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ON THE COMPLEXITY OF SUMS
OF DIRICHLET MEASURES

by Sylvain KAHANE

1. Introduction.

Let E be a metrizable compact space. We denote by M{E) (resp.
Mi(E)) the set of all non-negative (resp. probability) Borel measures on E.
Recall that Mi(E) is a metrizable compact space for the weak* topology,
which is the topology of the duality with the set C{E) of all continuous
functions on E; in the following, the topological complexity of a subset M
of M(E) actually means the topological complexity of M D M^E}. P(E)
(resp. K,(E)) denotes the set of all subsets (resp. compact subsets) of E.
Let C be a closed under countable intersections subset of P(E). We denote
by M.(C) the set of all non-negative Borel measures concentrated on an
element of C : M{C) = \J M(X). Let C0 (resp. C^) denote the set of all

xec
unions of sequences (resp. increasing sequences) of elements of C. Note that
M(C^) is equal to the norm-closure M(C) of M(C) and that M^) is the
convex norm-closure of M{C). We denote C1' the set of all measures which
annihilate all elements ofC. We have the following algebraic decomposition :
M(E) = .M(C°') © C^. Recall that K{E) is a metrizable compact space in
the Hausdorff topology. If C is a Borel subset of K.{E), then M(C), M{C^)
and M^) are analytic subsets of M\{E} and C1' is a coanalytic subset
ofMi(E).

Let T be the unit circle R/Z. We are interested in the four following
subsets of/C(T).

Key words : Analytic sets — Dirichlet measures — Singular measures — Sums of measures.
A.M.S. Classification : 28A33 - 04A15.
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A compact subset K of T is a set of type D or a Dirichlet set if for
all £ > 0 and TV e N there exists n ̂  N such that |sm27rm:| < £ for all
a;C^.

A compact subset K of T is a set of type H if there exist a non empty
interval I of T and a strictly increasing sequence (n^fceN of integers such
that rikK D I = 0 for each integer fc.

A compact subset K of T is a set of type L or a lacunary set if
there exist a sequence En —^ O"^, a sequence o^ —> +00 and for each
integer n a finite sequence (J^) of intervals such that \Ik\ < £n for each A-,
d ( I k , I k ' ) > Ot-n^n for each k ^ k ' and 7^ C (JJ^.

A compact subset K of T is a set of type LQ if there exist a sequence
^n —^ 0"^, a > 0 and for each integer n a finite sequence (Jfc) of intervals
such that \Ik\ ^ ^n for each k, d^,^) ^ o^n for each k ^ k1 and
J ^ C U ^ .

Note that both lit and L are supersets of D and subsets of Lo. The
classes D and L are Qs subsets of /C(T) and H and Z/o are /C^ subsets [1].

A measure concentrated on a I^-set is called a Dirichlet measure.
For every ^ C M(T) and n C N, we denote (i{n) = f e27"7^ d^{x) and
/2(n) = J |sin27m.r| dfi(x). For every /^ G A^(T), the following conditions
are equivalent :

' (1) IJL e M(D^)

< (2) limsup \ft(n)\ = \ dfji
n—>oo J

(3) liminf^(n) =0.
v n—>oo

Note that M{D^) is a norm-closed Qs subset of .Mi(T).

THEOREM 1.1. — There does not exist a Borel subset B of Mi(T)
such that B H Lo^ = 0 and .M(I^) + .M^) c B.

For all M C M(T) and n € N, we denote M^) the set of all sums
of n elements of M.

COROLLARY 1.2. — The sets M{C^)^\ M(C^)W and M^) are
analytic non Borel for all n >_ 2 and C = D, H, L or LQ.

We obtain also the following property which has been studied suc-
cessively by Host, Louveau and Parreau [3], Kechris and Lyons [3] and
Kaufman [2].
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COROLLARY 1.3. — C1- is a coanalytic non Borel set for C = D, H, L
or LQ.

COROLLARY 1.4. — None of the sets in the two previous corollaries
can be pairwise separated by a Borel set.

We prove also that the sets M^)^, for n > 2 and C = D, H, L or
Lo, are not norm-closed.

THEOREM 1.5. — There exists a measure in M(D^) + M(D^) which
is not a finite sum of measures in .M(Lo^).

THEOREM 1.6. — For every n >_ 3, there exists a measure in
M(D^) + M{D^) which is the sum ofn measures in M(D^) and is not the
sum ofn—1 measures in M.{LQ^).

2. Kaufman's reduction.

We follow Kaufman's construction used to prove that H^~ is not a
Borel set [2]. Let N be the set of positive integers, [N] be the set of all
infinite subsets of N, N^ be the set of all finite sequences of positive
integers and T be the set of trees on N, i.e., T C ^(N^) and T <E T if
and only if all initial segments of s G T are also in T. We say that T € T
is a well founded tree if T has no infinite branch, i.e., there does not exist
a e N1^ all whose initial segments belong to T. The set of all well founded
trees is denoted by WF. Recall that T is a Polish space in the product
topology on ^(N^) and WF is the classical example of a coanalytic non
Borel set.

We denote 21^ the compact, metrizable space {0, l}1^. If x G 2N,
x = {x{n))n^N with x(n} = 0 or 1. Let A be the Lebesgue measure
on 2N. Let S be the Polish space of all Borel sets on 2N with metric
d(A,B) = A(A A B), quotiented by the relation d(A,B) = 0; E can be
viewed as a closed subspace of 7^(2^. Consider the sets

X = { (A,),eN € ^N; A(QA,) = 0 for all R e [N] }
R

and

V = { (An)n^ e ^N; A((liminfA^) U liminfA^)) = 1
R S

for some (R, S) G [N]2 },
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where liminf^A^ = (J p] A^. Note that X is a coanalytic subset
m€Nn>m,ne-R

of ^'N [2] and that y is an analytic subset of Z .̂

LEMMA 2.1. — There is a continuous mapping <t> from T to E^ such
that <S>(WF) C X and ^(WF0) C y. Therefore, there is no Borel subset B
ofZ^ such that V C B and X H B = 0.

Proof. — Construction of <I>. To each s e N^, we attach subsets
E{s) and F(s). Let < , > be a one-to-one mapping from N2 to N. We
define E(s) and F{s) by induction on the length \s\ of s. Let E(0) = 2N

and F(0) = 0. If s C IN^ has length \s\ =k-l and n^ e N, put

^(5^) = [x C 21^; (.r € E(s) and 3i e [krik, k(rik + 1)[, x{<k,i>) = 0)
or ( x e F ( s ) ajidVze [A;nfc,A;(^ + 1)[, x(<k,i>) = l) }

and
FOr^) = { ^ C 2N; (a; e F(5) and 3i e [A;n^A:(rifc + 1)[, x{<k,i>) = 0)

or (x C E(s) and^i e [knk,k(nk + 1)[, a:(<A;,z>) = l) }.

We have E{(n^)) = {x <E 2^', x(<l,nz>) = 0 } and F({n^) = { x e
2N; a:(<l,ni>) = 1 } if ni e N. Note that E(s) = F(s)° and A(^(«)) =

^(F(s)) = ^ for all s € N<N \ {0}. Let a C N3^. The length k initial
segment of a is denoted by (T^. We have

\( H E(a^)) > A(£-(a^)) x I] (1 - 2-^)
^fc^n / k>n

for each n € N. But lim TT (1 - 2~k) = 1, whence
"-^^A^n

A(liminf£'(a^) U liminfF(a^)) = 1.

Let us enumerate N^ = {sn;n G N} and consider the mapping
(D : T —^ ^N, T ̂  (^n(T))^^ defined by

(£'(5p) if n = 2p and Sp e T,
^n(r) = F(5p) if n = 2p + 1 and Sp C T,

0 otherwise.
Clearly, <I> is continuous and ^(WF0) C V.

To complete the proof of Lemma 2.1, it remains only to show
that <S>(WF) c X. Let T C T such that there exists J? e [N] with
x[^^n(T)j > 0. Let us suppose that R n 2N is infinite (the case
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R D (2N + 1) infinite is similar). Let P e [N] such that 2P c R. We
have X^E(sp)) > 0. Let Sp = (n^n^ • • . ,n^) for each p e P. Let

us prove that {n^ p e P} is finite for all k e N. Otherwise, there exist
k G N, s e N^ and an infinite subset P ' of P such that Sp = s^n^tp
with ^ € r^ for all p € P' and n^ ^ n{ for distinct p, p ' e P7 '. Let
p e P7. For all x e 2^ we have

( p e [A< A;« +1)[, r ., e £;(.) n ̂ (^)
.e^,)^ ort^^)-0 ^I'^eF^nF^)

r Vz G [^, ̂ « + 1)[, ( ^ E(s) n F,(tp)
[ \x(<k^>) = i and {or x e F(s)nE,(tp)

where £'fc(^) and Fk(t) can be defined by induction as follows : £^(0) = 2N

and F^(0) = 0; if ^ e N<N has length |^| = j - 1 and m^ C N, put

^(rm,) ={xe 2^ (r, e ̂ (^)
and 3% C [(A; + j )m j , (A; + j)(m^ + 1) [, x(<k + j, z>) = 0)

or (.r C Pfc(^)

andVzG [(A; +j)m^ {k +j)(m^ + l)[,a-(<A: +j^>) =l)}

and

P^rm,) = {^ e 2N; {x e ^(^)
ajid3ze [(A:+j)m^(A;+j)(m^+l)[^(<A:+^z>)=0)

or (x C £^)

andVze [(k + j)m^ (k + j)(mj + l)[,x(<k +^z>) = l)}.

Note that E^) = P/,(t)c for all t e N<N. Moreover in the probability
space (2^ A), the conditions { x € E(s) }, { 3z e [(A: + j)m^ {k + ^)(m^ +
l)[,x(<k + j , z>) = 0 } and { r r € ^(^)} are independent, because the
mappings x ^ x(j), j e N, are independent. The conditions {3i e
[A;<^«+ l)[^(<^^>)=0}and{3^e[^ / ,A:(^ /+l)[^(<A;,z>)=0}
are also independent for distinct p , p ' e P ' . So we can explicitely calculate
Af Ft ^Op)) for any finite subset 7 of P'. We have

Se^ /^p^i

/ x I J I

A( H ̂ ,)) = ^a,(2-fc)^(l - 2- /C)I JI-^

p€J 2=0
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where ao = \([E(s) H Q ̂ p)] U [F(5) H n ̂ fc(^)]) and a, > 0 ,
v pel pel /

I J I 1
Y^o^i = 1. So OQ < . whence
1=0

A( H ̂ p)) < ̂ l - 2-T1 + ̂ (l - 2-T1-1 = ̂ l - 2- fc)IJI- l.
pel / 2 2 2

Thus A( F) ^(sp)) = 0 which is a contradiction, and proves that\p^p/ /
{n^; p € P} is finite for all A; <E N. So the tree T' = { 5 € N<N; 3p e
P, 5 is an initial segment of Sp } is an infinite tree (P is infinite) with finite
branching, so T ' ^ WF, whence T ^ WF. D

3. The abstract case.

We introduce a subset I of /C^1^) which plays the role of D in this
simpler case.

A compact subset K of 21'1 is a set of type I if for all N e N there
exists n > N such that x(n) = 0 for all x e K. Note that I is a Gs subset
of/C^).

For each A € [N], put

KA = { x e 2^ Vn e A, x(n) = 0 },

K\ = { x e 2^ 3m e N, Vrz € A H [m, +oo[, .z-(n) = 0 }

and let /^A be the Haar measure on the subgroup KA of 21'1 ^ (Z/2Z)N.
More precisely, [LA is the product measure 0 ^n with ^ = 60 if n e A

n€N

and ̂  = ^(^o+^i ) otherwise.

We will use the following elementary, but fundamental fact.

LEMMA 3.1. — Let A and B C [N]. IfB\A is finite, then ̂ A(K^) = 1.
IfB\A is infinite, then ̂ (K^) = 0.

Note that

I = { K e /C^); 3A e [N], K c KA }

and
/T = { K € /C^); 3A e [N], ̂  c K\ }.
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Let Jl(n) == f x(n) dfjL(x). We have

M(I^)= {^e^ / ( (2 N ) ; l immf/ , (n)=0}.

Note that M(I^) is a Gs subset of Mi^).

Following Kaufman's ideas [2], we assign to each sequence A =
(An)neN € Z^a mapping A from 2N to ^(N), defined by A(rr) = {n e
' N ; x e An }, and a measure v^ defined by v^ = J^AQr) d\(x). Let 6 be
the mapping from ^N to M^'2^) defined by 9(A) = v^. Note that 9 is
continuous.

LEMMA 3.2. — 6(<Y) C I1- and e(V) C M{I^) + A-l^).

Proof. — Using Lemma 3.1 we have

A(liminfA^) = \{{x € 2N; R \ A{x) finite}) = ̂ (^).

for all A = {An)n(^N € E^ and R e [N]. This remark allows us to finish
easily the proof. D

We have an abstract version of Theorem 1.1.

THEOREM 3.3. — There does not exist a Borel subset B ofA^^^
such that M(I^) + M(I^) C B and B H I1- = 0.

Proof. — Such B insure (^cO)-1^) = WF° and cannot be a Borel
set, because ^o9 is continuous. D

4. How to go from the abstract case to T.

Every element a; of T can be expressed in the form x = ^ x(n)2~n

n€N
with x(n) either 0 or 1, and x(n) = 0 for large enough n if x is rational.

For each A e [N], let

KA = { x C T; Vn € A, x(n) = 0 },
K\ = { x e T; 3m e N, Vn e A D [m, +oo[, a;(n) = 0 }

and

^A= ^ l^^ '^^6 2 - "neN \ z z
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be the canonical Bernoulli product measure concentrated on KA- A set
A is called colacunary if for each n € N, there exists a G N such that
[a, a + n] C A. Note that -ft^ € P if A is colacunary.

Lemma 3.1 still holds with these new notations. Our next goal is to
extend this property to the Lo-sets.

LEMMA 4.1. — Let K G LQ and a > 0 and (£n)neN witnessing this.
Let A E [N] and c = sup(—[log2aj,0) + 2. Iflimsupd(log2 — , A ) > c,

n v £71 /

then ^LA^K) = 0, where d(x^ A) = inf { \x — n\; n € A } (a: € R/

This property is derived from a result of Lyons [4] whose conclusion
is much more precise, but which concerns only the case K 6 H and A
lacunary. The proof of Lemma 4.1 uses the following simple result ([1]
Lemma 2.9).

LEMMA 4.2. — Let K G LQ and a > 0 and en G]0, -[ witness this.
0

Let m = -|_log2^nJ and p = sup(-[log2aj,0). For each (^)ze[i,m-2] ^
{O.I}771'"2, there exists (^)ie[m-i,m+p+i] € {0,1?34"3 such that for each
x € T,

(Vz € [l,m+p4-1], rc(z) = a-z) =^ ^ ^ JC.

Proof of Lemma 4.1. — Let jFC € Lo and let a > 0 and (en)neN
witness this. Let p = sup(—[log2aj,0) and mn = —[log2^nj for each
n € N. Without loss of generality, we can suppose that the intervals
[m^ — l,^n +p + I], n € N, are pairwise disjoint and disjoint from A.
Let n € N. There exists, by Lemma 4.2, a mapping (pn from {0, l^1'777^"2]
to {0, i}[^n-i^n4-p+i] gnch that the set Bn of all x C T such that

V, e {o,!}!1-"1"-2] (.=^(.))^,,^_,i^^)=^^).e^-i^^i])
is disjoint from K. But /^(-Sn) = 2-p-3 and the ^n's, n € N, are indepen-
dent events in the probability space (T,/^)) so /^(-^O ^ ^(D^n*^) =rwiv)=o. D

5. Proof of Theorem 1.1.

Let (afc)fceN and (6fc)fceN be two sequences of positive integers such
that \im(bk — cik) = -hoc and lim(afe+i — bk) = +00. Put Ik = [a^, bk\ C N.
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For A C N, put A = \J I k ' Note that A is colacunary if and only if A is
k^A

infinite.

To each sequence A = (A^)^^N C ^N, we assign a mapping A from
2N to 'P(N) defined by A(x) = { n e N; rr G A^ }, and next a measure
^A == f f^"^ ^(x)- Let 0 be the mapping from E^ to .Mi(T) defined byA\X)

©(A) == z^4. Note that © is continuous.

LEMMA 5.1. — ©(/D C LQ^ and 0(y) C M(D^) + M(D^).

Proof. — Using Lemma 3.1, we have for each A = (An)ne^ € ^N

and each R e [N],
A(liminfA^) = A ( { a ; C 2N; R \ A(x) finite}

Ft

= A ( { a • e 2 N ; R\A(x) finite}
=^^).

But K ~ C P^ because ̂  is colacunary, whence Q(Y) C M(D^)-\-M(D^).

The previous remark does not allow us to prove that Q(^) C LQ±.
Let A = (An)neN ^ ^N such that Q(A) ^ Lo"1', i.e., there exists
K G LQ such that ^A(^) > 0- Let a > 0 and (5n)neN witness that
K G Lo. We have \{H) > 0 with H = {x C 2^; p^^W > 0}-

Now H C { r r 6 2N; limsupc?(log2 —,A(a;)) < c} by Lemma 4.1. Thus
\ £^ /

limsupd(log2 — , N ) < c, because \(H) > 0, so ^(log2 — , N ) < c for
\ En / \ £n /

large enough n. Moreover a^+i —bk><2c for large enough A*, so there exists
a unique kn such that d( log2 —, J^ ) < c for large enough n (n > no). Let

\ En /

a = { kn, n > no }. We have H C { x C 21^; J? \ A(rc) &ite } = liminf An,
-R

so there exists a € N such that A( H A ^ ) > 0 , whence A^i X. D
^n^+ool /

Clearly, we can deduce Theorem 1.1 from this.

6. Theorems 1.5 and 1.6 in the abstract case.

We denote C17 = { X U V; (X, V) € C2 } for C C P(E) where £' is a
metrizable, compact set. It is easy to verify that

A^KA^C^A^)^)
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and
M(C^+M(C^ = M^C^).

We use again the notations of Part 3. Let (An)neN be a sequence of
infinite, pairwise disjoint subsets of N. Consider the set

Xo= |j H (K^UK^)
n(EN n>m

which belongs to (1^. Note that XQ ^ (J^. To all x e 2N a,nd m (^ N,
we attach Cm(x) = |j A^x(n); note that Kc^ C XQ. Consider the

n>m
weak*-integral

^00= E2""1/'^.)^).
meN J

Clearly /^ e Mi(Xo) and Mi^o) C A^(/T) +A^(Jt).

LEMMA 6.1. — /^oo is not a finite sum of measures in M.(I^).

We can immediately deduce an abstract version of Theorem 1.5.

THEOREM 6.2. — There exists a measure in M(P) + M(P) which is
not a finite sum of measures in M(I^).

We can generalize the previous construction. Let {Fm)rneN be a
sequence of finite subsets of N. We define

^Wn)= E2"" I ^^d\{x)^

meN v

where C(x, Fm) = U A^^n)' Note that ^p^ e Mi(Xo). In particu-
n^Fm

lar, /^oo = ^([i,m[).

Let k € N and (F^)^eN be an enumeration of all subsets of N
containing k elements and

/^=^).
In particular ^ = /^({m}). Note that ̂  is concentrated on (J {KA^ U

nC-F
^A2n+i) for each subset F of N containing k + 1 elements, whence
/^eA^r/2^2).

LEMMA 6.3. — ̂  ^ .M^)02^1) for each k > 0.

We can immediately deduce an abstract version of Theorem 1.6.
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THEOREM 6.4. — For every n ^ 3, there exists a measure in
M(P) + A^H) which is the sum ofn measures in M(I^) and is not the
sum ofn—1 measures in M.(I^).

PROPOSITION 6.5. — For every n > 2, there exists a measure in
M(I^)^ which is not in .M(JT)(71-1).

1 n

Proof. — Consider y^ = - ̂ A^u. If 5 € [N], there exists at most
n k=i

one k such that B \ Ak finite, so, by Lemma 3.1, Vn{K^} < -. If X is a
m __ 1

union of n - 1 ̂ -sets, then ^n(X) < ———, whence i/n ^ A((^)(n-l). D
Tli

We deduce from Theorem 6.4 and Proposition 6.5 the following fact.

COROLLARY 6.6. — The sets M(I^)^ and M(P)W, n > 2, are all
distinct.

We will now prove Lemmas 6.1 and 6.3.

LEMMA 6.7. — Let p, = ̂ Fm) an(^ x e JT- Then IJL^ is concentrated
on K.Ap for some p.

Proof. — Let X e /T such that ^(X) > 0. There exists B e [N] such
that X C KB. If B \ U Ap is infinite, then B \ C{x,Fm) is infinite for

p€N

all m e N and x e 2N. Using Lemma 3.1, we have ^c{x,Fm} C^a) = °? so

^{K^) = 0 which contradicts our hypothesis, whence B \ \J Ap is finite.
peN

Consider C = { p € N; B H Ap ^ 0}. If C is infinite, C =
{ 2rifc + Cfe; A; 6 N, <fe = 0,1}. If m e N and x € 2^^ are such that
^c(a;,^)(^B) > 0, then B\C(x, Fm) is finite by Lemma 3.1, so x{rik) = Cfc
for large enough k, because Fm is finite. But \({x e 2^ x(nk} =
CA; tor Jarge enough k}) = 0, so p.(K^) == 0. This contradiction prove that
C is finite and B n Ap is infinite for some p.

If m e N and a: G 2^^ are such that p.c{x,Fm) (Kg) > 0, then
Ap C C(x,Fm), so ^c(a;,F^)(^Ap) = 1, whence jLAr^r is concentrated on
KA^ B D

Proof of Lemma 6.1. — Let X be a finite union of T^-sets. Using
Lemma 6.7, we can suppose that X = |j KA^ for some finite subset F

nCF
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of N. Let rriQ with p < 2mo for all p € F. For all m > me and x e 2^
^(rr)W = 0 by Lemma 3.1. So ^oo^) > 0. D

Proof of Lemma 6.3. — Using Lemma 6.7, we have just to prove that
lik cannot be concentrated on X == |j K^p for every F with cardinality

nCF

< 2k + 1. Let F be a set having this property. Thus F = {2n; n e
G } u { 2 n + l ; n e G ? } u { 2n + <^; n <E ^ } with Cn either 0 or 1. Now
G has cardinality < A;, so G C F^ for some mo. Using Lemma 3.1, we
have f^c{x,F^ )(^°) > 0 fo1' every a; (E 21^ such that x(n) = 1 — C,n for each
n € H , whence /^(^c) > 0. D

7. Proof of theorems 1.5 and 1.6.

To prove Theorems 1.5 and 1.6, we follow the ideas and techniques
of Part 6. We introduce the same notations and the same lemmas, expect
that, in this case, (Ayj^N is a sequence of colacunary subsets of N such
taht for k going to +00, d(An H [k, +oo[, Am H [/c, +oo[) —> +00 uniformly
for all n -^ m. Moreover, KA and /^A, A e [N], are the same as in Part 4.
Finally, Lemma 6.7 is replaced by the following result.

LEMMA 7.1. — Let fji = ̂ (^) and X G L^. Then /^ is concentrated
on KAp for some p.

Proof. — We start by proving the result for K e LQ. Let a > 0 and
(^)feeN witness that K e LQ. Let p =sup(- [log2 Ek\, 0), m^ = - [log2 £k\
and Jj, = [mk - l,mk +p+ I ] ,k € N. If^(^) > 0, then p,c{x^)W > 0
for some .r € 2N and m e N. But C(x, Fm) C IJ^p? so? ^ng Lemma 4.1,
we deduce that Jk meets at least one Ap for large enough k. Now |Jfc| is
constant and as k -^ +00, d(An H [A;, +oo[, Am H [A;, +oo[) —^ +00 uniformly
for all n -^ m, so J^ meets exactly one Ap^ for large enough k. If (pfc)fceN is
unbounded, then (pk)keD is injective for some D 6 [N]. Put pk = 2n^ + ̂
with <^fc = 0 or 1. By Lemma 4.1, if ^c{x,Fm}^) > 0 ^or some .r € 2N,
then x{rik) = Cfc for large enough k. But A ({a* € 2^ .r(nfc) = Cfc for large
enough k}) = 0, so l^{K) = 0. If (pfc)fceN is bounded, there exists p such
that p = pk for infinitely many fc. If m C N and re € 21'*1 are such that
^c^x^W > °^ then Ap C C^F^), so /^,^)(-^Ap) = 1, whence /^
is concentrated on J<TA .
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Let X 6 LQ^ . There exists a sequence (Kj)j^ys of I/o-sets such that
X C \immfKj. Now, for each j, there exists pj that fi^y ls concentrated on
K.Ap., so /2[-^ is concentrated on liminf7^Ap. • As before, /^(liminfJ^Ap.) = 0
if (pj)j^ is unbounded. So /A[-^- is concentrated on KA? tor some p. D
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