find the 45 stationary points {s,p) of g ,
of which 33 are real. 30 of these correspond to the 60 points (x, y) € E\ in
the unit square, contained in 12 orbits. The remaining 3 real points ( s ^ p )
(the last three listed at the end of Section 6.2) correspond to 6 points (x, y)
with complex conjugate coordinates x and y , no two of which are equivalent
under the action of the group generated by T. In other words, each of the
6 orbits in E\E-\_ contains just one of those points (a:, y).

Computing the function h{s,p) at the 45 stationary points (5,p) shows
the correctness of all the numerical results given by the program AMOEBA.

9. The minimal torus.

Again in the fourth case of Section 6.2, we consider the torus
T(J?i,J^2) containing the point (xo^yo) which corresponds to s =
-2. 5270 2055..., p = 2. 5637 0342... . The radii are

Ri = ^p = 1. 60115...

J?2 :=: p—[ = 0. 97660...
VP

Using the methods described in Sections 7 and 8, we find exactly ten
distinct points on T{R\^R^)^ conjugate in pairs, at which h = log \g(x^y)\
attains its local maxima. Thus we have five distinct maximal values of /i,
of which the smallest is f3 = 2. 0674 9747... at (rco^o)i and the largest is
2. 0685 2383... . Our aim is to find a torus T(r^,r^) close to T{R^,R^)
such that the maximum b of h on T(ri,r2) is as small as possible. To
do this, we remark that if we apply to any point (a;, y) satisfying y ^ 0
and xy -^ 1 first the symmetry a : (,r, y) i—> (^/, x) and then the
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transformation r, we have (r o a)(x,y) = r(y,x) = ( y , 1 - xy\
\ 1 — xy ' ) '

whence (roaoroa)(x,y) = (.r.z/), i.e. TO a has order 2. Moreover, for any
Pi > 0, p2 > 0,

(TOairGoi.^-TOOl^ 1/R2).

Since the radius R^ = 0. 97660... is close to 1, the torus (roa)T(R^, R^) =
T{R^R^ 1/^2) is close to T{R^R^) and, by the invariance of g ( x , y )
under the action of r o a, we see that each point on T{R^,R^) at which
h = log 19{x ,y) | has a local maximum is transformed by r o a into a
point close to another local maximum of h on T{R^,R^). We are thus
led to the choice p^ = 1. For every pi > 0, the torus T(pi,l) is
now invariant under the action of r o a, and the ten maximal points
for h on T(pi,l), say (^1,2/1), • • • , (^io,2/io), can be numbered so that
T oa interchanges (.ri, 2/1) with (a;2,2/2), (^3,2/3) with (^4,2/4), ..., (x^yg)
with (^10,^10)5 and the complex conjugation interchanges {x-^,y^) with
(•^3^3), (^2^2) with (^4,2/4), (^5,2/5) with (x^ 2/7), (.TG,^) with (xs.ys),
and (.TQ, 2/9) with (2:10,2/10). Thus we have only three distinct values of h at
(^1,2/1)? • • • ? (^10,2/10), and it is easy to find that when pi is approximately
483/307 the maximum b of those three values is minimal. For pi = 483/307
the values of h at (a^, y^) (k = 1,5,9) are :

rci = -1. 4234 8195... + 0. 6168 3816... z,
y^ = -l. 5732 8795... - 0. 0024 7301... z,
h = 2. 0677 1416... = 6

a:5 = -1. 5515 9378... + 0. 0022 6745... z,
2/5 = -1. 4439 8024... - 0. 6246 2963... z,
h = 2. 0676 6868...

3:9 = -1. 2660 2634... - 0. 9835 1409... z,
2/9 = -1. 4432 1610... + 0. 6263 9315... z,
h = 2. 0675 1361...

Associating 6 with the value a = -2. 6357 2567... given in Section 6.2 we
find

/^(C(2)) < (a - b)/(a + 2) = 7. 398 5369... .

This completes the proof of the theorem.
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